

GCE

Chemistry A

Advanced GCE

Unit **F325**: Equilibria, Energetics and Elements

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Annotations available in Scoris.

Annotation	Meaning
110	Benefit of doubt given
CON	Contradiction
×	Incorrect response
	Error carried forward
	Ignore
(CASA)	Not answered question
NEGO	Benefit of doubt not given
Por	Power of 10 error
A	Omission mark
RE	Rounding error
SF.	Error in number of significant figures
✓	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

12. The following questions should be annotated with ticks, crosses, etc. Annotations should be placed to clearly show where they apply within the body of the text (i.e. not in margins)

Question 1(a); Question 2(c), 2d(ii); Question 3e(i); Question 4d(i), 4d(ii); Question 6d; Question 7(a); Question 8(c)

All the Additional Pages in the examination script must be checked to see if any candidates include any answers.

- When you open question 1(a) you will see a view of page 22, one of the Additional Pages.
- If the page is blank then, using the marking mode, annotate the page with an omission mark, ^.
- Scroll down to page 23 and annotate with a ^ if the page is blank.
- Scroll down to page 24 and annotate with a ^ if the page is blank.

- If pages 22, 23 or 24 are not blank then use the paper clip icon to link the pages to the correct questions.
- You may need to contact your Team Leader if you do not know how to do this.

Qu	esti	ion	Expected answers	Marks	Additional guidance	
1	a		graph: Rate does not change with concentration AND zero-order with respect to I₂ ✓ initial rates data: Mark independently When [(CH₃)₂CO] × 2, rate × 2 (2¹) ✓ 1st order with respect to (CH₃)₂CO ✓ When [HCl] x 2.5, rate × 2.5 ✓ 1st order with respect to HCl ✓		ANNOTATIONS MUST BE USED ALLOW (straight) line with zero gradient AND zero-order ALLOW horizontal line AND zero-order IGNORE just 'constant line' OR just 'straight line' also fits 1st order CARE with comparisons in opposite direction ALLOW [(CH ₃) ₂ CO] × 0.5, rate × 0.5 (0.5¹) ALLOW [HCI] × 0.4, rate × 0.4 (0.4¹) ALLOW H ⁺ for HCI	
			Rate equation and rate constant: rate = $k[(CH_3)_2CO(aq)][HCl(aq)] \checkmark$ $k = \frac{rate}{[(CH_3)_2CO(aq)][HCl(aq)]} OR$ $\frac{2.10 \times 10^{-9}}{(1.50 \times 10^{-3}) \times (2.00 \times 10^{-2})} \checkmark$		CARE: Comparison of Experiments 1 and 3 may be valid despite BOTH concentrations changing ALLOW ECF from incorrect orders In rate equation, square brackets are required rate = k[(CH ₃) ₂ CO(aq)][HCl(aq)][I ₂ (aq)] ⁰ ALLOW H ⁺ for HCl IGNORE state symbols, even if wrong	
			$= 7(.00) \times 10^{-5} \text{ OR } 0.00007(00) \checkmark$ units: dm³ mol ⁻¹ s ⁻¹ \checkmark	9	ALLOW ECF for units 'correct' for incorrect expression used to calculate k , e.g. upside down or wrong orders $\frac{[(CH_3)_2CO(aq)][H^+(aq)]}{rate} \times \text{units: mol s dm}^{-3} \checkmark$	

Qu	ıesti	on	Expected answers	Marks	Additional guidance
1	b		step 1: $H_2(g) + ICI(g) \longrightarrow$ LHS of step 1 \checkmark		State symbols NOT required
				2	 2nd mark can ONLY be awarded provided that 1st mark has been awarded step 1 AND step 2 add up to the overall equation.
					e.g. ALLOW \longrightarrow $H_2ICI(g)$
					step 2 : $H_2ICI(g) + ICI(g) \longrightarrow 2HCI(g) + I_2(g)$
					In step 2 , ALLOW inclusion of extra species on both sides of the equation only if they cancel, e.g. $HI(g) + HCI(g) + ICI(g) \longrightarrow 2HCI(g) + I_2(g)$
			Total	11	

Qu	esti	on	Expected answers	Marks	Additional guidance
2	a	on	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: 2Na ⁺ (g) + O ²⁻ (g)> Na ₂ O(s)
	b	i	C (or 2C) A B D G E (or 2E) F All seven correct ✓✓✓ Five OR six correct ✓✓ Three OR four correct ✓✓	3	Question asks for a definition, not an equation ALLOW 496 (OR 992) -141 790 249 G OR Lattice enthalpy/LE [OR answer to (ii)] 108 (OR 216) -414
		ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2520 (kJ mol ⁻¹) award 2 marks -414 = $(2 \times 108) + 249 + (2 \times 496) + (-141) + 790$) + ΔH_{LE} OR $\Delta H_{LE} = -414 - [(2 \times 108) + 249 + (2 \times 496) + (-141) + 790] \checkmark$ = $-414 - 2106$ = -2520 (kJ mol ⁻¹) \checkmark	2	IF there is an alternative answer, check the list below for marking of answers from common errors

Qι	ıesti	ion	Expected answers	Marks	Additional guidance
					Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only
2	С		ALLOW reverse argument throughout (ORA)		NOTE: For ALL marking points, assume that the following refer to 'ions', Mg ²⁺ , etc. For 'ions', ALLOW 'atoms' For Mg ²⁺ , Na ⁺ , O ²⁻ and S ²⁻ , ALLOW symbols: Mg, Na, O and S ALLOW names: magnesium, sodium, oxygen, oxide, sulfur, sulfide BUT DO NOT ALLOW molecules i.e. ALLOW Mg has a smaller (atomic) radius IGNORE idea of close packing of ions
			Comparison of size AND charge of cations Mg ²⁺ is smaller AND Mg ²⁺ has a greater charge OR Mg ²⁺ has a greater charge density ✓		ORA: Na ⁺ is larger AND Na ⁺ has a smaller charge OR Na ⁺ has a smaller charge density ✓ IGNORE just Mg ²⁺ is small comparison required
			Comparison of size of anions S²- is larger OR S²- has a smaller charge density ✓ Comparison of attraction of a cation and an anion Mg²+ has stronger attraction OR Na+ has weaker attraction AND S²- has weaker attraction OR O²- has stronger attraction ✓	3	ORA O²- is smaller OR O²- has a larger charge density ✓ IGNORE just S²- is large comparison required ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction BUT IGNORE just 'greater force' (could be repulsion) OR comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions

Qι	ıesti	on	Expected answers	Marks	Additional guidance
	d	i	Cycle needs formation of CO_3^{2-} ions (from C and O) \checkmark i.e. NOT breaking up of CO_3^{2-} ion	1	ALLOW carbonate ion contains C and O ALLOW carbonate ion contains 2 elements IGNORE sodium carbonate contains 3 elements IGNORE carbonate ion has covalent bonds
2	d	ii	 Mark allocation 1 - 2Na⁺(g) + CO₃²⁻(g) on a top line		ANNOTATIONS MUST BE USED MARK AS FOLLOWS 1. Mark the cycle 2. IF there is no cycle, mark the equation below
			3 – ΔH solution' label BELOW Na ₂ CO ₃ (s) AND ALL arrows in correct directions ✓	3	IF cycle shown using NaCO ₃ , Na ⁺ and CO ₃ ⁻ ALLOW ECF for third marking point only NOTE: DO NOT ALLOW ECF from any other species For simple energy cycles a maximum of 2 marks only can be awarded – See APPENDIX 1 For an equation, only 1 mark can be awarded Lattice enthalpy = $-\Delta H(\text{solution}) \text{ Na}_2\text{CO}_3$ + $[2 \times \Delta H(\text{hydration}) \text{ Na}^+] + \Delta H(\text{hydration}) \text{ CO}_3^{2-}$

Question	Expected answers	Marks	Additional guidance
Question	2Na ⁺ (g) + CO ₃ ²⁻ (g) 2 x Hydration of Na ⁺ Lattice enthalpy Na ₂ CO ₃ (s) Hydration of CO ₃ ²⁻	Walks	OR Lattice enthalpy + $\Delta H(\text{solution}) \text{ Na}_2\text{CO}_3$ = $2 \times \Delta H(\text{hydration}) \text{ Na}^+ + \Delta H(\text{hydration}) \text{ CO}_3^{2-} \checkmark$ IGNORE state symbols for equation approach
	Enthalpy change of solution 2Na ⁺ (aq) + CO ₃ ²⁻ (aq)		
		Total 14	

Qu	Question		Expected answers	Marks	Additional guidance
3	а		Co: $(1s^22s^22p^6)3s^23p^63d^74s^2 \checkmark$		ALLOW (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 4s ² 3d ⁷ (i.e. 4s before 3d) ALLOW upper case D, etc. and subscripts, e.g. [Ar]4S ₂ 3D ₇
			Co ³⁺ : (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ ✓	2	If included, ALLOW 4s ⁰
	b		catalyst OR coloured ✓	1	IGNORE forms different oxidation states
	С		Donates an electron/lone pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair/lone pair to a metal/transition element ALLOW dative (covalent) bond for coordinate bond
	d	i	Co(OH)₂ ✓		Mark independently ALLOW Co(OH) ₂ (H ₂ O) ₄
			precipitation ✓	2	ALLOW precipitate (reaction)
		ii	CoCl ₄ ^{2−} ✓		Mark independently
			ligand substitution ✓	2	ALLOW ligand exchange DO NOT ALLOW just substitution

Question	Expected answers	Marks	Additional guidance
3 e i		4	ANNOTATIONS MUST BE USED CARE: CI can be on any position, e.g. for B \[\begin{align*} & NH_3 & \\ & H_3N_{M_1} & \\ & H_3N_{M_2} & \\ & NH_3 & \\ &
	 Marking sequence 1. Mark any correct complex ions first Do not look at these complex ions again 2. Mark with crosses any complex ions with incorrect but NOT NH₃ connectivity on the LEFT only at Do not look at these complex ions again 3. In the remaining complex ions, identify errors in lig NH₃ ligands bonded to an H on the LEFT only: CI⁻ NH₃⁺ Mark these complex ions to maximise errors but tree 	ligands. Ind NOT Condition of the cond	This could include CI in complex A , and NH ₃ CI and NH ₃ ⁺ CI ⁻ , CI ⁻ and NOT just NH ₃ ⁺ The Appendix 2): e.g. Sconnectivity error)

Qu	Question		Expected answers	Marks	Additional guidance
			SEE APPI	ENDIX 2	FOR EXAMPLES
3	е	ii	143.4 OR 107.9 + 35.5 (g mol ⁻¹) used <i>i.e. molar mass AgCl</i> OR amount of AgCl = 0.02(000) mol ✓		DO NOT ALLOW AgCl ₂
			Ratio ratio complex : CI ⁻ = 1 : 2 OR 0.01 : 0.02 ✓		DO NOT ALLOW $\frac{2.868}{0.01}$ 0.01 linked to AgCl, not complex ALLOW this mark ONLY for evidence of Cl ⁻
			Identification – available from 1 : 2 ratio OR 2CI [−] Therefore the complex is B ✓	3	Quality of Written Communication Identification as B is dependent on correct 1 : 2 ratio OR 2Cl ⁻ for this mark
			Total	15	

Qu	esti	ion	Expected answers	Marks	Additional guidance
4	а	i	A strong acid completely dissociates AND a weak acid partially dissociates ✓	1	ALLOW ionises for dissociates
		ii	$(K_a =) \frac{[H^+][NO_2^-]}{[HNO_2]} \checkmark$	1	DO NOT ALLOW $\frac{[H^{+}]^{2}}{[HNO_{2}]}$ Square brackets are required
		iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.89 award 2 marks IF answer = 1.9 award 1 mark		IF there is an alternative answer to more decimal places, check calculator value
			pH = −log 0.0129 = 1.89 ✓ ✓ OR pH = −log 0.0129 = 1.9 ✓ <i>not two decimal places</i>	2	Working to get to 0.0129 (mol dm ⁻³) Not required and no credit $[H^{+}] = \sqrt{K_a \times [HNO_2]} = \sqrt{4.43 \times 10^{-4} \times 0.375}$ ALLOW 1 mark for an answer with more than 2 decimal
			pn = -log 0.0129 = 1.9 V Not two decimal places	_	places that rounds back to 1.89
		iv	$HNO_3 + HNO_2 \Rightarrow NO_3^- + H_2NO_2^+ \checkmark$ Acid 1 Base 2 Base 1 Acid 2 \checkmark	2	ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid–base pairs are IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, <i>i.e.</i> HNO ₃ + HNO ₂ = H ₂ NO ₃ ⁺ + NO ₂ ⁻ × Base 2 Acid 1 Acid 2 Base 1 ✓
					NOTE For the 2nd marking point (acid–base pairs), this is the ONLY acceptable ECF

Qu	Question		Expected answers	Marks	Additional guidance
					i.e., NO ECF from impossible chemistry
4	b	i	Proton acceptor ✓	1	ALLOW H⁺ acceptor
		ii	Marks are for correctly calculated values. Working shows how values have been derived. $ [OH^-] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark $ $ [H^+] = \frac{1.00 \times 10^{-14}}{0.08(00)} \text{ OR } 1.25 \times 10^{-13} \text{ (mol dm}^{-3}) \checkmark $ $ pH = -log 1.25 \times 10^{-13} = 12.90 \checkmark $ $ pOH variation (also worth 3 marks) $ $ [OH^-] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark $ $ pOH -log 0.08(00) = 1.10 \checkmark $ $ pH = 14.00 - 1.10 = 12.90 \checkmark $	3	ALLOW by ECF $\frac{1.00 \times 10^{-14}}{\text{calculated value of [OH^-]}}$ DO NOT ALLOW 12.9 not two decimal places
	С		$Ca(OH)_2 + 2HNO_2 \rightarrow Ca(NO_2)_2 + 2H_2O \checkmark$ $H^+ + OH^- \longrightarrow H_2O \checkmark$	2	ALLOW : $2H^+ + 2OH^- \rightarrow 2H_2O$

Qı	est	ion	Expected answers	Marks	Additional guidance
4	d	i	Equilibrium H ₂ CO ₃ = H ⁺ + HCO ₃ ⁻ ✓		ANNOTATIONS MUST BE USED Equilibrium sign is required IGNORE $HA = H^+ + A^-$ DO NOT ALLOW $H_2CO_3 = 2H^+ + CO_3^{2-}$ DO NOT ALLOW $NaHCO_3 = Na^+ + HCO_3^-$ IGNORE $H_2O + CO_2 = H_2CO_3$
			Added alkali H₂CO₃ reacts with added alkali OR H₂CO₃ + OH⁻ → OR added alkali reacts with H⁺ OR H⁺ + OH⁻ → ✓ Equilibrium → right OR equilibrium shifts forming H⁺ OR HCO₃⁻ ✓		IF HA \rightleftharpoons H ⁺ + A ⁻ OR H ₂ CO ₃ \rightleftharpoons 2H ⁺ + CO ₃ ²⁻ have been used above: ALLOW all marks that meet marking alternatives as written NOTE The 1st 'added acid' mark cannot then be accessed Equilibrium responses must refer back to a written equilibrium BUT IF H ₂ CO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ shown above, assume that any equilibrium comments apply to the correct equilibrium IF more than one equilibrium shown, it must be clear which equilibrium is being referred to ALLOW added alkali reacts with weak acid Quality of Written Communication Mark is for linking the action of the buffer in controlling added alkali and hence pH

Qu	esti	on	Expected answers	Marks	Additional guidance
			Added acid HCO ₃ ⁻ reacts with added acid ✓ Equilibrium → left OR equilibrium shifts forming H ₂ CO ₃ ✓	5	HCO ₃ ⁻ is required for this mark BUT ALLOW added acid reacts with conjugate base ONLY if HCO ₃ ⁻ is present in equilibrium with H ₂ CO ₃ DO NOT ALLOW salt reacts with added acid
4	d	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 6.6:1 OR 1:0.15		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			CHECK ratio is HCO_3^- : H_2CO_3 and award 5 marks . IF answer = 0.15 : 1 , CHECK ratio is H_2CO_3 : HCO_3^- and award 4 marks		ANNOTATIONS MUST BE USED FOR ALTERNATIVE using Henderson–Hasselbalch equation below
			In blood at pH 7.40, $[H^+] = 10^{-pH} = 10^{-7.40} = 3.98 \times 10^{-8} \text{ (mol dm}^{-3}) \checkmark$ $K_a = \frac{[H^+] [HCO_3^-]}{[H_2CO_3]} = \frac{3.98 \times 10^{-8} \times 10.5}{1}$ OR $K_a = 4.18 \times 10^{-7} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 3.98×10^{-8} up to calculator value of $3.981071706 \times 10^{-8}$ correctly rounded
			In blood at pH 7.20, $[H^+] = 10^{-pH} = 10^{-7.20} = 6.31 \times 10^{-8} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 6.31×10^{-8} up to calculator value of $6.309573445 \times 10^{-8}$ correctly rounded
		$\frac{[HCO_3^-]}{[H_2CO_3]} = \frac{K_a}{[H^+]} \text{ OR } \frac{4.18 \times 10^{-7}}{6.31 \times 10^{-8}} \checkmark$ $= \frac{6.6}{1} \text{ OR } 6.6 : 1 \checkmark \text{ (up to calc. value, see below)}$	5	Common errors $0.15:1 \checkmark \checkmark \checkmark \checkmark Inverse \ ratio \ of \ H_2CO_3: \ HCO_3^-$ $16.6:1 \ OR \ 0.06:1 \checkmark \checkmark \checkmark \checkmark 10.5/1 \ swapped \ over \ in \ 2nd$	
			ALLOW any answer with > 1 decimal place that rounds back to 6.62 OR 6.63		mark giving K_a value of 3.79 x 10 ⁻⁹ ALLOW answer with > 1 decimal place that rounds back to 16.64 OR 16.65
			ALTERNATIVE approach for concentrations using	Henderso	n–Hasselbalch equation <i>(5 marks)</i>
			pH = p K_a + log $\frac{[HCO_3^-]}{[H_2CO_3]}$ OR $-log K_a + log \frac{[HCO_3^-]}{[H_2CO_3]}$ \checkmark		
			$pK_a = pH - log \frac{[HCO_3^-]}{[H_2CO_3]} = 7.40 - log \frac{10.5}{1} = 6.38 \checkmark (s)$	subsumes	previous mark) Calculator: 6.378810701

Question	Expected answers	Marks	Additional guidance
	At pH = 7.20, $\log \frac{[HCO_3^-]}{[H_2CO_3]} = pH - pK_a = 7.20 - 6.38$	= 0.82 ✓ (subsumes previous mark)
	$\frac{[HCO_3^-]}{[H_2CO_3]} = 10^{0.82} \checkmark = \frac{6.6}{1} \text{ OR } 6.6:1 \checkmark$		
	Total	22	

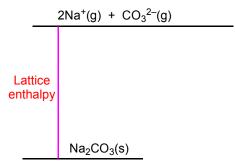
Qu	Question		Expected answers	Marks	Additional guidance
5	а	i	Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓		circuit shown must be complete, i.e. must be capable of working salt bridge must be labelled. electrodes AND salt bridge must dip into/touch both solutions
			Fe ³⁺ /Fe ²⁺ half-cell with Pt electrode AND 1 mol dm ⁻³ /1 M Fe ²⁺ and 1 mol dm ⁻³ /1 M Fe ³⁺ ✓ Ni electrode in (1 mol dm ⁻³) Ni ²⁺ half-cell ✓	3	ALLOW cells drawn either way around ALLOW Fe ³⁺ /Fe ²⁺ 1 mol dm ⁻³ / 1 M /1 molar ALLOW BOTH solutions same concentration/equimolar DO NOT ALLOW 1 mol OR 1 dm ⁻³ IGNORE any temperature or pressure, even if wrong
		ii	1.02 V AND − sign ✓ 0.49 V AND + sign ✓	2	IGNORE any sign BEFORE cell potential ALLOW 1 mark for correct values AND signs BOTH the wrong way round: i.e.1.02 V AND + sign AND 0.49 V AND - sign
	b		Cell A (based on 1 and 2) Ni + 2Fe ³⁺ → Ni ²⁺ + 2Fe ²⁺ ✓ Cell B (based on 1 and 3) 2Cr + 3Ni ²⁺ → 2Cr ³⁺ + 3Ni ✓ concentrations (of the ions in each cell) change OR concentrations are not standard ✓	3	In equations, ALLOW equilibrium sign, ⇒ instead of → Equations are required for the first two marking points ALLOW Ni → Ni²+ + 2e⁻ ALLOW Ni²+ + 2e⁻ → Ni ALLOW any statement that a concentration is changing IGNORE 'non-standard conditions'
	С	i	$MH + OH^- \longrightarrow M + H_2O + e^- \checkmark$	1	ALLOW MH \longrightarrow M + H ⁺ + e ⁻
		ii	adsorbed (on a solid) OR on the surface (of a solid) OR as a liquid under pressure ✓ Total	1 10	DO NOT ALLOW adsorbed into the solid CON DO NOT ALLOW just 'as a liquid'

Que	estion	Expected answers		Marks	Additional guidance
6	а	$\Delta G = \Delta H - T\Delta S \checkmark$		1	
	b	process	gn		
		$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$	_		
		$NaCl(s) + (aq) \longrightarrow NaCl(aq)$	+		
		$H_2O(I) \longrightarrow H_2O(s)$	-		
		$Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2$	₂ (g) +		
		$CuSO_4(s) + 5H_2O(l) \longrightarrow CuSO_4 \cdot 5H_2O(s)$	s) –		
		All 5 correct \longrightarrow 2 marks \checkmark \checkmark 4 correct \longrightarrow 1 mark \checkmark		2	
	С	$\Delta S = (4 \times 211 + 6 \times 189) - (4 \times 192 + 5 \times 192 + 192$	< 205) ✓		
		$\Delta S = (+)185 (J K^{-1} mol^{-1}) \checkmark$		2	ALLOW ECF from working line above from a single error
					COMMON ERRORS (+)3 (J K ⁻¹ mol ⁻¹) \checkmark (211 + 189) – (192 + 205) – 185 (J K ⁻¹ mol ⁻¹) \checkmark incorrect sign
	d	With increasing temperature $T\Delta S$ is more negative OR $T\Delta S$ de	ereases		ANNOTATIONS MUST BE USED
		OR $-T\Delta S$ increases OR $ T\Delta S $ inc			
		OR magnitude of $T\Delta S$ increases	✓		DO NOT ALLOW just <i>T</i> ∆ <i>S</i> increases
		At high temperature $T\Delta S$ is more negative OR	e that ∆ <i>H</i>		DO NOT ALLOW At high T , ' $-T\Delta S$ is greater (than ΔH)'
		at high T , $T\Delta S$ outweighs/is more signific	ant than ∆ <i>H</i>		APPROACH BASED ON TOTAL ENTROPY:
		OR			With increasing temperature $\Delta H/T$ is less negative OR $\Delta H/T$ increases
		At low temperature $\Delta H - T\Delta S < 0$ OR		2	OR $-\Delta H/T$ decreases OR $ \Delta H/T $ decreases
		At high temperature $\Delta H - T\Delta S > 0$		_	OR magnitude of ∆H/T decreases ✓
		The magnetic field of			ALLOW at high temperatures
					$\Delta S - \Delta H/T < 0$

Question	Expected answers	Marks	Additional guidance
			OR ΔS is more negative than $\Delta H/T$ OR ΔS outweighs/ is more significant than $\Delta H/T$
6 e	(For feasibility,) $\Delta G < 0$ OR $\Delta G = 0$ OR $0 < \Delta H - T\Delta S$ OR $0 = \Delta H - T\Delta S$ OR $0 = 493 - T \times 543/1000 \checkmark$ $T = \frac{\Delta H}{\Delta S} = 493 \times 1000/543 \checkmark$ $= 908 \text{ K} \checkmark$ Units of temperature are required	3	ALLOW total entropy statement: ΔS(total) = 0 OR ΔS(total) > 0 ALLOW 0 = 493 - T × 543 ✓ i.e. This mark focuses on ΔG OR ΔH - TΔS being = 0 and NOT on conversion of ΔS value into kJ K ⁻¹ mol ⁻¹ Mark temperature given on answer line ALLOW 3 SF up to calculator value 907.9189687 correctly rounded, e.g. 907.9, 907.92 ALLOW temperature in °C: i.e. ALLOW by subtraction of 273: 635, 634.9, 634.91 °C ALLOW by subtraction of 273.15: 635, 634.8, 634.77 °C up to calculator value correctly rounded ALLOW C for °C; °K for K IF ΔS has not been converted to kJ, DO NOT ALLOW 2nd mark BUT ALLOW calculated answer = 493/543 = 0.91 K (calculator: 0.907918968) ALLOW 2 marks only for absence of one of the statements required for 1st marking point
	Total	10	

Questi	ion	Expected answers		Additional guidance	
7 a		FIRST, CHECK THE ANSWER ON ANSWER LINE IF numerical value = 7.81×10^{-2} OR 0.0781 AND $[N_2O_4] = 0.2(00 \text{ mol dm}^{-3}$ AND $[NO_2] = 1.6(0)$,		IF there is an alternative answer, check to see if there is any ECF credit possible using working below	
		award 4 calculation marks and check for the mark for correct units		ANNOTATIONS MUST BE USED	
		Equilibrium amount of N_2O_4 0.400 mol N_2O_4 \checkmark			
		Equilibrium concentrations $[N_2O_4] = 0.200 \text{ mol dm}^{-3} \text{ AND } [NO_2] = 1.60 \text{ mol dm}^{-3} \checkmark$		ALLOW ECF for equilibrium amounts ÷ 2	
		K_c expression $K_c = \frac{[N_2O_4]}{[NO_2]^2} \text{ (Square brackets essential)} \mathbf{OR} \frac{0.200}{1.60^2} \checkmark$			
		Calculation = $7.81 \times 10^{-2} \checkmark$		ALLOW 3 SF up to calculator value of 0.078125 correctly rounded ALLOW ECF using calculated equilibrium concentrations	
		Units dm³ mol ⁻¹ ✓	5	For units, ALLOW mol^{-1} dm^3 ALLOW ECF from incorrect K_c expression	
		Common errors for 4 calculation marks – Remember there is another mark for units			
		0.03906 $\sqrt{\sqrt{4}}$ + units no con	nversion i	N_2O_4] = 0.8 AND [NO ₂] = 3.2 of both moles to concentration	
		0.01953 $\checkmark \checkmark \checkmark + \text{units}$ no con 0.3125 $\checkmark \checkmark \checkmark + \text{units}$ no con 12.8 $\checkmark \checkmark \checkmark + \text{units}$: mol dm ⁻³ K_c expression 0.125 $\checkmark \checkmark \checkmark + \text{units}$: none [NOc]	nversion	of NO ₂ moles to concentration	
		$0.3125 \qquad \forall \forall \forall + \text{units}$	moles of	N ₂ O ₄ taken as 3.2/2	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ภา upside instead o	down f [NO ₂] ² ' No units' MUST be stated	
		0.15625 MARK BY ECF as there are many different rou			

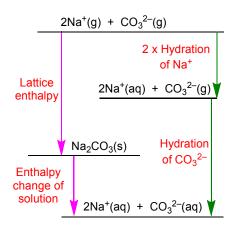
Question	Expected answers	Marks	Additional guidance
7 b	Each marking point is independent Effect on K_c K_c does not change (with pressure) \checkmark		ALLOW K_c only changes with temperature IGNORE K_c changes with temperature
	Comparison of conc terms after increase in pressure $[NO_2]^2$ increases more than $[N_2O_4]$ OR concentration (term) on bottom (of K_c) increases more that concentration (term) on top (of K_c) \checkmark		ALLOW $\frac{[N_2O_4]}{[NO_2]^2} < K_c$ OR $\frac{[N_2O_4]}{[NO_2]^2}$ decreases IGNORE K_c decreases
	Changes in concentrations linked to K_c (amount /concentration of) N_2O_4 increases AND (amount /concentration of) NO_2 decreases AND to maintain/restore K_c \checkmark	3	ALLOW top of K_c expression increases and bottom decreases until K_c is reached ALLOW equilibrium shifts to right to maintain/restore K_c IGNORE just 'restores equilibrium' K_c IS REQUIRED IGNORE just 'equilibrium shifts to right IGNORE le Chatelier response: 'equilibrium shifts to right' because there are fewer moles of gas on right-hand side
	Total	8	

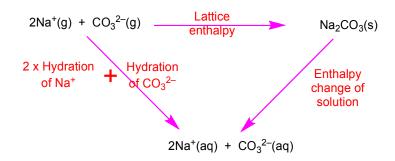

Qu	esti	on	Expected answers	Marks	Additional guidance
8	а		Fe ₂ O ₃ + 6H ⁺ → 2Fe ³⁺ + 3H ₂ O ✓	1	ALLOW $Fe_2O_3 + 6HCI \longrightarrow 2FeCI_3 + 3H_2O$ OR $Fe_2O_3 + 6HCI \longrightarrow 2Fe^{3+} + 6CI^- + 3H_2O$ ALLOW correct multiples IGNORE state symbols DO NOT ALLOW Fe_2CI_6 as a product
	b		$Sn^{2+} + 2Fe^{3+} \longrightarrow Sn^{4+} + 2Fe^{2+} \checkmark$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O \checkmark$	2	IGNORE state symbols ALLOW overall equations: $SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$ $6FeCl_2 + K_2Cr_2O_7 + 14HCl \rightarrow 6FeCl_3 + 2CrCl_3 + 2KCl + 7H_2O$ ALLOW correct multiples

Qu	esti	ion	Expected answers	Marks	Additional guidance	
8	С		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 54.6%, award 5 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below	
			Amount Fe ²⁺ in 250 cm ³ solution – 3 marks amount Cr ₂ O ₇ ²⁻ used = $0.0200 \times \frac{26.5}{1000}$ = 5.30×10^{-4} (mol) \checkmark amount Fe ²⁺ = $6 \times 5.30 \times 10^{-4}$ = 3.18×10^{-3} mol \checkmark amount Fe ²⁺ in original 250 cm ³ = $10 \times 3.18 \times 10^{-3}$ = 3.18×10^{-2} (mol) \checkmark		Working must be to at least 3 SF throughout BUT ignore trailing zeroes, <i>i.e.</i> for 0.490 allow 0.49 ALLOW ECF from different Fe ²⁺ ratio in equation from 8(b) BUT still ALLOW 6: 1 even from different ratio in equation If no equation use actual 6: 1 ratio DO NOT AWARD 'ratio mark' at all for use of 1: 1 ratio – makes problem easier ECF 10 × answer above	
			% Fe in ore – 2 marks mass of Fe in ore = 55.8 × 3.18 × 10 ⁻² g = 1.77444 g ✓		IF answer above has not been used AND × 55.8, DO NOT ALLOW this mark but do ALLOW final % IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks	
			percentage Fe in ore = $\frac{1.77444}{3.25}$ × 100 = 54.6% ✓	5	ECF \frac{\text{answer above}}{3.25} \times 100 ALLOW 54.5% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6	
					COMMON ERRORS 5.46	

Qu	Question		Expected answers	Marks	Additional guidance
8	d		E^{\bullet} for MnO ₄ ⁻ is more positive/greater than Cl ₂ OR E^{\bullet} for Cr ₂ O ₇ ²⁻ is less positive/smaller than Cl ₂ \checkmark MnO ₄ ⁻ reacts with Cl ⁻ OR HCl (forming Cl ₂ gas) OR Cr ₂ O ₇ ²⁻ does not react with Cl ⁻ ions \checkmark	2	ORA: E^{\oplus} for Cl_2 is less positive/smaller than MnO_4^- OR E^{\oplus} for Cl_2 is more positive/greater than $Cr_2O_7^{2-}$
			Total	10	

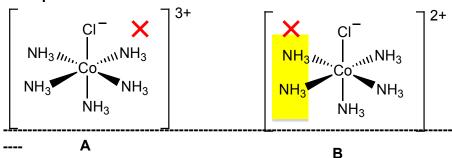
APPENDIX 1


MARK 1


MARK 2

MARK 3

A simple energy cycle can be awarded 2 marks only



F325	Mark Scheme	Januar _\	<i>2</i> 012

Mark 1 All species, state symbols and labels Mark 2 Arrows added in correct directions

APPENDIX 2

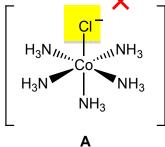
Example 1

CI - NH₃ - NH₃ CI - C

No complex ions are correct

A is wrong because a wrong ligand has been attached. This would have been wrong even if CI had been attached so the CI charge is ignored at this stage

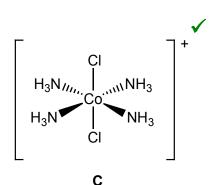
B has connectivity **and** Cl⁻ errors


C and D have CI errors

In **B**, either connectivity **OR** Cl⁻ could have been penalised Choose which to penalise based on maximising identification of errors

If Cl⁻ had been penalised in **B**, then **C** would have been marked correctly by **ECF**.

But the candidate has clearly made 2 mistakes across **B** and **C** so NH₃ connectivity had been penalised in **B**


Example 2

$$\begin{bmatrix} CI^{-} \\ H_3N_{IIII} \\ H_3N \end{bmatrix} NH_3 NH_3$$

$$NH_3$$

$$NH_3$$

D

C and **D** are correct and they have been marked correct

A is wrong because a wrong ligand has been attached. This would have been wrong even if CI had been attached so the CI charge is ignored at this stage

In **B**, the only error is Cl⁻ **A** also had Cl⁻but the charge had been ignored as Cl was incorrect anyway

B is therefore marked wrong

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

