

GCE

Chemistry A

Advanced GCE

Unit **F325**: Equilibria, Energetics and Elements

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

	Ques	tion	Answer	Mark	Guidance
1	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 8.3×10^4 OR 83333 award 2 marks THEN IF units are dm ⁶ mol ⁻² s ⁻¹ , award 1 further mark $k = \frac{rate}{[H_2(g)] [NO(g)]^2} \text{ OR } \frac{3.6 \times 10^{-2}}{(1.2 \times 10^{-2}) \times (6.0 \times 10^{-3})^2}$		ALLOW 1 mark for 8.3 × 10 ^x with no working (power of 10 is error)
				2	ALLOW 2 SF up to calculator value of 8.33333333 × 10 ⁴ correctly rounded ALLOW ECF for calculated answer from incorrectly rearranged <i>k</i> expression but not for units (Marked independently see below)
			units: dm ⁶ mol ⁻² s ⁻¹ ✓	1	ALLOW dm ⁶ , mol ⁻² and s ⁻¹ in any order, eg mol ⁻² dm ⁶ s ⁻¹ DO NOT ALLOW other units (Rate equation supplied on paper – not derived from data)
	(b)	(i)	effect on rate × 2 ✓	1	ALLOW 'doubles' OR $rate = 7.2 \times 10^{-2} \text{ (mol dm}^{-3} \text{ s}^{-1}\text{)}$
		(ii)	effect on rate × ¼ OR x 0.25 ✓	1	ALLOW 'a quarter' OR decrease by $\frac{1}{4}$ OR decrease by 0.25 OR rate decreases by 4 OR decrease by 75% OR rate = 0.9×10^{-2} (mol dm ⁻³ s ⁻¹) DO NOT ALLOW just 0.5^2 of rate OR rate decreases by 2^2
		(iii)	effect on rate × 64 ✓	1	ALLOW rate = 2.3(04) (mol dm ⁻³ s ⁻¹) DO NOT ALLOW just 'increases by 4 and then by 16 / 4 ² OR increases by 4 ³

	Question		Answer	Mark	Guidance
1	(c)	(i)	(initial) rate increases AND more frequent collisions OR more collisions per second/time ✓	1	BOTH points required for mark ALLOW rate increases AND concentration increases For concentration increases, ALLOW particles closer together OR less space between particles DO NOT ALLOW just more collisions OR collisions more likely
		(ii)	rate constant does not change ✓	1	
	(d)		step 1: $H_2(g) + 2 \text{ NO}(g) \longrightarrow N_2\text{O}(g) + H_2\text{O}(g)$ LHS of step one \checkmark step 2: $H_2(g) + N_2\text{O}(g) \longrightarrow N_2(g) + H_2\text{O}(g)$ rest of equations for step 1 AND step 2 \checkmark	2	For 'rest of equations', This mark can only be awarded if 1st mark can be awarded
			Total	10	

	Questior	Answer	Mark	Guidance
2	(a)	Fe: $(1s^22s^22p^6)3s^23p^63d^64s^2 \checkmark$ $Fe^{2^+}: (1s^22s^22p^6)3s^23p^63d^6 \checkmark$	2	ALLOW 4s before 3d, i.e. $(1s^22s^22p^6)3s^23p^64s^23d^6$ ALLOW $4s^0$ ALLOW subscripts IGNORE $1s^22s^22p^6$ is written out a second time
	(b)	coloured (compound/complex/precipitate/ions) OR catalyst ✓	1	IGNORE 'variable oxidation states' but ALLOW the idea that Fe ²⁺ can react to form an ion with a different charge/oxidation state. 'ion' is essential: 'atom' or 'metal' is not sufficient IGNORE partially filled d sub-shell/d orbital (question refers to property of Fe ²⁺)
	(c)	Fe oxidised from +2 to +3 ✓ Cr reduced from +6 to +3 ✓	2	CHECK and credit oxidation numbers on equation ALLOW Fe ²⁺ oxidised to Fe ³⁺ ALLOW Cr ⁶⁺ reduced to Cr ³⁺ ALLOW + sign after number in oxidation number, <i>ie</i> 2+, etc ALLOW 1 mark only if oxidation numbers given with no identification of which species has been oxidised or reduced, <i>ie</i> Fe goes from +2 to +3 AND Cr goes from +6 to +3 Fe reduced from +2 to +3 AND Cr oxidised from +6 to +3 (oxidation and reduction the wrong way around) DO NOT ALLOW just 'Fe is oxidised and Cr reduced' IGNORE other oxidations numbers (even if wrong) IGNORE any references to electrons

	Question		Answer	Mark	Guidance
2	(d)		$(K_{stab} =) \frac{\left[[Fe(NH_3)_6]^{2^+} \right]}{\left[[Fe(H_2O)_6]^{2^+} \right] \left[NH_3 \right]^6}$ On top , ONLY $[Fe(NH_3)_6]^{2^+}$ shown AND on bottom, $[Fe(H_2O)_6]^{2^+}$ AND $[NH_3]^6$ shown \checkmark correct use of square brackets and double square brackets in expression \checkmark	2	IGNORE state symbols ALLOW 1 mark if complete expression with correct use of double brackets is shown but upside down DO NOT ALLOW round brackets for concentrations and complex ions ALLOW for 1 mark $(K_{stab} =)$ $ \frac{\left[[Fe(NH_3)_6]^{2^+} \right] \left[H_2O \right]^6}{\left[[Fe(H_2O)_6]^{2^+} \right] \left[NH_3 \right]^6} $
	(e)	(i)	O₂/oxygen bonds to Fe²+/Fe(II)/Fe ✓ When required, O₂ substituted OR O₂ released ✓	2	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW O ₂ binds to Fe ²⁺ OR O ₂ donates electron pair to Fe ²⁺ ALLOW O ₂ bonds to metal ion/metal DO NOT ALLOW just O ₂ bonds to haemoglobin OR O ₂ bonds to complex ALLOW bond breaks between O ₂ and Fe ²⁺ when O ₂ required OR O ₂ replaces H ₂ O OR vice versa ALLOW O ₂ replaces CO ₂ OR vice versa ALLOW O ₂ replaces a ligand OR vice versa IGNORE just 'by ligand substitution' (in the question)

	Ques	tion	Answer	Mark	Guidance
2	(e)	(ii)	(For complex) with CO, stability constant is greater (than with complex in O₂) OR with CO, stability constant is high ✓ (Coordinate) bond with CO is stronger (than O₂) OR bond with CO is strong ✓	2	ANNOTATE WITH TICKS AND CROSSES, etc Comparison of CO and O ₂ is NOT required ALLOW stability constant with/of CO is greater IGNORE (complex with) CO is more stable ALLOW bond with CO is less likely to break OR bond with CO more likely to form OR 'CO cannot be removed' OR idea that attachment of CO is irreversible OR CO is a stronger ligand (than O ₂) OR CO has greater affinity for ion/metal/haemoglobin (than O ₂) IGNORE CO bonds more easily
	(f)	(i)	Pt ²⁺ /Pt is +2/2+, 2 x Cl ⁻ –2 ✓	1	DO NOT ALLOW response in terms of Cl ₂ rather than Cl ⁻ DO NOT ALLOW 'charges cancel' without the charges involved being stated

	Ques	tion	Answer	Mark	Guidance
2	(f)	(ii)	H ₃ NPtNH ₃ H ₃ NPtCI OR NH ₃ CI—Pt—NH ₃ CI—Pt—CI CI NH ₃ V For each structure Ligand donates an electron pair to metal (ion)/Pt²+/Pt OR forms a coordinate bond to the metal (ion)/Pt²+/Pt ✓	3	IGNORE any charge, ie Pt²+ OR Cl⁻, even if wrong IGNORE any angle, even if wrong ACCEPT bonds to H₃N (does not need to go to 'N') Assume that a solid line is in plane of paper Each structure must contain 2 'out wedges' AND 2 'in wedges' or dotted lines OR 4 solid lines at right angles (all in plane of paper) DO NOT ALLOW any structure that cannot be in one plane DO NOT ALLOW any structure with Cl₂ as a ligand DO NOT apply ECF from one structure to the other ALLOW coordinate bonds shown on diagrams provide that they start from a lone pair ALLOW 'dative covalent bond' or 'dative bond' as alternative for 'coordinate bond IGNORE cis and trans labels (even if incorrect) IGNORE incorrect connectivity to NH₃, ie ALLOW NH₃—
		(iii)	platin binds to DNA (of cancer cells) OR platin stops (cancer) cells dividing/replicating ✓	1	

Question	Answer	Mark	Guidance
Question 2 (g)	1,1-cyclobutanedicarboxylate ion Correct charge required (could also be 2– outside square brackets) carboplatin (cis isomer shown below)	Mark 2	Must show cyclobutane ring with both COO ⁻ groups bonded to same carbon ALLOW COO ⁻ OR CO ₂ ⁻ for each carboxylate ion ALLOW structures showing CH ₂ or C atoms provided it is clear that C skeleton is shown, Note: H atoms are not required if C atoms shown, ie O DO NOT ALLOW circle inside cyclobutane ring Two bonds from Pt to O atoms Any bonds from ligand MUST come from O OR from atom with lone pair IGNORE any charge shown Note: H atoms are not required if C atoms shown, (see ion in 1st structure) ALLOW ECF from 1st structure provided that the attached atoms are capable of forming coordinate bonds (ie they contain a lone pair of electrons) Example if 1st structure is as below, then ALLOW 1 mark ECF
	Total	18	X ECF. ✓
	lotai	10	

	Ques	tion	Answer	Mark	Guidance
3	(a)	(i)	HOCH ₂ COOH + NaOH → HOCH ₂ COONa + H ₂ O ✓	1	ALLOW: $HOCH_2COOH + OH^- \rightarrow HOCH_2COO^- + H_2O$ ALLOW: $H^+ + OH^- \rightarrow H_2O$ DO NOT ALLOW molecular formulae (cannot see which OH has reacted)
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $0.142 \text{ (mol dm}^{-3})$, award 2 marks amount of HOCH ₂ COOH = $0.125 \times \frac{25.0}{1000}$ = $0.003125 \text{ (mol)} \checkmark$ concentration NaOH = $0.003125 \times \frac{1000}{22.00}$ = $0.142 \text{ (mol dm}^{-3}) \checkmark$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
		(iii)	Vertical section matches the (pH) range (of the indicator) OR colour change (of the indicator) OR end point (of the indicator) ✓	1	ALLOW stated pH range for vertical section at about 7–10, 6–10, etc ie ALLOW 'pH range must be about 7–10' ALLOW 'pH changes rapidly' for vertical section ALLOW 'equivalence point' for vertical section, ie ALLOW equivalence point matches the (pH) range, etc DO NOT ALLOW just 'end point matches (pH) range' DO NOT ALLOW just 'indicator matches vertical section' Response must link either the pH range or colour change or end point with the vertical section / pH range ~ 7–10

	Question		Answer	Mark	Guidance
3	(b)	(i)	$(K_a =) \frac{\left[H^+\right]\left[HOCH_2COO^-\right]}{\left[HOCH_2COOH\right]} \checkmark$	1	IGNORE state symbols IGNORE $\frac{\left[H^{+}\right]^{2}}{\left[HOCH_{2}COOH\right]}$ in (i) but ALLOW in (ii)
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.46 x 10 ⁻⁴ , award 2 marks THEN IF units are mol dm ⁻³ , award 1 further mark		IF there is an alternative answer, check to see if there is any ECF credit possible using working below UNITS can be credited with no numerical answer
			$[H^+] = 10^{-2.37} = 0.00427 \pmod{\text{mol dm}^{-3}} \checkmark$ $K_a = \frac{0.00427^2}{0.125} = 1.46 \times 10^{-4} \checkmark$	2	ALLOW 4.27×10^{-3} (mol) ALLOW $2 \text{ SF: } 0.0043 \text{ up to } 0.004265795188 \text{ (calc value)}$ IF candidate has rounded to 0.00427 (mol dm ⁻³) in 1st response, credit EITHER $2 \text{ SF: } 1.5 \times 10^{-4} \text{ up to } 1.458632 \times 10^{-4} \text{ (from } 0.00427)$ OR $2 \text{ SF: } 1.5 \times 10^{-4} \text{ up to } 1.455760687 \times 10^{-4} \text{ (from unrounded calculator value of } 0.004265795188)$
			units: mol dm ⁻³ ✓	1	ALLOW calculation based on equilibrium conc of glycolic acid as $0.125 - [H^+]$: Using $[H^+] = 0.00427$, $K_a = \frac{0.00427^2}{0.125 - 0.00427} = 1.51 \times 10^{-4}$ For UNITS this is the ONLY correct answer
		(iii)	% dissociation = $\frac{0.00427}{0.125} \times 100 = 3.4 \text{ (\%)} \checkmark$ Assume working from EITHER from a rounded [H ⁺] OR unrounded calculator value of b(ii) [H ⁺]	1	ALLOW ECF using calculated [H ⁺] from b(ii), ALLOW 2 SF: 3.4 % up to calculator value Note: [H ⁺] from b(ii) displayed at top of answer window DO NOT MARK THIS TWICE!

	Question	Answer	Mark	Guidance
3	(c)	ONE mark for equilibrium expression equilibrium: HOCH₂COOH = H ⁺ + HOCH₂COO ⁻ ✓	1	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW H ⁺ , A ⁻ and HA ALLOW < -> as alternative for equilibrium sign
		Four marks for action of buffer		ALLOW response in terms of H ⁺ , A ⁻ and HA Equilibrium responses must refer back to a written equilibrium: IF more than one equilibrium shown, assume correct one
		HOCH ₂ COOH reacts with added alkali OR HOCH ₂ COOH + OH ⁻ → OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ → ✓		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
		→ HOCH ₂ COO ⁻ OR Equilibrium → right ✓		
		HOCH₂COO⁻ reacts with added acid ✓ → HOCH₂COOH OR Equilibrium → left ✓	4	ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid
		Two marks for preparation of buffer Ammonia reacted with an excess of glycolic acid OR some glycolic acid remains ✓ HOCH₂COOH + NH₃ → HOCH₂COONH₄ ✓	2	ALLOW as products $HOCH_2COO^- + NH_4^+$ ALLOW \rightleftharpoons sign instead of \rightarrow
	(d)	Base 1 + Acid 2 = Acid 1 + Base 2 1st mark for identifying acids and bases. ✓ 2nd mark for correct pairing (ie numbers) ✓	2	ALLOW: Base 2 + Acid 1 ⇒ Acid 2 + Base 1

	Question		Answer	Mark	Guidance
3	(e)		$2HSCH2COO- + R-S-S-R$ $\longrightarrow {^-}OOCCH2S-SCH2COO- + 2R-SH \checkmark$ $2R-SH + H2O2 \longrightarrow R-S-S-R + 2H2O \checkmark$	2	ALLOW (SCH ₂ COO ⁻) ₂ ALLOW equation with ammonium salt, ie: 2HSCH ₂ COONH ₄ + H ₄ NOOCCH ₂ S–SCH ₂ COONH ₄ +
			Total	20	

	Ques	tion	Answer	Mark	Guidance
4	(a)	(i)	Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓ Sn ⁴⁺ /Sn ²⁺ half cell with Pt electrode AND both solutions labelled as 1 mol dm ⁻³ / 1M H ⁺ /H ₂ half cell with Pt electrode AND H ⁺ solution labelled as 1 mol dm ⁻³ / 1M ✓	3	ANNOTATE WITH TICKS AND CROSSES, etc circuit shown must be complete, <i>ie</i> must be capable of working salt bridge must be labelled and must dip into both solutions ALLOW concentration label of 'equimolar' or similar wording for Sn ⁴⁺ /Sn ²⁺ half cell ALLOW any strong acid IF both half cells are correct with no concentrations, ALLOW 1 out of the 2 marks available for the 2 half cells
		(ii)	$2Cr + 3Sn^{4+} \rightarrow 2Cr^{3+} + 3Sn^{2+} \checkmark$ $Cr + 3Cu^{+} \rightarrow Cr^{3+} + 3Cu \checkmark$ $Sn^{2+} + 2Cu^{+} \rightarrow Sn^{4+} + 2Cu \checkmark$ Conditions not standard $\mathbf{OR} \text{ concentrations not 1 mol dm}^{-3} \checkmark$ High activation energy \mathbf{OR} slow rate \checkmark	5	IGNORE any stated temperature or pressure, even if wrong ANNOTATE WITH TICKS AND CROSSES, etc Correct species AND balancing needed for each mark ALLOW equations as shown with equilibrium sign ALLOW multiples but electrons must not be shown IF three equations have correct species but no balancing, AWARD 1 mark ALLOW not favoured kinetically
	(b)	(i)	CH ₃ OH + $1\frac{1}{2}$ O ₂ \rightarrow CO ₂ + 2H ₂ O \checkmark	1	Correct species AND balancing needed ALLOW multiple, <i>ie</i> 2CH ₃ OH + 3O ₂ → 2CO ₂ + 4H ₂ O ALLOW CH ₄ O for formula of methanol
		(ii)	$CH_3OH + H_2O \rightarrow 6H^+ + 6e^- + CO_2 \checkmark$	1	
		(iii)	less CO₂ OR less greenhouse gases ✓ greater efficiency ✓	2	ALLOW no CO ₂ OR no greenhouse gases ALLOW (very) efficient IGNORE less pollution OR 'renewable fuels'
		(iv)	methanol is a liquid AND methanol is easier to store/transport ✓	1	Both points required for mark Response MUST state that methanol is a liquid IGNORE methanol has a higher boiling point Assume that 'it' refers to methanol IGNORE safety issues, eg H ₂ leakage, flammability, explosive
			Total	13	

Qı	uestion	Answer	Mark	Guidance	
5	(a)	A: forms fewer moles/molecules of gas ✓ B: forms gas from a liquid ✓ C: forms liquid from gases ✓ D: forms more moles/molecules of gas ✓	4	Note: Responses must imply the key difference between the sides of the equation IGNORE comments about C(s)	
	(b)	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$ = 40 + 214 - 89 = 165 (J K ⁻¹ mol ⁻¹) = 0.165 (kJ K ⁻¹ mol ⁻¹) \checkmark At 25 °C, $\Delta G = +178 - 298 \times 0.165 \checkmark$ = (+)129 \checkmark units: kJ mol ⁻¹ \checkmark OR (+)129,000 \checkmark units: J mol ⁻¹ \checkmark	1	ANNOTATE WITH TICKS AND CROSSES, etc Mark is for the working line: $40 + 214 - 89 = 165$ UNITS have a separate mark ALLOW 129 to calculator value of 128.83 DO NOT ALLOW 128 (incorrect rounding) IF 25 °C used rather than 298 K, credit by ECF, calculated ΔG = 174 to calculator value of 173.875	
		As $\Delta G > 0$, reaction is not feasible OR as $\Delta G > 0$, CaCO ₃ is stable \checkmark Minimum temperature for feasibility when $0 = \Delta H - T\Delta S$ OR $\Delta H = T\Delta S$ OR $T = \frac{\Delta H}{\Delta S}$ \checkmark $= \frac{178}{0.165} = 1079$ K OR 806 °C \checkmark The units must be with the stated temperature	2	ENTROPY APPROACH ALLOW At 25 °C, $\Delta S_{\text{total}} = 0.165 - \frac{178}{298} \checkmark$ = $-0.432 \checkmark \text{ kJ K}^{-1} \text{ mol}^{-1} \checkmark$ OR $-432 \checkmark \text{ J K}^{-1} \text{ mol}^{-1} \checkmark$ As $\Delta S < 0$, reaction is not feasible \checkmark ENTROPY APPROACH Minimum temperature for feasibility when $0 = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$ OR $\Delta S_{\text{system}} = \frac{\Delta H}{T}$ ALLOW 1080 K up to calculator value of 1078.787879, correctly rounded, eg 1078.79 is correct value to 6SF DO NOT ALLOW 1078 (incorrect rounding) IF 1079 K is given and additional temperature in °C is incorrect, IGNORE °C temperature (and vice versa)	
		Т	Total 11		

	Question		Answer	Mark	Guidance	
6	(a)	(i)	$(K_w =) [H^{\dagger}(aq)] [OH^{-}(aq)] \checkmark$	1	IGNORE state symbols ALLOW [H₃O⁺(aq)] [OH⁻(aq)]	
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.3 × 10 ⁻¹⁰ (mol dm ⁻³), award 2 marks IF answer = 2.34 × 10 ⁻¹⁰ (mol dm ⁻³), award 1 mark		IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc	
			$[H^{+}] = 10^{-pH} = 4.27 \times 10^{-5} \text{ (mol dm}^{-3}\text{)} \checkmark$		ALLOW 4.3 × 10 ⁻⁵ up to calculator: 4.265795188 × 10 ⁻⁵ ALLOW 0.0000427	
			$[OH^{-}] = \frac{1.0 \times 10^{-14}}{4.27 \times 10^{-5}}$ = 2.34 × 10 ⁻¹⁰ (mol dm ⁻³) \[\]	2	Answer MUST be to 2 SF (in question) ALLOW = 2.3 ×10 ^{-x} (mol dm ⁻³) for 1 mark (must be a negative power)	
					ALLOW alternative approach based on pOH: pOH = $14 - 4.27 = 9.63 \checkmark (DO NOT ALLOW 9.6)$ [OH ⁻] = $10^{-pOH} = 10^{-9.63} = 2.3 \times 10^{-10} \text{ (mol dm}^{-3}) \checkmark$	
	(b)	(i)	Endothermic because K _w increases with temperature ✓	1	Endothermic AND reason required for the mark ALLOW Endothermic because increasing temperature shifts equilibrium/reaction to the right	
		(ii)	$K_{\rm w}$ value from graph from 2.2 to 2.6 × 10 ⁻¹⁴ (mol ² dm ⁻⁶) \checkmark		ANNOTATE WITH TICKS AND CROSSES, etc Actual $K_{\rm w}$ = 2.38 × 10 ⁻¹⁴ mol ² dm ⁻⁶	
			Using 2.4×10^{-14} , $[H^+] = \sqrt{2.4 \times 10^{-14}}$ OR 1.55×10^{-7} \checkmark		For this mark, candidate must use a value between 2.0 and 3.0×10^{-14} (mol ² dm ⁻⁶), <i>ie</i> from the approximately correct region of the graph,	
			pH = $-\log (1.55 \times 10^{-7}) = 6.81$ (using $K_w = 2.4 \times 10^{-14}$) \checkmark	3	ALLOW 6.8 up to calculator value Note : You will need to calculate the pH value from the candidate's estimate of K_w at 37 °C before awarding the 3rd marking point ONLY award an ECF pH mark if candidate has generated a value of $[H^{+}]$ by attempting to take a square root of a value between 2.0 and 3.0×10^{-14}	

	Ques	tion	n Answer		Guidance	
6	(b)	(iii)	(Work is) inaccurate OR invalid because K _w varies with temperature ✓	1	Response requires reason for inaccuracy/invalidity in terms of K_w ALLOW incorrect with reason IGNORE unreliable ALLOW inaccurate because wrong K_w was used For K_w varies with temperature, ALLOW equilibrium shifts with temperature	
	(c)				ANNOTATE WITH TICKS AND CROSSES, etc	
			Acid and alkali mixed ✓		ALLOW 'base' for 'alkali throughout ALLOW if mentioned anywhere which could be within a definition for enthalpy change of neutralisation	
			Amounts of acid AND alkali stated ✓		Amounts could be expressed as amounts, moles, volumes OR concentrations	
			Temperature taken at start AND finish ✓		ALLOW temperature change	
			energy, $Q = mc\Delta T$ OR in words AND meaning of m , c AND ΔT given \checkmark		m = mass/volume of solution/reactants/mixture, etc (but NOT surroundings) c = (specific) heat capacity (of solution/water) OR 4.18/4.2 ΔT = temperature change	
			Energy scaled up to form 1 mol of water ✓		ALLOW divide energy by moles	
			ΔH _{neut} = –energy change ✓	6	ALLOW '-' sign shown in earlier part, ie $\Delta H_{\text{neut}} = -\frac{Q}{n}$ ALLOW a statement linking ΔH with temperature change, <i>ie</i> : IF temperature increases, ΔH_{neut} is -ve OR IF temperature decreases, ΔH_{neut} is +ve	

(Question	Answer	Mark	Guidance
6	Question (d)	Ionic radius Potassium ion OR K ⁺ OR K ion is smaller OR K ⁺ has greater charge density ✓ Lattice enthalpy Lattice enthalpy of KF is more negative than RbF ✓ OR K ⁺ has greater attraction for F ⁻ Hydration enthalpy ΔH(hydration) of K ⁺ is more negative than Rb ⁺ ✓	Mark	ANNOTATE WITH TICKS AND CROSSES, etc Throughout question, ORA in terms of Rb ⁺ Throughout question, ALLOW energy for enthalpy DO NOT ALLOW potassium OR K OR reference to atoms (ie reference to ions is required throughout a response) ALLOW lattice enthalpy of KF > lattice enthalpy of RbF ALLOW more energy needed to separate K ⁺ AND F ⁻ IGNORE KF has stronger bonds ALLOW ΔH(hydration) of K ⁺ > ΔH(hydration) of Rb ⁺
		OR K⁺ has greater attraction for H₂O Enthalpy change of solution Idea that ΔH(solution) is affected more by lattice enthalpy than by hydration enthalpy ✓	4	ALLOW more energy needed to separate K^+ AND H_2O IGNORE K^+ has a stronger bond to H_2O ALLOW a correct attempt to link the contribution of lattice enthalpy and hydration enthalpy to $\Delta H(\text{solution})$, <i>ie</i> lattice enthalpy is a more important factor than hydration enthalpy
	(e)	(During dissolving,) entropy/disorder increases OR disorder increases \checkmark $T\Delta S > \Delta H$ OR $T\Delta S$ is more positive than ΔH OR $\Delta H - T\Delta S$ is negative \checkmark	2	ALLOW entropy change is positive OR ΔS is positive OR $T\Delta S$ is positive ALLOW ΔS (system) > $\Delta H/T$ ALLOW ΔS (system) is more positive than $\Delta H/T \checkmark$ ALLOW ΔS (system) + ΔS (surroundings) is positive ALLOW Energy contribution from increase in entropy is greater than decrease in energy from enthalpy change OR entropy change outweighs enthalpy change
		Total	20	

	Question		Answer	Mark	Guidance
7	(a)	(i)	amount S ₂ O ₃ ²⁻ used = $0.00100 \times \frac{24.6}{1000} = 2.46 \times 10^{-5} \text{ mol } \checkmark$ amount O ₂ in 25 cm ³ sample = $\frac{2.46 \times 10^{-5}}{4} = 6.15 \times 10^{-6} \text{ mol } \checkmark$ Concentration of O ₂ in sample = $6.15 \times 10^{-6} \times \frac{1000}{25} = 2.46 \times 10^{-4} \text{ (mol dm}^{-3)} \checkmark$ mass concentration of O ₂ in mg dm ⁻³ = $2.46 \times 10^{-4} \times 32 \text{ g} = 7.872 \times 10^{-3} \text{ (g dm}^{-3)}$ = $7.872 \text{ (mg dm}^{-3)} \checkmark$	4	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0000246 (mol) ECF = $\frac{\text{answer above}}{4}$ ALLOW 0.00000615 g ECF answer above $\times \frac{1000}{25}$ ALLOW 0.000246 g ECF = answer above $\times 32 \times 1000$ ALLOW $7.9 \text{ OR } 7.87$ ALLOW $2 \text{ SF up to calculator value}$ Must be in mg for mark Note: Candidate may work out steps $3 \text{ and } 4 \text{ in the opposite}$ order, ie mass of O_2 in sample = $6.15 \times 10^{-6} \times 32 \times 1000 = 1.968 \times 10^{-1} \text{ mg}$ mass concentration of O_2 in mg dm ⁻³ = $1.968 \times 10^{-1} \times \frac{1000}{25} = 7.872 \text{ (mg dm}^{-3})$
		(ii)	Comment 7.872 > 5 so fish can survive ✓	1	ECF If final answer > 5 fish can survive If final answer < 5 fish cannot survive
	(b)	(i)	NO ✓	1	ALLOW N ₂ H ₂

	Question		Answer	Mark	Guidance
7	(b)	(ii)	$2H_2O + 2I^- + 2NO_2^- \longrightarrow 2NO + I_2 + 4OH^-$ OR $2H^+ + 2I^- + 2NO_2^- \longrightarrow 2NO + I_2 + 2OH^-$ species \checkmark balance \checkmark	2	IGNORE state symbols ALLOW multiples For species ONLY, IGNORE any extra H₂O or e⁻ on either side of the equation ALLOW on LHS: 2HI + 2NO₂⁻ OR 2I⁻ + 2HNO₂ ALLOW species and equation involving N₂H₂: 6H₂O + 8I⁻ + 2NO₂⁻ → N₂H₂ + 4I₂ + 10OH⁻ OR 6H⁺ + 8I⁻ + 2NO₂⁻ → N₂H₂ + 4I₂ + 4OH⁻ species ✓ balance ✓
			Tota	l 8	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

