4723 Core Mathematics 3

1	Obtain integral of form $k(2x-7)^{-1}$ Obtain correct $-5(2x-7)^{-1}$	M1 any constant <i>k</i> A1 or equiv
	Include $+ c$	B1 3 at least once; following any integral 3
2 (i)	Use $\sin 2\theta = 2\sin\theta\cos\theta$ Attempt value of $\sin\theta$ from $k\sin\theta\cos\theta = 5\cos\theta$ Obtain $\frac{5}{12}$	B1 M1 any constant k; or equiv A1 3 or exact equiv; ignore subsequent work
(ii)	Use $\csc \theta = \frac{1}{\sin \theta}$ or $\csc^2 \theta = 1 + \cot^2 \theta$	B1 or equiv
	Attempt to produce equation involving $\cos \theta$ only	M1 using $\sin^2 \theta = \pm 1 \pm \cos^2 \theta$ or equiv
	Obtain $3\cos^2\theta + 8\cos\theta - 3 = 0$	A1 or equiv
	Attempt solution of 3-term quadratic equation	M1 using formula or factorisation or equiv
	Obtain $\frac{1}{3}$ as only final value of $\cos \theta$	A1 5 or exact equiv; ignore subsequent
		work 8
3 (i)	Obtain or clearly imply $60 \ln x$	B1
	Obtain (60 ln 20 – 60 ln 10 and hence) 60 ln 2	B1 2 with no error seen
(ii)	Attempt calculation of form $k(y_0 + 4y_1 + y_2)$	M1 any constant k; using y-value attempts
	Identify k as $\frac{5}{3}$	A1
	Obtain $\frac{5}{3}(6+4\times4+3)$ and hence $\frac{125}{3}$ or 41.7	A1 3 or equiv
(iii)	Equate answers to parts (i) and (ii)	M1 provided ln 2 involved
	Obtain $60 \ln 2 = \frac{125}{3}$ and hence $\frac{25}{36}$	A1 2 AG; necessary detail required
		including clear use of an exact value from (ii)

4 (i) Attempt correct process for composition Obtain (7 and hence) 0	M1 numerical or algebraic A1 2
(ii) Attempt to find x-intercept Obtain $x \le 7$	M1 A1 2 or equiv; condone use of <
(iii) Attempt correct process for finding inverse Obtain $\pm (2-y)^3 - 1$ or $\pm (2-x)^3 - 1$ Obtain correct $(2-x)^3 - 1$	M1 A1 A1 3 or equiv in terms of x
(iv) Refer to reflection in $y = x$	B1 1 or clear equiv

5 (i) Obtain derivative of form $kx(x^2+1)^7$

Obtain $16x(x^2 + 1)^7$

Equate first derivative to 0 and confirm x = 0 or substitute x = 0 and verify first derivative zero

Refer, in some way, to $x^2 + 1 = 0$ having no root

- M1 any constant k
- A1 or equiv
- M1 AG; allow for deriv of form $kx(x^2 + 1)^7$
- A1 4 or equiv

(ii) Attempt use of product rule

Obtain $16(x^2+1)^7 + ...$

Obtain ... + $224x^2(x^2+1)^6$

Substitute 0 in attempt at second derivative Obtain 16

- *M1 obtaining ... + ... form
- A1 $\sqrt{1}$ follow their $kx(x^2+1)^7$
- A1 $\sqrt{ }$ follow their $kx(x^2 + 1)^7$; or unsimplified equiv
- M1 dep *M
- A1 **5** from second derivative which is correct at some point

9

6 Integrate e^{3x} to obtain $\frac{1}{2}e^{3x}$ or $e^{-\frac{1}{2}x}$ to obtain $-2e^{-\frac{1}{2}x}$ B1 or both

Obtain indefinite integral of form $m_1 e^{3x} + m_2 e^{-\frac{1}{2}x}$

M1 any constants m_1 and m_2 A1 or equiv

- Obtain correct $\frac{1}{3}ke^{3x} 2(k-2)e^{-\frac{1}{2}x}$
- Obtain $e^{3\ln 4} = 64$ or $e^{-\frac{1}{2}\ln 4} = \frac{1}{2}$

Apply limits and equate to 185

Obtain $\frac{64}{3}k - (k-2) - \frac{1}{3}k + 2(k-2) = 185$

Obtain $\frac{17}{2}$

- B1 or both
- M1 including substitution of lower limit
- A1 or equiv
- A1 7 or equiv

7

7 (a) Either: State or imply either $\frac{dA}{dr} = 2\pi r$ or $\frac{dA}{dt} = 250$ B1

Attempt manipulation of derivatives

to find $\frac{dr}{dt}$

Obtain correct $\frac{250}{2\pi r}$

Obtain 1.6

M1

- A1 or equiv

or both

A1 4 or equiv; allow greater accuracy

using multiplication / division

 $\underline{\text{Or}}$: Attempt to express r in terms of t

Obtain $r = \sqrt{\frac{250t}{\pi}}$

Differentiate $kt^{\frac{1}{2}}$ to produce $\frac{1}{2}kt^{-\frac{1}{2}}$

Substitute t = 7.6 to obtain 1.6

- M1 using A = 250t
- A1 or equiv
- M1 any constant k
- A1 (4) allow greater accuracy

(b) State
$$\frac{\mathrm{d}m}{\mathrm{d}t} = -150k\mathrm{e}^{-kt}$$

B1

Equate to $(\pm)3$ and attempt value for t

M1 using valid process; condone sign confusion

Obtain
$$-\frac{1}{k}\ln(\frac{1}{50k})$$
 or $\frac{1}{k}\ln(50k)$ or $\frac{\ln 50 + \ln k}{k}$

A1 3 or equiv but with correct treatment of

signs

8 (i) State scale factor is $\sqrt{2}$ State translation is in negative *x*-direction by $\frac{3}{2}$ units

B1 allow 1.4

B1 or clear equiv

B1 **3**

(ii) Draw (more or less) correct sketch of $y = \sqrt{2x+3}$

B1 'starting' at point on negative *x*-axis

Draw (more or less) correct sketch of $y = \frac{N}{x^3}$

B1 showing both branches

Indicate one point of intersection

B1 3 with both sketches correct

[SC: if neither sketch complete or correct but diagram correct for both in first quadrant B1]

(iii) (a) Substitute 1.9037 into $x = N^{\frac{1}{3}} (2x+3)^{-\frac{1}{6}}$

M1 or into equation $\sqrt{2x+3} = \frac{N}{r^3}$; or equiv

Obtain 18 or value rounding to 18

A1 2 with no error seen

(b) State or imply $2.6282 = N^{\frac{1}{3}} (2 \times 2.6022 + 3)^{-\frac{1}{6}}$ Attempt solution for *N* Obtain 52

B1 M1 using correct process

A1 3 concluding with integer value

11

9 (i) Identify $\tan 55^{\circ}$ as $\tan(45^{\circ}+10^{\circ})$

Use correct angle sum formula for tan(A+B)

Obtain $\frac{1+p}{1+p}$

B1 or equiv

M1 or equiv

A1 3 with tan 45° replaced by 1

(ii) Either: Attempt use of identity for $\tan 2A$

Obtain $p = \frac{2t}{1-t^2}$

*M1 linking 10° and 5°

Attempt solution for t of quadratic equation M1

Attempt solution for t of quadratic equation $-1 + \sqrt{1 + n^2}$

Obtain $\frac{-1+\sqrt{1+p^2}}{p}$

M1 dep *M

A1 4 or equiv; and no second expression

Or (1): Attempt expansion of $tan(60^{\circ}-55^{\circ})$

*M1

A1

Obtain $\frac{\sqrt{3} - \frac{1+p}{1-p}}{1 + \sqrt{3} \frac{1+p}{1-p}}$

 $A1\sqrt{}$ follow their answer from (i)

Attempt simplification to remove

denominators

M1 dep *M

Obtain $\frac{\sqrt{3}(1-p)-(1+p)}{1-p+\sqrt{3}(1+p)}$

A1 (4) or equiv

Or (2): State or imply $\tan 15^\circ = 2 - \sqrt{3}$

Attempt expansion of $tan(15^{\circ}-10^{\circ})$

Obtain
$$\frac{2-\sqrt{3}-p}{1+p(2-\sqrt{3})}$$

B1

M1 with exact attempt for tan15°

Or (3): State or imply $\tan 15^\circ = \frac{\sqrt{3}-1}{\sqrt{3}+1}$

Attempt expansion of tan(15°-10°)

Obtain
$$\frac{\sqrt{3}-1-p\sqrt{3}-p}{\sqrt{3}+1+p\sqrt{3}-p}$$

B1 or exact equiv

M1 with exact attempt for tan15°

Or (4): Attempt expansion of $tan(10^{\circ}-5^{\circ})$

Obtain
$$t = \frac{p-t}{1+pt}$$

*M1

A1

Attempt solution for *t* of quadratic equation M1

Obtain
$$\frac{-2 + \sqrt{4 + 4p^2}}{2p}$$

M1 dep *M

A1 (4) or equiv; and no second

expression

(iii) Attempt expansion of both sides

Obtain $3\sin\theta\cos 10^\circ + 3\cos\theta\sin 10^\circ =$

 $7\cos\theta\cos10^{\circ} + 7\sin\theta\sin10^{\circ}$

Attempt division throughout by $\cos\theta\cos10^\circ$

Obtain 3t + 3p = 7 + 7pt

Obtain
$$\frac{3p-7}{7p-3}$$

M1

A1 or equiv

M1 or by $\cos \theta$ (or $\cos 10^{\circ}$) only

A1 or equiv

A1 5 or equiv

12