4722 Core Mathematics 2

1 (i) $\int (x^3 + 8x - 5) dx = \frac{1}{4}x^4 + 4x^2 - 5x + c$	M1		Attempt integration – increase in power for at least 2 terms
•	A1		Obtain at least 2 correct terms
	A1	3	Obtain $\frac{1}{4}x^4 + 4x^2 - 5x + c$ (and no integral sign or dx)
(ii) $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{3}{2}} + c$	B1		State or imply $\sqrt{x} = x^{\frac{1}{2}}$
	M1		Obtain $kx^{\frac{3}{2}}$
	A1	3	Obtain $8x^{\frac{3}{2}} + c$ (and no integral sign or dx)
		6	(only penalise lack of $+ c$, or integral sign or dx once)
2 (i) $140^{\circ} = 140 \times \frac{\pi}{180}$	M1		Attempt to convert 140° to radians
$=\frac{7}{9}\pi$	A1	2	Obtain $\frac{7}{9}\pi$, or exact equiv
(ii) arc $AB = 7 \times \frac{7}{9} \pi$	M1		Attempt arc length using $r\theta$ or equiv method
= 17.1	A1 $$		Obtain 17.1, $\frac{49}{9}\pi$ or unsimplified equiv
chord $AB = 2 \times 7 \sin \frac{7}{18} \pi = 13.2$	M1		Attempt chord using trig. or cosine or sine rules
hence perimeter = 30.3 cm	A1	4	Obtain 30.3, or answer that rounds to this
		6	
3 (i) $u_1 = 23^{1/3}$ $u_2 = 22^{2/3}$, $u_3 = 22$	B1 B1	2	State $u_1 = 23^{1/3}$ State $u_2 = 22^{2/3}$ and $u_3 = 22$
(ii) $24 - \frac{2k}{3} = 0$ k = 36	M1 A1	2	Equate u_k to 0 Obtain 36
(iii) $S_{20} = \frac{20}{2} \left(2 \times 23 \frac{1}{3} + 19 \times \frac{-2}{3} \right)$	M1		Attempt sum of AP with $n = 20$
= 340	A1 A1	3	Correct unsimplified S ₂₀ Obtain 340
		7	
4 $\int_{-2}^{2} (x^4 + 3) dx = \left[\frac{1}{5}x^5 + 3x\right]_{-2}^{2}$	M1		Attempt integration – increase of power for at least 1 term
	A1		Obtain correct $\frac{1}{5}x^5 + 3x$
$= \left(\frac{32}{5} + 6\right) - \left(\frac{-32}{5} - 6\right)$	M1		Use limits (any two of -2, 0, 2), correct order/subtraction
$= 24 \frac{4}{5}$	A1		Obtain $24\frac{4}{5}$
area of rectangle = 19×4	B1		State or imply correct area of rectangle
hence shaded area = $76 - 24\frac{4}{5}$	MI	-	Attempt correct method for shaded area
$=51\frac{1}{5}$	AI	7	Obtain $51\frac{1}{5}$ aer such as 51.2 , $\frac{200}{5}$
Area = $19 - (x^4 + 3)$ = $16 - x^4$	M1 A1		Attempt subtraction, either order Obtain $16 - x^4$ (not from $x^4 + 3 = 19$)
$\int_{-2}^{2} \left(16 - x^{4}\right) dx = \left[16x - \frac{1}{5}x^{5}\right]_{-2}^{2}$	M1		Attempt integration
-2	Al		Obtain $\pm \left(16x - \frac{1}{5}x^5\right)$

47	22 Mark S	cheme	January 2009
	$=(32-\frac{32}{5})-(-32-\frac{-32}{5})$	M1	Use limits – correct order / subtraction
	$=51\frac{1}{5}$	A1	Obtain $\pm 51\frac{1}{5}$
	5	A1	Obtain $51\frac{1}{5}$ only, no wrong working
		7	
5 (i)	$\frac{TA}{\sin 107} = \frac{50}{\sin 3}$	M1	Attempt use of correct sine rule to find <i>TA</i> , or equiv
	TA = 914 m	A1 2	Obtain 914, or better
(ii)	$TC = \sqrt{914^2 + 150^2 - 2 \times 914 \times 150 \times \cos 70}$	M1	Attempt use of correct cosine rule, or equive to find TC
(11)		A1√	Correct unsimplified expression for <i>TC</i> , following their (i)
	= 874 m	A1 3	Obtain 874, or better
(iii)	dist from $A = 914 \text{ x } \cos 70 = 313 \text{ m}$	M1	Attempt to locate point of closest approach
0.7	beyond C, hence 874 m is shortest dist	A1 2	Convincing argument that the point is beyond <i>C</i> ,
OR	nerp dist = $914 \times \sin 70 = 859$ m		or obtain 859, or better SR B1 for 874 stated with no method shown
		7	
6 (i)	$S_{\infty} = \frac{20}{1-0.9}$	M1	Attempt use of $S_{\infty} = \frac{a}{1-r}$
	= 200	A1 2	Obtain 200
	20(1 - 0.030)		
(ii)	$S_{30} = \frac{20(1-0.9^{-1})}{1-0.9}$	M1	Attempt use of correct sum formula for a GP, with $n = 30$
	= 192	A1 2	Obtain 192, or better
(iii)	$20 \times 0.9^{p-1} < 0.4$		Correct $20 \times 0.9^{p-1}$ seen or implied
(III)	$0.9^{p-1} < 0.02$	DI	concer 20×0.9 seen of implied
	$(p-1)\log 0.9 < \log 0.02$	M1	Link to 0.4, rearrange to $0.9^k = c$ (or >, <), introduce
	$p-1 > \frac{\log 0.02}{\log 0.9}$		logarithms, and drop power, or equiv correct method
	p > 38.1	M1	Correct method for solving their (in)equation
	hence $p = 39$	AI 4	State 39 (not inequality), no wrong working seen
		8	
7 (i)	$6k^2a^2 = 24$	M1*	Obtain at least two of 6, k^2 , a^2
	$k^2 a^2 = 4$	M1dep*	Equate $6k^m a^n$ to 24
	ak = 2 A.G.	A1 3	Show $ak = 2$ convincingly – no errors allowed
(ii)	$4k^3a = 128$	B1	State or imply coeff of x is $4k^3a$
	$4k^3\left(\frac{2}{k}\right) = 128$	M1	Equate to 128 and attempt to eliminate <i>a</i> or <i>k</i>
	$k^2 = 16$	A1	Obtain $k = 4$
	$k = 4$, $a = \frac{1}{2}$	A1 4	Obtain $a = \frac{1}{2}$
			SR B1 for $k = \pm 4$, $a = \pm \frac{1}{2}$
(:::)	$4 \times 4 \times (1)^3 = 2$	••••••	Attempt $A \times k \times a^3$ following their a and k (allow if at ill in
(Ш)	$+++(\overline{2}) = 2$	1111	Attempt $4 \times k \times a$, following then <i>a</i> and <i>k</i> (abow if still in terms of <i>a</i> , <i>k</i>)
		A1 2	Obtain 2 (allow $2x^3$)
		9	

4722

Mark Scheme

January 2009

8 (a)(i) $\log_a xy = p + q$	B1	1	State $p + q$ cwo			
(ii) $\log_{a} \left(\frac{a^2 x^3}{y} \right) = 2 + 3p - q$	M1		Use $\log a^b = b \log a$ correctly at least once			
u -	M1		Use $\log \frac{a}{b} = \log a - \log b$ correctly			
	A1	3	Obtain $2 + 3p - q$			
(b)(i) $\log_{10} \frac{x^2 - 10}{x}$	B1	1	State $\log_{10} \frac{x^2 - 10}{x}$ (with or without base 10)			
(ii) $\log_{10} \frac{x^2 - 10}{x} = \log_{10} 9$	B1		State or imply that $2 \log_{10} 3 = \log_{10} 3^2$			
$\frac{x^2 - 10}{x} = 9$	M1		Attempt correct method to remove logs			
$x^2 - 9x - 10 = 0$	A1		Obtain correct $x^2 - 9x - 10 = 0$ aef, no fractions			
(x-10)(x+1)=0	M1	_	Attempt to solve three term quadratic			
x = 10	Al	5	Obtain $x = 10$ only			
10						
9 (i) $f(1) = 1 - 1 - 3 + 3 = 0$ A.G.	B1		Confirm $f(1) = 0$, or division with no remainder shown, or			
$f(x) = (x - 1)(x^2 - 2)$	M1		matching coeffs with $R = 0$			
I(x) = (x - 1)(x - 3)	A1		Obtain $x^2 + k$			
	A1		Obtain completely correct quotient (allow $x^2 + 0x - 3$)			
$x^2 = 3$	M1		Attempt to solve $x^2 = 3$			
$x = \pm \sqrt{3}$	A1	6	Obtain $x = \pm \sqrt{3}$ only			
(ii) $\tan x = 1, \sqrt{3}, -\sqrt{3}$	B1√		State or imply $\tan x = 1$ or $\tan x = $ at least one of their roots from (i)			
$\tan x = \sqrt{3} \Longrightarrow x = \pi/3$, $4\pi/3$	M1		Attempt to solve $\tan x = k$ at least once			
$\tan x = -\sqrt{3} \Longrightarrow x = \frac{2\pi}{3}, \frac{5\pi}{3}$	A1		Obtain at least 2 of $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (allow degs/decimals)			
$\tan x = 1 \Longrightarrow x = \frac{\pi}{4}, \frac{5\pi}{4}$	A1		Obtain all 4 of $\pi/3$, $2\pi/3$, $4\pi/3$, $5\pi/3$ (exact radians only)			
	B1	(Obtain $\pi/4$ (allow degs / decimals)			
	BI	0	SR answer only is B1 per root, max of B4 if degs / decimals			
	1	2				
	1	4				

4723 Core Mathematics 3

4723

1 (i)	Obtain integral of form ke^{-2x} Obtain $-4e^{-2x}$	M1 A1		any constant <i>k</i> different from 8 or (unsimplified) equiv
(;;)	Obtain integral of form $k(Ax + 5)^7$	M1		ony constant k
(II)	Obtain integral of form $k(4x+3)$			
	Obtain $\frac{1}{28}(4x+5)^2$	AI		in simplified form
	Include + c at least once	BI	5	in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4 + 4 \ln 6 + 2 \ln 8 + 4 \ln 10 + \ln 12)$	M1 A1		with coeffs 1, 4 and 2 present at least once any constant k
	Use value of k as $\frac{1}{2} \times 2$	A1		or unsimplified equiv
	Obtain 16.27	A1	4	or 16.3 or greater accuracy (16.27164)
(ii)	State 162.7 or 163	B1\	1 5	following their answer to (i), maybe rounded
3 (i)	Attempt use of identity for $\tan^2 \theta$	M1		using $\pm \sec^2 \theta \pm 1$; or equiv
	Replace $\frac{1}{\cos\theta}$ by $\sec\theta$	B1		
	Obtain $2(\sec^2 \theta - 1) - \sec \theta$	A1	3	or equiv
(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$	M1		as far as factorisation or substitution in correct formula
	Relate $\sec\theta$ to $\cos\theta$ and attempt at least	М1		may be implied
	Obtain 60° 131 8°	A1		allow 132 or greater accuracy
	Obtain 60°, 131.8°, 228.2°, 300°	Al	4	allow 132, 228 or greater accuracy; and no
				others between 0° and 360°
			7	
4 (i)	Obtain derivative of form $kx(4x^2+1)^4$	M1		any constant k
	Obtain $40x(4x^2+1)^4$	A1		or (unsimplified) equiv
	State $x = 0$	A1v	3	and no other; following their derivative of form $kx(4x^2 + 1)^4$
(ii)	Attempt use of quotient rule	M1		or equiv
	Obtain $\frac{2x \ln x - x^2 \cdot \frac{1}{x}}{(\ln x)^2}$	A1		or equiv
	Equate to zero and attempt solution	M1		as far as solution involving e
	Obtain $e^{\frac{1}{2}}$	A1	4 7	or exact equiv; and no other; allow from ± (correct numerator of derivative)