

Chemistry A

Advanced GCE F324

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

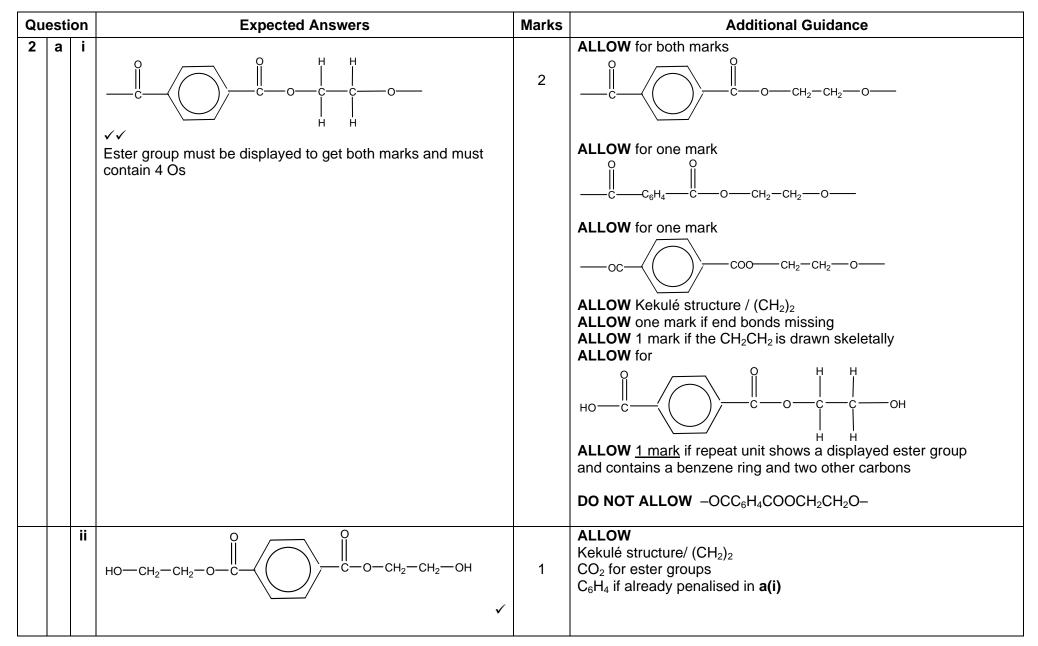
F324

Allow Kekulé structures throughout

Question	Expected Answers	Marks	Additional Guidance
1 a	Bond length intermediate between/different from (short) C=C and (long) C–C \checkmark ΔH hydrogenation less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene) \checkmark Only reacts with Br ₂ at high temp or in presence of a halogen carrier / resistant to electrophilic attack \checkmark Please annotate, use ticks to show where marks are awarded	3	ALLOW all carbon–carbon bonds the same length ALLOW ΔH hydrogenation less (negative) than expected ALLOW ΔH hydrogenation different from that expected DO NOT ALLOW ΔH halogenation/hydration ALLOW doesn't decolourise/react with/polarise Br ₂ ALLOW doesn't undergo addition reactions (with Br ₂)
b i	compound A ↓ NO ₂ if NO ₂ in wrong position penalise here and ECF for rest of b(i) and b(ii) ✓ compound B ↓ NH ₂ ↓ compound C ↓ NH ₂ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	4	ALLOW any 4-nitro-1,3-dimethylbenzene drawn in any orientation ALLOW H_3C CH_3 drawn in any orientation ALLOW any 4-amino-1,3-dimethylbenzene drawn in any orientation ECF amine of incorrect compound A (e.g. position of NO ₂ or lack of methyl sticks/groups) ALLOW diazonium chloride salt of 1,3-dimethylbenzene ECF diazonium salt/compound of incorrect compound B IGNORE CI ⁻ ion allow $N=N^+$ $N=N^+$ $N=N^+$ $N=N^+$

F324

Mark Scheme


Question	Expected Answers	Marks	Additional Guidance
			ALLOW if + charge is floating between the two Ns only if it is closer to the correct N allowNNNNN
	compound D		
	HO		ALLOW any of OH
	✓		OH O'
			ALLOW O [−] in place of OH

F324

Question	Expected Answers	Marks	Additional Guidance
ii	<u>mark 1</u> $HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + 2HSO_4^- + NO_2^+ \checkmark$		Equation to show formation of NO ₂ ⁺ ion \checkmark ALLOW HNO ₃ + H ₂ SO ₄ \rightarrow H ₂ O + HSO ₄ ⁻ + NO ₂ ⁺ HNO ₃ + H ₂ SO ₄ \rightarrow HSO ₄ ⁻ + H ₂ NO ₃ ⁺ \rightarrow H ₂ O + NO ₂ ⁺
f NO ₂ is in correct position	$\frac{mark 4}{to reform \pi ring \underline{AND} correct products \checkmark$	5	ALLOW mark 2 curly arrow must be from 1,3- dimethylbenzene to NO_2^+ and ECF for marks 3 and 4
to not penalise even if compound A in b(i) is not in correct position	$ + H^{+} $		DO NOT ALLOW intermediate π -ring must be more than $1/2$ +
	mark 2 arrow from π ring to ${}^{+}NO_{2} \checkmark$ mark 3 intermediate with π ring broken in the correct place \checkmark Link to compound A in part (i) - cannot score full marks [in b(i) & b(ii)] if NO ₂ is not adjacent to a methyl		ALLOW CH ₃ s shown
			ALLOW H_3O^+ + $HSO_4^- \rightarrow H_2O$ + H_2SO_4
iii	2 ✓	1	No other correct response
	Tota	l 13	

F324

Mark Scheme

F324

Mark Scheme

Que	sti	on	Expected Answers	Marks	Additional Guidance
	b	i	C ₇ H ₅ O ₂	1	ALLOW any order of elements ALLOW $C_{14}H_{10}O_4 \rightarrow C_7H_5O_2$ or $C_{14}H_{10}O_4 = C_7H_5O_2$
		ii	$HO - CH_2 - CH_2 - OH$ $HO - CH_2 - CH_2 - OH$ $HO - CH_2 - CH_2 - OH$ $Fenalise incorrect bond linkage in 2b(ii) only. Do not penalise elsewhere on the paper$	2	ALLOW COOH/CO ₂ H ALLOW
	С	i		2	ALLOW HO(CH ₂) ₂ OH ALLOW any of the following for 1 mark HO O^{H} $^{*}Na \ ^{O}$ $O^{\circ} \ Na^{+}$ $O^{\circ} \ ^{O^{\circ} \ Na^{+}}$ $O^{\circ} \ ^{O^{\circ} \ ^{O^{\circ} \ Na^{+}}$ $O^{\circ} \ ^{O^{\circ} \ Na^{+}}$
		ii	 (PGA is) (<u>bio)degradable</u> OR <u>photodegradable</u> OR <u>hydrolysed</u> (but hydrocarbon based polymers are non- biodegradable) ✓ One of (bio)degradable OR photodegradable OR hydrolysed must be spelt correctly – if one spelt correctly and another incorrectly spelt – ALLOW mark 	1	DO NOT ALLOW any other response ALLOW broken down by <u>bacteria</u> (must be spelt correctly) ALLOW degrade as alternative to degradable ALLOW undergoes hydrolysis as alternative to hydrolysed IGNORE any additional information if the additional information is correct e.g. biodegradable and doesn't produce toxic gases DO NOT ALLOW any additional information if the additional
			Total	9	information is incorrect e.g. biodegradable and can be recycled

Mark Scheme

Question		Expected Answers		Marks	Additional Guidance
3 a	a	AlternativeTollens' test AND 'silver precipitate/mirror' \checkmark is the aldehyde \checkmark react with 2,4-DNP(H) and 'orange precipitate' \checkmark must be the ketone \checkmark 2,4-DNP(H) AND orange precipitate \checkmark is either aldehyde OR ketone ALLOW carbonyl OR C=O \checkmark Tollens' test & 'silver ppt/mirror' \checkmark is the aldehyde \checkmark	 approaches Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with carbonate/ hydrogencarbonate/ Na/Mg and 'fizzes/ bubbles/ effervesces/ gas evolved ✓ must be the (carboxylic) acid ✓ 2,4-DNP(H) and no orange precipitate ✓ is the (carboxylic) acid ✓ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓ 	4	 ALLOW ammoniacal AgNO₃/ Ag⁺(NH₃)₂ / Ag⁺(NH₃) ALLOW acidified dichromate OR Fehlings as an alternative to Tollens – observation 'turn green' OR 'red precipitate' respectively ALLOW acidified manganagate(VII) and observation as either brown precipitate/decolourised/pale pink ALLOW Brady's (reagent) ALLOW orange/red/yellow for colour of the 2,4-DNP(H) precipitate ALLOW solid/crystals in place of precipitate IGNORE any reference to melting points ALLOW PCI₅ as a test for the acid – observation would be 'white fumes (of HCI)' ALLOW detection of (carboxylic) acid by reacting with an alcohol to make an ester but no mark for the observation. DO NOT ALLOW detection of (carboxylic) acid by pH or indicator Please annotate, use ticks to show where marks are awarded
k	C	Peak in range 2500–3300 shows O–H ✓ [need wavenumber (or ran		1	DO NOT ALLOW single peak quoted within range 2500–3300 other than 3000 (cm ⁻¹) for OH DO NOT ALLOW range 3200–3550 (cm ⁻¹) IGNORE any reference to C-O or C=O

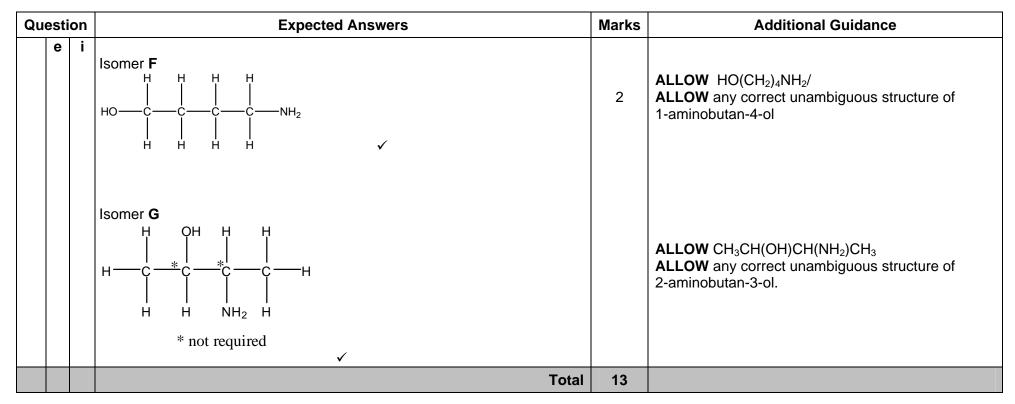
Question	Expected Answers	Marks	Additional Guidance
C	Alternative approaches depending on whether not the aldehyde is correctDoublet indicates adjacent C is bonded to only 1H OR (relative) peak area indicates 2 x CH3 (in the same environment) \checkmark Doublet indicates adjacent C is bonded to only 1H AND (relative) peak area indicates 2 x CH3 (in the same environment) \checkmark If aldehyde is correct (CH3)2CH—CH2—CH0 need to explain doubletIf aldehyde is incorrect must explain both doul	ent ⁄	ALLOW 3-methylbutanal , any correct unambiguous structure ALLOW two marks for correct aldehyde with no explanation ALLOW doublet/peak at 0.9ppm due to R–CH ALLOW the splitting shows adjacent to CH/environment that contains 1 H/proton ALLOW 6 Hs/ protons in same environment DO NOT ALLOW 6 Hs in same environment next to CHO e.g. $H_3C - \begin{pmatrix} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
d i	OR peak areas or peak areas H_3C CH_2 CH_2 CH_2 CH_2 CH_3 V ketone 3	1	ALLOW displayed/skeletal formulae
ii	There are 4 (different C) environments \checkmark (therefore) it is ketone 2 / H ₃ C — CH — C — CH ₃ \downarrow CH ₃ \checkmark (C responsible for peak at $\delta = 210$ ppm) is C=O/carbonyl carbon \checkmark	3	ALLOW 2 Cs are in same environment/equivalent ALLOW 3-methylbutan(-2-)one/ any correct unambiguous structure ALLOW 2-methylbutan-3-one ALLOW
	-	otal 12	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
4	а	i	The time (from the injection of the sample) for the component to leave the column \checkmark	1	ALLOW time from injection to detection ALLOW time spent in column ALLOW time taken to reach detector
		ii	They have similar retention times ✓	1	ALLOW both are esters therefore partition/adsorption/retention times will be very similar ALLOW ECF if they describe <i>R</i> _f values in part a(i) ALLOW same retention times
		iii	Butylbutanoate ✓	1	ALLOW butyl butanoate ALLOW but-1-yl butanoate DO NOT ALLOW butanyl butanoate
	b		hydrocarbon chain must be correct for one mark H H H H H H H H H H	2	ALLOW any correct unambiguous structure/ $CH_3(CH_2)_4CHCHCHCHCOOCH_2CH_3$ / $CH_3(CH_2)_4CHCHCHCHCHCOOC_2H_5$ $CH_3(CH_2)_4(CH)_4COOCH_2CH_3$ DO NOT ALLOW $C_5H_{11}CHCHCHCHCHCOOCH_2CH_3$ etc ALLOW CO_2 for ester ALLOW 1 mark for correct 2,4-decadiene structure e.g. ALLOW 1 mark for correct ethyl oate structure e.g. or $-CO_2C_2H_5$ or $-COOC_2H_5$

F324

Question	Expected Answers		Additional Guidance
ii	$R \xrightarrow{O} H_2C \xrightarrow{O} C \xrightarrow{R} R$ $R \xrightarrow{C} O \xrightarrow{C} CH$ $H_2C \xrightarrow{O} CH$ $H_2C \xrightarrow{O} CH$ $H_2C \xrightarrow{O} CH$ $H_2C \xrightarrow{O} CH$	1	ALLOW ALO
if either phenylethanoi acid or 2- phenyethanol not prepared – automatically lose two marks	 5. react phenylethanoic acid with 2-phenylethanol. If both already correctly named ALLOW acid and alcoholy. 	7	 ALLOW H⁺ & Cr₂O₇²⁻ or H₂SO₄/Na ₂Cr₂O₇ - any other oxidising agent or other named acid – please consult with TL ALLOW LiAIH₄ as alternative to NaBH₄ phenylethanoic acid & phenylethanol must be unambiguously identified by either name or formula DO NOT ALLOW or oxidised to form(a carboxylic) acid or reduced to form alcohol for marks 2 and 4 ALLOW conc H₂SO₄ DO NOT ALLOW dilute or H₂SO₄(aq) DO NOT ALLOW HCl, HNO₃ Please annotate, use ticks to show where marks are awarded
	Total	13	

F324


Qu	esti	ion	Expected Answers	Marks	Additional Guidance
5	а	i		1	ALLOW * in place of circle ALLOW if circle extends to include OH
		ii	Mark 1 – production of a single isomer is more expensive/difficult OR separation of the single isomer is expensive/difficult√ Mark 2 – one of the isomers is more (pharmacologically) active or one of the isomers might have adverse/harmful/nasty side effects √ Marks 3 and 4 – problems are overcome by using: Enzymes/bacteria/biological catalyst Chiral synthesis Chiral catalyst or transition metal complex Start with a natural chiral molecule or chiral pool	4	IGNORE any reference to dosage ALLOW one is more effective/works (better) DO NOT ALLOW use naturally occurring isomer unless stated that it is a chiral compound DO NOT ALLOW transition metal ion DO NOT ALLOW pool synthesis Chiral pool synthesis scores 1 (not 2) marks
	b	i	H_2C CH_2 + NH_3 \rightarrow HO- CH_2 $-CH_2$ NH_2	1	ALLOW HO NH ₂ ALLOW epoxy ethane as C_2H_4O , $(CH_2)_2O$, CH_2OCH_2 ALLOW product as $HO(CH_2)_2NH_2$ DO NOT ALLOW product as C_2H_7NO
		ii	$HO-CH_2-CH_2-NH-CH_2-CH_2-OH$	1	ALLOW (CH ₂) ₂ ALLOW displayed/skeletal formula DO NOT ALLOW molecular formula

F324

Quest	ion	Expected Answers	Marks	Additional Guidance
С	i	HO— CH_2 — CH_2 — $NH_3^+ CI^-$ Must show CI^- ion \checkmark	1	ALLOW HOCH ₂ CH ₂ NH ₃ Cl if formula is correct and both charges not shown ALLOW (CH ₂) ₂ / any correct unambiguous structure DO NOT ALLOW ions joined by covalent bonds
	ii	HO-CH ₂ -CH ₂ -NH ₃ ⁺ HS ⁻ Must show HS ⁻ ion \checkmark	1	ALLOW if formula is correct and both charges not shown ALLOW $(CH_2)_2$ any correct unambiguous structure ALLOW $(HO-CH_2-CH_2-NH_3^+)_2 S^{2-}$
d	i	Both NH_2 and COOH are joined to the same C \checkmark	1	ALLOW H_2N C CO ₂ H or RCH(NH ₂)CO ₂ H R The 4 groups/atoms attached to the C can be in any order but CH must be adjacent. () not essential
	ii	$HO-CH_2-CH_2-NH_2 + 2[O] \longrightarrow HO-C-CH_2-NH_2 + H_2O_{\checkmark}$	1	ALLOW (CH ₂) ₂ DO NOT ALLOW molecular formula
е	i	Question 5e is followed by two blank lined pages (15 and 16) which ca Please check to see whether or not pages 15 or 16 have been used	ndidates	s can use instead of requesting additional paper.

F324

Mark Scheme

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

