

Mark Scheme (Results)

Summer 2013

GCE Core Mathematics 4 (6666/01R)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA035679 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x =

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to x =...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme		Marks
1.	$\frac{5x+3}{(2x+1)(x+1)^2} = \frac{A}{(2x+1)} + \frac{B}{(x+1)} + \frac{C}{(x+1)^2}$	At least one of "A" or "C" are correct.	B1
	(2x + 1)(x + 1) = (2x + 1) = (x + 1) A = 2, C = 2	Breaks up their partial fraction correctly into three terms and both " A " = 2 and " C " = 2.	B1 cso
	$5x + 3 \equiv A(x + 1)^{2} + B(2x + 1)(x + 1) + C(2x + 1)$ $x = -1 \Rightarrow -2 = -C \Rightarrow C = 2$ $x = -\frac{1}{2} \Rightarrow -\frac{5}{2} + 3 = \frac{1}{4}A \Rightarrow \frac{1}{2} = \frac{1}{4}A \Rightarrow A = 2$	Writes down <i>a correct identity</i> and attempts to find the value of either one " <i>A</i> " or " <i>B</i> " or " <i>C</i> ".	M1
	Either $x^2: 0 = A + 2B$, constant: $3 = A + B + C$ x: 5 = 2A + 3B + 2C leading to $B = -1$	Correct value for " <i>B</i> " which is found using a correct identity and follows from their partial fraction decomposition.	A1 cso [4]
	So, $\frac{5x+3}{(2x+1)(x+1)^2} = \frac{2}{(2x+1)} - \frac{1}{(x+1)} + \frac{2}{(x+1)^2}$		4
	Notes for Question	11	
	 BE CAREFUL! Candidates will assign <i>their own</i> "A, B and C" for this question. B1: At least one of "A" or "C" are correct. B1: Breaks up their partial fraction correctly into three terms and both "A" = 2 and "C" = 2. M1: Writes down <i>a correct identity</i> (although this can be implied) and attempts to find the value of either one of "A" or "B" or "C". 		
	 This can be achieved by <i>either</i> substituting values is comparing coefficients and solving the resulting each and the composition. Note: If a candidate does not give partial fraction defined and the 2nd B1 mark can follow from a correct identified and the composition. 	quations simultaneously. It identity and follows from their partial decomposition then: dentity.	
	 the final A1 mark can be awarded for a correct fractions at the end. Note: The correct partial fraction from no working score Note: A number of candidates will start this problem by find "A" or "B" or "C". Therefore the B1 marks 	es B1B1M1A1. writing out the correct identity and the	-

Question Number	Scheme	Marks	
2.	$3^{x-1} + xy - y^2 + 5 = 0$		
	$3^{x-1} \rightarrow 3^{x-1} \ln 3$	B1 oe	
	Differentiates implicitly to include either		
	$\left\{ \underbrace{\underbrace{dy}}_{x} \times \right\} = 3^{x-1} \ln 3 + \left(y + x \frac{dy}{dy} \right) - 2 y \frac{dy}{dy} = 0 \qquad \pm \lambda x \frac{dy}{dx} \text{ or } \pm k y \frac{dy}{dx}.$	M1*	
	dx = dx		
	(ignore) $xy \to +y + x \frac{dy}{dx}$	B1	
	ŭ	A 1	
	$\dots + y + x\frac{\mathrm{d}y}{\mathrm{d}x} - 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1	
	$\{(1,3)\Rightarrow\}$ 3 ⁽¹⁻¹⁾ ln 3 + 3 + (1) $\frac{dy}{dx}$ - 2(3) $\frac{dy}{dx}$ = 0 Substitutes x = 1, y = 3 into their differentiated equation or expression	dM1*	
	$\ln 3 + 3 + \frac{dy}{dx} - 6\frac{dy}{dx} = 0 \implies 3 + \ln 3 = 5\frac{dy}{dx}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3 + \ln 3}{5}$	dM1*	
	un 5		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \left(\ln e^3 + \ln 3 \right) = \frac{1}{5} \ln \left(3e^3 \right) \qquad \qquad \mathbf{Uses} \ 3 = \ln e^3 \ \text{to achieve} \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \ln \left(3e^3 \right)$	A1 cso	
		[7]	
	Notes for Question 2	7	
	Notes for Question 2		
	B1: Correct differentiation of 3^{x-1} . I.e. $3^{x-1} \rightarrow 3^{x-1} \ln 3$ or $3^{x-1} = \frac{1}{3}(3^x) \rightarrow \frac{1}{3}(3^x) \ln 3$		
	or $3^{x-1} = e^{(x-1)\ln 3} \rightarrow \ln 3 e^{(x-1)\ln 3}$ or $3^{x-1} = \frac{1}{3} (3^x) = \frac{1}{3} e^{x\ln 3} \rightarrow \frac{1}{3} (\ln 3) e^{x\ln 3}$ M1: Differentiates implicitly to include either $\pm \lambda x \frac{dy}{dx}$ or $\pm ky \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).		
	B1: $xy \rightarrow + y + x \frac{dy}{dx}$		
	1 st A1: + $y + x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0$ Note: The 1 st A0 follows from an award of the 2 nd B0.		
	Note: The " $= 0$ " can be implied by rearrangement of their equation.		
	ie: $3^{x-1}\ln 3 + y + x\frac{dy}{dx} - 2y\frac{dy}{dx}$ leading to $3^{x-1}\ln 3 + y = 2y\frac{dy}{dx} - x\frac{dy}{dx}$ will get A1 (implied).		
	2nd M1: Note: This method mark is dependent upon the 1 st M1* mark being awarded. Substitutes $x = 1$, $y = 3$ into their differentiated equation or expression. Allow one slip	2	
	3rd M1: Note: This method mark is dependent upon the 1^{st} M1* mark being awarded.	J.	
	Candidate has two differentiated terms in $\frac{dy}{dx}$ and rearranges to make $\frac{dy}{dx}$ the subject.		
	Note: It is possible to gain the 3^{rd} M1 mark before the 2^{nd} M1 mark.		
	Eg: Candidate may write $\frac{dy}{dx} = \frac{y + 3^{x-1} \ln 3}{2y - x}$ before substituting in $x = 1$ and $y = 3$		
	2nd A1: cso. Uses $3 = \ln e^3$ to achieve $\frac{dy}{dx} = \frac{1}{5}\ln(3e^3)$, $\left(=\frac{1}{\lambda}\ln(\mu e^3), \lambda = 5 \text{ and } \mu = 3\right)$		
	Note: $3 = \ln e^3$ needs to be seen in their proof.		

2.	Alternative Method: Multiplying both sides by 3		
	$3^{x-1} + xy - y^2 + 5 = 0$		
	$3^x + 3xy - 3y^2 + 15 = 0$		
	$3^x \rightarrow 3^x \ln$	3 B1	
	Differentiates implicitly to include eith	er	
Aliter	$\left\{\frac{\partial x}{\partial x} \times \right\} 3^x \ln 3 + \left(3y + 3x\frac{dy}{dx}\right) - 6y\frac{dy}{dx} = 0 \qquad \qquad \pm \lambda x \frac{dy}{dx} \text{ or } \pm ky\frac{dy}{dx}$		
Way 2	(ignore) (is dx) (is dx) (is dx) (is $3xy \rightarrow +3y + 3x \frac{d}{d}$	$\frac{y}{r}$ B1	
	$\dots + 3y + 3x\frac{dy}{dr} - 6y\frac{dy}{dr} = 0$	A1	
	$\{(1,3) \Rightarrow\} 3^{1} \ln 3 + 3(3) + (3)(1)\frac{dy}{dx} - 6(3)\frac{dy}{dx} = 0$ Substitutes $x = 1, y = 3$ into the differentiated equation or expression	1 divi 1 *	
	$3\ln 3 + 9 + 3\frac{dy}{dx} - 18\frac{dy}{dx} = 0 \implies 9 + 3\ln 3 = 15\frac{dy}{dx}$		
	$\frac{dy}{dx} = \frac{9+3\ln 3}{15} \left\{ = \frac{3+\ln 3}{5} \right\}$	dM1*	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \left(\ln \mathrm{e}^3 + \ln 3 \right)$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \left(\ln \mathrm{e}^3 + \ln 3 \right) = \frac{1}{5} \ln \left(3\mathrm{e}^3 \right) \qquad \qquad \text{Uses } 3 = \ln \mathrm{e}^3 \text{ to achieve } \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \ln \left(3\mathrm{e}^3 \right)$) A1 cso	
		[7] 7	
	NOTE: Only apply this scheme if the candidate has multiplied both sides of their equation b	y 3.	
	NOTE: For reference, $\frac{dy}{dx} = \frac{3y + 3^x \ln 3}{6y - 3x}$		
	NOTE: If the candidate applies this method then $3xy \rightarrow +3y + 3x\frac{dy}{dx}$ must be seen for the	2 nd B1 mark.	

Question			
Number	Scheme	Marks	
3.	$\int_{0}^{4} \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x , u = 2 + \sqrt{(2x+1)}$		
	$\frac{du}{dx} = (2x+1)^{-\frac{1}{2}} \text{or} \frac{dx}{du} = u-2$ Either $\frac{du}{dx} = \pm K(2x+1)^{-\frac{1}{2}} \text{or} \frac{dx}{du} = \pm \lambda(u-2)$ Either $\frac{du}{dx} = (2x+1)^{-\frac{1}{2}} \text{or} \frac{dx}{du} = (u-2)$	M1	
	Efficient $\frac{dx}{dx} = (2x + 1)$ of $\frac{du}{du} = (u - 2)$	A1	
	$\left\{ \int \frac{1}{2 + \sqrt{(2x+1)}} dx \right\} = \int \frac{1}{u} (u-2) du$ Correct substitution (Ignore integral sign and du).	A1	
	$= \int \left(1 - \frac{2}{u}\right) du$ An attempt to divide each term by <i>u</i> .	dM1	
	$\pm Au \pm B \ln u$	ddM1	
	$= u - 2\ln u \qquad \qquad u - 2\ln u$	A1 ft	
	$\left\{ \text{So} \left[u - 2\ln u \right]_{3}^{5} \right\} = \left(5 - 2\ln 5 \right) - \left(3 - 2\ln 3 \right) $ Applies limits of 5 and 3 in <i>u</i> or 4 and 0 in <i>x</i> in their integrated function and subtracts the correct way round.	M1	
	$= 2 + 2\ln\left(\frac{3}{5}\right) \qquad 2 + 2\ln\left(\frac{3}{5}\right)$		
		[8] 8	
	Notes for Question 3		
	M1: Also allow $du = \pm \lambda \frac{1}{(u-2)} dx$ or $(u-2)du = \pm \lambda dx$		
	Note: The expressions must contain du and dx . They can be simplified or un-simplified		
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = \pm \lambda dx$		
	Note: The expressions must contain du and dx . They can be simplified or un-simplified		
	A1: $\int \frac{1}{u} (u-2) du$. (Ignore integral sign and du).		
	dM1: An attempt to divide each term by <i>u</i> . Note that this mark is dependent on the previous M1 mark being awarded.		
	Note that this mark can be implied by later working.		
	ddM1: $\pm Au \pm B \ln u$, $A \neq 0$, $B \neq 0$ Note that this mark is dependent on the two previous M1 marks being awarded		
	Note that this mark is dependent on the two previous M1 marks being awarded. A1ft: $u - 2\ln u$ or $\pm Au \pm B\ln u$ being correctly followed through, $A \neq 0$, $B \neq 0$		
	M1: Applies limits of 5 and 3 in u or 4 and 0 in x in their integrated function and subtracts the correct way round.		
	A1: cso and cao. $2 + 2\ln\left(\frac{3}{5}\right)$ or $2 + 2\ln(0.6)$, $\left(=A + 2\ln B$, so $A = 2$, $B = \frac{3}{5}\right)$		
	Note: $2 - 2\ln\left(\frac{3}{5}\right)$ is A0.		

Notes for Question 3 Continued		
3. ctd	Note: $\int \frac{1}{u} (u-2) du = u - 2 \ln u$ with no working is $2^{nd} M1$, $3^{rd} M1$, $3^{rd} A1$.	
	but Note: $\int \frac{1}{u} (u-2) du = (u-2) \ln u$ with no working is 2^{nd} M0, 3^{rd} M0, 3^{rd} A0.	

Question Number	Scheme	Marks
4. (a)	$\left\{\sqrt[3]{(8-9x)}\right\} = (8-9x)^{\frac{1}{3}}$ Power of $\frac{1}{3}$	M1
	$= \underbrace{(8)^{\frac{1}{3}}}_{\frac{1}{3}} \left(1 - \frac{9x}{8}\right)^{\frac{1}{3}} = \underbrace{2}_{\frac{1}{3}} \left(1 - \frac{9x}{8}\right)^{\frac{1}{3}}$ $\underbrace{(8)^{\frac{1}{3}}}_{\frac{1}{3}} \text{ or } \underline{2}$	<u>B1</u>
	$= \left\{2\right\} \left[1 + \left(\frac{1}{3}\right)(kx) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(kx)^{2} + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(kx)^{3} + \dots\right]$ see notes	M1 A1
	$= \left\{2\right\} \left[\underbrace{1 + \left(\frac{1}{3}\right) \left(\frac{-9x}{8}\right) + \frac{\left(\frac{1}{3}\right) \left(-\frac{2}{3}\right)}{2!} \left(\frac{-9x}{8}\right)^2 + \frac{\left(\frac{1}{3}\right) \left(-\frac{2}{3}\right) \left(-\frac{5}{3}\right)}{3!} \left(\frac{-9x}{8}\right)^3 + \dots} \right]$	
	$= 2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right]$ See notes below!	
	$= 2 - \frac{3}{4}x; -\frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots$	A1; A1
(b)	$\left\{\sqrt[3]{7100} = 10\sqrt[3]{71} = 10\sqrt[3]{(8-9x)}, \right\}$ so $x = 0.1$ Writes down or uses $x = 0.1$	[6] B1
	When $x = 0.1$, $\sqrt[3]{(8-9x)} \approx 2 - \frac{3}{4}(0.1) - \frac{9}{32}(0.1)^2 - \frac{45}{256}(0.1)^3 + \dots$	M1
	= 2 - 0.075 - 0.0028125 - 0.00017578125 $= 1.922011719$	
	So, $\sqrt[3]{7100} = 19.220117919 = 19.2201 (4 dp)$ 19.2201 cso	A1 cao
		[3] 9
	Notes for Question 4	
(a)	M1: Writes or uses $\frac{1}{3}$. This mark can be implied by a constant term of $8^{\frac{1}{3}}$ or 2.	
	<u>B1</u> : $(8)^{\frac{1}{3}}$ or <u>2</u> outside brackets or <u>2</u> as candidate's constant term in their binomial expansion.	
	M1: Expands $(+kx)^{\frac{1}{3}}$ to give any 2 terms out of 4 terms simplified or un-simplified,	
	Eg: $1 + \left(\frac{1}{3}\right)(kx)$ or $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$ or $1 + \dots + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2$	
	or $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$ where $k \neq 1$ are fine for M1.	
	A1: A correct simplified or un-simplified $1 + \left(\frac{1}{3}\right)(kx) + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$	
	expansion with consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessarily the LHS)	
	in a candidate's expansion. Note that $k \neq 1$.	
	You would award B1M1A0 for $2\left[\frac{1+\left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(-9x\right)^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{-9x}{8}\right)^3+}\right]$	
	because (kx) is not consistent.	

	Notes for Question 4 Continued		
4. (a) ctd	"Incorrect bracketing" = $\{2\}$ $1 + \left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right) + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(\frac{-9x^2}{8}\right) + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{-9x^3}{8}\right) + \dots$		
	is M1A0 unless recovered.		
	A1: For $2 - \frac{3}{4}x$ (simplified please) or also allow $2 - 0.75x$.		
	Allow Special Case A1A0 for either SC: $= 2\left[1 - \frac{3}{8}x; \dots\right]$ or SC: $K\left[1 - \frac{3}{8}x - \frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right]$		
	(where <i>K</i> can be 1 or omitted), with each term in the [] either a simplified fraction or a decimal.		
	A1: Accept only $-\frac{9}{32}x^2 - \frac{45}{256}x^3$ or $-0.28125x^2 - 0.17578125x^3$		
	Candidates who write = $2\left[\underbrace{1+\left(\frac{1}{3}\right)\left(\frac{9x}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(\frac{9x}{8}\right)^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{9x}{8}\right)^3+\dots}\right]$ where $k=\frac{9}{8}$		
	and not $-\frac{9}{8}$ and achieve $2 + \frac{3}{4}x; -\frac{9}{32}x^2 + \frac{45}{256}x^3 + \dots$ will get B1M1A1A0A0.		
	Note for final two marks:		
	$2\left[1-\frac{3}{8}x;-\frac{9}{64}x^2-\frac{45}{512}x^3+\dots\right] = 2+\frac{3}{4}x-\frac{9}{32}x^2-\frac{45}{256}x^3+\dots$ scores final A0A1.		
	$2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right] = 2 - \frac{3}{4} - \frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots \text{ scores final A0A1}$		
	<u>Alternative method</u> : Candidates can apply an alternative form of the binomial expansion.		
	$\left\{\sqrt[3]{(8-9x)}\right\} = \left(8-9x\right)^{\frac{1}{3}} = \left(8\right)^{\frac{1}{3}} + \left(\frac{1}{3}\right)\left(8\right)^{-\frac{2}{3}}\left(-9x\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(8\right)^{-\frac{5}{3}}\left(-9x\right)^{2} + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(8\right)^{-\frac{8}{3}}\left(-9x\right)^{3}$		
	B1: $(8)^{\frac{1}{3}}$ or 2		
	M1: Any two of four (un-simplified or simplified) terms correct.A1: All four (un-simplified or simplified) terms correct.		
	A1: $2 - \frac{3}{4}x$		
	A1: $-\frac{9}{32}x^2 - \frac{45}{256}x^3$		
	Note: The terms in C need to be evaluated,		
	so $\frac{1}{3}C_0(8)^{\frac{1}{3}} + \frac{1}{3}C_1(8)^{-\frac{2}{3}}(-9x) + \frac{1}{3}C_2(8)^{-\frac{5}{3}}(-9x)^2 + \frac{1}{3}C_3(8)^{-\frac{8}{3}}(-9x)^3$ without further working is B0M0A0.		
(b)	B1: Writes down or uses $x = 0.1$		
	M1: Substitutes their x, where $ x < \frac{8}{9}$ into at least two terms of their binomial expansion.		
	A1: 19.2201 cao		
	Be Careful! The binomial answer is 19.22011719 and the calculated $\sqrt[3]{7100}$ is 19.21997343 which is 19.2200 to 4 decimal places.		
	and the calculated $\sqrt{7100}$ is 19.21997545 which is 19.2200 to 4 decimal places.		

Question Number	Scheme	Ma	rks
5. (a)	6.248046798 = 6.248 (3dp) 6.248 or awrt 6.248	B1	[1]
(b)	Area $\approx \frac{1}{2} \times 2$; $\times [3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223]$	B1; N	[1]
	= 49.369 = 49.37 (2 dp) $49.37 or awrt 49.37$	A1	<u>/11</u>
	- 49.57 of dwit 49.57	AI	[3]
(c)	$\left\{ \int (4t \mathrm{e}^{-\frac{1}{3}t} + 3) \mathrm{d}t \right\} = -12t \mathrm{e}^{-\frac{1}{3}t} - \int -12\mathrm{e}^{-\frac{1}{3}t} \left\{ \mathrm{d}t \right\} \qquad \pm At \mathrm{e}^{-\frac{1}{3}t} \pm B \int \mathrm{e}^{-\frac{1}{3}t} \left\{ \mathrm{d}t \right\}, \ A \neq 0, B \neq 0$	M1	
	$+3t \qquad \qquad \text{See notes.} \\ 3 \rightarrow 3t \qquad $	A1 B1	
	$= -12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t} \{+3t\} - 12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$	A1	
	$\left[-12t\mathrm{e}^{-\frac{1}{3}t}-36\mathrm{e}^{-\frac{1}{3}t}+3t\right]_{0}^{8}=$		
	Substitutes limits of 8 and 0 into an integrated function of the form of		
	$= \left(-12(8)e^{-\frac{1}{3}(8)} - 36e^{-\frac{1}{3}(8)} + 3(8)\right) - \left(-12(0)e^{-\frac{1}{3}(0)} - 36e^{-\frac{1}{3}(0)} + 3(0)\right) \text{either } \pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} \text{ or }$	dM1	
	$\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt \text{ and}$		
	subtracts the correct way round.		
	$= \left(-96e^{-\frac{8}{3}} - 36e^{-\frac{8}{3}} + 24\right) - (0 - 36 + 0)$		
	$= 60 - 132e^{-\frac{8}{3}}$ $60 - 132e^{-\frac{8}{3}}$	A1	
	00 1520		[6]
(d)	Difference = $ 60 - 132e^{-\frac{8}{3}} - 49.37 = 1.458184439 = 1.46 (2 dp)$ 1.46 or awrt 1.46	B1	
			[1]
	Notes for Question 5		
(a)	B1: 6.248 or awrt 6.248. Look for this on the table or in the candidate's working.		
(b)	B1 : Outside brackets $\frac{1}{2} \times 2$ or 1		
	M1: For structure of trapezium rule $\left[\dots \right]$. Allow one miscopy of their values.		
	A1: 49.37 or anything that rounds to 49.37 Note: It can be possible to award : (a) B0 (b) B1M1A1 (awrt 49.37) <u>Note:</u> Working must be seen to demonstrate the use of the trapezium rule. <u>Note</u> : actual area is 50.828 <u>Bracketing mistake</u> : Unless the final answer implies that the calculation has been done correctly, Award B1M0A0 for $1 + 3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223$ (nb: answer of 50.369).		

	Notes for Question 5 Continued	
5. (b) ctd	Alternative method for part (b): Adding individual trapezia	
	Area $\approx 2 \times \left[\frac{3+7.107}{2} + \frac{7.107+7.218}{2} + \frac{7.218+6.248}{2} + \frac{6.248+5.223}{2} \right] = 49.369$	
	B1: 2 and a divisor of 2 on all terms inside brackets.	
	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.	
	A1: anything that rounds to 49.37	
(c)	M1: For $4t e^{-\frac{1}{3}t} \to \pm At e^{-\frac{1}{3}t} \pm B \int e^{-\frac{1}{3}t} \{dt\}, A \neq 0, B \neq 0$	
	A1: For $t e^{-\frac{1}{3}t} \rightarrow \left(-3t e^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ (some candidates lose the 4 and this is fine for the first A1 mark).	
	or $4t e^{-\frac{1}{3}t} \to 4\left(-3t e^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ or $-12t e^{-\frac{1}{3}t} - \int -12e^{-\frac{1}{3}t}$ or $12\left(-t e^{-\frac{1}{3}t} - \int -e^{-\frac{1}{3}t}\right)$	
	These results can be implied. They can be simplified or un-simplified. P1 $2 \rightarrow 2 + 2 = 2 - 2 = (1 + 1)$	
	B1: $3 \rightarrow 3t$ or $3 \rightarrow 3x$ (bod).	
	Note: Award B0 for 3 integrating to $12t$ (implied), which is a common error when taking out a factor of 4.	
	Be careful some candidates will factorise out 4 and have $4\left(\dots+\frac{3}{4}\right) \rightarrow 4\left(\dots+\frac{3}{4}t\right)$	
	which would then be fine for B1.	
	Note: Allow B1 for $\int_0^8 3dt = 24$	
	A1: For correct integration of $4t e^{-\frac{1}{3}t}$ to give $-12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$ or $4\left(-3t e^{-\frac{1}{3}t} - 9e^{-\frac{1}{3}t}\right)$ or equivalent.	
	This can be simplified or un-simplified.	
	dM1: Substitutes limits of 8 and 0 into an integrated function of the form of either $\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t}$ or	
	$\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt$ and subtracts the correct way round.	
	Note: Evidence of a proper consideration of the limit of 0 (as detailed in the scheme) is needed for dM1. So, just subtracting zero is M0.	
	A1: An exact answer of $60 - 132e^{-\frac{6}{3}}$. A decimal answer of 50.82818444 without a correct answer is A0.	
	Note: A decimal answer of 50.82818444 without a correct exact answer is A0.	
	Note: If a candidate gains M1A1B1A1 and then writes down 50.8 or awrt 50.8 with no method for	
	substituting limits of 8 and 0, then award the final M1A0.	
	IMPORTANT: that is fine for candidates to work in terms of x rather than t in part (c).	
	Note: The " $3t$ " is needed for B1 and the final A1 mark.	
(d)	B1: 1.46 or awrt 1.46 or -1.46 or awrt -1.46.	
	Candidates may give correct decimal answers of 1.458184439 or 1.459184439	
L	Note: You can award this mark whether or not the candidate has answered part (c) correctly.	

Question Number	Scheme	Marks
6.	$l: \mathbf{r} = \begin{pmatrix} a \\ b \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}, \overrightarrow{OA} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$	
(a)	A is on l, so $\begin{pmatrix} 21\\-17\\6 \end{pmatrix} = \begin{pmatrix} a\\b\\10 \end{pmatrix} + \lambda \begin{pmatrix} 6\\c\\-1 \end{pmatrix}$	
	$\{\mathbf{k}: 10 - \lambda = 6 \Rightarrow\} \ \lambda = 4 \qquad \qquad \lambda = 4$ $\{\mathbf{i}: a + 6\lambda = 21 \Rightarrow\} \ a + 6(4) = 21 \qquad \qquad \lambda \text{ into } a + 6\lambda = 21$ $a = -3 \qquad \qquad a = -3$	B1 M1 A1 cao
(b)	$\left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} - \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} \qquad \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} - \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} \qquad Finds the difference between \overrightarrow{OA} and \overrightarrow{OB}.$ Ignore labelling.	[3] M1
	$\left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} \qquad \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix}$	
	$\left\{ \overrightarrow{AB} \perp l \Rightarrow \overrightarrow{AB} \bullet \mathbf{d} = 0 \right\} \Rightarrow \begin{pmatrix} 4 \\ 3 \\ 12 \end{pmatrix} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix} = 24 + 3c - 12 = 0; \Rightarrow c = -4 $ See notes.	M1; A1 ft
	$\{\mathbf{j}: b + c\lambda = -17 \Rightarrow\} b + (-4)(4) = -17; \Rightarrow b = -1$ See notes.	ddM1; A1 cso cao [5]
(c)	$ AB = \sqrt{4^2 + 3^2 + 12^2}$ or $ AB = \sqrt{(-4)^2 + (-3)^2 + (-12)^2}$ See notes. So, $ AB = 13$	M1 A1 cao
(d)	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} + \overrightarrow{BA} \right\} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} + \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix}; = \begin{pmatrix} 17 \\ -20 \\ -6 \end{pmatrix}$ See notes for alternative methods.	[2] M1;A1 cao
		[2] 12
(a)	Notes for Question 6 B1: $\lambda = 4$ seen or implied.	
	M1: Substitutes their value of λ into $a + 6\lambda = 21$ A1: $a = -3$. Note: Award B1M1A1 if the candidate states $a = -3$ from no working.	
	Alternative Method Using Simultaneous equations for part (a).	
	B1: For $60 - 6\lambda = 36$ M1: $60 - 6\lambda = 36$ and $a + 6\lambda = 21$ solved simultaneously to give $a =$	
	A1: $a = -3$, cao.	

	Notes for Question 6 Continued			
6. (b) ctd				
ciu	M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OB} . Ignore labelling.			
	If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference			
	$\begin{pmatrix} 6 \end{pmatrix}$ $\begin{pmatrix} 6 \end{pmatrix}$			
	M1: Applies the formula $\overrightarrow{AB} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ or $\overrightarrow{BA} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ correctly to give a linear equation in c which is set equal			
	to zero. Note: The dot product can also be with $\pm k \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$.			
	A1ft: $c = -4$ or for finding a correct follow through c.			
	ddM1: Substitutes their value of λ and their value of c into $b + c\lambda = -17$			
	Note that this mark is dependent on the two previous method marks being awarded.			
	A1: $b = -1$			
(c)	M1: An attempt to apply a three term Pythagoras in order to find $ AB $, so taking the square root is required here.			
	A1: 13 cao			
	Note: Don't recover work for part (b) in part (c).			
(d)	M1: For a full <i>applied</i> method of finding the coordinates of B' .			
	Note: You can give M1 for 2 out of 3 correct components of B' .			
	A1: For either $\begin{pmatrix} 17 \\ -20 \\ -6 \end{pmatrix}$ or $17\mathbf{i} - 20\mathbf{j} - 6\mathbf{k}$ or $(17, -20, -6)$ cao.			
	Helpful diagram!			
	$B \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$			
	$A \begin{bmatrix} 21\\ -17\\ 6 \end{bmatrix} \qquad \qquad \overrightarrow{BA} = \begin{bmatrix} -4\\ -3\\ -12 \end{bmatrix}$			
	$\overline{BA} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix}$			
	$B'\begin{pmatrix} p \\ q \\ r \end{pmatrix}, \dot{\prime}$			

Notes for Question 6 Continued			
	Acceptable Methods for the Method mark in part (d		
Way 1	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} + \overrightarrow{BA} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} + \begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix} \qquad \text{(using their } \overrightarrow{BA}\text{)}$		
Way 2	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} - \overrightarrow{AB} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} - \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} \qquad (using their \ \overrightarrow{AB})$		
Way 3	$\overrightarrow{OB'} \left\{ = \overrightarrow{OB} + 2\overrightarrow{BA} \right\} = \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix} + 2 \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} (\text{using their } \overrightarrow{BA})$		
Way 4	$\overrightarrow{OB'} \left\{ = \overrightarrow{OB} - 2\overrightarrow{AB} \right\} = \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix} - 2 \begin{pmatrix} 4 \\ 3 \\ 12 \end{pmatrix} (\text{using their } \overrightarrow{AB})$		
Way 5	$ \begin{pmatrix} 25\\-14\\18 \end{pmatrix} \rightarrow \begin{pmatrix} \text{Minus } 4\\\text{Minus } 3\\\text{Minus } 12 \end{pmatrix} \rightarrow \begin{pmatrix} 21\\-17\\6 \end{pmatrix} \rightarrow \begin{pmatrix} \text{Minus } 4\\\text{Minus } 3\\\text{Minus } 12 \end{pmatrix} \begin{cases} \rightarrow \begin{pmatrix} 17\\-20\\-6 \end{pmatrix} \end{cases} , \text{ so } \overrightarrow{OA} + \text{their } \overrightarrow{BA} $		
Way 6	$\overline{OB'} \left\{ = 2\overline{OA} - \overline{OB} \right\} = 2 \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} - \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$		
Way 7	$\overrightarrow{OB} = 25\mathbf{i} - 14\mathbf{j} + 18\mathbf{k}, \ \overrightarrow{OA} = 21\mathbf{i} - 17\mathbf{j} + 6\mathbf{k} \text{ and } \overrightarrow{OB'}$	$= p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$,	
	$(21, -17, 6) = \left(\frac{25+p}{2}, \frac{-14+q}{2}, \frac{18+r}{2}\right)$		
	p = 21(2) - 25 = 17 q = -17(2) + 14 = -20 r = 6(2) - 18 = -6	M1: Writing down any two equations correctly and an attempt to find at least two of p , q or r .	

Question Number	Scheme		Marks
7.	$x = 27 \sec^3 t$, $y = 3 \tan t$, $0 \le t \le \frac{\pi}{3}$		
(a)	$\frac{dx}{dt} = 81 \sec^2 t \sec t \tan t, \frac{dy}{dt} = 3 \sec^2 t$ At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.		B1
(4)	$\frac{dt}{dt} = 81 \sec t \sec t \tan t$, $\frac{dt}{dt} = 5 \sec t$	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct.	B1
	$\frac{dy}{dx} = \frac{3\sec^2 t}{81\sec^3 t \tan t} \left\{ = \frac{1}{27\sec t \tan t} = \frac{\cos t}{27\tan t} = \frac{\cos^2 t}{27\sin t} \right\}$	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1;
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{3\sec^2\left(\frac{\pi}{6}\right)}{81\sec^3\left(\frac{\pi}{6}\right)\tan\left(\frac{\pi}{6}\right)} = \frac{4}{72} \left\{ = \frac{3}{54} = \frac{1}{18} \right\}$	$\frac{4}{72}$	A1 cao cso
			[4]
(b)	$\left\{1 + \tan^2 t = \sec^2 t\right\} \Longrightarrow 1 + \left(\frac{y}{3}\right)^2 = \left(\sqrt[3]{\left(\frac{x}{27}\right)}\right)^2 = \left(\frac{x}{27}\right)^{\frac{2}{3}}$		M1
	$\Rightarrow 1 + \frac{y^2}{9} = \frac{x^{\frac{2}{3}}}{9} \Rightarrow 9 + y^2 = x^{\frac{2}{3}} \Rightarrow y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}} *$		A1 * cso
	$a = 27$ and $b = 216$ or $27 \le x \le 216$	a = 27 and $b = 216$	B1
		$(1)^2$	[3]
(c)	$V = \pi \int_{27}^{125} \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2 dx \text{ or } \pi \int_{27}^{125} \left(x^{\frac{2}{3}} - 9 \right) dx$	For $\pi \int \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2$ or $\pi \int \left(x^{\frac{2}{3}} - 9 \right)$	B1
		Ignore limits and dx . Can be implied.	
	$= \left\{\pi\right\} \left[\frac{3}{5}x^{\frac{5}{3}} - 9x\right]_{27}^{125}$	Either $\pm Ax^{\frac{5}{3}} \pm Bx$ or $\frac{3}{5}x^{\frac{5}{3}}$ oe	M1
	$[5]_{27}$	$\frac{3}{5}x^{\frac{5}{3}} - 9x$ oe	A1
	$= \left\{\pi\right\} \left(\left(\frac{3}{5}(125)^{\frac{5}{3}} - 9(125)\right) - \left(\frac{3}{5}(27)^{\frac{5}{3}} - 9(27)\right) \right)$	Substitutes limits of 125 and 27 into an integrated function and subtracts the correct way round.	dM1
	$= \{\pi\} \big((1875 - 1125) - (145.8 - 243) \big)$		
	$=\frac{4236\pi}{5}$ or 847.2π	$\frac{4236\pi}{5}$ or 847.2π	A1
	5	5	[5]
	Notes for Question	n 7	12
(a)	B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working.		
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.		
	M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$, where both $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are trigonometric functions of t.		
	A1: $\frac{4}{72}$ or any equivalent correct rational answer not involving surds.		
	Allow 0.05 with the recurring symbol.		

Notes for Question 7 Continued					
	Note: Please check that their $\frac{dx}{dt}$ is differentiated correctly.				
	Eg. Note that $x = 27 \sec^3 t = 27 (\cos t)^{-3} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = -81 (\cos t)^{-2} (-\sin t)$ is correct.				
(b)	M1: Either:				
	• Applying a correct trigonometric identity (usually $1 + \tan^2 t = \sec^2 t$) to give a Cartesian equation in <i>x</i> and <i>y</i> only.				
	• Starting from the RHS and goes on to achieve $\sqrt{9 \tan^2 t}$ by using a correct trigonometric identity.				
	• Starts from the LHS and goes on to achieve $\sqrt{9\sec^2 t - 9}$ by using a correct trigonometric identity.				
	A1*: For a correct proof of $y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$.				
	Note this result is printed on the Question Paper, so no incorrect working is allowed. B1: Both $a = 27$ and $b = 216$. Note that $27 \le x \le 216$ is also fine for B1.				
(c)	$(1)^2$				
	B1: For a correct statement of $\pi \int \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2$ or $\pi \int \left(x^{\frac{2}{3}} - 9 \right)$. Ignore limits and dx. Can be implied.				
	M1: Either integrates to give $\pm Ax^{\frac{5}{3}} \pm Bx$, $A \neq 0$, $B \neq 0$ or integrates $x^{\frac{2}{3}}$ correctly to give $\frac{3}{5}x^{\frac{5}{3}}$ oe				
	A1: $\frac{3}{5}x^{\frac{5}{3}} - 9x$ or. $\frac{x^{\frac{5}{3}}}{\left(\frac{5}{3}\right)} - 9x$ oe.				
	dM1: Substitutes limits of 125 and 27 into an integrated function and subtracts the correct way round. Note: that this mark is dependent upon the previous method mark being awarded.				
	A1: A correct exact answer of $\frac{4236\pi}{5}$ or 847.2π .				
	Note: The π in the volume formula is only required for the B1 mark and the final A1 mark. Note: A decimal answer of 2661.557 without a correct exact answer is A0. Note: If a candidate gains the first B1M1A1 and then writes down 2661 or awrt 2662 with no method for				
(a)	substituting limits of 125 and 27, then award the final M1A0. Alternative response using the Cartesian equation in part (a)				
	$\frac{dy}{dx} = \pm K x^{-\frac{1}{3}} \left(x^{\frac{2}{3}} - 9 \right)^{-\frac{1}{2}}$	M1			
Way 2	$\begin{cases} y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}} \Rightarrow \begin{cases} \frac{dy}{dx} = \frac{1}{2}\left(x^{\frac{2}{3}} - 9\right)^{-\frac{1}{2}}\left(\frac{2}{3}x^{-\frac{1}{3}}\right) \\ \frac{dy}{dx} = \frac{1}{2}\left(x^{\frac{2}{3}} - 9\right)^{-\frac{1}{3}}\left(\frac{2}{3}x^{-\frac{1}{3}}\right) \\ \frac{dy}{dx} = \frac{1}{2}\left(x^{\frac{2}{3}} - 9\right)^{-\frac{1}{3}}\left(2$	A1			
	At $t = \frac{\pi}{6}$, $x = 27 \sec^3\left(\frac{\pi}{6}\right) = 24\sqrt{3}$ Uses $t = \frac{\pi}{6}$ to find x and substitutes				
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2} \left(\left(24\sqrt{3} \right)^{\frac{2}{3}} - 9 \right)^{-\frac{1}{2}} \left(\frac{2}{3} \left(24\sqrt{3} \right)^{-\frac{1}{3}} \right) \qquad \text{their } x \text{ into an expression for } \frac{dy}{dx}.$	dM1			
	So, $\Rightarrow \frac{dy}{dx} = \frac{1}{2} \left(\frac{1}{\sqrt{3}} \right) \left(\frac{1}{3\sqrt{3}} \right) = \frac{1}{18}$ $\frac{1}{18}$	A1 cao cso			
	Note: Way 2 is marked as M1 A1 dM1 A1 Note: For way 2 the second M1 mark is dependent on the first M1 being gained.				

7. (b) Way 2 $\frac{Alternative responses for M1A1 in part (b): STARTING FROM THE RHS}{\{RHS = \} \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}} = \sqrt{\left(27 \sec^3 t\right)^{\frac{2}{3}} - 9} = \sqrt{9 \sec^2 t - 9} = \sqrt{9 \tan^2 t} $ For applying 1 + tan to achieve the product of the product	$^{2}t = \sec^{2}t$ or	
Way 2 $\left\{ \text{RHS} = \right\} \left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} = \sqrt{\left(27 \sec^3 t \right)^{\frac{2}{3}} - 9} = \sqrt{9 \sec^2 t - 9} = \sqrt{9 \tan^2 t} \right\}$ For applying 1 + tan	$t^{2} t = \sec^{2} t$ or	
to ach	eve $\sqrt{9\tan^2 t}$	M1
$=3\tan t = y \{= LHS\} cso$ Correct proof from (
M1: Starts from the RHS and goes on to achieve $\sqrt{9\tan^2 t}$ by using a correct trigonometr	ic identity.	
7. (b) Alternative responses for M1A1 in part (b): STARTING FROM THE LHS		
Way 3 $\{LHS =\} y = 3 \tan t = \sqrt{(9 \tan^2 t)} = \sqrt{9 \sec^2 t - 9}$ For applying 1 + tan to achieve	$\int_{a}^{2} t = \sec^{2} t \text{ oe}$ $\int_{a}^{2} \sqrt{9\sec^{2} t - 9}$	M1
$= \sqrt{9\left(\frac{x}{27}\right)^{\frac{2}{3}} - 9} = \sqrt{9\left(\frac{x^{\frac{2}{3}}}{9}\right) - 9} = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$ cso Correct proof from y	to $\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$.	A1*
M1: Starts from the LHS and goes on to achieve $\sqrt{9\sec^2 t - 9}$ by using a correct trigonor	netric identity.	
7. (c) <u>Alternative response for part (c) using parametric integration</u>	I	
Way 2 $V = \pi \int 9\tan^2 t \left(81\sec^2 t \sec t \tan t \right) dt \qquad \pi \int 3\tan t \left(81\sec^2 t \sec^2 t \sec^$	$\operatorname{c} t \operatorname{tan} t dt = B1$	-
J Ignore limits and dx. Can I	be implied.	
$= \{\pi\} \int 729 \sec^2 t \tan^2 t \sec t \tan t \mathrm{d}t$		
$= \{\pi\} \int 729 \sec^2 t \left(\sec^2 t - 1\right) \sec t \tan t \mathrm{d}t$		
$= \{\pi\} \int 729 \left(\sec^4 t - \sec^2 t\right) \sec t \tan t \mathrm{d}t$		
$= \{\pi\} \int 729 \left(\sec^4 t - \sec^2 t\right) \sec t \tan t \mathrm{d}t$		
$\pm A \sec^5 t$	$\pm B \sec^3 t$ M	1
$= \left\{\pi\right\} \left[729 \left(\frac{1}{5} \sec^5 t - \frac{1}{3} \sec^3 t\right)\right] $ $729 \left(\frac{1}{5} \sec^5 t - \frac{1}{3} \sec^5 t\right)$	$-\frac{1}{3}\sec^3 t$ A1	l
$V = \left\{\pi\right\} \left[729\left(\frac{1}{5}\left(\frac{5}{3}\right)^5 - \frac{1}{3}\left(\frac{5}{3}\right)^3\right) - 729\left(\frac{1}{5}1^5 - \frac{1}{3}1^3\right)\right]$ Substitutes sec $t = \frac{5}{3}$ and sec t integrated function and subtracts		11
$= 729\pi \left[\left(\frac{250}{243} \right) - \left(-\frac{2}{15} \right) \right]$		
$=\frac{4236\pi}{5}$ or 847.2π $\frac{4236\pi}{5}$ or	$x = 847.2\pi$ A1	[5]

Question Number	Scheme			
8.	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(M-x)$, where <i>M</i> is a constant			
(a)	$\frac{dx}{dt}$ is the <u>rate of increase</u> of the <u>mass of waste</u> products. Any one correct explanation.			
(b)	M is the total mass of unburned fuel and waste fuel (or the initial mass of unburned fuel)Both explanations are correct.	B1		
	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t \qquad \text{or} \int \frac{1}{k(M-x)} \mathrm{d}x = \int \mathrm{d}t$	[2] B1		
	$-\ln(M-x) = kt \{+c\} \qquad \text{or} -\frac{1}{k}\ln(M-x) = t \{+c\} \qquad \text{See notes}$	M1 A1		
	$\{t=0, x=0 \Rightarrow\} -\ln(M-0) = k(0) + c$ See notes	M1		
	$c = -\ln M \implies -\ln(M - x) = kt - \ln M$			
	then eitheror $-kt = \ln(M-x) - \ln M$ $kt = \ln M - \ln(M-x)$			
	$-kt = \ln\left(\frac{M-x}{M}\right) \qquad \qquad$			
	$e^{-kt} = \frac{M-x}{M}$ $e^{kt} = \frac{M}{M-x}$	ddM1		
	$Me^{-kt} = M - x$ $\begin{pmatrix} (M - x)e^{kt} = M \\ M - x = Me^{-kt} \end{pmatrix}$	A1 * cso		
	leading to $x = M - Me^{-kt}$ or $x = M(1 - e^{-kt})$ oe			
		[6]		
(c)	$\left\{x = \frac{1}{2}M, t = \ln 4 \Longrightarrow\right\} \frac{1}{2}M = M(1 - e^{-k\ln 4})$	M1		
	$\Rightarrow \frac{1}{2} = 1 - e^{-k \ln 4} \Rightarrow e^{-k \ln 4} = \frac{1}{2} \Rightarrow -k \ln 4 = -\ln 2$			
	So $k = \frac{1}{2}$	A1		
	So $k = \frac{1}{2}$ $x = M\left(1 - e^{-\frac{1}{2}\ln 9}\right)$	dM1		
	$x = \frac{2}{3}M$ $x = \frac{2}{3}M$	A1 cso		
	5	[4] 12		

8. (a) B1: At least one explanation correct.				
B1: Both explanations are correct.				
$\frac{dx}{dt}$ is the <u>rate of increase</u> of the <u>mass of waste</u> products.				
di				
or the <u>rate of change</u> of the <u>mass of waste</u> products.				
<i>M</i> is the total mass of unburned fuel and waste fuel				
or the initial mass of unburned fuel				
or the total mass of rocket fuel and waste fuel				
or the <u>initial mass</u> of <u>rocket fuel</u>				
or the initial mass of fuel				
or the total mass of waste and unburned products.				
(b)				
B1: Separates variables as shown. dx and dt should be in the correct positions, though this	s mark can be			
implied by later working. Ignore the integral signs.				
M1: Both $\pm \lambda \ln(M-x)$ or $\pm \lambda \ln(x-M)$ and $\pm \mu t$ where λ and μ are any constants.				
A1: For $-\ln(M - x) = kt$ or $-\ln(x - M) = kt$ or $-\frac{1}{k}\ln(M - x) = t$ or $-\frac{1}{k}\ln(x - M)$	(A) - t			
A1. For $-m(M-x) = kt$ or $-m(x-M) = kt$ or $-\frac{-m(M-x)}{k} = t$ or $-\frac{-m(x-M)}{k}$	(m) = i			
or $-\frac{1}{k}\ln(kM - kx) = t$ or $-\frac{1}{k}\ln(kx - kM) = t$				
$\int \frac{du}{k} \left(\frac{k}{k} - \frac{k}{k} \right) = i \text{of} -\frac{1}{k} \left(\frac{k}{k} - \frac{k}{k} \right) = i$				
Note: $+c$ is not needed for this mark.	Note: $+c$ is not needed for this mark.			
IMPORTANT: + c can be on either side of their equation for the 1^{st} A1 mark.	IMPORTANT: + c can be on either side of their equation for the 1 st A1 mark.			
M1: Substitutes $t = 0$ AND $x = 0$ in an integrated or changed equation containing c (or A)	M1: Substitutes $t = 0$ AND $x = 0$ in an integrated or changed equation containing c (or A or $\ln A$, etc.)			
Note that this mark can be implied by the correct value of <i>c</i> .				
ddM1: Uses their value of c which must be a ln term, and uses fully correct method to elin	ninate their			
	logarithms. Note: This mark is dependent on both previous method marks being awarded.			
A1: $x = M - Me^{-kt}$ or $x = M(1 - e^{-kt})$ or $x = \frac{M(e^{kt} - 1)}{e^{kt}}$ or equivalent where x is the	subject			
e	subject.			
Note: Please check their working as incorrect working can lead to a correct answer.				
Note: $\left\{ \frac{\mathrm{d}x}{\mathrm{d}t} = k\left(M - x\right) \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{kM - kx} \Rightarrow \right\} x = -\frac{1}{k}\ln(kM - kx) \{+c\} \text{ is B1(Implied)}$	M1 A 1			
$\int \frac{dt}{dt} = k(M - k) \rightarrow \frac{dt}{dt} = \frac{k(M - k)}{k(M - k)} \rightarrow \frac{k(M - k)}{k} \rightarrow \frac{k(M - k)}{k}$				
(c) M1: Substitutes $x = \frac{1}{2}M$ and $t = \ln 4$ into one of their earlier equations connecting x and t	•			
A1: $k = \frac{1}{2}$, which can be an un-simplified equivalent numerical value. i.e. $k = \frac{\ln 2}{\ln 4}$ is fine	for A1.			
dM1: Substitutes $t = \ln 4$ and their evaluated k (which must be a numerical value) into one of				
equations connecting x and t.				
Note: that the 2^{nd} Method mark is dependent on the 1^{st} Method mark being awarded in	n part (c).			
	T /			
A1: $x = \frac{2}{3}M$ cso.				
Note: Please check their working as incorrect working can lead to a correct answer.				

Notes for Question 8 Continued				
Aliter 8. (b) Way 2	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t$	B1		
	$-\ln(M - x) = kt \{+c\}$ See notes	M1 A1		
	$\ln(M-x) = -kt + c$			
	$M - x = A e^{-kt}$			
	$\left\{t=0, x=0 \Longrightarrow\right\} M - 0 = A e^{-k(0)}$	M1		
	$\Rightarrow M = A$ $M - x = M e^{-kt}$	1.0.4		
	$M - x = Me^{-kt}$ So, $x = M - Me^{-kt}$	ddM1 A1		
	50, x = M - Me	A1 [6]		
	 M1: Substitutes t = 0 AND x = 0 in an integrated equation containing their constant of integration which could be c or A. Note that this mark can be implied by the correct value of c or A. ddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation containing their evaluated constant of integration. Note: This mark is dependent on both previous method marks being awarded. Note: ln(M - x) = -kt + c leading to ln(M - x) = e^{-kt} + e^c or ln(M - x) = e^{-kt} + A would be dddM0. A1: Same as the original scheme. 			
<i>Aliter</i> 8. (b) Way 3	$\int_0^x \frac{1}{M-x} \mathrm{d}x = \int_0^t k \mathrm{d}t$	B1		
	$\left[-\ln\left(M-x\right)\right]_{0}^{x}=\left[kt\right]_{0}^{t}$	M1 A1		
	$-\ln(M-x)-(-\ln M) = kt$ Applies limits of	M1		
	$-\ln(M-x) + \ln M = kt$			
	and then follows the original scheme.			
(a)	B1M1A1: Mark as in the original scheme (ignoring the limits). ddM1: Applies limits 0 and x on their integrated LHS and limits of 0 and t. M1A1: Same as the original scheme.			

Notes for Question 8 Continued				
Aliter 8. (b) Way 4	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t \left\{ \Rightarrow \int \frac{-1}{x-M} \mathrm{d}x = \int k \mathrm{d}t \right\}$			B1
	$-\ln\left x-M\right = kt + c$		Modulus not required for 1 st A1.	M1 A1
	$\{t = 0, x = 0 \Rightarrow\} -\ln 0 - M = k(0) + c$		<i>Modulus</i> not required here!	M1
	$\Rightarrow c = -\ln M \Rightarrow -\ln x - M = kt - \ln M$			
	then either $-kt = \ln x - M - \ln M$	<i>or</i>	1	
	$-kt = \ln x - M - \ln M$	$kt = \ln M - \ln \left x - M \right $		
	1 1	$kt = \ln \left \frac{M}{x - M} \right $		
	As $x <$			
	$-kt = \ln\left(\frac{M-x}{M}\right)$	$kt = \ln\left(\frac{M}{M-x}\right)$	Understanding of modulus is required	ddM1
	$e^{-kt} = \frac{M-x}{M}$	$e^{kt} = \frac{M}{M-x}$	here!	uuivii
	$M\mathrm{e}^{-kt} = M - x$	$(M - x)e^{kt} = M$ $M - x = Me^{-kt}$		
	leading to $x = M - Me^{-kt}$			A1 * cso
				[6]
	B1: Mark as in the original scheme.			
	M1A1M1: Mark as in the original s ddM1: Mark as in the original scher		nstrate that they have conv	verted
	$\ln x - M $ to $\ln (M - x)$ in		istrate that they have conv	ented
		nt on both the previous method ma	rks being awarded.	
4.74	A1: Mark as in the original scheme.	_	-	
Aliter 8. (b) Way 5	Use of an integrating factor (I.F.)			
way 5	$\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(M - x\right) \implies \frac{\mathrm{d}x}{\mathrm{d}t} + kx = kM$			
	$I.F. = e^{kt}$	B1		
	$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{kt}x) = kM\mathrm{e}^{kt},$			
	$e^{kt}x = Me^{kt} + c$	M1A1		
	$x = M + c \mathrm{e}^{-kt}$			
	$\{t = 0, x = 0 \Longrightarrow\} 0 = M + c e^{-k(0)}$ $\Rightarrow c = -M$	M1		
	$x = M - M e^{-kt}$	ddM1A1		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA035679 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

