

GCE

Chemistry A

Unit F324: Rings, Polymers and Analysis

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

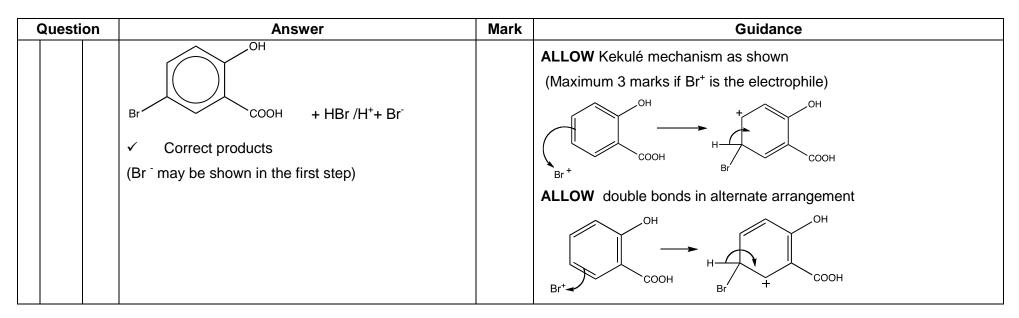
OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

Annotations available in Scoris.

Annotation	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or
	unstructured) and on each page of an additional object where there is no candidate response.
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
РОТ	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

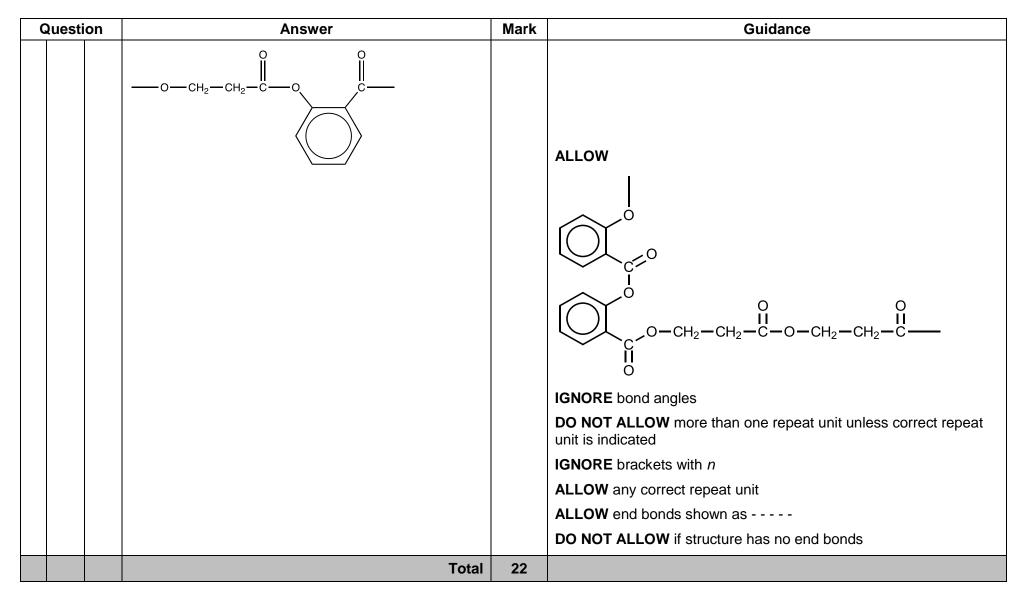

Meaning	
Answers which are not worthy of credit	
Statements which are irrelevant	
Answers that can be accepted	
Words which are not essential to gain credit	
Underlined words must be present in answer to score a mark	
Error carried forward	
Alternative wording	
Or reverse argument	
	Answers which are not worthy of credit Statements which are irrelevant Answers that can be accepted Words which are not essential to gain credit Underlined words must be present in answer to score a mark Error carried forward Alternative wording

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

F324

	Questi	on	Answer	Mark	Guidance
			Where circles have been placed round charges,	this is fo	or clarity only and does not indicate a requirement
1	(a)	(i)	O [⊖] Na [⊕]	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
					DO NOT ALLOW —O—Na OR -COO-Na (covalent bond)
			COO Na ✓		ALLOW –O ⁻
					ALLOW delocalised carboxylate
1	(a)	(ii)	(Bromine) would be decolourised/turn (from	1	IGNORE goes clear
			orange/red/yellow/brown) to colourless		DO NOT ALLOW other colours for bromine
			OR white precipitate/solid/emulsion (formed) \checkmark		IGNORE cream precipitate
					DO NOT ALLOW salicylic acid turns colourless/decolourised
					IGNORE temperature/fumes
1	(a)	(iii)	H + $Br_2 \rightarrow$ H	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous MUST be all correct to score mark
			соон вг соон		ALLOW molecular formulae, i.e.
			+ HBr		$C_7H_6O_3 + Br_2 \rightarrow C_7H_5O_3Br+ HBr$
			\checkmark		

	Questi	on	Answer	Mark	Guidance
1	(a)	(iv)	(CH ₃) ₂ CHOH/CH ₃ CH(OH)CH ₃ /propan(-)2(-)ol	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			AND acid/H ⁺ /H ₂ SO ₄ (catalyst) \checkmark		ALLOW 2-propanol
					DO NOT ACCEPT incorrect name or incorrect formula of alcohol
					IGNORE reflux/concentrated (acid)
1	(b)	(i)	$ \begin{array}{c} \overbrace{H} \\ \atop I} \\ \overbrace{H} \\ \overbrace{H} \\ \atop I \atop I} \\ \overbrace{H} \\ \atop I \atop I} \\ \overbrace{H} \\ \atop I \atop I} \\ \overbrace{H} \\ \overbrace{H} \\ \overbrace{H} \\ \atop I I \atop I I \atop I} \\ \overbrace{I} \atop I I \atop I I I \atop I I I I \atop I I I I I \atop I$	4	ALLOW mechanism with Br ⁺ electrophile (Maximum 3 marks) $\overrightarrow{\hspace{1.5cm}}^{OH}$ $\overrightarrow{\hspace{1.5cm}}^{OH}$ $\overrightarrow{\hspace{1.5cm}}^{Br}$ IGNORE any equations involving a halogen carrier BUT DO NOT ALLOW intermediate with π -system covering less than half of ring: $\overrightarrow{\hspace{1.5cm}}^{H}$ $\overrightarrow{\hspace{1.5cm}}^{OH}$ $\overrightarrow{\hspace{1.5cm}}^{H}$ $\overrightarrow{\hspace{1.5cm}}^{OH}$ ALLOW + charge anywhere inside the 'horseshoe' Horseshoe must have open end towards Br Apply ecf to error in structure of intermediate (M2)


	Questi	on	Answer	Mark	Guidance
1	(b)	(ii)	(In salicylic acid) lone pair/pair of electrons on O(H)/phenol is ~	3	ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned
			(partially) delocalised into the ring ✓		ALLOW lone pair/pair of electrons on O(H)/phenol is (partially) drawn/attracted/pulled into delocalised ring
			electron density increases/is high ORA ✓		IGNORE 'activates the ring'
					ALLOW more electron rich
					DO NOT ALLOW charge density or electronegativity
			Br ₂ /electrophile is (more) polarised ORA \checkmark		ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack
					ALLOW Br ₂ is (more) attracted OR Br ₂ is not polarised by benzene OR induces dipoles (in bromine/electrophile)
			QWC : delocalised/delocalized/delocalise <i>etc.</i> must be spelled correctly in the correct context at least once		Delocalise(d) needed to score the first marking point
1	(c)	(i)	Step 1	4	
	(-)	(-)	Add HNO ₃ ✓		ALLOW reagent mark if HNO_3 in equation
					IGNORE H_2SO_4 (NOTE : H_2SO_4 not required with phenols)
			$+ HNO_3 \longrightarrow + HNO_3 + $		IGNORE concentrations of acids/temperature
			Соон 0 ₂ N ⁻ Соон H ₂ O		ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			\checkmark		Equations MUST be completely correct for one mark each

Mark Scheme

0	Questi	ion	Answer	Mark	Guidance
			Step 2 Tin AND concentrated HC $l \checkmark$ $O_2N \qquad OH \qquad + 6 [H]$ $O_2N \qquad OH \qquad + 6 [H]$ $H_2N \qquad OH \qquad + 2 H_2O$		DO NOT ALLOW 3H ₂
1	(c)	(ii)	Nitrogen electron pair OR nitrogen lone pair accepts a proton/H ⁺ ✓	1	DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H ⁺ required) ALLOW nitrogen donates an electron pair/lone pair to H ⁺ IGNORE NH ₂ group donates electron pair
1	(c)	(iii)	compound A CIN^{H} OH COH OH OH OH OH OH OH OH	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $-N_2Cl$ OR $-N_2^+Cl^-$ DO NOT ALLOW $-N\equiv N^+$ OR $-N\equiv N^+Cl^-$ DO NOT ALLOW $-N_2$ -Cl (covalent bond)

C	Questi	on	Answer	Mark	Guidance
1	(d)	(i)	monomers join/bond/add/react/form polymer/form chain AND another product/small molecule/H₂O/HCI ✓	1	IGNORE specific reference to number of molecules
1	(d)	(ii)	HO \rightarrow	2	DO NOT ALLOW –HO (penalise connectivity once only) Both structures must be skeletal DO NOT ALLOW stray sticks (skeletal means CH ₃ attached) DO NOT ALLOW structure with a C shown, e.g.
1	(d)	(iii)	$ \begin{array}{c} $	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous

F324

r mirror/ppt/solid (formed) with t's solutions AND	4	ALLOW ammonia + silver nitrate for reagent ALLOW black solid/ppt
ecipitate (formed) with \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow		ALLOW 'the aldehyde gives a silver mirror' ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW molecular formulae for organic structures IGNORE all references to 2,4-dinitrophenylhydrazine/Brady's ACCEPT acidified dichromate ALLOW blue/green blue IGNORE equation for oxidation of D ALLOW equation for partial oxidation 4 + 100 + 100 + 120
eer	\rightarrow	\rightarrow

Mark Scheme

Q	Question		Answer	Mark	Guidance
					ALLOW alternative sequences
					e.g. FIRST react all with H ₂ SO ₄ AND K ₂ Cr ₂ O ₇
					colour change with C and D eliminates E
					At least one correct equation and structure of one product from either reaction required for the second mark. NB several possible products for the oxidation of D
					THEN react C and D with Tollens' distinguishes between C and D
2	(b)		н ^ө	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
					First curly arrow must come from either a lone pair on H or negative charge on H
			$\int_{0}^{ } O_{\delta-}$ curly arrow from H ⁻ to C ^($\delta+$) of correct C=O group \checkmark		IF aldehyde reduced OR both carbonyls reduced DO NOT AWARD first mark (second, third and fourth marks can be awarded ECF)
			dipole correct AND curly arrow from C=O bond to $O^{(\bar{o}-)}$ \checkmark		IGNORE lack of C—H if entirely skeletal
					IGNORE curly arrows in second stage
			correct intermediate with negative charge on O \checkmark		Apply ecf to error in structure e.g. CH_2 missing from the chain or –COOH/-COH instead of –CHO
			OH OH correct product ✓		IGNORE other products

F324

C	Question		Answer					Guidance
2	(c)						1	
			Compound	С	D	E		
			Number of peaks	5	5	4		
						all correct ✓		
2	(d)	(i)		H ₃ C	o=c ^{́H}		3	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			• pent-2-ene	н н	· · · · · · · · · · · · · · · · · · ·	H₂CH₃ ✓		ALLOW C ₂ H₅CHO and CH ₃ CHO
				H₃C C≡O	o=c−c	=0		
			 hexa-2,4-die 	ene H	✓ II ✓ HH	\checkmark		
2	(d)	(ii)					1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
						Total	13	

F324

Q	uesti	on	Answer		Mark	Guidance
3	(a)	(i)	H O CH_2OH H H H H H_2N-C-C-N-C-COOH H H H CH ₃ H H		2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
				✓		DO NOT ALLOW peptide chains
			H O CH_3 I II I $H_2N-C-C-N-C-COOH$ I I I HOH ₂ C H H			
			I I I HOH₂C H H	✓		
3	(a)	(ii)	alanine at pH 6.0 H O H O H O H O H O H O H O H O H O H O		2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
						ALLOW + charge on N or H: <i>i.e.</i> $^{+}NH_{3}$ or NH_{3}^{+}
				\checkmark		DO NOT ALLOW '-' charge on C <i>i.e.</i> -COO
			serine at pH 10.0 $H_2N - C - C - O^{\Theta}$ $H_2N - C - C - O^{\Theta}$ $H_2OH $			DO NOT ALLOW if structure is incomplete
			serine at pH 10.0 CH₂OH ✓			

Q	uestion	Answer	Mark	Guidance
3	(a) (i		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
				IGNORE bond angles
		0 ✓		DO NOT ALLOW more than one repeat unit
		OR		ALLOW end bonds shown as
				DO NOT ALLOW if structure has no end bonds
		N		IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain
				IGNORE n

F324

Q	Question		Answer		Mark	Guidance	
3	(b)		¹ H NMR spectrum for serine			ALLOW δ values ± 0.2 ppm, as a range or a value within the range	
			chemical shift, δ /ppm	relative peak area	splitting pattern		ALLOW a response that implies a splitting into three for a
			2.0 to 3.0	1	triplet		triplet/into two for a doublet
			3.3 to 4.2	2	doublet		
			One mark for each o	correct row	\checkmark		
3	(c)	(i)			¢ coh	1	ALL correct for one mark
3	(c)	(ii)	any two from: no/fewer side effects	•		2	IGNORE toxic/harmful
			increases the (pharr	nacological) activi	ty/effectiveness		IGNORE a response that implies a reduced dose
			Reduces/stops the r stereoisomers/optica	need for/cost/diffic al isomers	ulty in separating		IGNORE "it takes (less) time to separate"
					$\checkmark\checkmark$		

F324

June 2014

Q	Question		Answer		Guidance
3	(c)	(iii)	✓OH ✓ one mark for ethanol	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
					ALLOW + charge on H of NH ₂ groups, <i>i.e.</i> NH ₂ ⁺
			H_2N		IGNORE negative (counter) ions
			COOH ✓ one mark for proline with NH OR NH ₂ ⁺		
			• one mark for remaining fragment N N N N N N N N N N		
			 ✓ Fourth mark for structure of both ions shown correctly with NH₂⁺ 		
3	(c)	(iv)	idea of separating (the components/compounds)	1	ALLOW (identifies compounds) using fragmentation
			AND idea of (identifying compounds by) comparison with a		(patterns)/fragment ions (but IGNORE molecular ions)
			(spectral) database 🗸		IGNORE retention times
			Total	15	

Q	Question		Answer	Mark	Guidance
4	(a)		TMS/tetramethylsilane (which is the) standard (for chemical shift measurements) ✓	1	ALLOW $(CH_3)_4Si$ ALLOW TMS is the reference OR TMS has $\delta = 0$ (ppm) OR for calibration OR for comparison IGNORE solvent, unreactive, volatile, it gives a sharp peak
4	(b)		NMR analysis = 5 marks	9	 NOTE: Each peak can be identified from: its δ value a range, <i>e.g.</i> "the peak between 0.8 and 2.0" its relative peak area (beware two peaks with 2 protons) its splitting (beware two triplets) labelling on the spectrum
			M1: Peak(s) at $(\overline{\delta})$ 9.7 = CHO \checkmark M2: Peak(s) at $(\overline{\delta})$ 7.1 = C H \checkmark		ALLOW CH ₂ CHO/aldehyde IGNORE reference to phenol ALLOW (four) benzene ring proton(s)
			Peak(s) at (δ) 7.1 = C ₆ H ₄ \checkmark M3: Triplet at (δ) 1.3/peak at 1.3 AND quartet (at δ 2.6)/ peak at 2.6 = CH ₂ CH ₃ \checkmark M4: Triplet at (δ) 9.7/peak at 9.7 AND doublet (at δ 3.7)/peak at 3.7 = CH ₂ CHO \checkmark		IGNORE reference to phenol M3 and M4 Look for a clear link (using words or diagrams) between the two peaks

Question	Answer	Mark	Guidance
	M5: (n+1 rule) Any one of the following		
	 triplet at (δ) 1.3 shows (C with) 2 adjacent Hs/protons OR adjacent CH₂ (because of splitting: so triplet) 		ALLOW a response that implies a splitting into three for a triplet/into two for a doublet etc.
	• quartet at (δ 2.6 shows) (C with) 3 adjacent Hs/protons OR adjacent CH ₃		ALLOW "neighbouring" Hs for "adjacent to" Hs
	 triplet at (δ) 9.7 shows (C with) 2 adjacent Hs/protons OR adjacent CH₂ 		IGNORE other comments about splitting once M5 has been awarded
	• doublet at (δ 3.7 shows) (C with) 1 adjacent H/proton OR adjacent CH		
	QWC: triplet spelled correctly in the correct context once		DO NOT ALLOW one of M3 or M4 or M5 if triplet not seen
	Aldehyde structure = 4 marks		ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			IF structure contains $C_6H_4 \checkmark$
	CH ₃ CH ₂		IF structure contains C_6H_4 AND the organic structure contains CH_3CH_2 directly attached to the benzene ring OR contains CH_2CHO directly attached to the benzene ring $\checkmark\checkmark$
			IF structure has formula $C_{10}H_{12}O$ AND structure contains C_6H_4 AND the structure contains CH_3CH_2 AND contains CH_2CHO AND 1,2 OR 1,3 substituted $\checkmark \checkmark \checkmark$

Q	Question		Answer	Mark	Guidance
					IF structure has formula $C_{10}H_{12}O$ AND structure contains C_6H_4 AND the structure contains CH_3CH_2 AND contains CH_2CHO AND 1,4 substituted $\checkmark \checkmark \checkmark \checkmark$ (use of ¹³ C data)
			Total	10	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2014