

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2008

3890-2/7890-2/MS/R/08

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This report on the Examination provides information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Reports should be read in conjunction with the published question papers and mark schemes for the Examination.

OCR will not enter into any discussion or correspondence in connection with this Report.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

1	(i)	<i>n</i> = -2	B1
	(ii)	<i>n</i> = 3	B1 1
	(iii)		M1 $\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or
			$4 \times \sqrt{4}$ with brackets correct if used
		$n = \frac{3}{2}$	A1 2
2	(i)		$\mathbf{M1} \qquad y = (x \pm 2)^2$
2	(1)	$y = (x-2)^2$	$ \begin{array}{c} \mathbf{A1} \\ 2 \end{array} $
	(ii)	$y = -(x^3 - 4)$	B1 oe
3		$\sqrt{2 \times 100} = 10\sqrt{2}$	B1 1
	(ii)	$\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$	B1
	(iii)	$10\sqrt{2} - 3\sqrt{2} = 7\sqrt{2}$	M1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$ A1 2
4		$y = x^{\frac{1}{2}}$	
		$2y^2 - 7y + 3 = 0$	M1* Use a substitution to obtain a quadratic or
		(2y-1)(y-3) = 0	factorise into 2 brackets each containing $x^{\frac{1}{2}}$ M1depCorrect method to solve a quadratic
		$y = \frac{1}{2}, y = 3$	A1
		-	M1 Attempt to square to obtain x
		$x = \frac{1}{4}, x = 9$	A1
			SR If first M1 not gained and 3 and ½ given as final answers, award B1 5

4721 Core Mathematics 1

5		M1	Attempt to differentiate
		A1	$kx^{-\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$	A1	
	$=4\left(\frac{1}{\sqrt{9}}\right)+1$	M1	Correct substitution of $x = 9$ into their
$\frac{\mathrm{d}y}{\mathrm{d}x}$	$=\frac{7}{3}$	A1	$\frac{7}{3}$ only
ux		5	5
6 (i)	(x-5)(x+2)(x+5)	B1	$x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$
	$=(x^2-3x-10)(x+5)$	M1	seen Attempt to multiply a quadratic by a linear
	$= x^3 + 2x^2 - 25x - 50$	A1	factor
—————— (ii)		3	
	-5 -50		
	Ţ	B1 B1√ B1	+ve cubic with 3 roots (not 3 line segments) (0, -50) labelled or indicated on y-axis (-5, 0), (-2, 0), (5, 0) labelled or indicated
		3	on <i>x</i> -axis and no other <i>x</i> - intercepts
7 (i)	8 < 3x - 2 < 11	M1	2 equations or inequalities both dealing with $all 2$ torms, resulting in $a < back b$
	10 < 3x < 13	A1	all 3 terms resulting in $a < kx < b$ 10 and 13 seen
	$\frac{10}{3} < x < \frac{13}{3}$	A1	
		3	
(ii)	$x(x+2) \ge 0$	<u>M1</u>	Correct method to solve a quadratic
		A1 M1	0, -2 Correct method to solve inequality
	$x \ge 0, x \le -2$	A1 4	

8 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$	B1	One term correct
		B 1	Fully correct
		2	
(ii)	$3x^2 - 2kx + 1 = 0$ when $x = 1$	M1	their $\frac{dy}{dx} = 0$ soi
	3 - 2k + 1 = 0	M1	$x = 1$ substituted into their $\frac{dy}{dx} = 0$
	<i>k</i> = 2	A1√ 3	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 4$	M1	Substitutes $x = 1$ into their $\frac{d^2 y}{dx^2}$ and looks at sign
	When $x = 1$, $\frac{d^2 y}{dr^2} > 0$: min pt	A1	States minimum CWO
	ux	2	
(iv)	$3x^2 - 4x + 1 = 0$	M1	their $\frac{dy}{dx} = 0$
	(3x-1)(x-1) = 0	M1	correct method to solve 3-term quadratic
	$x = \frac{1}{3}, x = 1$		
	$x = \frac{1}{3}$	A1	WWW at any stage
	5	3	

9 ((i)		B1	$(x-2)^2$ and $(y-1)^2$ seen
) ((1)	$(x-2)^2 + (y-1)^2 = 100$	B1	$(x \pm 2)^2 + (y \pm 1)^2 = 100$
		$x^2 + y^2 - 4x - 2y - 95 = 0$	B1	correct form
			3	
((ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
		$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in <i>k</i> (or <i>y</i>) obtained
		$k = 1 + \sqrt{91}$	A1	cao
	<u></u>		3	
((iii)			γ
		$=\sqrt{(23)^2 + (1-9)^2}$	M1	Uses $(x_2 - x_1)^2 + (y_2 - y_1)^2$
		$=\sqrt{25+64}$	A1	
		$=\sqrt{89}$		
		$\sqrt{89} < 10$ so point is inside	B 1	compares their distance with 10 and makes consistent conclusion
			3	
((iv)	gradient of radius $=\frac{9-1}{8-2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$
		$=\frac{4}{3}$	A1	oe
		gradient of tangent $= -\frac{3}{4}$	B1√	oe
		$y-9 = -\frac{3}{4}(x-8)$	M1	correct equation of straight line through (8, 9),
		$y-9 = -\frac{3}{4}(x-8)$	M1	correct equation of straight line through (8, 9), any non-zero gradient
		$y-9 = -\frac{3}{4}(x-8)$ $y-9 = -\frac{3}{4}x+6$	M1	
		7	M1 A1	
		$y-9 = -\frac{3}{4}x + 6$		any non-zero gradient

10 (i)	$2(x^2-3x)+11$	B 1	<i>p</i> = 2
	$=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	B 1	$q = -\frac{3}{2}$
	$=2\left(x-\frac{3}{2}\right)^{2}+\frac{13}{2}$	M1	$r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
		A1	$r = \frac{13}{2}$
		4	
(ii)	$\left(\frac{3}{2},\frac{13}{2}\right)$	В1√	
		B1√ 2	
(iii)		M1	uses $b^2 - 4ac$
	= -52	A1 2	
(iv)	0 real roots	B1 1	cao
(v)	$2x^2 - 6x + 11 = 14 - 7x$	M1*	substitute for x/y or attempt to get an equation in 1 variable only
	$2x^2 + x - 3 = 0$	A1	obtain correct 3 term quadratic
	(2x+3)(x-1) = 0	M1d	ep correct method to solve 3 term quadratic
	$x = -\frac{3}{2}, x = 1$	A1	
	$y = \frac{49}{2}, y = 7$	A1	
		5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1

		PART (a	a) ANS	WERED	ON INSER	Γ			
4	(a)	Stage	State	Action	Working	Suboptimal			
			0	0		maximum			
		2	0	0	5 4	5 4	B1	5, 4, 4 identified as suboptimal	
		2	2	0	4	4		maxima for stage 2	
			0	0	3+5=8	4	M1	Transferring suboptimal maxima	
			0	1	3+3=8 4+4=8	8	A 1	from stage 2 to stage 1 correctly	
		1	1	1	2+ 4 = 6	0	A1	Correct additions or totals seen for all rows in stage 1	
		_	_	2	4+4=8	8	B1	8, 8, 10 identified as suboptimal	
			2	1	6+ 4 = 10	10		maxima for stage 1 (cao)	
				2	5+ 4 = 9		M1	Transferring suboptimal maxima	
				0	4+8=12		. 1	from stage 1 to stage 0 correctly	
		0	0	1	5+8=13	13	A1	Correct additions or totals seen for all rows in stage 0	
				2	2+10=12		B1	13	
		Length o	of longe	est path =	= 13		B1	Correct route or in reverse	[8]
					2;2) – (3;0)			(including (0; 0) and (3; 0))	
	(b)(i)				D(3)			Condone directions missing	
				\rightarrow			1.41	Must be activity on arc	
		A(4)		E(4)	J(5)		M1	A reasonable attempt, arcs should be labelled	
			(5)	F(2)	$\sim K$	(4)			
			•	$\leftarrow i$	$\rightarrow \rightarrow$	\rightarrow	A1	Any correct form	
			$G(\cdot$					Condone extra dummies	
		C(2)	H	(6)	L(4)			provided precedences are not	
				\rightarrow	\checkmark			violated, accept networks with multiple end vertices	
				I (5)				Arc weights may be shown but	[2]
				1 (0)				are not necessary	[-]
	(ii)					_		Follow through their network if	
			۶	4 5	7 8			possible	
						<		Values at vertices may be	
								recorded using any consistent notation	
		0 0		515	819	3 13	M1	noution	
1								Forward pass with no more than	
1			\backslash	\rightarrow	<		A1	1	
			\mathbf{i}		\searrow /		N / 1	Forward pass correct	
			Ì	<u> </u>			M1	Backward pass with no more than	
			ł	2 3	9 9			one independent error (follow	
1							A1	through their 13)	
1			Minim	um proje	ect completio	on time $= 13$ days	B1	Backward pass correct	
1						activities B, G, L		13 stated, cao	[6]
┣—	(;;:)			_				<i>B</i> , <i>G</i> , <i>L</i> correct answer only	┣──┤
	(iii)		• E				B1	Not follow through A directed dummy from end of <i>G</i>	
1				F				to start of K	
1			-		K		B1	A directed dummy from end of <i>G</i>	
			0	\times				to start of L	[2]
1				H I				Condone extra dummies provided	
			Ī					precedences are not violated	
				7	r			Watch out for K following I	l = 18
									10 - 10

PART (a) ANSWERED ON INSERT

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2008 Examination Series

Unit Threshold Marks

78	92	Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	63	55	47	39	32	0
4721	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	29	0
4722	UMS	100	80	70	60	50	40	0
4702	Raw	72	55	47	40	33	26	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	56	49	43	37	31	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
4720	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	41	35	29	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	61	53	45	37	29	0
4720	UMS	100	80	70	60	50	40	0
4720	Raw	72	56	47	38	29	20	0
4729	UMS	100	80	70	60	50	40	0
4730	Raw	72	56	47	38	29	21	0
4730	UMS	100	80	70	60	50	40	0
4724	Raw	72	59	50	42	34	26	0
4731	UMS	100	80	70	60	50	40	0
4732	Raw	72	60	52	45	38	31	0
4732	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
4733	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	28	0
4734	UMS	100	80	70	60	50	40	0
1725	Raw	72	56	49	42	35	28	0
4735	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	26	0
4730	UMS	100	80	70	60	50	40	0
4797	Raw	72	61	54	47	40	34	0
4737	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	Е	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	Е	U	Total Number of Candidates
3890	33.3	50.4	65.4	77.0	86.6	100	14679
3891	100	100	100	100	100	100	1
3892	57.2	76.7	88.2	94.1	97.6	100	1647
7890	45.4	67.3	82.4	92.1	97.8	100	10512
7891	33.3	66.7	100	100	100	100	6
7892	56.5	77.9	90.0	95.4	98.2	100	1660

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

