| Paper Reference (complete below)                                                                                                             | Centre No.       |        | Surname   | urname |                      | tial(s)        |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|-----------|--------|----------------------|----------------|
| 66663/01                                                                                                                                     | Candidate<br>No. |        | Signature |        |                      |                |
| Paper Reference(s) 6663                                                                                                                      |                  |        |           | Exan   | niner's us           | se only        |
|                                                                                                                                              | •                |        |           |        |                      |                |
| Edexcel GCE                                                                                                                                  |                  |        |           | Team 1 | Leader's             | use only       |
| Core Mathematics                                                                                                                             | s C3             |        |           |        |                      |                |
| Advanced Subsidi                                                                                                                             | ary              |        |           |        | Questi<br>on<br>Numb | Leave<br>Blank |
| Set A: Practice Pa                                                                                                                           | per 4            |        |           |        | 1                    |                |
|                                                                                                                                              | <b>F</b>         |        |           |        | 2                    |                |
| Time: 1 hour 30 minute                                                                                                                       | es               |        |           |        | 3                    |                |
|                                                                                                                                              | .~               |        |           |        | 4                    |                |
|                                                                                                                                              |                  |        |           |        | 5                    |                |
|                                                                                                                                              |                  |        |           |        | 6                    |                |
| Materials required for examination   Items included with question papers                                                                     |                  |        |           |        | 7                    |                |
| Mathematical Formulae Nil                                                                                                                    |                  |        |           | 8      |                      |                |
|                                                                                                                                              |                  |        |           |        | 9                    |                |
| <b>Instructions to Candidates</b>                                                                                                            |                  |        |           |        |                      |                |
| In the boxes above, write your centre number, can                                                                                            |                  |        |           |        |                      |                |
| and signature. You must write your answer for each question. If you need more space to complete your answer sheets.                          | -                | -      | _         |        |                      |                |
| Information for Candidates                                                                                                                   |                  |        |           |        |                      |                |
| A booklet 'Mathematical Formulae and Statistical Full marks may be obtained for answers to ALL q This paper has nine questions.              |                  | vided. |           |        |                      |                |
| Advice to Candidates                                                                                                                         |                  |        |           |        |                      |                |
| You must ensure that your answers to parts of que You must show sufficient working to make your ranswers without working may gain no credit. |                  |        | er.       |        | Tot                  |                |

Turn over

- 1. The curve C has equation  $y = 2e^x + 3x^2 + 2$ . The point A with coordinates (0, 4) lies on C. Find the equation of the tangent to C at A. (5)
- 2. Express  $\frac{x}{(x+1)(x+3)} + \frac{x+12}{x^2-9}$  as a single fraction in its simplest form. (6)
- **3.** The functions f and g are defined by

f: 
$$x \alpha \ x^2 - 2x + 3, x \in \mathbb{R}, \ 0 \le x \le 4$$
,

g:  $x \alpha \lambda x^2 + 1$ , where  $\lambda$  is a constant,  $x \in \mathbb{R}$ .

- (a) Find the range of f. (3)
- (b) Given that gf(2) = 16, find the value of  $\lambda$ .
- **4.** (a) Sketch, on the same set of axes, the graphs of

$$y = 2 - e^{-x}$$
 and  $y = \sqrt{x}$ . (3)

[It is not necessary to find the coordinates of any points of intersection with the axes.]

Given that  $f(x) = e^{-x} + \sqrt{x} - 2$ ,  $x \ge 0$ ,

- (b) explain how your graphs show that the equation f(x) = 0 has only one solution, (1)
- (c) show that the solution of f(x) = 0 lies between x = 3 and x = 4. (2)

The iterative formula  $x_{n+1} = (2 - e^{-x_n})^2$  is used to solve the equation f(x) = 0.

(d) Taking  $x_0 = 4$ , write down the values of  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$ , and hence find an approximation to the solution of f(x) = 0, giving your answer to 3 decimal places. (4)

**5.** 

Figure 1

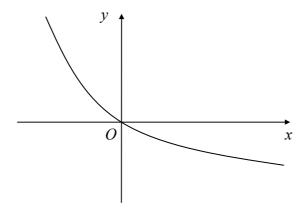



Figure 1 shows a sketch of the curve with equation  $y = e^{-x} - 1$ .

(a) Copy Fig. 1 and on the same axes sketch the graph of  $y = \frac{1}{2} |x - 1|$ . Show the coordinates of the points where the graph meets the axes. (2)

The x-coordinate of the point of intersection of the graph is  $\alpha$ .

(b) Show that 
$$x = \alpha$$
 is a root of the equation  $x + 2e^{-x} - 3 = 0$ . (3)

(c) Show that 
$$-1 < \alpha < 0$$
. (2)

The iterative formula  $x_{n+1} = -\ln\left[\frac{1}{2}(3 - x_n)\right]$  is used to solve the equation  $x + 2e^{-x} - 3 = 0$ .

(d) Starting with 
$$x_0 = -1$$
, find the values of  $x_1$  and  $x_2$ . (2)

(e) Show that, to 2 decimal places, 
$$\alpha = -0.58$$
. (2)

6.

$$f(x) = x^2 - 2x - 3, x \in \mathbb{R}, x \ge 1.$$

(a) Find the range of f. (1)

(b) Write down the domain and range of  $f^{-1}$ . (2)

(c) Sketch the graph of f<sup>-1</sup>, indicating clearly the coordinates of any point at which the graph intersects the coordinate axes. (4)

Given that  $g(x) = |x - 4|, x \in \mathbb{R}$ ,

(d) find an expression for gf(x). (2)

(e) Solve gf(x) = 8.

7.  $f(x) = x + \frac{e^x}{5}, \qquad x \in \mathbb{R}.$ 

(a) Find f'(x). (2)

The curve C, with equation y = f(x), crosses the y-axis at the point A.

(b) Find an equation for the tangent to C at A.

(c) Complete the table, giving the values of  $\sqrt{\left(x + \frac{e^x}{5}\right)}$  to 2 decimal places.

| x                                              | 0    | 0.5  | 1 | 1.5 | 2 |
|------------------------------------------------|------|------|---|-----|---|
| $\sqrt{\left(x+\frac{\mathrm{e}^x}{5}\right)}$ | 0.45 | 0.91 |   |     |   |

**(2)** 

**(3)** 

8. (a) Express  $2 \cos \theta + 5 \sin \theta$  in the form  $R \cos (\theta - \alpha)$ , where R > 0 and  $0 < \alpha < \frac{\pi}{2}$ . Give the values of R and  $\alpha$  to 3 significant figures.

(b) Find the maximum and minimum values of  $2 \cos \theta + 5 \sin \theta$  and the smallest possible value of  $\theta$  for which the maximum occurs. (2)

The temperature T °C, of an unheated building is modelled using the equation

$$T = 15 + 2\cos\left(\frac{\pi t}{12}\right) + 5\sin\left(\frac{\pi t}{12}\right), \quad 0 \le t < 24,$$

where *t* hours is the number of hours after 1200.

- (c) Calculate the maximum temperature predicted by this model and the value of t when this maximum occurs. (4)
- (d) Calculate, to the nearest half hour, the times when the temperature is predicted to be 12 °C. (6)

**END**