Mark Scheme 4722 June 2007

1	(i) $u_2 = 12$ $u_3 = 9.6$, $u_4 = 7.68$ (or any exact equivs)	B1 B1√ 2	State $u_2 = 12$ Correct u_3 and u_4 from their u_2
	(ii) $S_{20} = \frac{15(1-0.8^{20})}{1-0.8}$ = 74.1	M1 A1 A1 3	Attempt use of $S_n = \frac{a(1-r^n)}{1-r}$, with $n = 20$ or 19 Obtain correct unsimplified expression Obtain 74.1 or better
	OK	M1	List all 20 terms of GP
		A2	Obtain 74.1
2	$\left(x + \frac{2}{x}\right)^4 = x^4 + 4x^3\left(\frac{2}{x}\right) + 6x^2\left(\frac{2}{x}\right)^2 + 4x\left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$	M1*	Attempt expansion, using powers of x and $^{2}/_{x}$ (or
		M1* A1dep* A1	the two terms in their bracket), to get at least 4 terms Use binomial coefficients of 1, 4, 6, 4, 1 Obtain two correct, simplified, terms Obtain a further one correct, simplified, term
	$= x^{4} + 8x^{2} + 24 + \frac{32}{x^{2}} + \frac{16}{x^{4}} \text{ (or equiv)}$	A1 5	Obtain a fully correct, simplified, expansion
	OR	M1* M1*	Attempt expansion using all four brackets Obtain expansion containing the correct 5 powers only (could be unsimplified powers eg x^3 . x^{-1})
		A1dep* A1 A1 5	Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
3	$\log 3^{(2x+1)} = \log 5^{200}$	M1	Introduce logarithms throughout
3	$log 3^{(2x+1)} = log 5^{200}$ (2x+1)log 3 = 200 log 5	M1 M1	Introduce logarithms throughout Drop power on at least one side
3	$\log 3^{(2x+1)} = \log 5^{200}$ $(2x+1)\log 3 = 200\log 5$	M1 M1 A1	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers)
3	$\log 3^{(2x+1)} = \log 5^{200}$ (2x+1)log3 = 200 log5 $2x + 1 = \frac{200 \log 5}{\log 3}$	M1 M1 A1 M1	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers) Attempt solution of linear equation
3	$log 3^{(2x+1)} = log 5^{200}$ (2x+1)log 3 = 200 log 5 $2x + 1 = \frac{200 \log 5}{\log 3}$ x = 146	M1 M1 A1 M1 A1 5	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers) Attempt solution of linear equation Obtain $x = 146$, or better
3 <i>OR</i>	$log 3^{(2x+1)} = log 5^{200}$ $(2x+1)log 3 = 200 log 5$ $2x + 1 = \frac{200 log 5}{log 3}$ $x = 146$ $(2x + 1) = log_3 5^{200}$ $2x + 1 = 200 log_3 5$	M1 M1 A1 M1 A1 5 M1 M1 A1 M1 A1 5	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers) Attempt solution of linear equation Obtain $x = 146$, or better Intoduce log ₃ on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better
3 OR 4	$\log 3^{(2x+1)} = \log 5^{200}$ $(2x+1)\log 3 = 200\log 5$ $2x + 1 = \frac{200\log 5}{\log 3}$ $x = 146$ $(2x+1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) $\operatorname{area} \approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$	M1 M1 A1 M1 A1 5 M1 M1 A1 5 M1 M1 A1	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers) Attempt solution of linear equation Obtain $x = 146$, or better Intoduce log ₃ on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv
3 OR 4	$\log 3^{(2x+1)} = \log 5^{200}$ $(2x+1)\log 3 = 200\log 5$ $2x + 1 = \frac{200\log 5}{\log 3}$ $x = 146$ $(2x+1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{\sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13}\right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94	M1 M1 A1 M1 A1 5 M1 M1 A1 5 M1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers) Attempt solution of linear equation Obtain $x = 146$, or better Intoduce log ₃ on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4)
3 OR 4	$\log 3^{(2x+1)} = \log 5^{200}$ $(2x+1)\log 3 = 200\log 5$ $2x + 1 = \frac{200\log 5}{\log 3}$ $x = 146$ $(2x+1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94 (ii) This is an underestimate as the tops of the trapezia are below the curve	M1 M1 A1 M1 A1 5 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers) Attempt solution of linear equation Obtain $x = 146$, or better Intoduce log ₃ on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt <i>y</i> -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2(\sqrt{7} + \sqrt{9} + \sqrt{11}) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4) State underestimate Correct statement or sketch

			I I		
5	(i)	$3(1-\sin^2\theta)=\sin\theta+1$	M1		Use $\cos^2 \theta = 1 - \sin^2 \theta$
	(ii)	$3 - 3\sin^2 \theta = \sin \theta + 1$ $3\sin^2 \theta + \sin \theta - 2 = 0$ $(3\sin \theta - 2)(\sin \theta + 1) = 0$	A1 M1	2	Show given equation correctly Attempt to solve quadratic equation in $\sin \theta$
		$\sin\theta = \frac{2}{3}$ or -1	A1		Both values of $\sin\theta$ correct
		$\theta = 42^{\circ}, 138^{\circ}, 270^{\circ}$	A1		Correct answer of 270°
			$\begin{vmatrix} A1 \\ A1 \\ \end{matrix}$	5	Correct answer of 42° For correct non-principal value answer following
				5	their first value of θ in the required range (any extra values for θ in required range is max 4/5)
					(radians is max 4/5) SR: answer only (or no supporting method) is B1 for 42°, B1 $$ for 138°, B1 for 270°
				7	
6	(a)	(i) $\int x^3 - 4x = \frac{1}{4}x^4 - 2x^2 + c$	M1		Expand and attempt integration
			A1 B1	3	Obtain $\frac{1}{4}x^4 - 2x^2$ (A0 if J or dx still present) + c (mark can be given in (b) if not gained here)
		(ii) $\left[\frac{1}{4}x^4 - 2x^2\right]_{1}^{6}$	M1		Use limits correctly in integration attempt (ie F(6)
		L 11			– F(1))
		$=(324-72) - (\frac{1}{4}-2)$ $= 253^{3}/_{4}$	A1	2	Obtain 253 ³ / ₄ (answer only is M0A0)
	(b)	$\int 6x^{-3} dx = -3x^{-2} + c$	B1		Use of $\frac{1}{x^3} = x^{-3}$
		,	M1		Obtain integral of the form kx^{-2}
			A1	3	Obtain correct $-3x^{-2}$ (+ c)
					in question)
				8	
7	(a)	$S_{70} = \frac{70}{2} \left\{ (2 \times 12) + (70 - 1)d \right\}$	M1		Attempt S_{70}
		$25(24 \pm 60d) = 12015$	A1 M1		Obtain correct unsimplified expression Equate attempt at $S_{\rm c}$ to 12015 and attempt to find
		33(24 + 09a) = 12913	IVII		d
0.0		<i>d</i> = 5	A1	4	Obtain $d = 5$
OR		$\frac{70}{2}\{12+l\}=12915$	M1		Attempt to find <i>d</i> by first equating $n/2(a + l)$ to
					12915
		l = 357 12 + 60 d - 357	A1 M1		Obtain $l = 357$
		d = 5	Al		Obtain $d = 5$
	(b)	ar = -4	B1		Correct statement for second term
	(~)	$\frac{a}{1-r} = 9$	B1		Correct statement for sum to infinity
		$\frac{-4}{r} = 9 - 9r$ or $a = 9 - (9 \times \frac{-4}{r})$	M1		Attempt to eliminate either <i>a</i> or <i>r</i>
		$9r^2 - 9r - 4 = 0 \qquad a^2 - 9a - 36 = 0$	A1		Obtain correct equation (no algebraic denominators/brackets)
		(3r-4)(3r+1) = 0 $(a+3)(a-12) = 0$	M1		Attempt solution of three term quadratic equation
		$r = \frac{4}{3}, r = -\frac{1}{3}$ $a = -3, a = 12$	A1		Obtain at least $r = -\frac{1}{3}$ (from correct working only
	Hen	ce $r = -\frac{1}{3}$	A1	7	Obtain $r = -\frac{1}{3}$ only (from correct working only)
				11	SR: answer only / T&I is B2 only
			1		

8	(i)	$\frac{1}{2} \times 2$	$4B^2 \times 0.9 = 16.2$	M1	Use $\left(\frac{1}{2}\right)r^2\theta = 16.2$
		-	$AB^2 = 36 \Longrightarrow AB = 6$	A1 2	Confirm $AB = 6$ cm (or verify $\frac{1}{2} \times 6^2 \times 0.9 =$
				16.2)	
	(ii)	$\frac{1}{2} \times 6 \times AC \times \sin 0.9 = 32.4$		M1*	Use $\Delta = \frac{1}{2}bc \sin A$, or equiv
		2		M1dep*	Equate attempt at area to 32.4
		AC = 13.8 cm		A1 3	Obtain $AC = 13.8$ cm, or better
	(iii)	$BC^2 = 6^2 + 13.8^2 - 2 \times 6 \times 13.8 \times \cos 0.9$		M1	Attempt use of correct cosine formula in $\triangle ABC$
		Hence $BC = 11.1$ cm		$A1\sqrt{A1}$	Correct unsimplified equation, from their AC Obtain $BC = 11.1$ cm, or anything that rounds to
		RD	$-6 \times 0.9 - 5.4$ cm	B1	this State $BD = 5.4$ cm (seen anywhere in question)
		Hen	ce perimeter = $11.1 + 5.4 + (13.8 - 6)$	M1	Attempt perimeter of region <i>BCD</i>
			= 24.3 cm	A1 6	Obtain 24.3 cm, or anything that rounds to this
				11	
9	(i)	(a)	f(-1) = -1 + 6 - 1 - 4 = 0	B1 1	Confirm $f(-1) = 0$, through any method
		(b)	x = -1	B1	State $x = -1$ at any point
		()	$f(x) = (x+1)(x^2 + 5x - 4)$	M1	Attempt complete division by $(x + 1)$, or equiv
				A1	Obtain $x^2 + 5x + k$
				A1	Obtain completely correct quotient
			$x = \frac{-5 \pm \sqrt{25 + 16}}{2}$	M1	Attempt use of quadratic formula, or equiv, find
					roots
			$x = \frac{1}{2} \left(-5 \pm \sqrt{41} \right)$	Al 6	Obtain $\frac{1}{2}(-5\pm\sqrt{41})$
	(ii)	(a)	$\log_2(x+3)^2 + \log_2 x - \log_2(4x+2) = 1$	B1	State or imply that $2\log (x + 3) = \log (x + 3)^2$
				M1	Add or subtract two, or more, of their algebraic
			$\left(\left(2^{2}\right) \right)$		logs correctly
			$\log_2\left(\frac{(x+3)}{4x+2}\right) = 1$	A1	Obtain correct equation (or any equivalent, with
					single term
			$(x+3)^2 x$		on each side)
			$\frac{(x+3)}{4x+2} = 2$	B1	Use $\log_2 a = 1 \Longrightarrow a = 2$ at any point
			$(x^2 + 6x + 9)x = 8x + 4$		
			$x^3 + 6x^2 + x - 4 = 0$	A1 5	Confirm given equation correctly
		(b)	x > 0, otherwise log ₂ x is undefined	B1*	State or imply that $\log x$ only defined for $x > 0$
			$x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$	B1√dep*	State $x = \frac{1}{2} \left(-5 + \sqrt{41}\right)$ (or $x = 0.7$) only, following
					their
					single positive root in (1)(b)
				14	