

# GCE

# **Chemistry A**

Advanced Subsidiary GCE

Unit F322: Chains, Energy and Resources

## Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

#### Annotations

Annotations available in Scoris.

| Annotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Meaning                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benefit of doubt given                 |
| CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contradiction                          |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Incorrect response                     |
| ECF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Error carried forward                  |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ignore                                 |
| NAQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not answered question                  |
| NBOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benefit of doubt not given             |
| POT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Power of 10 error                      |
| <b>^</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Omission mark                          |
| RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rounding error                         |
| SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Error in number of significant figures |
| <ul> <li>Image: A start of the start of</li></ul> | Correct response                       |

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| Annotation   | Meaning                                                    |
|--------------|------------------------------------------------------------|
| DO NOT ALLOW | Answers which are not worthy of credit                     |
| IGNORE       | Statements which are irrelevant                            |
| ALLOW        | Answers that can be accepted                               |
| ()           | Words which are not essential to gain credit               |
|              | Underlined words must be present in answer to score a mark |
| ECF          | Error carried forward                                      |
| AW           | Alternative wording                                        |
| ORA          | Or reverse argument                                        |

#### **Generic comments**

### **ORGANIC STRUCTURES**

For a 'structure' or 'structural formula',

• ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

- ALLOW bond drawn to C or H, eg ALLOW CH<sub>3</sub>-,CH<sub>2</sub>-, C<sub>3</sub>H<sub>7</sub>-, etc
- ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- DO NOT ALLOW formula with horizontal —HO OR OH—
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

• DO NOT ALLOW COH

For a 3D structure,

| • | For bond in the plane of paper, a solid line is expected:                                                               |  |
|---|-------------------------------------------------------------------------------------------------------------------------|--|
| • | For bond out of plane of paper, a solid wedge is expected:                                                              |  |
| • | For bond into plane of paper, ALLOW:                                                                                    |  |
| • | <b>ALLOW</b> a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge eg: |  |

#### NAMES

Names including alkyl groups:

- ALLOW alkanyl, eg ethanyl (ie IGNORE 'an')
- **DO NOT ALLOW** alkol, eg ethol (ie 'an' is essential)

#### Names of esters:

- Two words are expected, eg ethyl ethanoate
- ALLOW one word, eg ethylethanoate

Names with multiple numbers and hyphens: Use of 'e'

- **ALLOW** superfluous 'e', eg propane-1-ol ('e' is kept if followed by consonant)
- ALLOW absence of 'e', eg propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

• ALLOW absence of hyphens, eg propane 1,2 diol

Multiple locant numbers must be clearly separated:

- ALLOW full stops: eg 1.2 OR spaces: 1 2
- DO NOT ALLOW eg 12

Locant numbers in formula must be correct

• DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

• ALLOW any order (as long as unambiguous), eg 2-chloro-3-bromobutane

### ABBREVIATIONS

van der Waal's forces **ALLOW** vdw forces **OR** VDW forces (and any combination of upper and lower cases)

| Q | uestion | Answer                                                                                                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                         |
|---|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (a)     | C <sub>3</sub> H <sub>7</sub> ✓                                                                                                                                                                                              | 1     | ALLOW H <sub>7</sub> C <sub>3</sub>                                                                                                                                                                              |
|   | (b)     | Saturated<br>Only has (carbon to carbon) single bonds ✓                                                                                                                                                                      | 2     | ALLOW does not contain any (carbon to carbon) double<br>bonds<br>ALLOW all of the carbon atoms are bonded to four other<br>atoms                                                                                 |
|   |         | <i>Hydrocarbon</i><br>Contains (the elements) hydrogen and carbon <b>only</b> ✓                                                                                                                                              |       | DO NOT ALLOW contains hydrogen and carbon<br>DO NOT ALLOW a mixture of carbon and hydrogen only<br>DO NOT ALLOW hydrogen and carbon molecules only                                                               |
|   | (c)     |                                                                                                                                                                                                                              | 1     |                                                                                                                                                                                                                  |
|   | (d)     | as branching increases the boiling point decreases<br>OR<br>the more branched the isomers of hexane are the lower<br>the boiling point ✓                                                                                     | 3     | <b>ALLOW</b> ORA throughout<br>First marking point must compare boiling point <b>and</b> branching<br>for <b>all</b> three isomers                                                                               |
|   |         | branched isomers have less surface (area) of contact <b>OR</b> branched fewer points of contact (than unbranched) ✓                                                                                                          |       | Reference to just surface area / closeness of molecules is <b>not</b> sufficient                                                                                                                                 |
|   |         | <ul> <li>(the more branched the) fewer van der Waals' forces</li> <li>OR</li> <li>(the more branched) has weaker van der Waals' forces</li> <li>OR</li> <li>Less energy required to break van der Waal's forces ✓</li> </ul> |       | <b>ALLOW</b> vdw forces <b>OR</b> VDW forces (and any combination of upper and lower cases)<br><b>DO NOT ALLOW</b> VDW mark if answer states that these are between atoms or answer implies that these are bonds |
|   | (e)     | $\begin{array}{cccc} C_{10}H_{22} \rightarrow & C_{6}H_{14} + & C_{4}H_{8} \\ \hline \mathbf{OR} \\ C_{10}H_{22} \rightarrow & C_{6}H_{14} + & 2C_{2}H_{4} \end{array} \checkmark$                                           | 1     | ALLOW correct structural OR displayed OR skeletal formula<br>OR mixture of the above (as long as unambiguous)<br>IGNORE state symbols                                                                            |

| Question |           | on   | Answer                                                          |                      | Marks | Guidance                                                                                            |
|----------|-----------|------|-----------------------------------------------------------------|----------------------|-------|-----------------------------------------------------------------------------------------------------|
| 1        | 1 (f) (i) |      | $C_4H_{10} + 2Cl_2 \rightarrow C_4H_8Cl_2 + 2HCl \checkmark$    |                      | 1     | IGNORE state symbols                                                                                |
|          | (ii)      |      |                                                                 |                      | 2     |                                                                                                     |
|          |           |      | Isomer 1                                                        | Isomer 2             |       | Must be a displayed formula                                                                         |
|          |           |      |                                                                 | 1,3-dichlorobutane ✓ |       | Must be a displayed formula                                                                         |
|          |           |      | Correct displayed formula eg:                                   |                      |       | ALLOW absence of hyphens                                                                            |
|          |           |      |                                                                 |                      |       | 1 and 3 must be clearly separated:                                                                  |
|          |           |      |                                                                 |                      |       | ALLOW full stops: 1.3 OR spaces: 1 3                                                                |
|          |           |      |                                                                 |                      |       | DO NOT ALLOW 13                                                                                     |
|          |           |      | н н н н 🗸                                                       |                      |       |                                                                                                     |
|          |           |      |                                                                 |                      |       |                                                                                                     |
|          | (g)       | (i)  | covalent bond breaking ✓                                        |                      | 2     | ALLOW covalent bond is split                                                                        |
|          |           |      |                                                                 | an ta anah atawa     |       | ICNORE notice for store                                                                             |
|          |           |      | OR                                                              | es lo each alom      |       | <b>DO NOT ALLOW</b> molecule or compound for atom                                                   |
|          |           |      | makes (two) radicals ✓                                          |                      |       | <b>DO NOT ALLOW</b> to each molecule or to each reactant                                            |
|          |           |      |                                                                 |                      |       | ALLOW one electron goes to each product / species                                                   |
|          |           |      |                                                                 |                      |       | IGNORE homolytic fission equations                                                                  |
|          |           | (ii) | $C_1 + C_2 H_0 C_1 \rightarrow C_2 H_0 C_1$                     | + HC1 √              | 2     | IGNORE dots even if incorrect                                                                       |
|          |           | (,   |                                                                 |                      | -     |                                                                                                     |
|          |           |      | $C_4H_8Cl + Cl_2 \rightarrow C_4H_8Cl_2 + Cl$                   | $\checkmark$         |       |                                                                                                     |
|          | (h)       |      |                                                                 |                      | 1     | ALLOW any correct multiples for these equations of                                                  |
|          | (n)       |      | $O_4 \Pi_{10} + 4/2 O_2 \rightarrow 4 O O + 5 \Pi_2 O$          |                      | I     | ALLOW any correct multiples for these equations eg<br>$2C_4H_{40} + 9O_2 \rightarrow 8CO + 10 H_2O$ |
|          |           |      | $C_4H_{10} + 2\frac{1}{2}O_2 \rightarrow 4C + 5H_2O \checkmark$ |                      |       | <b>IGNORE</b> state symbols                                                                         |
|          |           |      |                                                                 |                      |       |                                                                                                     |
|          |           |      |                                                                 |                      |       | ALLOW equations for incomplete combustion that give CO <sub>2</sub>                                 |
|          |           |      |                                                                 |                      |       | with CO and/or C eg                                                                                 |
|          |           |      |                                                                 |                      |       |                                                                                                     |
|          |           |      |                                                                 | Total                | 16    |                                                                                                     |

| C | Question |  | Answer                                                                                                                                                                                         |   | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|----------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (a)      |  | (enthalpy change for the ) formation of one mole (of $P_4O_{10}) \checkmark$<br>from (constituent) elements <b>OR</b> from $P_4$ /phosphorus and $O_2$ /oxygen $\checkmark$                    | 2 | <ul> <li>ALLOW energy required OR energy released</li> <li>ALLOW makes one mole of product/substance/molecule/ compound</li> <li>ALLOW made from P and O<sub>2</sub> OR made from two elements</li> <li>IGNORE comments related to standard conditions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | (b)      |  | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = -368 (kJ mol <sup>-1</sup> ) award 3 marks<br>(+)2984 +(+)6 × 286 OR (+)2984 +(+)1716 OR (+)4700 ✓<br>(-)1267 × 4 OR (-)5068 ✓<br>-368 ✓ | 3 | <ul> <li>IF there is an alternative answer, check to see if there is any ECF credit possible using working below.</li> <li>See list below for marking of answers from common errors.</li> <li>IGNORE sign</li> <li>ALLOW ECF for enthalpy change of products – enthalpy change of reactants</li> <li>ALLOW for 2 marks: <ul> <li>+368</li> <li>cycle wrong way around</li> <li>OR -1798 no × 6</li> <li>OR (+)3433 no x 4</li> <li>OR -3352 missing 2984</li> <li>OR (+) 9768 product the wrong sign around</li> <li>OR (-) 9768 reactants the wrong sign</li> </ul> </li> <li>ALLOW for 1 mark: <ul> <li>(+)1798 no x 6 and cycle wrong way around and not × 4</li> <li>OR (-)3352 missing 2984 and cycle wrong way around</li> <li>OR (-)4333 cycle wrong way around and not × 4</li> <li>OR (+)3352 missing 2984 and cycle wrong way around</li> <li>OR (+)3352 missing 2984 and cycle wrong way around</li> </ul> </li> </ul> |
|   |          |  |                                                                                                                                                                                                |   | <b>OR</b> –4782 missing 2984 and x 6<br><b>Note:</b> There may be other possibilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| C | Question |  | Answer                                                                                                                                                                                                                              | Marks | Guidance                                                                                                                                                                      |
|---|----------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (c)      |  | P <sub>4</sub> + 5O <sub>2</sub> + 6H <sub>2</sub> O → 4H <sub>3</sub> PO <sub>4</sub> $\checkmark$<br>Only the <b>desired product</b> is made $\checkmark$<br>Second marking point can only be awarded if the equation is correct. | 2     | <ul><li>ALLOW there are no waste products</li><li>OR there are no by-products</li><li>OR there is only one product.</li><li>DO NOT ALLOW it is an addition reaction</li></ul> |
|   |          |  | Total                                                                                                                                                                                                                               | 7     |                                                                                                                                                                               |

| Question |     | on    | Answer                                                                                                  | Marks | Guidance                                                                                                                                                                                                                                                                                                      |
|----------|-----|-------|---------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | (a) | (i)   | acid ✓                                                                                                  | 1     | <b>ALLOW</b> named mineral acid or correct formula eg phosphoric acid, $H_3PO_4$ , sulfuric acid, $H_2SO_4$ or $H^+$<br><b>DO NOT ALLOW</b> any carboxylic acids                                                                                                                                              |
|          |     | (ii)  | $C_5H_{12}O \rightarrow C_5H_{10} + H_2O \checkmark$                                                    | 1     | DO NOT ALLOW use of C₅H <sub>11</sub> OH                                                                                                                                                                                                                                                                      |
|          |     | (iii) | <i>structural isomerism</i><br>have the same molecular formula ✓<br>but different structural formulae ✓ | 4     | Same formula is <b>not</b> sufficient<br><b>ALLOW</b> different structure <b>OR</b> different displayed formula<br><b>OR</b> different skeletal formula<br>Different formula or different arrangement of atoms is <b>not</b><br>sufficient<br><b>ALLOW</b> different <b>structural</b> arrangement (of atoms) |
|          |     |       | stereoisomerism<br>have the same structural formula ✓                                                   |       | ALLOW have the same structure<br>Stereoisomers have the same formula or molecular formula<br>is <b>not</b> sufficient                                                                                                                                                                                         |
|          |     |       |                                                                                                         |       |                                                                                                                                                                                                                                                                                                               |



| Q | Question |     | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)      | (v) | carbon–carbon double bond ✓<br>Each carbon atom in the double bond is attached to (two)<br>different groups/atoms ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | <ul> <li>IGNORE comments about rotation</li> <li>ALLOW carbon double bond</li> <li>ALLOW Each carbon atom of the double bond is attached to a H and an alkyl group</li> <li>DO NOT ALLOW functional groups for groups</li> <li>DO NOT ALLOW the carbon atoms are attached to different groups</li> <li>"Each carbon atom in the double bond" implies a carbon–carbon double bond for the first marking point</li> </ul> |
|   | (b)      |     | $\begin{array}{c} \overset{OH}{\longleftarrow} & + \ [\mathrm{O}] & & & & \\ & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | 2     | Balancing mark can only be awarded if the equation has a correct <b>skeletal</b> formula for the product                                                                                                                                                                                                                                                                                                                |
|   | (c)      |     | $\begin{array}{c c} CH_{3}CH_{2}CH_{2}CH_{2}OH \\ \end{array} \\ \begin{array}{c} \text{distil with } H_{2}SO_{4} \\ / K_{2}Cr_{2}O_{7} \\ \hline \\ CH_{3}CH_{2}CH_{2}CH_{2}CHO \\ \checkmark \end{array} \\ \begin{array}{c} \text{heat under reflux} \\ \text{with } H_{2}SO_{4} / K_{2}Cr_{2}O_{7} \\ \hline \\ CH_{3}CH_{2}CH_{2}CH_{2}CHO \\ \checkmark \end{array} \\ \begin{array}{c} CH_{3}CH_{2}CH_{2}CH_{2}CHO \\ \checkmark \end{array} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | ALLOW correct structural OR displayed OR skeletal<br>formula<br>OR mixture of the above (as long as unambiguous)<br>eg<br>H = H = H = H = H = H = H = H = H = H =                                                                                                                                                                                                                                                       |
|   |          |     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15    |                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Question |     | on | Answer                                                                       | Marks | Guidance                                                                                                               |
|----------|-----|----|------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------|
| 4        | (a) |    | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = 681 (kJ) award 3 marks | 3     | <b>IF</b> there is an alternative answer, check to see if there is any <b>ECF</b> credit possible using working below. |
|          |     |    | Evidence of dividing 1000 by 24                                              |       | <b>ALLOW</b> 41.7 up to calculator value 41.6666667 correctly rounded.                                                 |
|          |     |    |                                                                              |       | <b>ALLOW</b> $\frac{1000}{24}$ for first marking point if not calculated                                               |
|          |     |    | Evidence of dividing by 3 and multiplying by 49 in the calculation           |       | ALLOW energy released per mole = 16.3 ✓                                                                                |
|          |     |    | energy released = 681 (kJ) ✓                                                 |       | IGNORE (–) sign in the answer                                                                                          |
|          |     |    | (MUST BE TO 3 SIG FIGS)                                                      |       |                                                                                                                        |
|          |     |    | Alternative Working                                                          |       | Common Incorrect answers                                                                                               |
|          |     |    | 3 moles = 72 dm <sup>3</sup> $\checkmark$                                    |       | 0.392 scores 2 marks<br>392000 scores 2 marks                                                                          |
|          |     |    | So <u>1000</u> or 13.9 ✓<br>72                                               |       |                                                                                                                        |
|          |     |    | Energy released = $13.9 \times 49 = 681 (kJ)$                                |       |                                                                                                                        |



| Question | Answer                                                                                                                                                                                                                                            | Marks | Guidance                                                                                                                                                                                                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c)      | (+)49 ✓                                                                                                                                                                                                                                           | 1     | DO NOT ALLOW -49                                                                                                                                                                                                                                                                  |
| (d)      | (+)274 ✓                                                                                                                                                                                                                                          | 1     | DO NOT ALLOW –274<br>ALLOW answer to (c) + 225 as ECF                                                                                                                                                                                                                             |
| (e)      | (equilibrium position shifts) to the left $\checkmark$                                                                                                                                                                                            | 2     | <b>ALLOW</b> 'favours the left', as alternative for 'shifts equilibrium to left'                                                                                                                                                                                                  |
|          | <ul> <li>(Forward) reaction is exothermic</li> <li>OR reaction gives out heat</li> <li>OR reverse reaction is endothermic</li> <li>OR reverse reaction takes in heat ✓</li> <li>The explanation mark is dependent on the correct shift</li> </ul> |       | <b>Note: ALLOW</b> suitable alternatives for 'to left', eg:<br>towards $CO_2 / H_2$ <b>OR</b> towards reactants <b>OR</b> in backward<br>direction <b>OR</b> in reverse direction<br><b>OR</b> decreases yield of $CH_3OH$ /products<br><b>IGNORE</b> responses in terms of rate  |
|          | of the equilibrium                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                   |
| (f)      | (equilibrium position) shifts to the left ✓                                                                                                                                                                                                       | 2     | ALLOW 'favours the left', as alternative for 'shifts<br>equilibrium to left'<br>Note: ALLOW suitable alternatives for 'to left', eg:<br>towards $CO_2 / H_2$ OR towards reactants OR in backward<br>direction OR in reverse direction<br>OR decreases yield of $CH_3OH$ /products |
|          |                                                                                                                                                                                                                                                   |       | IGNORE responses in terms of rate                                                                                                                                                                                                                                                 |
|          | Right-hand side has fewer (gaseous) moles/molecules ✓<br>ORA                                                                                                                                                                                      |       | <b>ALLOW</b> four moles on the left and two moles on the right <b>ALLOW</b> more moles of reactants or fewer moles of products                                                                                                                                                    |
|          | The explanation mark is dependent on the correct shift of the equilibrium                                                                                                                                                                         |       | <b>ASSUME</b> "goes the side with more gas molecules" implies<br>from equation that more molecules on the left<br><b>OR</b> "goes to side with fewer gas molecules" implies from<br>equation that fewer molecules are on the right                                                |
|          |                                                                                                                                                                                                                                                   |       |                                                                                                                                                                                                                                                                                   |

| Question |     | on | Answer                                                                                                            | Marks | Guidance                                                                                                                                                                                                       |
|----------|-----|----|-------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | (g) |    | Adsorption of reactants <b>OR</b> adsorption of gases <b>OR</b> $H_2$ and $CO_2$ attached to surface $\checkmark$ | 3     | ALLOW CO <sub>2</sub> and H <sub>2</sub> (weakly) bonded to surface OR<br>reactants bond to surface OR CO <sub>2</sub> and H <sub>2</sub> form temporary<br>bonds with the catalyst<br>DO NOT ALLOW absorption |
|          |     |    | Bonds weaken in reactants <b>OR</b> chemical reaction <b>OR</b> activation energy decreases ✓                     |       | ALLOW bonds weaken in $H_2$ OR bonds weaken in $CO_2$<br>OR C=O bonds weaken<br>OR bonds break and new bonds made in product<br>OR $H_2O$ and $CH_3OH$ made                                                    |
|          |     |    | Desorption of products <b>OR</b> desorption of $H_2O$ and $CH_3OH \checkmark$                                     |       | ALLOW products leave the surface/catalyst<br>OR $H_2O$ and $CH_3OH$ no longer bonded to surface/catalyst<br>ALLOW deadsorption OR adsorb from for desorption<br>ALLOW diffuse away for desorption              |
|          |     |    | Total                                                                                                             | 15    |                                                                                                                                                                                                                |

| C | uestion | Answer                                                                                | Marks | Guidance                                                                                                                                                            |
|---|---------|---------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (a)     | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = 90% award 3 marks               | 3     | <b>IF</b> there is an alternative answer, check to see if there is any <b>ECF</b> credit possible using working below.                                              |
|   |         | amount of dichloroethane = $\frac{19800000}{99.0}$                                    |       | ALLOW approach based on mass for 2nd and 3rd marks                                                                                                                  |
|   |         | <b>OR</b> 200000 (mol) <b>OR</b> 2 × 10 <sup>5</sup> (mol) ✓                          |       |                                                                                                                                                                     |
|   |         | amount of chloroethene = $\frac{11250000}{62.5}$                                      |       | Theoretical mass of chloroethene = $200000 \times 62.5$<br>OR 12500000 (g) OR $1.25 \times 10^7$ (g) $\checkmark$                                                   |
|   |         | <b>OR</b> 180000 (mol) <b>OR</b> 1.8 × 10 <sup>5</sup> (mol) ✓                        |       | Calculates percentage yield = $\frac{11250000}{12500000} \times 100 = 90 \% \checkmark$                                                                             |
|   |         | Calculates percentage yield = $\frac{180000}{200000} \times 100 = 90 \%$ $\checkmark$ |       | ALLOW approach based on grams rather than tonnes:<br>$n(dichloroethane) = \frac{19.80}{99.0}$ OR 0.2 (mol) $\checkmark$                                             |
|   |         |                                                                                       |       | $n$ (chloroethane) = $\frac{11.25}{62.5}$ <b>OR</b> 0.18 (mol)                                                                                                      |
|   |         |                                                                                       |       | <b>OR</b> theoretical mass chloroethane = $0.2 \times 62.5$ <b>OR</b> 12.5 g $\checkmark$                                                                           |
|   |         |                                                                                       |       | % yield = $\frac{0.18}{0.20} \times 100 = 90$ % <b>OR</b> $\frac{11.25}{12.5} \times 100 = 90$ % $\checkmark$                                                       |
|   |         |                                                                                       |       | ALLOW ECF throughout from wrong <i>M</i> <sub>r</sub> value(s) with final % yield to 2 or more significant figures DO NOT ALLOW final mark for an answer above 100% |
|   |         |                                                                                       |       | Note:<br>If this is the only working seen award no marks<br>ie $\frac{11.25 \times 10^6}{19.80 \times 10^6} \times 100 = 56.81\%$                                   |

| C | Question |  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|----------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (b)      |  | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = (+)62 award 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     | <b>IF</b> there is an alternative answer, check to see if there is any <b>ECF</b> credit possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |          |  | $\Delta H$ for bonds broken = 2691 (kJ mol <sup>-1</sup> ) $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | IGNORE sign<br>ALLOW 1106 (C–Cl, C–C and C–H bonds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |          |  | $\Delta H$ for bond formed = 2629 (kJ mol <sup>-1</sup> ) $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | IGNORE sign<br>ALLOW 1044 (H–Cl and C=C bonds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |          |  | $\Delta H = (+)62  (\text{kJ mol}^{-1})  \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | ECF based on bonds broken – bonds formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ALLOW 2 marks for –62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | (c)      |  | Displayed formulae of monomer and polymer required for the marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3     | Polymer must have <b>side</b> links<br>(do not have to cut through bracket and can be dotted lines)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |          |  | n $H_{-}$ $C = C_{-}$ $H_{-}$ |       | ALLOW a correct section of the polymer with side links as<br>below would score two marks as the equation is not balanced<br>$ \begin{array}{c} & & \\ n & \\ & & \\ H & & H \end{array} \xrightarrow{CI} \\ & & \\ H & & \\ H & & \\ \end{array} \xrightarrow{H} \\ & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ H & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & & \\ H & & \\ H & & \\ \end{array} \xrightarrow{CI} \\ & & \\ \hline \\ & & \\ H & \\ H & & \\ H & \\ H & & \\ H & \\$ |
|   |          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | <b>DO NOT ALLOW ECF</b> from wrong monomer<br><i>n</i> on LHS can be at any height to the left of formula<br><b>AND</b> <i>n</i> on the RHS must be a subscript<br>(essentially below the side link)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |          |  | A correctly balanced equation using displayed formulae for any monomer and matching polymer including the correct use of $n \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | The equation below would be worth 1 mark for balancing<br>$ \begin{array}{c}             n \\                       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Que | stion  | Answer                                                                                                                           | Marks | Guidance                                                                                                                                                                                                                         |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (0  | (i) (k | React with an alkali<br>OR react with a base/carbonate<br>OR Bubble through water (to make HCl(aq))<br>OR dissolve in water ✓    | 1     | ALLOW react with a named alkali or base eg calcium<br>carbonate, calcium hydroxide, magnesium oxide, ammonia<br>ALLOW an appropriate chemical formula<br>IGNORE use of gas scrubbers                                             |
|     | (ii)   | Sort and recycle ✓<br>Organic feedstock <b>OR</b> cracked ✓                                                                      | 2     | <ul> <li>ALLOW separate and recycle or sorting and remoulding</li> <li>ALLOW use for the production organic compounds</li> <li>OR synthesis gas</li> <li>ALLOW the production of plastics or monomers or new polymers</li> </ul> |
|     | (iii)  | (Bio) degradable (polymers) <b>OR</b> compostable (polymers) <b>OR</b> soluble (polymers) <b>OR</b> photodegradable (polymers) ✓ | 1     | IGNORE a named polymer if degradable<br>DO NOT ALLOW any addition polymer eg PTFE                                                                                                                                                |
|     |        | Total                                                                                                                            | 13    |                                                                                                                                                                                                                                  |

|   | Question |     | Answer                                                                                                                                                                                                                                                  | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (a)      |     | Bond breaking absorbs energy <b>AND</b> bond forming releases energy ✓<br>More energy released than absorbed ✓<br>The second marking point is <b>dependent</b> on the correct identification of the energy changes during bond breaking and bond making | 2     | <ul> <li>ALLOW bond breaking is endothermic AND bond forming is exothermic</li> <li>DO NOT ALLOW bond forming requires energy</li> <li>ALLOW more energy is released when the bond in the products are formed than is required to break the bonds in the reactants</li> <li>ALLOW exothermic change transfers more energy than endothermic change</li> <li>OR bond forming transfers more energy than bond breaking</li> <li>OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants'</li> <li>OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken'</li> <li>OR more energy associated with bond making than with bond breaking</li> <li>IGNORE reference to strong and weak bonds</li> <li>IGNORE enthalpy of products is less than enthalpy of reactants</li> </ul> |
|   | (b)      | (i) | (C=O) <b>bond</b> vibrates (more)<br><b>OR bond</b> bends (more)<br><b>OR bond</b> stretches (more) ✓                                                                                                                                                   | 1     | IGNORE molecule vibrates/rotates<br>"It" refers to the molecule and is insufficient<br>DO NOT ALLOW any reference to bond breaking.<br>DO NOT ALLOW a stated bond if not present in CO <sub>2</sub><br>eg C-O, C-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Question | Answer                                                                                                                                                               | Marks | Guidance                                                                                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)     | <pre>Any two from: (injected) deep into the oceans / sea ✓</pre>                                                                                                     | 2     | <b>DO NOT ALLOW</b> reference to carbon being stored – the answer must either refer to carbon dioxide or not mention the name of the stored substance. Assume "it" refers to CO <sub>2</sub> |
|          |                                                                                                                                                                      |       | DO NOT ALLOW dumping waste at the bottom of the sea                                                                                                                                          |
|          |                                                                                                                                                                      |       | ALLOW on the sea-bed                                                                                                                                                                         |
|          |                                                                                                                                                                      |       | <b>DO NOT ALLOW</b> dissolve $CO_2$ in the sea <b>OR</b> (stored) in ocean                                                                                                                   |
|          | (Stored) in geological formations<br>OR (stored) deep in rocks OR (stored) in old mines<br>OR (stored) in old oil wells OR old gas fields ✓                          |       | DO NOT ALLOW geographical formations<br>ALLOW stored under the sea (bed)<br>ALLOW pumped into oil wells to force last bit of oil out<br>DO NOT ALLOW buried underground                      |
|          | (Stored) by reaction with metal oxides<br>OR reaction to form (solid) carbonates<br>OR (stored) as a carbonate<br>OR equation to show formation of metal carbonate ✓ |       | <b>DO NOT ALLOW</b> react with <b>metals</b> to form carbonates<br><b>IGNORE</b> mineral storage                                                                                             |

| Quest | ion | Answer                                                                                                                              | Marks | Guidance                                                                                                                                                                                                                                |
|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c)   |     | Any two from:                                                                                                                       | 2     |                                                                                                                                                                                                                                         |
|       |     | Energy demand<br>Low(er) temperature (can be used)<br>OR reduces CO₂ emissions (from burning fossil fuels) ✓                        |       | ALLOW 'allows use of room temperature'<br>OR 'allows use of a lower pressure'<br>OR uses less fuel<br>IGNORE lower energy demand OR lower activation energy<br>IGNORE cheaper<br>IGNORE less greenhouse gases OR reduces global warming |
|       |     | <b>Specificity</b><br>enzymes have a great deal of specificity ✓                                                                    |       | ALLOW making specific isomers / enantiomers<br>ALLOW for making pure products<br>ALLOW generating specified products                                                                                                                    |
|       |     | Atom economy<br>greater atom economy OR less waste ✓                                                                                |       | ALLOW increases atom economy                                                                                                                                                                                                            |
|       |     | <i>Toxicity</i><br>can reduce use of toxic solvents<br>OR reduces use of toxic catalysts<br>OR reduces the use of toxic reactants ✓ |       | ALLOW reduce use of hazardous/toxic/harmful/poisonous<br>chemicals<br>ALLOW enzymes are non toxic<br>IGNORE can be reused                                                                                                               |

| Quest | ion | Answer                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                    |
|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d)   |     | Catalyst lowers the activation energy (because of a different reaction pathway) ✓<br>Diagram of Boltzmann distribution ✓                     | 5     | Can be scored from the diagram by correctly labelling $E_{a cat}$ closer to the origin than $E_a$<br>Boltzmann distribution must start at origin<br><b>AND</b> must not touch <i>x</i> -axis at high energy |
|       |     | axes labelled (number of) molecules and energy $\checkmark$<br>$E_{\rm a \ cat}$                                                             |       | <b>DO NOT ALLOW</b> Boltzmann distribution mark if <b>two</b> curves drawn                                                                                                                                  |
|       |     | (number<br>of)                                                                                                                               |       | <b>DO NOT ALLOW Boltzmann distribution</b> curve bending upwards at higher energy                                                                                                                           |
|       |     | molecule                                                                                                                                     |       | <b>ALLOW</b> particles instead of molecules<br><b>DO NOT ALLOW</b> the first use of atoms but credit atoms if<br>used in a subsequent marking point                                                         |
|       |     | energy<br>extra<br>molecules<br>with energy<br>above <i>E</i> <sub>a</sub>                                                                   |       | <b>DO NOT ALLOW</b> enthalpy on x-axis instead of energy                                                                                                                                                    |
|       |     | Greater proportion of molecules with energy above activation energy with catalyst $\checkmark$                                               |       | <b>ALLOW</b> more molecules with energy above activation energy (with a catalyst)                                                                                                                           |
|       |     | activation energy with catalyst s                                                                                                            |       | <b>OR</b> more molecules overcome the activation energy (with a catalyst)                                                                                                                                   |
|       |     |                                                                                                                                              |       | <b>OR</b> more molecules have enough energy to react (with a catalyst)                                                                                                                                      |
|       |     |                                                                                                                                              |       | OR more molecules are able to react at lower energies                                                                                                                                                       |
|       |     | more <b>effective</b> collisions <b>OR</b> more <b>successful</b> collisions <b>OR</b> increased frequency of <b>successful</b> collisions ✓ |       | More collisions <b>OR</b> more frequent collisions are <b>not</b> sufficient                                                                                                                                |
|       |     | Total                                                                                                                                        | 12    |                                                                                                                                                                                                             |





| Question | Answer                                                                                                                                                                                 | Marks | Guidance                                                                                                                                                                                                                                                                          |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7        | Electrophilic addition                                                                                                                                                                 | 6     | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC                                                                                                                                                                                                                                        |
|          | correct equation for the reaction $\checkmark$                                                                                                                                         |       |                                                                                                                                                                                                                                                                                   |
|          | $CH_2CHCH_2CH_2CI + HBr \longrightarrow CH_3CHBrCH_2CH_2CI$<br><b>OR</b>                                                                                                               |       | ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above.                                                                                                                                                                                   |
|          | $CH_2CHCH_2CH_2CI + HBr \longrightarrow CH_2BrCH_2CH_2CH_2CI$                                                                                                                          |       |                                                                                                                                                                                                                                                                                   |
|          | Indication that there are two possible addition products $\checkmark$                                                                                                                  |       | $eg C_4H_7Cl + HBr \rightarrow C_4H_8BrCl$                                                                                                                                                                                                                                        |
|          | Correct product ✓                                                                                                                                                                      |       |                                                                                                                                                                                                                                                                                   |
|          | $ \begin{vmatrix} & & & & & \\ & H & & Br & H & H \\ & & & & & \\ & H & & & & \\ & H & & & C & C & C & C \\ & & & & & & \\ & H & & H & H & H \\ & & & H & H$                           |       | For the structure of the product <b>ALLOW</b> correct structural <b>OR</b> displayed <b>OR</b> skeletal formula <b>OR</b> mixture of the above (as long as unambiguous) if seen <b>ONCE</b> in equation, mechanism or drawn out eg $CH_2BrCH_2CH_2CH_2Cl$ or $CH_3CHBrCH_2CH_2Cl$ |
|          | Mechanism                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                   |
|          | Curly arrow from C=C of correct chloroalkene to attack the H atom in HBr $\checkmark$                                                                                                  |       | curly arrow must start from covalent bonds and not atoms<br>Lone pair does <b>not</b> need to be shown on ion or used in<br>mechanism                                                                                                                                             |
|          | Correct dipole on H–Br: $H^{\delta+}$ and $Br^{\delta-}$<br><b>AND</b><br>curly arrow from H–Br bond to Br $\checkmark$                                                                |       | <b>DO NOT ALLOW</b> any other partial charges eg shown on double bond                                                                                                                                                                                                             |
|          | Correct carbocation / carbonium ion with the <b>full</b> positive charge shown: C <sup>+</sup>                                                                                         |       | <b>DO NOT ALLOW</b> $C^{\delta+}$ for charge on carbonium ion.                                                                                                                                                                                                                    |
|          | correct curly arrow from lone pair of Br <sup>-</sup> to correct carbon atom <b>OR</b> correct curly arrow from negative charge of Br <sup>-</sup> to correct carbon atom $\checkmark$ |       | Curly arrow from Br <sup>-</sup> can start from the negative charge or the lone pair <b>DO NOT ALLOW</b> delta negative, i.e. $Br^{\delta-}$                                                                                                                                      |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks | Guidance |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| 7        | Electrophilic addition continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |          |
|          | $H = \begin{bmatrix} H & H & H & H & H & H & H \\ H & C & C & C & C & C & C & C & C \\ H & H_2 & C & C & C & C & C & C & C & C & C & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |
|          | H = H = H = H = H = H = H = H = H = H =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |          |
|          | $H \xrightarrow{C} C \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} C \xrightarrow{-C} \xrightarrow{-C} C \xrightarrow{-C} \xrightarrow{-C} C \xrightarrow{-C} -C$ |       |          |
|          | H = H = H = H = H = H = H = H = H = H =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |          |
|          | heterolytic fission for <b>both</b> mechanisms and <b>not</b> contradicted ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |          |

| Question | Answer                                                                                                                                                                                                                                                                                                                                 | Marks | Guidance |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
|          | <ul> <li>ALTERNATIVE APPROACH<br/>The Candidate who reacts with KOH followed by HBr</li> <li>Award all marks for the nucleophilic substitution<br/>mechanism as per the marking scheme</li> <li>You can award all marks for the electrophilic<br/>addition mechanism; however the product will<br/>be one of the following:</li> </ul> | Marks |          |
|          | $\begin{bmatrix} H & H & H & H \\   &   &   &   \\ H & C & C & C & C & OH \\   &   &   &   \\ H & Br & H & H \end{bmatrix} OR \begin{bmatrix} H & H & H & H \\   &   &   &   \\ H & C & C & C & C & C & OH \\   &   &   &   \\ Br & H & H & H \end{bmatrix}$                                                                           |       |          |
|          | <ul> <li>The mechanism will be the same except the<br/>–C<i>l</i> will now be replaced by –OH at every stage</li> </ul>                                                                                                                                                                                                                |       |          |
|          | Total                                                                                                                                                                                                                                                                                                                                  | 12    |          |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8        | IR spectrum<br>(absorbance between) 3200–3550 cm <sup>-1</sup> indicates –OH<br>AND X is an alcohol ✓                                                                                                                                                                                                                                                                                                                                                                      | 1     | <ul> <li>LOOK ON THE SPECTRUM for labelled absorbance which can be given credit</li> <li>ALLOW an absorbance within the range 3100 to 3700cm<sup>-1</sup> from the spectrum.</li> <li>Answer must give –OH and alcohol for the mark.</li> <li>IGNORE phenol</li> <li>DO NOT ALLOW carboxylic acid (there is no carbonyl group present in the spectrum)</li> </ul>                                                                                                                                                 |
|          | Formula<br>mole ratio C : H : O<br>$\frac{0.600}{12}$ : $\frac{0.133}{1.0}$ : $\frac{0.267}{16}$ OR $0.0500 : 0.133 : 0.0167 \checkmark$<br>$\frac{0.05}{0.0167}$ : $\frac{0.133}{0.0167}$ : $\frac{0.0167}{0.0167}$ OR $3 : 8 : 1$ OR C <sub>3</sub> H <sub>8</sub> O $\checkmark$<br>Candidate links C <sub>3</sub> H <sub>8</sub> O to 60 such as C <sub>3</sub> H <sub>8</sub> O has M <sub>r</sub> 60<br>OR C <sub>3</sub> H <sub>8</sub> O has m/z = 60 $\checkmark$ | 3     | Must be a clear link between the <b>formula</b> and the $M_r$ <b>OR</b> $m/z$<br><b>ALLOW</b> evidence of $M_r$ , eg<br>(12 x 3) + (8 x 1) + 16; 36 + 8 + 16 = 60<br><b>ALLOW</b> alternative approach for empirical formula and<br>evidence that 60 is equal to C <sub>3</sub> H <sub>8</sub> O<br>$M_r = 60$<br>Carbon Hydrogen<br>$60 \times \frac{60}{100} = 36$ $\frac{60 \times \frac{13.3}{100}}{100} = 8$<br>36/12 = 3 C $8/1 = 8$ H<br>36 + 8 = 44 $60 - 44 = 16$ so 1 O C <sub>3</sub> H <sub>8</sub> O |

| Q | uestion | Answer                                                                                                                                                                                                                                          | Marks | Guidance                                                                                                                                                                                                                                                |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 |         | Identification and equation                                                                                                                                                                                                                     | 6     |                                                                                                                                                                                                                                                         |
|   |         | <b>X</b> is $CH_3CH_2CH_2OH$ <b>OR</b> $CH_3CHOHCH_3$<br><b>OR</b> either $CH_3CH_2CH_2OH$ or $CH_3CHOHCH_3 \checkmark$                                                                                                                         |       | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)                                                                                                                                              |
|   |         |                                                                                                                                                                                                                                                 |       | IGNORE names                                                                                                                                                                                                                                            |
|   |         | QWC Stated in words that Y must be an ester because it is made from the reaction of a carboxylic acid AND X (propan-1-ol OR propan-2-ol OR an alcohol) ✓                                                                                        |       | <b>ALLOW</b> a carboxylic acid reacts with an alcohol to give an ester. <b>IGNORE</b> ethanoic acid (as this is stated in the question)                                                                                                                 |
|   |         | <b>Y</b> is $CH_3COOCH_2CH_2CH_3$ <b>OR</b> $CH_3COOCH(CH_3)_2$<br><b>OR</b> either $CH_3COOCH_2CH_2CH_3$ or $CH_3COOCH(CH_3)_2 \checkmark$<br>Must be consistent with a structure of alcohol <b>X</b>                                          |       | ALLOW correct structural OR displayed OR skeletal formula<br>OR mixture of the above (as long as unambiguous)<br>If no structure of X is provided one mark can be awarded for<br>a correct structure of $CH_3COOCH_2CH_2CH_3$ OR<br>$CH_2COOCH(CH_2)_3$ |
|   |         | $m/z = 31$ is $CH_2OH^+ \checkmark$                                                                                                                                                                                                             |       | <b>DO NOT ALLOW</b> CH <sub>3</sub> O <sup>+</sup>                                                                                                                                                                                                      |
|   |         | <b>QWC</b> $m/z = 31$ or CH <sub>2</sub> OH indicates that X must be CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH <b>OR</b> cannot be CH <sub>3</sub> CH(OH)CH <sub>3</sub><br><b>OR</b> shows that X is the primary alcohol $\checkmark$ |       | <b>QWC</b> must link the evidence to the structure of propan-1-ol.                                                                                                                                                                                      |
|   |         | $C_3H_8O + C_2H_4O_2 \rightarrow C_5H_{10}O_2 + H_2O \checkmark$                                                                                                                                                                                |       | In equation <b>ALLOW</b> correct structural <b>OR</b> displayed<br><b>OR</b> skeletal formula <b>OR</b> mixture of the above                                                                                                                            |
|   |         | Total                                                                                                                                                                                                                                           | 10    |                                                                                                                                                                                                                                                         |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

#### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553





© OCR 2013