GCE Examinations Advanced Subsidiary

Core Mathematics C4

Paper C

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.

Written by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

. Use integration by parts to show that	
$\int_{1}^{2} x \ln x dx = 2 \ln 2 - \frac{3}{4}.$	(6)

2.	(a)	Use the trapezium rule with two intervals of equal width to find an approximate value for the integral		Leav blan
		$\int_0^2 \arctan x \ dx.$	(5)	
	(b)	Use the trapezium rule with four intervals of equal width to find an improved approximation for the value of the integral.	(2)	

Leave	
blank	

(4)

3. A curve has the equation	on
------------------------------------	----

$$3x^2 - 2x + xy + y^2 - 11 = 0.$$

The point P on the curve has coordinates (-1, 3).

- (a) Show that the normal to the curve at P has the equation y = 2 x. (7)
- (b) Find the coordinates of the point where the normal to the curve at P meets the curve again.

3. continued	Leb

The	points A and B have coordinates $(3, 9, -7)$ and $(13, -6, -2)$ respectively.	
(a)	Find, in vector form, an equation for the line l which passes through A and B .	(2)
(b)	Show that the point C with coordinates $(9, 0, -4)$ lies on l .	(2)
The	point D is the point on l closest to the origin, O .	
(c)	Find the coordinates of D .	(4)
(d)	Find the area of triangle <i>OAB</i> to 3 significant figures.	(3)

4	continued	Le
4.	continued	

Leav	re
hlan	ŀ

5.	wate assu	ath is filled with hot water which is allowed to cool. The temperature of the er is θ °C after cooling for t minutes and the temperature of the room is med to remain constant at 20°C.	blank
		en that the rate at which the temperature of the water decreases is proportional e difference in temperature between the water and the room,	
	(a)	write down a differential equation connecting θ and t .	(2)
		en also that the temperature of the water is initially 37°C and that it is 36°C cooling for four minutes,	
	<i>(b)</i>	find, to 3 significant figures, the temperature of the water after ten minutes.	(8)
		ice suggests that the temperature of the water should be allowed to cool to before a child gets in.	
	(c)	Find, to the nearest second, how long a child should wait before getting into the bath.	(3)

		Lo bl
5.	continued	

Leave blank

6.

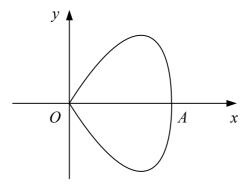


Figure 1

Figure 1 shows the curve with parametric equations

$$x = 3\sin t, \quad y = 2\sin 2t, \quad 0 \le t < \pi.$$

The curve meets the x-axis at the origin, O, and at the point A.

(a) Find the value of t at O and the value of t at A. (2)

The region enclosed by the curve is rotated through π radians about the *x*-axis.

(b) Show that the volume of the solid formed is given by

$$\int_0^{\frac{\pi}{2}} 12\pi \sin^2 2t \cos t \, dt. \tag{3}$$

(c) Using the substitution $u = \sin t$, or otherwise, evaluate this integral, giving your answer as an exact multiple of π . (8)

6. continued	L b

Leave	
blank	

(5)

- (a) Express f(x) in partial fractions. (3)
- (b) Show that

$$\int_0^{\frac{1}{2}} f(x) dx = \ln k,$$

where k is an integer to be found.

(c) Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. (6)

. continued			

		Leave blank
7.	continued	
	END	
	22, 12	