## GCE Examinations Advanced Subsidiary

## **Core Mathematics C4**

Paper I

Time: 1 hour 30 minutes

## Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

## Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.



Written by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

Leave

| A curve has the equation                                                                      |
|-----------------------------------------------------------------------------------------------|
| $x^3 + 2xy - y^2 + 24 = 0.$                                                                   |
| Show that the normal to the curve at the point $(2, -4)$ has the equation $y = 3x - 10$ . (8) |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |

| 2. | (a)        | Expand $(4 - x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in $x^2$ , simplifying each coefficient. | (4) |
|----|------------|-------------------------------------------------------------------------------------------------------------------------------|-----|
|    | <i>(b)</i> | State the set of values of x for which your expansion is valid.                                                               | (1) |
|    | (c)        | Use your expansion with $x = 0.01$ to find the value of $\sqrt{399}$ , giving your answer to 9 significant figures.           | (4) |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |
|    |            |                                                                                                                               |     |

**(2)** 

3.

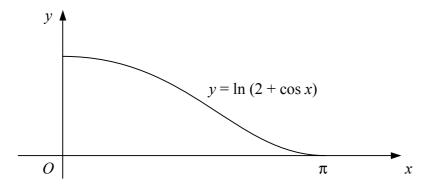



Figure 1

Figure 1 shows the curve with equation  $y = \ln (2 + \cos x)$ ,  $0 \le x \le \pi$ .

- (a) Complete the table below for points on the curve, giving the y values to 4 decimal places.
- (b) Giving your answers to 3 decimal places, find estimates for the area of the region bounded by the curve and the coordinate axes using the trapezium rule with
  - (*i*) 1 strip,
  - (ii) 2 strips,

(c) Making your reasoning clear, suggest a value to 2 decimal places for the actual area of the region bounded by the curve and the coordinate axes. (2)

| x | 0      | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{3\pi}{4}$ | π |
|---|--------|-----------------|-----------------|------------------|---|
| у | 1.0986 |                 |                 |                  | 0 |

|           |           | L |
|-----------|-----------|---|
|           |           | b |
| <b>3.</b> | continued |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |

Leave blank

4.



Figure 2

Figure 2 shows the curve with parametric equations

$$x = \tan \theta$$
,  $y = \cos^2 \theta$ ,  $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ .

The shaded region bounded by the curve, the x-axis and the lines x = -1 and x = 1 is rotated through  $2\pi$  radians about the x-axis.

- (a) Show that the volume of the solid formed is  $\frac{1}{4}\pi(\pi+2)$ . (8)
- (b) Find a cartesian equation for the curve. (3)

| <b>4.</b> conti | nued | I<br>t |
|-----------------|------|--------|
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      | _      |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      |        |
|                 |      | _      |
|                 |      |        |

| Relative to a fixed origin, the points $A$ , $B$ and $C$ have position vectors (2 <b>i</b> - (5 <b>i</b> - 4 <b>j</b> ) and (7 <b>i</b> - 6 <b>j</b> - 4 <b>k</b> ) respectively. | - <b>j</b> + 6 <b>k</b> ), |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| (a) Show that A, B and C all lie on a single straight line.                                                                                                                       | (3)                        |
| (b) Write down the ratio AB: BC                                                                                                                                                   | (1)                        |
| The point D has position vector $(3\mathbf{i} + \mathbf{j} + 4\mathbf{k})$ .                                                                                                      |                            |
| (c) Show that $AD$ is perpendicular to $BD$ .                                                                                                                                     | (4)                        |
| (d) Find the exact area of triangle ABD.                                                                                                                                          | (3)                        |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |
|                                                                                                                                                                                   |                            |

| <br>continued |  |
|---------------|--|
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |

| Leave |  |
|-------|--|
| blank |  |

| 6. | (a) | Use the substitution $x = 2 \sin u$ to evaluate               | blank |
|----|-----|---------------------------------------------------------------|-------|
|    |     | $\int_0^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}}  \mathrm{d}x. $ (5) |       |
|    | (b) | Use integration by parts to evaluate                          |       |
|    |     | $\int_0^{\frac{\pi}{2}} x \cos x  \mathrm{d}x. \tag{6}$       |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |
|    |     |                                                               |       |

| I<br>t |
|--------|
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
| _      |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
| _      |
|        |
|        |
|        |
|        |
| _      |
|        |
|        |

| Leave |  |
|-------|--|
| blank |  |

| 7. | after                                                                                                                                                  | en a plague of locusts attacks a wheat crop, the proportion of the crop destroyed $t$ hours is denoted by $x$ . In a model, it is assumed that the rate at which the crop estroyed is proportional to $x(1-x)$ . | blar |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    |                                                                                                                                                        | ague of locusts is discovered in a wheat crop when one quarter of the crop has a destroyed.                                                                                                                      |      |
|    | Given that the rate of destruction at this instant is such that if it remained constant the crop would be completely destroyed in a further six hours, |                                                                                                                                                                                                                  |      |
|    | (a)                                                                                                                                                    | show that $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2}{3}x(1-x)$ ,                                                                                                                                                | (4)  |
|    | <i>(b)</i>                                                                                                                                             | find the percentage of the crop destroyed three hours after the plague of locusts is first discovered.                                                                                                           | (11) |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                        |                                                                                                                                                                                                                  |      |

|           |           | b |
|-----------|-----------|---|
| <b>'.</b> | continued |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |
|           |           |   |

| 7. continued | Leave<br>blank |  |  |  |  |  |
|--------------|----------------|--|--|--|--|--|
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
|              |                |  |  |  |  |  |
| END          |                |  |  |  |  |  |