## GCE Examinations Advanced Subsidiary

## **Core Mathematics C4**

Paper G Time: 1 hour 30 minutes

## Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has eight questions.

## Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.



Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

|    |                                                                 | Leave  |
|----|-----------------------------------------------------------------|--------|
| 1. | A curve has the equation                                        | olulik |
|    | $r^2 + 2rv^2 + v = 4$                                           |        |
|    | x + 2xy + y =.                                                  |        |
|    | Find an expression for $\frac{dy}{dx}$ in terms of x and y. (6) |        |
|    | dx                                                              |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |
|    |                                                                 |        |

| 2. Use integration by parts to find |     | blank |
|-------------------------------------|-----|-------|
| $\int x^2 e^{-x} dx.$               | (7) |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |
|                                     |     |       |



| continued |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

| 4. | (a) | Use the trapezium rule with two intervals of equal width to find an estimate for the value of the integral                                                                                                  | Leave<br>blank |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    |     | $\int_0^3 e^{\cos x} dx,$                                                                                                                                                                                   |                |
|    |     | giving your answer to 3 significant figures.                                                                                                                                                                | (5)            |
|    | (b) | Use the trapezium rule with four intervals of equal width to find another estimate for the value of the integral to 3 significant figures.                                                                  | (2)            |
|    | (c) | Given that the true value of the integral lies between the estimates made in parts (a) and (b), comment on the shape of the curve $y = e^{\cos x}$ in the interval $0 \le x \le 3$ and explain your answer. | (2)            |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             |                |
|    |     |                                                                                                                                                                                                             |                |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             | _              |
|    |     |                                                                                                                                                                                                             |                |

| 4. continued | b |
|--------------|---|
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |
|              |   |

|    |                                                                                                                                                                                                                          | Leave<br>blank |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 5. | A straight road passes through villages at the points <i>A</i> and <i>B</i> with position vectors $(9\mathbf{i} - 8\mathbf{j} + 2\mathbf{k})$ and $(4\mathbf{j} + \mathbf{k})$ respectively, relative to a fixed origin. |                |
|    | The road ends at a junction at the point $C$ with another straight road which lies along the line with equation                                                                                                          |                |
|    | $\mathbf{r} = (2\mathbf{i} + 16\mathbf{j} - \mathbf{k}) + \mu(-5\mathbf{i} + 3\mathbf{j}),$                                                                                                                              |                |
|    | where $\mu$ is a scalar parameter.                                                                                                                                                                                       |                |
|    | (a) Find the position vector of $C$ . (5)                                                                                                                                                                                | )              |
|    | Given that 1 unit on each coordinate axis represents 200 metres,                                                                                                                                                         |                |
|    | (b) find the distance, in kilometres, from the village at $A$ to the junction at $C$ . (4)                                                                                                                               | )              |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |
|    |                                                                                                                                                                                                                          |                |

| continued |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

| 6. | A sr       | nall town had a population of 9000 in the year 2001                                                                       | Leav<br>blanl |
|----|------------|---------------------------------------------------------------------------------------------------------------------------|---------------|
| 0. | In a 200   | model, it is assumed that the population of the town, $P$ , at time $t$ years after 1 satisfies the differential equation |               |
|    |            | $\frac{\mathrm{d}P}{\mathrm{d}t} = 0.05P\mathrm{e}^{-0.05t}.$                                                             |               |
|    | (a)        | Show that, according to the model, the population of the town in 2011 will be 13 300 to 3 significant figures.            | (7)           |
|    | <i>(b)</i> | Find the value which the population of the town will approach in the long term, according to the model.                   | (3)           |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           |               |
|    |            |                                                                                                                           | —             |

| 6. continued |  |
|--------------|--|
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |



| <br> | <br> |  |
|------|------|--|
|      |      |  |

Leave blank

8. (a) Show that the substitution  $u = \sin x$  transforms the integral

$$\int \frac{6}{\cos x(2-\sin x)} \, \mathrm{d}x$$

into the integral

$$\frac{6}{(1-u^2)(2-u)} du.$$
 (4)

(b) Express 
$$\frac{6}{(1-u^2)(2-u)}$$
 in partial fractions. (4)

(c) Hence, evaluate

$$\int_0^{\frac{\pi}{6}} \frac{6}{\cos x(2-\sin x)} \, \mathrm{d}x,$$

giving your answer in the form  $a \ln 2 + b \ln 3$ , where a and b are integers. (7)

| 8. continued |              |      | Le<br>hl |
|--------------|--------------|------|----------|
|              | 8. continued |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              | <br> |          |
|              |              | <br> |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |
|              |              |      |          |

| 8. | continued | Leave<br>blank |
|----|-----------|----------------|
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    | END       |                |
|    |           |                |