

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 4 (6666/01)

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2014
Publications Code UA038467
All the material in this publication is copyright
© Pearson Education Ltd 2014

### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **EDEXCEL GCE MATHEMATICS**

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\phantom{a}}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

# **General Principles for Core Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

# Method mark for solving 3 term quadratic:

### 1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to  $x = ...$ 

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where  $|pq| = |c|$  and  $|mn| = |a|$ , leading to  $x = ...$ 

#### 2. Formula

Attempt to use the correct formula (with values for a, b and c).

# 3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

## Method marks for differentiation and integration:

### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

## Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

### **Exact answers**

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

| Question<br>Number | Scheme                                                                                                                                                                                     |                                                                                                                                       | Marks                   |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| 1.                 |                                                                                                                                                                                            | $x^3 + 2xy - x - y^3 - 20 = 0$                                                                                                        |                         |  |
| (a)                |                                                                                                                                                                                            | $\left\{\frac{2x}{2x}\right\}  \underline{3x^2} + \left(\underline{2y + 2x\frac{dy}{dx}}\right) - 1 - 3y^2 \frac{dy}{dx} = 0$         |                         |  |
|                    |                                                                                                                                                                                            | $3x^{2} + 2y - 1 + (2x - 3y^{2})\frac{dy}{dx} = 0$                                                                                    | dM1                     |  |
|                    |                                                                                                                                                                                            | $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}  \text{or}  \frac{1 - 3x^2 - 2y}{2x - 3y^2}$                                         |                         |  |
| (b)                | At P(                                                                                                                                                                                      | $(3,-2)$ , $m(T) = \frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)}$ ; $= \frac{22}{6}$ or $\frac{11}{3}$                    | [5]                     |  |
|                    | and ei                                                                                                                                                                                     | ither T: $y2 = \frac{11}{3}(x - 3)$ see notes                                                                                         | M1                      |  |
|                    |                                                                                                                                                                                            | or $(-2) = \left(\frac{11}{3}\right)(3) + c \implies c =,$                                                                            |                         |  |
|                    | <b>T</b> : 11                                                                                                                                                                              | x - 3y - 39 = 0 or $K(11x - 3y - 39) = 0$                                                                                             | A1 cso                  |  |
|                    |                                                                                                                                                                                            |                                                                                                                                       |                         |  |
|                    | Alternative method for part (a)                                                                                                                                                            |                                                                                                                                       |                         |  |
| (a)                | $\left\{ \frac{\partial x}{\partial y} \times \right\}  \frac{3x^2 \frac{dx}{dy} + \left(2y \frac{dx}{dy} + 2x\right) - \frac{dx}{dy} - 3y^2 = 0}{2y + 2y +$ |                                                                                                                                       |                         |  |
|                    |                                                                                                                                                                                            | $2x - 3y^2 + \left(3x^2 + 2y - 1\right)\frac{dx}{dy} = 0$                                                                             |                         |  |
|                    | $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}  \text{or}  \frac{1 - 3x^2 - 2y}{2x - 3y^2}$                                                                                              |                                                                                                                                       |                         |  |
|                    | Question 1 Notes [5                                                                                                                                                                        |                                                                                                                                       |                         |  |
| (a)<br>General     | Note Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$ or $\frac{1 - 3x^2 - 2y}{2x - 3y^2}$ from <b>no working</b> is full marks.                                             |                                                                                                                                       |                         |  |
|                    | Note                                                                                                                                                                                       | Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{2x - 3y^2}$ or $\frac{1 - 3x^2 - 2y}{3y^2 - 2x}$ from <b>no working is</b> M1A0B0M | 1A0                     |  |
|                    | Note Few candidates will write $3x^2 + 2y + 2x dy - 1 - 3y^2 dy = 0$ leading to $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$ , o.e.                                                   |                                                                                                                                       | $\frac{x-1}{2x}$ , o.e. |  |
|                    |                                                                                                                                                                                            | This should get full marks.                                                                                                           |                         |  |
| <b>1.</b> (a)      | <b>M1</b> Differentiates implicitly to include either $2x \frac{dy}{dx}$ or $-y^3 \to \pm k y^2 \frac{dy}{dx}$ . (Ignore $\left(\frac{dy}{dx} = \right)$ ).                                |                                                                                                                                       | ).                      |  |
|                    | A1                                                                                                                                                                                         | $x^3 \to 3x^2$ and $-x - y^3 - 20 = 0 \to -1 - 3y^2 \frac{dy}{dx} = 0$                                                                |                         |  |
|                    | $\mathbf{B1}  2xy \to 2y + 2x \frac{\mathrm{d}y}{\mathrm{d}x}$                                                                                                                             |                                                                                                                                       |                         |  |
|                    | Note                                                                                                                                                                                       | If an extra term appears then award 1 <sup>st</sup> A0.                                                                               |                         |  |

| 1. (a) ctd    | Note   | $3x^{2} + 2y + 2x\frac{dy}{dx} - 1 - 3y^{2}\frac{dy}{dx} \rightarrow 3x^{2} + 2y - 1 = 3y^{2}\frac{dy}{dx} - 2x\frac{dy}{dx}$                                                                          |
|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000           |        | will get $1^{st}$ A1 (implied) as the "= 0" can be implied by rearrangement of their equation.                                                                                                         |
|               | dM1    | dependent on the first method mark being awarded.                                                                                                                                                      |
|               |        | An attempt to factorise out <b>all the terms in</b> $\frac{dy}{dx}$ as long as there are <b>at least two terms</b> in $\frac{dy}{dx}$ .                                                                |
|               |        | ie + $(2x - 3y^2)\frac{dy}{dx} =$                                                                                                                                                                      |
|               | Note   | Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1.                                                                                        |
|               | A1     | For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$                                                                                                                         |
|               |        | <ul><li>cso: If the candidate's solution is not completely correct, then do not give this mark.</li><li>isw: You can, however, ignore subsequent working following on from correct solution.</li></ul> |
| <b>1.</b> (b) | M1     | <b>Some</b> attempt to substitute <b>both</b> $x = 3$ <b>and</b> $y = -2$ into their $\frac{dy}{dx}$ which contains both $x$ and $y$                                                                   |
|               |        | to find $m_T$ and                                                                                                                                                                                      |
|               |        | • either applies $y - 2 = (\text{their } m_T)(x - 3)$ , where $m_T$ is a numerical value.                                                                                                              |
|               |        | • or finds c by solving $(-2) = (\text{their } m_T)(3) + c$ , where $m_T$ is a numerical value.                                                                                                        |
|               | Note   | Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ is M0).                                                                    |
|               | A1     | Accept any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$ , where their tangent equation is equal to 0.                                                        |
|               | cso    | A correct solution is required from a correct $\frac{dy}{dx}$ .                                                                                                                                        |
|               | isw    | You can ignore subsequent working following a correct solution.                                                                                                                                        |
|               | Altern | ative method for part (a): Differentiating with respect to y                                                                                                                                           |
| <b>1.</b> (a) | M1     | Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \to \pm kx^2\frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$                                                                            |
|               |        | (Ignore $\left(\frac{dx}{dy}\right)$ ).<br>$x^3 \to 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$<br>$2xy \to 2y \frac{dx}{dy} + 2x$                                       |
|               | A1     | $x^{3} \rightarrow 3x^{2} \frac{dx}{dy}$ and $-x - y^{3} - 20 = 0 \rightarrow -\frac{dx}{dy} - 3y^{2} = 0$                                                                                             |
|               | B1     | $2xy \to 2y \frac{\mathrm{d}x}{\mathrm{d}y} + 2x$                                                                                                                                                      |
|               | dM1    | dependent on the first method mark being awarded.                                                                                                                                                      |
|               |        | An attempt to factorise out <b>all the terms in</b> $\frac{dx}{dy}$ as long as there are <b>at least two terms</b> in $\frac{dx}{dy}$ .                                                                |
|               | A1     | For $\frac{1 - 2y - 3x^2}{2x - 3y^2}$ or equivalent. Eg: $\frac{3x^2 + 2y - 1}{3y^2 - 2x}$                                                                                                             |
|               |        | cso: If the candidate's solution is not completely correct, then do not give this mark.                                                                                                                |
|               |        |                                                                                                                                                                                                        |

| Question<br>Number | Scheme       |                                                                                                                                                                    | Marks      |  |
|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| 2.                 | {(1+         | $\left\{ (1+kx)^{-4} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^2 + \dots \right\}$                                                                                |            |  |
| (a)                | (            | Either $(-4)k = -6$ or $(1 + kx)^{-4} = 1 + (-4)(kx)$ see notes                                                                                                    |            |  |
|                    |              | leading to $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$                                                                                                               | A1         |  |
|                    |              | 2 4                                                                                                                                                                |            |  |
| (b)                |              | Either $\frac{(-4)(-5)}{2!}$ or $(k)^2$ or $(kx)^2$                                                                                                                | M1         |  |
| (0)                |              | Either $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$                                                                                                   | M1         |  |
|                    | $igg\{A=$    | $\frac{(-4)(-5)}{2!} \left(\frac{3}{2}\right)^2 \Rightarrow A = \frac{45}{2}$ or 22.5                                                                              | A1         |  |
|                    |              |                                                                                                                                                                    | [3]<br>5   |  |
|                    |              | Question 2 Notes                                                                                                                                                   |            |  |
| Note               |              | s question ignore part labelling and mark part (a) and part (b) together. $(-4)(-4-1) = 3$                                                                         |            |  |
|                    | Note         | Writing down $\{(1+kx)^{-4}\}=1+(-4)(kx)+\frac{(-4)(-4-1)}{2!}(kx)^2+$                                                                                             |            |  |
|                    |              | gets all the method marks in Q2. i.e. (a) M1 and (b) M1M1                                                                                                          |            |  |
| (a)                | M1           | Award M1 for                                                                                                                                                       |            |  |
|                    |              | • either writing down $(-4)k = -6$ or $4k = 6$                                                                                                                     |            |  |
|                    |              | <ul> <li>or expanding (1 + kx)<sup>-4</sup> to give 1 + (-4)(kx)</li> <li>or writing down (-4)k x = -6 or (-4k) = -6x or -4k x = -6x</li> </ul>                    |            |  |
|                    | A1           | $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$ from no incorrect sign errors.                                                                                           |            |  |
|                    | Note<br>Note | The M1 mark can be implied by a candidate writing down the correct value of $k$ .<br>Award M1 for writing down $4k = 6$ and then A1 for $k = 1.5$ (or equivalent). |            |  |
|                    | Note         | Award M0 for $4k = -6$ (if there is no evidence that $(1 + kx)^{-4}$ expands to give $1 + (-4kx)^{-4}$ )                                                           | k(kx) +    |  |
|                    | Note         | $1 + (-4)(kx)$ leading to $(-4)k = 6$ leading to $k = \frac{3}{2}$ is M1A0.                                                                                        |            |  |
| (b)                | M1           | For either $\frac{(-4)(-4-1)}{2!}$ or $\frac{(-4)(-5)}{2!}$ or 10 or $(k)^2$ or $(kx)^2$                                                                           |            |  |
|                    | M1           | Either $\frac{(-4)(-4-1)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$ or $\frac{(-4)(-5)}{2!}(their k)^2$                               | or $10k^2$ |  |
|                    | Note         | Candidates are allowed to use 2 instead of 2!                                                                                                                      |            |  |
|                    | <b>A1</b>    | Uses $k = 1.5$ to give $A = \frac{45}{2}$ or 22.5                                                                                                                  |            |  |
|                    | Note         | $A = \frac{90}{4}$ which has not been simplified is A0.                                                                                                            |            |  |
|                    | Note         | Award A0 for $A = \frac{45}{2}x^2$ .                                                                                                                               |            |  |
|                    | Note         | Allow A1 for $A = \frac{45}{2}x^2$ followed by $A = \frac{45}{2}$                                                                                                  |            |  |
|                    | Note         | $k = -1.5$ leading to $A = \frac{45}{2}$ or 22.5 is A0.                                                                                                            |            |  |

| Question<br>Number | Scheme Mark                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| 3.                 | <u> </u>                                                                                                                                                                         | $y = \frac{1}{2}$ $y = \frac{10}{2x + 5\sqrt{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |  |  |
| (a)                | $ \{ \text{At } x = 3, \} \ y = 0.68212 \ (5 \text{ dp}) $ 0.68212 B1 <b>c</b>                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |
| (b)                | $\frac{1}{2} \times 1 \times \left[ 1.42857 + 0.55556 + 2(0.90326 + \text{their } 0.68212) \right]$ Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ For structure of [] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |
|                    | $\left\{=\frac{1}{2}\right\}$                                                                                                                                                    | 5.15489) $= 2.577445 = 2.5774 (4 dp)$ anything that rounds to $2.577$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74 A1            |  |  |
| (c)<br>(d)         | $\begin{cases} u = x \end{cases}$                                                                                                                                                | Overestimate reason such as $\{\text{top of}\}\ \underline{\text{trapezia lie above the curve}}$ a diagram which gives reference to the extra area concave or convex $\frac{d^2y}{dx^2} > 0 \text{ (can be implied)}$ bends inwards curves downwards $\sqrt{x} \Rightarrow \left\{\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \text{ or } \frac{dx}{du} = 2u$ $\frac{10}{2u^2 + 5u} \cdot 2u  du$ Either $\left\{\int \right\} \frac{\pm ku}{\alpha u^2 \pm \beta u} \left\{du\right\} \text{ or } \left\{\int \right\} \frac{\pm k}{u(\alpha u^2 \pm \beta u)} \left\{du\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1 [1] B1 w1     |  |  |
|                    | {= ∫                                                                                                                                                                             | $\frac{20}{2u+5} du = \frac{20}{2} \ln(2u+5)$ $\frac{20}{2u+5} du = \frac{20}{2} \ln(2u+5)$ $\frac{20}{2u+5} \rightarrow \frac{20}{2} \ln(2u+5) \text{ or } 10 \ln\left(u+\frac{5}{2}\right), \lambda \neq 0$ $\frac{20}{2u+5} \rightarrow \frac{20}{2} \ln(2u+5) \text{ or } 10 \ln\left(u+\frac{5}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.              |  |  |
|                    | $\left\{ \left[ \frac{20}{2} \right] \right.$                                                                                                                                    | $\ln(2u+5) \Big]_{1}^{2} = 10\ln(2(2)+5) - 10\ln(2(1)+5)$ Substitutes limits of 2 and 1 in x) and subtraction the correct way round the corr | ets M1           |  |  |
|                    | $10\ln 9 - 10\ln 7$ or $10\ln \left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |
|                    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [6]<br>11        |  |  |
| <b>3.</b> (a)      | B1                                                                                                                                                                               | Question 3 Notes  0.68212 correct answer only. Look for this on the table or in the candidate's working.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |  |  |
| (b)                | B1                                                                                                                                                                               | Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |  |
|                    | M1                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |
|                    | Note<br>A1                                                                                                                                                                       | For structure of trapezium rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ted y ordinate]. |  |  |
|                    | Note                                                                                                                                                                             | Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1314428)         |  |  |

| <b>3.</b> (b) contd | Note         | Award B1M1A1 for $\frac{1}{2}(1.42857 + 0.55556) + (0.90326 + \text{their } 0.68212) = 2.577445$                                                                                                                                                                                 |
|---------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |              | Bracketing mistake: Unless the final answer implies that the calculation has been done correctly                                                                                                                                                                                 |
|                     |              | award B1M0A0 for $\frac{1}{2} \times 1 + 1.42857 + 2(0.90326 + \text{their } 0.68212) + 0.55556$ (nb: answer of 5.65489).                                                                                                                                                        |
|                     |              | award B1M0A0 for $\frac{1}{2} \times 1$ (1.42857 + 0.55556) + 2(0.90326 + their 0.68212) (nb: answer of 4.162825).                                                                                                                                                               |
|                     |              | Area $\approx 1 \times \left[ \frac{1.42857 + 0.90326}{2} + \frac{0.90326 + "0.68212"}{2} + \frac{"0.68212" + 0.55556}{2} \right] = 2.577445$                                                                                                                                    |
|                     | B1           | B1: 1 and a divisor of 2 on all terms inside brackets.                                                                                                                                                                                                                           |
|                     | M1<br>A1     | M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. A1: anything that rounds to 2.5774                                                                                                                                       |
| (c)                 | B1           | Overestimate <b>and</b> either trapezia lie above curve <b>or</b> a diagram that gives reference to the extra area                                                                                                                                                               |
|                     |              | eg. This diagram is sufficient. It must                                                                                                                                                                                                                                          |
|                     |              | eg. This diagram is sufficient. It must show the top of a trapezium lying                                                                                                                                                                                                        |
|                     |              | above the curve.                                                                                                                                                                                                                                                                 |
|                     |              |                                                                                                                                                                                                                                                                                  |
|                     |              | or concave or convex or $\frac{d^2y}{dx^2} > 0$ (can be implied) or bends inwards or curves downwards.                                                                                                                                                                           |
|                     | Note         | Reason of "gradient is negative" by itself is B0.                                                                                                                                                                                                                                |
| (d)                 | B1           | $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}  \text{or}  \mathrm{d}u = \frac{1}{2\sqrt{x}} \mathrm{d}x  \text{or}  2\sqrt{x} \mathrm{d}u = \mathrm{d}x  \text{or}  \mathrm{d}x = 2u \mathrm{d}u  \text{or}  \frac{\mathrm{d}x}{\mathrm{d}u} = 2u  \text{o.e.}$ |
|                     | M1           | Applying the substitution and achieving $\left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\} \text{ or } \left\{ \int \right\} \frac{\pm k}{u \left( \alpha u^2 \pm \beta u \right)} \left\{ du \right\},$                                          |
|                     |              | $k$ , $\alpha$ , $\beta \neq 0$ . Integral sign and du not required for this mark.                                                                                                                                                                                               |
|                     | M1           | Cancelling $u$ and integrates to achieve $\pm \lambda \ln(2u + 5)$ or $\pm \lambda \ln\left(u + \frac{5}{2}\right)$ , $\lambda \neq 0$ with no other terms.                                                                                                                      |
|                     | <b>A1</b>    | <b>cso.</b> Integrates $\frac{20}{2u+5}$ to give $\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$ , un-simplified or simplified.                                                                                                                                     |
|                     | Note         | BE CAREFUL! Candidates must be integrating $\frac{20}{2u+5}$ or equivalent.                                                                                                                                                                                                      |
|                     |              | So $\int \frac{10}{2u+5} du = 10\ln(2u+5)$ WOULD BE A0 and final A0.                                                                                                                                                                                                             |
|                     | M1           | Applies limits of 2 and 1 in $u$ or 4 and 1 in $x$ in their (i.e. any) changed function and subtracts the correct way round.                                                                                                                                                     |
|                     | <b>A1</b>    | Exact answers of either $10\ln 9 - 10\ln 7$ or $10\ln \left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$ or $20\ln \left(\frac{3}{\sqrt{7}}\right)$ or $\ln \left(\frac{9^{10}}{7^{10}}\right)$                                                                                    |
|                     | <b>.</b>     | or equivalent. Correct solution only.                                                                                                                                                                                                                                            |
|                     | Note<br>Note | You can ignore subsequent working which follows from a correct answer.<br>A decimal answer of 2.513144283 (without a correct <b>exact</b> answer) is A0.                                                                                                                         |
|                     | 11010        | The second control of the 151 ( 1255 m ( millione is control to the tent this worl) is 110.                                                                                                                                                                                      |

| Question<br>Number | Scheme                                                             |                                                                                                                                                                                                                                                                                                                                              | Marks                             |
|--------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 4.                 | $\frac{dV}{dt} = 80\pi$ , $V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h$ , |                                                                                                                                                                                                                                                                                                                                              |                                   |
|                    | GI/                                                                | $\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi$ $\frac{\pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0}{8\pi h + 16\pi}$                                                                                                                                                                                                          |                                   |
|                    | $\left\{\frac{\mathrm{d}V}{\mathrm{d}h}\right\}$                   | $\left\{ \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Rightarrow \right\}  \left(8\pi h + 16\pi\right) \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \qquad \qquad \left( \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$ |                                   |
|                    | $\left\{\frac{\mathrm{d}h}{\mathrm{d}t}\right\}=$                  | $= \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Rightarrow \left\{ \begin{array}{c} \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \times \frac{1}{8\pi h + 16\pi} \end{array} \right. \qquad \text{or}  80\pi \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}$                                                   | M1 oe                             |
|                    | When                                                               | $h=6, \ \left\{ \frac{\mathrm{d}h}{\mathrm{d}t} = \right\} \frac{1}{8\pi(6)+16\pi} \times 80\pi \ \left\{ = \frac{80\pi}{64\pi} \right\}$ dependent on the previous M1 see notes                                                                                                                                                             | dM1                               |
|                    | $\frac{\mathrm{d}h}{\mathrm{d}t} = 1$                              | $1.25 \text{ or } \frac{5}{4} \text{ or } \frac{10}{8} \text{ or } \frac{80}{64}$                                                                                                                                                                                                                                                            |                                   |
|                    |                                                                    |                                                                                                                                                                                                                                                                                                                                              | [5]<br>5                          |
|                    | Altern                                                             | ative Method for the first M1A1                                                                                                                                                                                                                                                                                                              |                                   |
|                    | Produc                                                             | et rule: $\begin{cases} u = 4\pi h & v = h + 4 \\ \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{cases}$                                                                                                                                                                                                                                      |                                   |
|                    |                                                                    |                                                                                                                                                                                                                                                                                                                                              | M1                                |
|                    | $\frac{\mathrm{d} v}{\mathrm{d} h} =$                              | $4\pi(h+4) + 4\pi h$ $\pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0$ $4\pi(h+4) + 4\pi h$                                                                                                                                                                                                                                          | A1                                |
|                    |                                                                    |                                                                                                                                                                                                                                                                                                                                              |                                   |
|                    | 3.71                                                               | Question 4 Notes  An expression of the form $+ c t + \theta - c t \neq 0$ . Can be simplified as an elimination of the form $+ c t + \theta - c t \neq 0$ .                                                                                                                                                                                  |                                   |
|                    | M1<br>A1                                                           | An expression of the form $\pm \alpha h \pm \beta$ , $\alpha \neq 0$ , $\beta \neq 0$ . Can be simplified or un-simplified Correct simplified or un-simplified differentiation of $V$ .                                                                                                                                                      | cu.                               |
|                    | 111                                                                | eg. $8\pi h + 16\pi$ or $4\pi (h + 4) + 4\pi h$ or $8\pi (h + 2)$ or equivalent.                                                                                                                                                                                                                                                             |                                   |
|                    | Note                                                               | Some candidates will use the product rule to differentiate $V$ with respect to $h$ . (See Alt N                                                                                                                                                                                                                                              |                                   |
|                    | Note                                                               | $\frac{dV}{dh}$ does not have to be explicitly stated, but it should be clear that they are differentiati                                                                                                                                                                                                                                    | ng their <i>V</i> .               |
|                    | M1                                                                 | Candidate's $\frac{dV}{dh}$ $\times \frac{dh}{dt} = 80\pi$ or $80\pi \div \text{Candidate's } \frac{dV}{dh}$                                                                                                                                                                                                                                 |                                   |
|                    | Note                                                               | Also allow 2 <sup>nd</sup> M1 for $\left(\text{Candidate's } \frac{\text{d}V}{\text{d}h}\right) \times \frac{\text{d}h}{\text{d}t} = 80 \text{ or } 80 \div \text{Candidate's } \frac{\text{d}V}{\text{d}h}$                                                                                                                                 |                                   |
|                    | Note                                                               | Give $2^{\text{nd}}$ M0 for $\left(\text{Candidate's } \frac{\text{d}V}{\text{d}h}\right) \times \frac{\text{d}h}{\text{d}t} = 80 \pi t \text{ or } 80 \text{k} \text{ or } 80 \text{k} \div \text{Candidate's } \right)$                                                                                                                    | $\frac{\mathrm{d}V}{\mathrm{d}h}$ |
|                    | dM1                                                                | which is dependent on the previous M1 mark.                                                                                                                                                                                                                                                                                                  |                                   |
|                    |                                                                    | Substitutes $h = 6$ into an expression which is a result of a quotient of their $\frac{dV}{dh}$ and $80\pi$                                                                                                                                                                                                                                  | (or 80)                           |
|                    | A1                                                                 | 1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required).                                                                                                                                                                                                                                                         |                                   |
|                    | Note                                                               | $\frac{80\pi}{64\pi}$ as a final answer is A0.                                                                                                                                                                                                                                                                                               |                                   |
|                    | Note                                                               | Substituting $h = 6$ into a correct $\frac{dV}{dh}$ gives $64\pi$ but the final M1 mark can only be awar                                                                                                                                                                                                                                     | rded if this                      |
|                    |                                                                    | is used as a quotient with $80\pi$ (or 80)                                                                                                                                                                                                                                                                                                   |                                   |

| Question<br>Number | Scheme                                                                                                                                                                                                                                 | Marks    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 5.                 | $x = 4\cos\left(t + \frac{\pi}{6}\right),  y = 2\sin t$                                                                                                                                                                                |          |
|                    | Main Scheme                                                                                                                                                                                                                            |          |
| (a)                | $x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$ | M1 oe    |
|                    | So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded $x$ (which is in terms of $t$ ) to $2\sin t$                                               | dM1      |
|                    | $=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$                                                                                                                                      |          |
|                    | $=2\sqrt{3}\cos t  *$ Correct proof                                                                                                                                                                                                    | A1 * [3] |
| (a)                | Alternative Method 1                                                                                                                                                                                                                   |          |
|                    | $x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$ | M1 oe    |
|                    | $=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) = 2\sqrt{3}\cos t - 2\sin t$                                                                                                                    |          |
|                    | So, $x = 2\sqrt{3}\cos t - y$ Forms an equation in x, y and t.                                                                                                                                                                         | dM1      |
|                    | $x + y = 2\sqrt{3}\cos t$ * Correct proof                                                                                                                                                                                              | A1 *     |
|                    |                                                                                                                                                                                                                                        | [3]      |
|                    | Main Scheme                                                                                                                                                                                                                            | • •      |
| (b)                | $\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing <b>only</b> x's and y's.                                                                   | M1       |
|                    | $\Rightarrow \frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$                                                                                                                                                                                   |          |
|                    | $\Rightarrow (x+y)^2 + 3y^2 = 12 \qquad (x+y)^2 + 3y^2 = 12$                                                                                                                                                                           | A1       |
|                    | ${a=3, b=12}$                                                                                                                                                                                                                          | [2]      |
| (b)                | Alternative Method 1                                                                                                                                                                                                                   |          |
|                    | $(x + y)^2 = 12\cos^2 t = 12(1 - \sin^2 t) = 12 - 12\sin^2 t$                                                                                                                                                                          |          |
|                    | So, $(x + y)^2 = 12 - 3y^2$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing <b>only</b> $x$ 's and $y$ 's.                                                                                                         | M1       |
|                    | $\Rightarrow (x+y)^2 + 3y^2 = 12 \qquad (x+y)^2 + 3y^2 = 12$                                                                                                                                                                           | A1 [2]   |
| (b)                | Alternative Method 2                                                                                                                                                                                                                   |          |
|                    | $(x+y)^2 = 12\cos^2 t$                                                                                                                                                                                                                 |          |
|                    | As $12\cos^2 t + 12\sin^2 t = 12$                                                                                                                                                                                                      |          |
|                    | then $(x + y)^2 + 3y^2 = 12$                                                                                                                                                                                                           | M1, A1   |
|                    |                                                                                                                                                                                                                                        | [2]      |
|                    |                                                                                                                                                                                                                                        | J        |

|               |               | Question 5 Notes                                                                                                                                                                                                                                       |
|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>5.</b> (a) | M1            | $\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)  \text{or}  \cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$ |
|               | Note          | If a candidate states $\cos(A + B) = \cos A \cos B \pm \sin A \sin B$ , but there is an error <i>in its application</i>                                                                                                                                |
|               |               | then give M1.                                                                                                                                                                                                                                          |
|               |               |                                                                                                                                                                                                                                                        |
|               |               | Awarding the dM1 mark which is dependent on the first method mark                                                                                                                                                                                      |
| Main          | dM1           | Adds their expanded $x$ (which is in terms of $t$ ) to $2\sin t$                                                                                                                                                                                       |
|               | Note          | Writing $x + y =$ is not needed in the <b>Main Scheme</b> method.                                                                                                                                                                                      |
| Alt 1         | dM1           | Forms an equation in $x$ , $y$ and $t$ .                                                                                                                                                                                                               |
|               | A1*           | Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors.                                                                                                                   |
|               | Note          | ${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$ , by itself is M0M0A0.                                                                                                                                                                       |
| (b)           | M1            | Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing <b>only</b> $x$ 's and $y$ 's.                                                                                                                                                     |
|               | A1            | leading $(x + y)^2 + 3y^2 = 12$                                                                                                                                                                                                                        |
|               | 111           |                                                                                                                                                                                                                                                        |
|               | SC            | Award Special Case B1B0 for a candidate who writes down either                                                                                                                                                                                         |
|               |               | • $(x + y)^2 + 3y^2 = 12$ from no working                                                                                                                                                                                                              |
|               |               | • $a = 3, b = 12$ , but <u>does not provide a correct proof</u> .                                                                                                                                                                                      |
|               | <b>3</b> .7 . |                                                                                                                                                                                                                                                        |
|               | Note          | Alternative method 2 is fine for M1 A1  Writing $(n+n)^2 = 12\cos^2 4$ followed by $12\cos^2 4 + a(4\sin^2 4) = b$                                                                                                                                     |
|               | Note          | Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0                                                                                                                                        |
|               | Note          | Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$<br>• states $a = 3$ , $b = 12$<br>• and refers to either $\cos^2 t + \sin^2 t = 1$ or $12\cos^2 t + 12\sin^2 t = 12$                                                      |
|               |               | • and there is no incorrect working would get M1A1                                                                                                                                                                                                     |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                             | Marks     |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                    | $\pm \alpha x e^{4x} - \int \beta e^{4x} \{ dx \},  \alpha \neq 0, \beta > 0$                                                                                                                                                                                                                      | M1        |
| <b>6.</b> (i)      | $\int xe^{4x} dx = \frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$ $\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$                                                                                                                                                                        | A1        |
|                    | $= \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \left\{ + c \right\}$ $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$                                                                                                                                                                                         |           |
|                    | $\pm \lambda (2x-1)^{-2}$                                                                                                                                                                                                                                                                          | [3]<br>M1 |
| (ii)               | $\int \frac{8}{(2x-1)^3} dx = \frac{8(2x-1)^{-2}}{(2)(-2)} \left\{ + c \right\}$ $\frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or equivalent.}$                                                                                                                                                             | A1        |
|                    | $\left\{ = -2(2x-1)^{-2} \left\{ + c \right\} \right\} $ {Ignore subsequent working}.                                                                                                                                                                                                              | [2]       |
| (iii)              | $\frac{dy}{dx} = e^x \csc 2y \csc y \qquad y = \frac{\pi}{6} \text{ at } x = 0$                                                                                                                                                                                                                    |           |
|                    | Main Scheme                                                                                                                                                                                                                                                                                        |           |
|                    | $\int \frac{1}{\csc 2y \csc y}  dy = \int e^x  dx \qquad \text{or}  \int \sin 2y \sin y  dy = \int e^x  dx$                                                                                                                                                                                        | B1 oe     |
|                    | $\int 2\sin y \cos y \sin y  dy = \int e^x  dx$ Applying $\frac{1}{\csc 2y}$ or $\sin 2y \to 2\sin y \cos y$                                                                                                                                                                                       | M1        |
|                    | Integrates to give $\pm \mu \sin^3 y$                                                                                                                                                                                                                                                              | M1        |
|                    | $\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\} $ $2\sin^2 y \cos y \to \frac{2}{3}\sin^3 y$                                                                                                                                                                                                       | A1        |
|                    | $e^x \rightarrow e^x$                                                                                                                                                                                                                                                                              | B1        |
|                    | $\frac{2}{3}\sin^3\left(\frac{\pi}{6}\right) = e^0 + c  \text{or}  \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing a                                                                                                      | M1        |
|                    | $\begin{cases} \Rightarrow c = -\frac{11}{12} \end{cases} \text{ giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} $ in an integrated equation containing $c$ $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$                                                                                         | A1        |
|                    | Alternative Method 1                                                                                                                                                                                                                                                                               | [7]       |
|                    | $\overline{\int \frac{1}{\csc 2y \csc y}  dy} = \int e^x  dx \qquad \text{or}  \int \sin 2y \sin y  dy = \int e^x  dx$                                                                                                                                                                             | B1 oe     |
|                    | $\int -\frac{1}{2} (\cos 3y - \cos y)  dy = \int e^x  dx \qquad \qquad \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$                                                                                                                                                                  | M1        |
|                    | Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$                                                                                                                                                                                                                                           | M1        |
|                    | $-\frac{1}{2} \left( \frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} $ $-\frac{1}{2} \left( \frac{1}{3} \sin 3y - \sin y \right)$                                                                                                                                                  | A1        |
|                    | $e^x \rightarrow e^x$ as part of solving their DE.                                                                                                                                                                                                                                                 | B1        |
|                    | $-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c  \text{or}  -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$ | M1        |
|                    | $\begin{cases} \Rightarrow c = -\frac{11}{12} \end{cases} \text{ giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \qquad \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \end{cases}$                                                                   | A1        |
|                    |                                                                                                                                                                                                                                                                                                    | [7]       |
|                    |                                                                                                                                                                                                                                                                                                    | 12        |

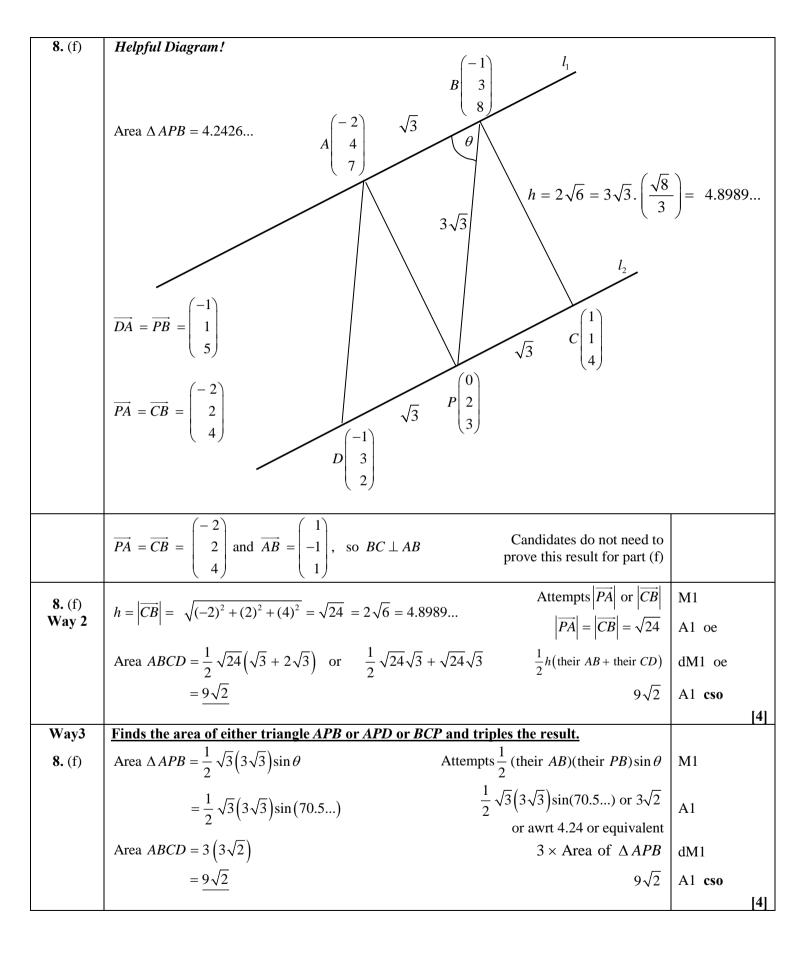
|               | Question 6 Notes           |                                                                                                                                                                          |                         |
|---------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| <b>6.</b> (i) | M1                         | Integration by parts is applied in the form $\pm \alpha x e^{4x} - \int \beta e^{4x} \{dx\}$ , where $\alpha \neq 0$ , $\beta > 0$ .                                     |                         |
|               |                            | (must be in this form).                                                                                                                                                  |                         |
|               | <b>A1</b>                  | $\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \left\{ dx \right\}  \text{or equivalent.}$                                                                                 |                         |
|               | <b>A1</b>                  | $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be un-simplified.                                                                                        |                         |
|               | isw                        | You can ignore subsequent working following on from a correct solution.                                                                                                  |                         |
|               | SC                         | <b>SPECIAL CASE:</b> A candidate who uses $u = x$ , $\frac{dv}{dx} = e^{4x}$ , writes down the correct "by j                                                             | parts"                  |
|               |                            | formula, but makes only one error when applying it can be awarded Special Case M1.                                                                                       |                         |
| (ii)          | M1                         | $\pm \lambda (2x-1)^{-2}$ , $\lambda \neq 0$ . Note that $\lambda$ can be 1.                                                                                             |                         |
|               | <b>A1</b>                  | $\frac{8(2x-1)^{-2}}{(2)(-2)}$ or $-2(2x-1)^{-2}$ or $\frac{-2}{(2x-1)^2}$ with/without + c. Can be un-simplified.                                                       |                         |
|               | Note                       | You can ignore subsequent working which follows from a correct answer.                                                                                                   |                         |
| (iii)         | B1                         | Separates variables as shown. dy and dx should be in the correct positions, though this r implied by later working. Ignore the integral signs.                           | nark can be             |
|               | Note                       | Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$ or $\int \sin 2y \sin y = \int e^x$                                                                              |                         |
|               | M1                         | $\frac{1}{\csc 2y} \to 2\sin y \cos y  \text{or}  \sin 2y \to 2\sin y \cos y  \text{or}  \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$                      | os y                    |
|               | 3.54                       | seen anywhere in the candidate's working to (iii).                                                                                                                       |                         |
|               | M1                         | Integrates to give $\pm \mu \sin^3 y$ , $\mu \neq 0$ or $\pm \alpha \sin 3y \pm \beta \sin y$ , $\alpha \neq 0$ , $\beta \neq 0$                                         | )                       |
|               | <b>A1</b>                  | $2\sin^2 y \cos y \to \frac{2}{3}\sin^3 y \text{ (with no extra terms) } \mathbf{or} \text{ integrates to give } -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin 3y\right)$ | $\left[ \inf y \right]$ |
|               | B1                         | Evidence that $e^x$ has been integrated to give $e^x$ as part of solving their DE.                                                                                       |                         |
|               | M1                         | Some evidence of using both $y = \frac{\pi}{6}$ and $x = 0$ in an integrated or changed equation cont                                                                    | aining $c$ .            |
|               | Note                       | that is mark can be implied by the correct value of $c$ .                                                                                                                |                         |
|               | <b>A1</b>                  | $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}  \text{or}  -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}  \text{or any equivalent correct answ}$             | ver.                    |
|               | Note                       | You can ignore subsequent working which follows from a correct answer.                                                                                                   |                         |
|               |                            | e Method 2 (Using integration by parts twice) $e^{x} dy = \int e^{x} dx$                                                                                                 | B1 oe                   |
|               | J                          | Applies integration by parts <b>twice</b> to give $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$                                                                   | M2                      |
|               | $\frac{1}{3}\cos y \sin y$ | $2y - \frac{2}{3}\sin y\cos 2y = e^x \left\{+c\right\}$ $\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y$                                                            | A1                      |
|               |                            | (simplified or un-simplified) $e^{x} \rightarrow e^{x} \text{ as part of solving their DE.}$                                                                             | B1                      |
|               |                            | $e \rightarrow e$ as part of solving their DE.  as in the main scheme                                                                                                    | M1                      |
|               | $\frac{1}{-\cos v \sin}$   | $2y - \frac{2}{3}\sin y\cos 2y = e^x - \frac{11}{12}$ $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$                                                    | A1                      |
|               | 3                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | [7]                     |
|               |                            |                                                                                                                                                                          | 1 1/1                   |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                | Marks  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 7.                 | $x = 3\tan\theta$ , $y = 4\cos^2\theta$ or $y = 2 + 2\cos 2\theta$ , $0 \le \theta < \frac{\pi}{2}$ .                                                                                                                                                                                                 |        |
| (a)                | $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$ , $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\cos\theta\sin\theta$ or $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin2\theta$                                                                                                                    |        |
|                    | $\frac{dy}{dx} = \frac{-8\cos\theta\sin\theta}{3\sec^2\theta}  \left\{ = -\frac{8}{3}\cos^3\theta\sin\theta = -\frac{4}{3}\sin2\theta\cos^2\theta \right\} $ their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$                                                                         | M1     |
|                    | Correct $\frac{1}{dx}$                                                                                                                                                                                                                                                                                | A1 oe  |
|                    | At $P(3, 2)$ , $\theta = \frac{\pi}{4}$ , $\frac{dy}{dx} = -\frac{8}{3}\cos^3\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right)$ $\left\{ = -\frac{2}{3} \right\}$ Some evidence of substituting $\theta = \frac{\pi}{4}$ into their $\frac{dy}{dx}$                                            | M1     |
|                    | So, $m(\mathbf{N}) = \frac{3}{2}$ applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$                                                                                                                                                                                                                  | M1     |
|                    | <b>Either N:</b> $y-2=\frac{3}{2}(x-3)$                                                                                                                                                                                                                                                               |        |
|                    | or $2 = \left(\frac{3}{2}\right)(3) + c$ see notes                                                                                                                                                                                                                                                    | M1     |
|                    | {At $Q$ , $y = 0$ , so, $-2 = \frac{3}{2}(x - 3)$ } giving $x = \frac{5}{3}$ $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67                                                                                                                                                                         | A1 cso |
|                    | (c c dr ) (c)                                                                                                                                                                                                                                                                                         | [6]    |
| (b)                | $\left\{ \int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta \right\} = \left\{ \int \left\{ (4\cos^2 \theta)^2 3\sec^2 \theta \right\} \left\{ d\theta \right\} \right\}$ see notes                                                                                                                    | M1 \   |
|                    | So, $\pi \int y^2 dx = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$ see notes                                                                                                                                                                                                                | A1     |
|                    | $\int y^2 dx = \int 48\cos^2\theta d\theta \qquad \qquad \int 48\cos^2\theta d\theta$                                                                                                                                                                                                                 | A1     |
|                    | $= \{48\} \int \left(\frac{1 + \cos 2\theta}{2}\right) d\theta  \left\{ = \int (24 + 24\cos 2\theta) d\theta \right\} \qquad \text{Applies } \cos 2\theta = 2\cos^2 \theta - 1$                                                                                                                       | M1     |
|                    | Dependent on the first method mark. For $\pm \alpha \theta \pm \beta \sin 2\theta$ $= \{48\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right)  \{= 24\theta + 12\sin 2\theta\}$                                                                                                               | dM1    |
|                    | $= \frac{1}{2} \left\{ \frac{-\theta + \frac{1}{4} \sin 2\theta}{2} \right\}  \left\{ = 24\theta + 12 \sin 2\theta \right\}$ $\cos^2 \theta \to \left( \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right)$                                                                                         | A1     |
|                    | $\int_{0}^{\frac{\pi}{4}} y^{2} dx \left\{ = 48 \left[ \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]_{0}^{\frac{\pi}{4}} \right\} = \left\{ 48 \right\} \left( \left( \frac{\pi}{8} + \frac{1}{4} \right) - (0 + 0) \right) \left\{ = 6\pi + 12 \right\}$ Dependent on the third method mark. | dM1    |
|                    | {So $V = \pi \int_0^{\frac{\pi}{4}} y^2 dx = 6\pi^2 + 12\pi$ }                                                                                                                                                                                                                                        |        |
|                    | $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \frac{5}{3}\right) \left\{ = \frac{16\pi}{9} \right\}$ $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \text{their } (a)\right)$                                                                                                                  | M1     |
|                    | $\left\{ Vol(S) = 6\pi^2 + 12\pi - \frac{16\pi}{9} \right\} \Rightarrow Vol(S) = \frac{92}{9}\pi + 6\pi^2 $ $\frac{92}{9}\pi + 6\pi^2$                                                                                                                                                                | A1     |
|                    | $\left\{ p = \frac{92}{9}, \ q = 6 \right\}$                                                                                                                                                                                                                                                          | [9]    |
|                    | ,                                                                                                                                                                                                                                                                                                     | 15     |

|        |                      | Question 7 Notes                                                                                                                                                                                       |
|--------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. (a) | 1 <sup>st</sup> M1   | Applies their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$ or applies $\frac{dy}{d\theta}$ multiplied by their $\frac{d\theta}{dx}$                                                      |
|        | SC                   | Award Special Case 1 <sup>st</sup> M1 if both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are both correct.                                                                                          |
|        | 1st A1               | Correct $\frac{dy}{dx}$ i.e. $\frac{-8\cos\theta\sin\theta}{3\sec^2\theta}$ or $-\frac{8}{3}\cos^3\theta\sin\theta$ or $-\frac{4}{3}\sin2\theta\cos^2\theta$ or any equivalent form.                   |
|        | 2 <sup>nd</sup> M1   | <b>Some evidence</b> of substituting $\theta = \frac{\pi}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$                                                                                      |
|        | Note                 | For 3 <sup>rd</sup> M1 and 4 <sup>th</sup> M1, $m(\mathbf{T})$ must be found by using $\frac{dy}{dx}$ .                                                                                                |
|        | 3 <sup>rd</sup> M1   | applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$ . Numerical value for $m(\mathbf{N})$ is required here.                                                                                             |
|        | 4 <sup>th</sup> M1   | • Applies $y - 2 = (\text{their } m_N)(x - 3)$ , where m(N) is a numerical value,                                                                                                                      |
|        |                      | • or <i>finds c</i> by solving $2 = (\text{their } m_N)3 + c$ , where m(N) is a numerical value,                                                                                                       |
|        |                      | and $m_N = -\frac{1}{\text{their m}(\mathbf{T})}$ or $m_N = \frac{1}{\text{their m}(\mathbf{T})}$ or $m_N = -\text{their m}(\mathbf{T})$ .                                                             |
|        | Note                 | This mark can be implied by subsequent working.                                                                                                                                                        |
|        | 2 <sup>nd</sup> A1   | $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only.                                                                                                                         |
| (b)    | 1 <sup>st</sup> M1   | Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$ . Ignore $\pi$ or $\frac{1}{3}\pi$ outside integral.                                                                |
|        | Note                 | You can ignore the omission of an integral sign and/or $d\theta$ for the 1 <sup>st</sup> M1.                                                                                                           |
|        | Note                 | Allow 1 <sup>st</sup> M1 for $\int (\cos^2 \theta)^2 \times$ "their 3sec <sup>2</sup> $\theta$ " d $\theta$ or $\int 4(\cos^2 \theta)^2 \times$ "their 3sec <sup>2</sup> $\theta$ " d $\theta$         |
|        | 1 <sup>st</sup> A1   | Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \left\{d\theta\right\}$ (Allow the omission of $d\theta$ )                                               |
|        | Note                 | <b>IMPORTANT:</b> The $\pi$ can be recovered later, but as a correct statement only.                                                                                                                   |
|        | 2 <sup>nd</sup> A1   | $\left\{ \int y^2 dx \right\} = \int 48\cos^2\theta \left\{ d\theta \right\}. \text{ (Ignore } d\theta \text{). Note: } 48 \text{ can be written as } 24(2) \text{ for example.}$                      |
|        | 2 <sup>nd</sup> M1   | Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or <b>implied</b> .)                                                                                                              |
|        | 3 <sup>rd</sup> dM1* | which is dependent on the 1 <sup>st</sup> M1 mark.<br>Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$ , $\alpha \neq 0$ , $\beta \neq 0$ , un-simplified or simplified. |
|        | 3 <sup>rd</sup> A1   | which is dependent on the $3^{rd}$ M1 mark and the $1^{st}$ M1 mark.                                                                                                                                   |
|        |                      | Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$ , un-simplified or simplified.                                                                                       |
|        |                      | This can be implied by $k\cos^2\theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$ , un-simplified or simplified.                                                                             |
|        | 4 <sup>th</sup> dM1  | which is dependent on the 3 <sup>rd</sup> M1 mark and the 1 <sup>st</sup> M1 mark.                                                                                                                     |
|        |                      | Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in $\theta$                                                                                     |
|        | 5 <sup>th</sup> M1   | Applies $V_{\text{cone}} = \frac{1}{3}\pi(2)^2 (3 - \text{their part}(a) \text{ answer}).$                                                                                                             |
|        | Note                 | Also allow the 5 <sup>th</sup> M1 for $V_{\text{cone}} = \pi \int_{\text{their } \frac{5}{3}}^{3} \left( \frac{3}{2} x - \frac{5}{2} \right)^{2} \{ dx \}$ , which includes the correct limits.        |
|        | 4 <sup>th</sup> A1   | $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$                                                                                                                                              |
|        | Note<br>Note         | A decimal answer of 91.33168464 (without a correct <b>exact</b> answer) is A0. The $\pi$ in the volume formula is only needed for the 1 <sup>st</sup> A1 mark and the final accuracy mark.             |

|   | 7.  |                     | Working with a Cartesian Equation                                                                                                                                                                        |
|---|-----|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |                     | A cartesian equation for C is $y = \frac{36}{x^2 + 9}$                                                                                                                                                   |
|   | (a) | 1 <sup>st</sup> M1  | $\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda x \left(\pm \alpha x^2 \pm \beta\right)^{-2}  \text{or}  \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pm \lambda x}{\left(\pm \alpha x^2 \pm \beta\right)^2}$ |
|   |     | 1st A1              | $\frac{dy}{dx} = -36(x^2 + 9)^{-2}(2x)  \text{or}  \frac{dy}{dx} = \frac{-72x}{(x^2 + 9)^2}  \text{un-simplified or simplified.}$                                                                        |
|   |     | 2 <sup>nd</sup> dM1 | Dependent on the 1st M1 mark if a candidate uses this method                                                                                                                                             |
|   |     |                     | For substituting $x = 3$ into their $\frac{dy}{dx}$                                                                                                                                                      |
|   |     |                     | i.e. at $P(3, 2)$ , $\frac{dy}{dx} = \frac{-72(3)}{(3^2 + 9)^2} \left\{ = -\frac{2}{3} \right\}$                                                                                                         |
|   |     |                     | From this point onwards the original scheme can be applied.                                                                                                                                              |
|   | (b) | 1 <sup>st</sup> M1  | For $\int \left(\frac{\pm \lambda}{\pm \alpha x^2 \pm \beta}\right)^2 \{dx\}$ ( $\pi$ not required for this mark)                                                                                        |
|   |     | <b>A1</b>           | For $\pi \int \left(\frac{36}{x^2+9}\right)^2 \{dx\}$ ( $\pi$ required for this mark)                                                                                                                    |
|   |     |                     | To integrate, a substitution of $x = 3\tan\theta$ is required which will lead to $\int 48\cos^2\theta d\theta$ and so                                                                                    |
|   |     |                     | from this point onwards the original scheme can be applied.                                                                                                                                              |
|   |     |                     | Another cartesian equation for C is $x^2 = \frac{36}{y} - 9$                                                                                                                                             |
|   | (a) | 1 <sup>st</sup> M1  | $\pm \alpha x = \pm \frac{\beta}{y^2} \frac{dy}{dx}$ or $\pm \alpha x \frac{dx}{dy} = \pm \frac{\beta}{y^2}$                                                                                             |
|   |     | 1st A1              | $2x = -\frac{36}{y^2} \frac{dy}{dx}$ or $2x \frac{dx}{dy} = -\frac{36}{y^2}$                                                                                                                             |
|   |     | 2 <sup>nd</sup> dM1 | Dependent on the 1st M1 mark if a candidate uses this method                                                                                                                                             |
|   |     |                     | For substituting $x = 3$ to find $\frac{dy}{dx}$                                                                                                                                                         |
|   |     |                     |                                                                                                                                                                                                          |
|   |     |                     | i.e. at $P(3, 2)$ , $2(3) = -\frac{36}{4} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =$                                                                                                                     |
|   |     |                     | From this point onwards the original scheme can be applied.                                                                                                                                              |
| 1 |     |                     |                                                                                                                                                                                                          |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mark   | īs . |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 8.                 | $\overrightarrow{OA} = -2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$ , $\overrightarrow{OB} = -\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ & $\overrightarrow{OP} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$                                                                                                                                                                                                                                                                                                                                                                                                                   |        |      |
| (a)                | $\overrightarrow{AB} = \pm ((-\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}) - (-2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k})); = \mathbf{i} - \mathbf{j} + \mathbf{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1; A1 |      |
| (b)                | $\{l_1: \mathbf{r} \} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}  \text{or}  \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                  | B1ft   | [2]  |
| (c)                | $\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                  | M1     | [1]  |
|                    | $\{\cos\theta = \} \begin{array}{c} \overrightarrow{AB} \bullet \overrightarrow{PB} \\ \overline{\left \overrightarrow{AB}\right }.\overline{\left \overrightarrow{PB}\right } \end{array} = \begin{array}{c} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} & \text{Applies dot product} \\ \text{formula between} \\ \text{their } \left(\overrightarrow{AB} \text{ or } \overrightarrow{BA}\right) \\ \hline \sqrt{(1)^2 + (-1)^2 + (1)^2}.\sqrt{(-1)^2 + (1)^2 + (5)^2} & \text{and their } \left(\overline{PB} \text{ or } \overline{BP}\right). \end{array}$ | M1     |      |
|                    | $\{\cos\theta = \} \frac{ B   B }{ \overrightarrow{AB}   \overrightarrow{PB} } = \frac{(2)}{\sqrt{(1)^2 + (-1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2}} $ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$ .                                                                                                                                                                                                                                                                                                                                                                                   |        |      |
|                    | $\{\cos\theta\} = \frac{-1-1+5}{\sqrt{3}.\sqrt{27}} = \frac{3}{9} = \frac{1}{3}$ Correct proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1 cso |      |
|                    | $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$ , $\mathbf{p} \neq 0$ , $\mathbf{d} \neq 0$ with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | [3]  |
| (d)                | either $\mathbf{p} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ or $\mathbf{d} = \text{their } \overline{AB}$ , or a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1     |      |
|                    | $\{l_2: \mathbf{r} = \} \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ either $\mathbf{p} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ or $\mathbf{d} = \text{their } \overline{AB}$ , or a multiple of their $\overline{AB}$ .                                                                                                                                                                                                                                                                                                                                             |        |      |
|                    | Correct vector equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 ft  |      |
| (e)                | $\overrightarrow{OC} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}  \text{or}  \overrightarrow{OD} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} :  \text{Either } \overrightarrow{OP} + \text{their } \overrightarrow{AB}$ $\text{or } \overrightarrow{OP} - \text{their } \overrightarrow{AB}$ At least one set of coordinates are                                                                                                                                                 | M1     | [2]  |
| (e)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1 ft  |      |
|                    | $\{C(1,1,4), D(-1,3,2)\}$ Both sets of coordinates are correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1 ft  |      |
| (f)<br>Way 1       | $\frac{h}{\sqrt{(-1)^2 + (1)^2 + (5)^2}} = \sin \theta$ $\frac{h}{\text{their }  \overrightarrow{PB} } = \sin \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1     | [3]  |
|                    | $h = \sqrt{27}\sin(70.5) \left\{ = \sqrt{27}\frac{\sqrt{8}}{3} = 2\sqrt{6} = \text{awrt } 4.9 \right\}$ or $2\sqrt{6}$ or awrt 4.9 or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1 oe  |      |
|                    | Area $ABCD = \frac{1}{2} 2\sqrt{6} \left( \sqrt{3} + 2\sqrt{3} \right)$ $\frac{1}{2} \left( \text{their } h \right) \left( \text{their } AB + \text{their } CD \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                | dM1    |      |
|                    | $\left\{ = \frac{1}{2} 2\sqrt{6} \left( 3\sqrt{3} \right) = 3\sqrt{18} \right\} = \underline{9\sqrt{2}}$ $9\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1 cao |      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | [4]  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 15   |



|               |                                                                                                                                                                                                                                                                                                                                | Question 8 Notes                                                                                                                                                                                                                                                                                                                    |                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>8.</b> (a) | M1                                                                                                                                                                                                                                                                                                                             | Finding the difference (either way) between $\overrightarrow{OB}$ and $\overrightarrow{OA}$ .                                                                                                                                                                                                                                       |                |
|               |                                                                                                                                                                                                                                                                                                                                | If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ                                                                                                                                                                                                                                          | ence.          |
|               |                                                                                                                                                                                                                                                                                                                                | $\mathbf{i} - \mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $(1, -1, 1)$ or benefit of the doubt $-1$                                                                                                                                                                                                 |                |
|               | Al                                                                                                                                                                                                                                                                                                                             | $\mathbf{I} - \mathbf{J} + \mathbf{K}$ or $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ or $(1, -1, 1)$ or benefit of the doubt $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$                                                                                                                                                                   |                |
|               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                     |                |
| (b)           | B1ft                                                                                                                                                                                                                                                                                                                           | $\{\mathbf{r}\} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}  \mathbf{or}  \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \text{ with } \overrightarrow{AB} \text{ or } \overrightarrow{BA} \text{ correctly followed thr}$ | ough from (a). |
|               | Note                                                                                                                                                                                                                                                                                                                           | $\mathbf{r} = $ is not needed.                                                                                                                                                                                                                                                                                                      |                |
| (c)           | M1                                                                                                                                                                                                                                                                                                                             | An attempt to find either the vector $\overrightarrow{PB}$ or $\overrightarrow{BP}$ .                                                                                                                                                                                                                                               |                |
|               |                                                                                                                                                                                                                                                                                                                                | If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ                                                                                                                                                                                                                                          | rence.         |
|               | M1                                                                                                                                                                                                                                                                                                                             | Applies dot product formula between their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$ .                                                                                                                                                               |                |
|               | A1                                                                                                                                                                                                                                                                                                                             | Obtains $\{\cos\theta\} = \frac{1}{3}$ by correct solution only.                                                                                                                                                                                                                                                                    |                |
|               | Note                                                                                                                                                                                                                                                                                                                           | If candidate starts by applying $\frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{ \overrightarrow{AB}  \cdot  \overrightarrow{PB} }$ correctly (without reference to $\cos \theta =$ )                                                                                                                                       |                |
|               |                                                                                                                                                                                                                                                                                                                                | they can gain both 2 <sup>nd</sup> M1 and A1 mark.                                                                                                                                                                                                                                                                                  |                |
|               | Note                                                                                                                                                                                                                                                                                                                           | Award the final A1 mark if candidate achieves $\{\cos\theta\} = \frac{1}{3}$ by either taking the dot produc                                                                                                                                                                                                                        | et between     |
|               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                     |                |
|               |                                                                                                                                                                                                                                                                                                                                | (i) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$ or (ii) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ . Ignore if any of these vectors are labelled                                                                             | d incorrectly. |
|               | Note                                                                                                                                                                                                                                                                                                                           | Award final A0, cso for those candidates who take the dot product between                                                                                                                                                                                                                                                           |                |
|               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                     |                |
|               |                                                                                                                                                                                                                                                                                                                                | (iii) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ or (iv) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$                                                                                                                         |                |
|               |                                                                                                                                                                                                                                                                                                                                | They will usually find $\{\cos\theta\} = -\frac{1}{3}$ or may fudge $\{\cos\theta\} = \frac{1}{3}$ .                                                                                                                                                                                                                                |                |
|               |                                                                                                                                                                                                                                                                                                                                | If these candidates give a convincing detailed explanation which must include reference to                                                                                                                                                                                                                                          | the direction  |
|               |                                                                                                                                                                                                                                                                                                                                | of their vectors then this can be given A1 cso                                                                                                                                                                                                                                                                                      |                |
| (c)           | Altern                                                                                                                                                                                                                                                                                                                         | native Method 1: The Cosine Rule                                                                                                                                                                                                                                                                                                    |                |
|               | $\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ Mark in the same way as the main scheme. |                                                                                                                                                                                                                                                                                                                                     | M1             |
|               | Note                                                                                                                                                                                                                                                                                                                           | $ \overrightarrow{PB}  = \sqrt{27}$ , $ \overrightarrow{AB}  = \sqrt{3}$ and $ \overrightarrow{PA}  = \sqrt{24}$                                                                                                                                                                                                                    |                |
|               | $\left(\sqrt{24}\right)^2 = \left(\sqrt{27}\right)^2 + \left(\sqrt{3}\right)^2 - 2\left(\sqrt{27}\right)\left(\sqrt{3}\right)\cos\theta$ Applies the cosine rule the correct way round M1 oe                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                     |                |
|               | $\cos \theta = \frac{27 + 3 - 24}{18} = \frac{1}{2}$ Correct proof A1 cso                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                |
|               | 18 3                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     |                |
|               | L                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                     | [3]            |

| <b>8.</b> (c) | Alternative Method 2: Right-Angled Trigonometry                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               | $\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ Mark in the same way as the main scheme. |                                                                                                                                                                                                                                                                                               |  |
|               | Either $(\sqrt{24})^2 + (\sqrt{3})^2 = (\sqrt{27})^2$<br>or $\overrightarrow{AB} \bullet \overrightarrow{PA} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix} = -2 - 2 + 4 = 0$ Confirms $\triangle PAB$ is right-angled M1                                                     |                                                                                                                                                                                                                                                                                               |  |
|               | So, $\left\{\cos\theta = \frac{AB}{PB} \Rightarrow \right\} \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3}$ Correct proof A1 of                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                               |  |
| (d)           | M1                                                                                                                                                                                                                                                                                                                             | Writing down a line in the form $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$ with either $\mathbf{a} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ or $\mathbf{d} = \text{their } \overrightarrow{AB} \mathbf{d} = \text{their } \overrightarrow{AB}$ ,                  |  |
|               |                                                                                                                                                                                                                                                                                                                                | or a multiple of their $\overrightarrow{AB}$ found in part (a).                                                                                                                                                                                                                               |  |
|               |                                                                                                                                                                                                                                                                                                                                | $\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$                                                                                                                                                                                             |  |
|               | A1ft                                                                                                                                                                                                                                                                                                                           | Writing $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \mathbf{d}$ , where $\mathbf{d} = \text{their } \overrightarrow{AB}$ or a multiple of their $\overrightarrow{AB}$ found in part (a). |  |
|               | Note                                                                                                                                                                                                                                                                                                                           | $\mathbf{r}$ = is not needed.                                                                                                                                                                                                                                                                 |  |
|               | Note                                                                                                                                                                                                                                                                                                                           | Using the same scalar parameter as in part (b) is fine for A1.                                                                                                                                                                                                                                |  |
| (e)           | M1                                                                                                                                                                                                                                                                                                                             | Either $\overrightarrow{OP}$ + their $\overrightarrow{AB}$ or $\overrightarrow{OP}$ - their $\overrightarrow{AB}$ .                                                                                                                                                                           |  |
|               | Note                                                                                                                                                                                                                                                                                                                           | This can be implied at least two out of three correct components for either their $C$ or their $D$ .                                                                                                                                                                                          |  |
|               | A1ft<br>A1ft                                                                                                                                                                                                                                                                                                                   | At least one set of coordinates are correct. Ignore labelling of $C$ , $D$<br>Both sets of coordinates are correct. Ignore labelling of $C$ , $D$                                                                                                                                             |  |
|               | Note                                                                                                                                                                                                                                                                                                                           | You can follow through either or both accuracy marks in this part using their $\overrightarrow{AB}$ from part (a).                                                                                                                                                                            |  |
| (f)           | M1                                                                                                                                                                                                                                                                                                                             | Way 1: $\frac{h}{\text{their }  \overrightarrow{PB} } = \sin \theta$                                                                                                                                                                                                                          |  |
|               |                                                                                                                                                                                                                                                                                                                                | Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $                                                                                                                                                                                                                            |  |
|               |                                                                                                                                                                                                                                                                                                                                | Way 3: Attempts $\frac{1}{2}$ (their $PB$ )(their $AB$ ) $\sin \theta$                                                                                                                                                                                                                        |  |
|               | Note                                                                                                                                                                                                                                                                                                                           | Finding AD by itself is M0.                                                                                                                                                                                                                                                                   |  |
|               | A1                                                                                                                                                                                                                                                                                                                             | Either $\bullet  h = \sqrt{27}\sin(70.5) \text{ or }  \overrightarrow{PA}  =  \overrightarrow{CB}  = \sqrt{24} \text{ or equivalent. (See Way 1 and Way 2)}$                                                                                                                                  |  |
|               |                                                                                                                                                                                                                                                                                                                                | or $n = \sqrt{27} \sin(70.5)$ of $ 171  =  CB  = \sqrt{24}$ of equivalent. (see way I and way 2)                                                                                                                                                                                              |  |
|               |                                                                                                                                                                                                                                                                                                                                | • the area of either triangle APB or APD or BDP = $\frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5)$ o.e. (See Way 3).                                                                                                                                                                                |  |
|               | dM1                                                                                                                                                                                                                                                                                                                            | which is dependent on the 1 <sup>st</sup> M1 mark.  A full method to find the area of trapezium <i>ABCD</i> . (See Way 1, Way 2 and Way 3).                                                                                                                                                   |  |
|               | A1<br>Note                                                                                                                                                                                                                                                                                                                     | $9\sqrt{2}$ from a correct solution only.<br>A decimal answer of 12.7279 (without a correct <b>exact</b> answer) is A0.                                                                                                                                                                       |  |
|               | 11016                                                                                                                                                                                                                                                                                                                          | 13 decimal answer of 12.7217 (without a correct exact answer) is Mu.                                                                                                                                                                                                                          |  |

