4723 Core Mathematics 3

1 (i)	Show correct process for composition of functions	M1		numerical or algebraic; the right way round
	Obtain (-3 and hence) -23	A1	2	
(ii)	<u>Either</u> : State or imply $x^3 + 4 = 12$	B1		
	Attempt solution of equation involving x^3 Obtain 2	M1 A1	3	as far as $x = \dots$ and no other value
	<u>Or</u> : Attempt expression for f^{-1}	M1		involving x or y ; involving cube root
	Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$ Obtain 2	A1 A1	(3)	and no other value
2 (i)	Obtain correct first iterate 2.864	B 1		or greater accuracy 2.864327; condone 2 dp here and in working
	Carry out correct iteration process Obtain 2.877	M1 A1		to find at least 3 iterates in all after at least 4 steps; answer
	$[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow 2.876$			required to exactly 3 dp
(ii)	State or imply $x = \sqrt[3]{31 - \frac{5}{2}x}$	B1		
	Attempt rearrangement of equation in x	M1		involving cubing and grouping non-zero terms on LHS
	Obtain equation $2x^3 + 5x - 62 = 0$	A1	3	or equiv with integers
3 (a)	State correct equation involving $\cos \frac{1}{2}\alpha$	B1		such as $\cos \frac{1}{2}\alpha = \frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2}\alpha} = 4$
	Attempt to find value of α Obtain 151	M1 A1		or using correct order for the steps or greater accuracy; and no other values between 0 and 180
(b)	State or imply $\cot \beta = \frac{1}{\tan \beta}$	B 1		
	Rearrange to the form $\tan \beta = k$	M1		or equiv involving sin β only or cos β only; allow missing \pm
	Obtain 69.3 Obtain 111	A1 A1	4	or greater accuracy; and no others between 0 and 180
4 (i)	Obtain derivative of form $kh^5(h^6 + 16)^n$	M1		any constant <i>k</i> ; any $n < \frac{1}{2}$; allow if -4 term retained
	Obtain correct $3h^5(h^6 + 16)^{-\frac{1}{2}}$ Substitute to obtain 10.7	A1 A1	2	or (unsimplified) equiv; no -4 now or greater accuracy or exact equiv
(;;)		AI	3	or greater accuracy of exact equiv
(ii)	Attempt multn or divn using 8 and answer from (i) M1 Attempt 8 divided by answer from (i) Obtain 0.75	M1 A1v		or greater accuracy; allow 0.75 ± 0.01 ; following their answer from (i)

Mark Scheme

5 (a)	Obtain integral of form $k(3x + 7)^{10}$ Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3}(3x + 7)^{10}$ Obtain (simplified) $\frac{1}{30}(3x + 7)^{10} + c$	M1 A1 A1 3	any constant k or equiv
(b)	State $\int \pi (\frac{1}{2\sqrt{x}})^2 dx$ Integrate to obtain $k \ln x$	B1 M1	or equiv involving x; condone no dx any constant k involving π or not; or equiv such as $k \ln 4x$ or $k \ln 2x$
	Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4}\ln 4x$ A1 Show use of the log $a - \log b$ property Obtain $\frac{1}{4}\pi \ln 2$	M1 A1 5	not dependent on earlier marks or similarly simplified equiv
6 (i)	<u>Either</u> : Refer to translation and reflection State translation by 1 in negative <i>x</i> -direction	B1 B1	in either order; allow clear equivs or equiv but now using correct terminology
	State reflection in x-axisOr:Refer to translation and reflectionState reflection in y-axisState translation by 1 in positive x-direction	B1 3 B1 B1 B1 (3)	using correct terminology in either order; allow clear equivs with order reflection then translation
(ii)	Show sketch with attempt at reflection of 'negative' part in <i>x</i> -axis Show (more or less) correct sketch	M1 A1 2	clearly intended and curve for 0 <x<1 unchanged<br="">with correct curvature</x<1>
(iii)	Attempt correct process for finding at least one value	M1	as far as $x =$; accept decimal equivs (degrees or radians) or expressions involving $sin(\frac{1}{3}\pi)$
	Obtain $1 - \frac{1}{2}\sqrt{3}$	A1	or exact equiv
	Obtain $1 + \frac{1}{2}\sqrt{3}$	A1 3	or exact equiv; give A1A0 if extra incorrect solution(s) provided
7 (i)	Attempt use of product rule for xe^{2x}	M1	obtaining +
	Obtain $e^{2x} + 2xe^{2x}$ Attempt use of quotient rule	A1 M1	or equiv; maybe within QR attempt
	Obtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x}) - xe^{2x}}{(x+k)^2}$	M1 A1	with or without product rule
	Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$	A1 5	AG; necessary detail required
(ii)	Attempt use of discriminant	M1	or equiv
	Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$	A1	
	Attempt solution of $2x^2 + 2kx + k = 0$	M1	using their numerical value of k or solving in terms of k using correct formula
	Obtain $x = -1$ Obtain $-e^{-2}$	A1	or exact equiv
	Uulanii —e	A1 5	or exact equiv

4723

Mark Scheme

B1

M1

8 (i) State or imply h = 1Attempt calculation involving attempts at y values

> Obtain $a(1 + 4 \times 2 + 2 \times 4 + 4 \times 8 + 2 \times 16 + 4 \times 32 + 64)$ A1 Obtain 91

(ii) State $e^{x \ln 2}$ or $k = \ln 2$ Integrate e^{kx} to obtain $\frac{1}{k}e^{kx}$ Obtain $\frac{1}{\ln 2}(e^{6\ln 2} - e^0)$ Simplify to obtain $\frac{63}{\ln 2}$

(iii) Equate answers to (i) and (ii)

Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$

1, 2, 4 occurring at least once; involving at least 5 *y* values any constant *a*A1 4
B1 allow decimal equiv such as e^{0.69x} any constant *k* or in terms of general *k*A1 or exact equiv
A1 4 allow if simplification in part (iii)

addition with each of coefficients

- M1 provided ln 2 involved other than in power of e
- A1 2 AG; necessary correct detail required

9 (i)	State at least one of $\cos\theta\cos60 - \sin\theta\sin60$ and $\cos\theta\cos30 - \sin\theta\sin30$ Attempt complete multiplication of identities of form	B1	
	$\pm \cos \cos \pm \sin \sin$	M1	with values $\frac{1}{2}\sqrt{3}$, $\frac{1}{2}$ involved
	Use $\cos^2 \theta + \sin^2 \theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta$	M1	
	Obtain $\sqrt{3} - 2\sin 2\theta$	A1 4	AG; necessary detail required
(ii)	Attempt use of 22.5 in right-hand side	M1	
	Obtain $\sqrt{3} - \sqrt{2}$	A1 2	or exact equiv
(iii)	Obtain 10.7	B1	or greater accuracy; allow ± 0.1 from values of 2θ between 0 and 180
	Attempt correct process to find two angles Obtain 79.3	M1 A1 3	or greater accuracy and no others between 0 and 90; allow ± 0.1
(iv)	Indicate or imply that critical values of $\sin 2\theta$ are -1 and 1	M1	
	Obtain both of $k > \sqrt{3} + 2$, $k < \sqrt{3} - 2$	A1	condoning decimal equivs, $\leq \geq$ signs
	Obtain complete correct solution	A1 3	now with exact values and unambiguously stated

4723