4724 Core Mathematics 4

M Us	ethod for finding magnitude of any vector ethod for finding scalar prod of any 2 vectors sing $\cos \theta = \frac{\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} \cdot 2\mathbf{i} + \mathbf{j} + \mathbf{k}}{ \mathbf{i} - 2\mathbf{j} + 3\mathbf{k} 2\mathbf{i} + \mathbf{j} + \mathbf{k} }$ 1.9 (70.89, 70.893) WWW; 1.24 (1.237)	M1 M1 M1 A1 4	Expect $\sqrt{14}$ and $\sqrt{6}$ Expect $1.2 + (-2)1 + 3.1 = 3$ Correct vectors only. Expect $\cos \theta = \frac{3}{\sqrt{14}\sqrt{6}}$ Condone answer to nearest degree (71)
2 (i)	Correct format $\frac{A}{x+1} + \frac{B}{x+2}$ $-\frac{1}{x+1} \qquad \text{or } A = -1$ $+\frac{2}{x+2} \qquad \text{or } B = 2$	M1 A1 A1 3	stated or implied by answer
(ii)	$\int \frac{1}{x+1} dx = \ln(x+1) \text{ or } \ln x+1 $ or $\int \frac{1}{x+2} dx = \ln(x+2) \text{ or } \ln x+2 $ $A \ln x+1 + B \ln x+2 + c \text{ISW}$	B1 √A1 2	Expect $-\ln x+1 + 2\ln x+2 + c$
3	Method 1 (Long division) Clear correct division method at beginning Correct method up to & including x term in quot Method 2 (Identity) Writing $(x^2 + 2x - 1)(x^2 + bx + 2) + cx + 7$ Attempt to compare cfs of x^3 or x^2 or x or const Then: $b = -4$ $c = -1$ $a = 5$	M1 M1 M1 M1 A1 A1 A1 A1 A1	x^2 in quot, mult back & attempt subtraction [At subtraction stage, cf (x^4) = 0] [At subtraction stage, cf (x^3) = 0] Probably equated to $x^4 - 2x^3 - 7x^2 + 7x + a$
4	$\frac{d}{dx}(x^2y) = x^2 \frac{dy}{dx} + 2xy$ $\frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx}$ Substitute $(x,y) = (1,1)$ and solve for $\frac{dy}{dx}$ $\frac{dy}{dx} = -\frac{11}{7} \qquad \text{WWW}$ Gradient normal $= -\frac{1}{\frac{dy}{dx}}$ $7x - 11y + 4 = 0 \qquad \text{AEF}$	B1 B1 M1 M1 A1 M1 A1 6	s.o.i.; or v.v. Solve now or at normal stage. [This dep on either/both B1 earned] Implied if grad normal = $\frac{7}{11}$ Numerical or general, awarded at any stage No fractions in final answer.

(i) Use $3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} - \mathbf{j} - 5\mathbf{k}$ only Use correct method for scalar prod of <u>any</u> 2 vectors Obtain $6 + 4 - 10$, state = 0 & deduce perp AG (ii) Produce 3 equations in s and t Solve 2 of the equations for s and t Obtain $(s,t) = \left(\frac{3}{5}, \frac{12}{5}\right) \text{ or } \left(\frac{9}{22}, \frac{18}{11}\right) \text{ or } \left(\frac{3}{19}, \frac{33}{19}\right)$ Substitute their values in 3^{rd} equation State/show inconsistency & state non-parallel :: skew	M1 M1 A1 3 *M1 dep*M1 A1 dep*M1 A1 5	(indep) May be as part of $\cos \theta = \frac{a.b}{ a b }$ of the type $5 + 3s = 2 + 2t$, $-2 - 4s = -2 - t$ and $-2 + 2s = 7 - 5t$ Or Eliminate s (or t) from 2 pairs $dep*M1$ ($5t=12,11t=18,19t=33$) or ($5s=3,22s=9,19s=3$) $A1,A1$ State/show inconsistency & state non-parallel $\therefore skew$ WWW A1
(i) $1-4ax +$ $\frac{-45}{1.2}(ax)^2$ or $\frac{-45}{1.2}a^2x^2$ or $\frac{-45}{1.2}ax^2$ $+10a^2x^2$	B1 M1 A1 3	Do not accept $\binom{-4}{2}$ unless 10 also appears
(ii) f.t. (their cf x) + b(their const cf) = 1 f.t. (their cf x^2) + b(their cf x) = -2 Attempt to eliminate 'b' and produce equation in 'a' Produce $6a^2 + 4a = 2$ AEF $a = \frac{1}{3}$ and $b = \frac{7}{3}$ only	A1	Expect $b-4a=1$ Expect $10a^2-4ab=-2$ Or eliminate 'a' and produce equation in 'b' Or $6b^2+4b=42$ AEF Made clear to be only (final) answer
 (i) Perform an operation to produce an equation connecting A and B (or possibly in A or in B) A = 2 B = −2 	M1 A1 A1 3	Probably substituting value of θ , or comparing coefficients of $\sin x$, and/or $\cos x$ WW scores 3
(ii) Write $4 \sin \theta$ as $A(\sin \theta + \cos \theta) + B(\cos \theta - \sin \theta)$ and re-write integrand as $A + \frac{B(\cos \theta - \sin \theta)}{\sin \theta + \cos \theta}$ $\int A d\theta = A\theta$ $\int \frac{B(\cos \theta - \sin \theta)}{\sin \theta + \cos \theta} d\theta = B \ln(\sin \theta + \cos \theta)$ Produce $\frac{1}{4} A\pi + B \ln \sqrt{2}$ f.t. with their A, B	M1 √B1 √A2 √A1 5	A and B need not be numerical – but, if they are, they should be the values found in (i). general or numerical general or numerical $ \text{Expect } \frac{1}{2}\pi - \ln 2 \text{ (Numerical answer only)} $
Correct result for their equation after integration Subst $(t,x)=(0,2)$ into eqn containing k &/or c dep*	M1 A1 M1	k non-numerical; i.e. 1 side correct i.e. both sides correct Based <u>only</u> on above eqns or $\frac{dx}{dt} = x^{\frac{1}{2}}$, $-x^{\frac{1}{2}}$ Other than omission of 'c' or substitute (5,1) or substitute (0,2)
	Use correct method for scalar prod of any 2 vectors Obtain $6+4-10$, state = 0 & deduce perp AG (ii) Produce 3 equations in s and t Obtain $(s,t) = \left(\frac{3}{5},\frac{12}{5}\right) \text{ or } \left(\frac{9}{22},\frac{18}{11}\right) \text{ or } \left(\frac{3}{19},\frac{33}{19}\right)$ Substitute their values in 3^{rd} equation State/show inconsistency & state non-parallel : skew (i) $1-4ax+$ $\frac{-45}{1.2}(ax)^2 \text{ or } \frac{-45}{1.2}a^2x^2 \text{ or } \frac{-45}{1.2}ax^2$ $+10a^2x^2$ (ii) f.t. (their cf x) + b (their const cf) = 1 f.t. (their cf x) + b (their cf x) = -2 Attempt to eliminate 'b' and produce equation in 'a' Produce $6a^2 + 4a = 2$ AEF $a = \frac{1}{3} \text{ and } b = \frac{7}{3} \text{ only}$ (i) Perform an operation to produce an equation connecting A and B (or possibly in A or in B) $A = 2$ $B = -2$ (ii) Write $4 \sin \theta$ as $A(\sin \theta + \cos \theta) + B(\cos \theta - \sin \theta)$ and re-write integrand as $A + \frac{B(\cos \theta - \sin \theta)}{\sin \theta + \cos \theta}$ $\int A d\theta = A\theta$ $\int \frac{B(\cos \theta - \sin \theta)}{\sin \theta + \cos \theta} d\theta = B \ln(\sin \theta + \cos \theta)$ Produce $\frac{1}{4}A\pi + B \ln \sqrt{2}$ f.t. with their A,B (i) $\frac{dx}{dt}$ or $-kx^{\frac{1}{2}}$ or $\frac{dx}{dt} = kx^{\frac{1}{2}}$ (ii) Separate variables or invert, + attempt to integrate * Correct result for their equation after integration Subst $(t, x) = (0, 2)$ into eqn containing k &/or c dep ³	Use correct method for scalar prod of $\underline{any}\ 2$ vectors Obtain $6+4-10$, state $=0$ & deduce perp AG Al 3 (ii) Produce 3 equations in s and t Solve 2 of the equations for s and t Obtain $(s,t)=\left(\frac{3}{5},\frac{12}{5}\right)$ or $\left(\frac{9}{22},\frac{18}{11}\right)$ or $\left(\frac{3}{19},\frac{33}{19}\right)$ Substitute their values in 3^{rd} equation State/show inconsistency & state non-parallel skew (i) $1-4ax+$ $\frac{-4-5}{1.2}(ax)^2$ or $\frac{-4-5}{1.2}a^2x^2$ or $\frac{-4-5}{1.2}ax^2$ M1 $\frac{-4-5}{1.2}(ax)^2$ or $\frac{-4-5}{1.2}a^2x^2$ or $\frac{-4-5}{1.2}ax^2$ M1 Al 3 (ii) f.t. (their of x) + b (their const of) = 1 f.t. (their of x^2) + b (their of x) = -2 Attempt to eliminate 'b' and produce equation in 'a' M1 Produce $6a^2 + 4a = 2$ AEF $a = \frac{1}{3}$ and $b = \frac{7}{3}$ only Al 5 (i) Perform an operation to produce an equation connecting A and B (or possibly in A or in B) $A = 2$ $B = -2$ Al 3 (ii) Write $4 \sin \theta$ as $A(\sin \theta + \cos \theta) + B(\cos \theta - \sin \theta)$ and re-write integrand as $A + \frac{B(\cos \theta - \sin \theta)}{\sin \theta + \cos \theta}$ M1 $\int Ad\theta = A\theta$ $\int \frac{B(\cos \theta - \sin \theta)}{\sin \theta + \cos \theta} d\theta = B \ln(\sin \theta + \cos \theta)$ And $\frac{A}{\sin \theta} + \cos \theta$ Produce $\frac{1}{4}A\pi + B \ln \sqrt{2}$ f.t. with their A , B (i) $\frac{dx}{dt}$ or $-kx^{\frac{1}{2}}$ or $\frac{dx}{dt} = kx^{\frac{1}{2}}$ Al 2 (ii) Separate variables or invert, + attempt to integrate *M1 Correct result for their equation after integration Subst $(t, x) = (0, 2)$ into eqn containing k &/or c dep*M1

				1
9	(i) Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or $\frac{\frac{dy}{dp}}{\frac{dx}{dp}}$	M1		Or conv to cartes form & att to find $\frac{dy}{dx}$ at P
	$=\frac{2t}{3t^2} \text{ or } \frac{2p}{3p^2}$	A1		
	Find eqn tgt thro (p^3, p^2) or (t^3, t^2) , their gradient	M1		Using $y - y_1 = m(x - x_1)$ or $y = mx + c$
	$3py - 2x = p^3 \qquad \mathbf{AG}$	A1	4	Do not accept t here
	(ii) Substitute $(-10,7)$ into given equation *	M1		to produce a cubic equation in p
	Satis attempt to find at least 1 root/factor dep*	M1 A1		Inspection/factor theorem/rem theorem/t&i -1 or -4 or 5
	Any one root All 3 roots	A1		-101 - 401 5 -1,-4 and 5
	(-1,1), $(-64,16)$ and $(125,25)$	A1	5	All 3 sets; no f.t.
10	(i) $(1-x^2)^{\frac{3}{2}} \rightarrow \cos^3\theta$	B1		May be implied by $\int \sec^2 \theta d\theta$
	$dx \to \cos\theta d\theta$	B1		•
	$\frac{1}{\left(1-x^2\right)^{\frac{3}{2}}} dx \to \sec^2\theta \left(d\theta\right) \text{ or } \frac{1}{\cos^2\theta} \left(d\theta\right)$	B1		
	$\int \sec^2 \theta (\mathrm{d}\theta) = \tan \theta$	B1		
	Attempt change of limits (expect 0 & $\frac{1}{6}\pi/30$)	M1		Use with $f(\theta)$; or re-subst & use 0 & $\frac{1}{2}$
	$\frac{1}{\sqrt{3}}$ AEF	A1	6	Obtained with no mention of 30 anywhere
	(ii) Use parts with $u = \ln x$, $\frac{dv}{dx} = \frac{1}{x^2}$	*M1		obtaining a result $f(x) + /- \int g(x)(dx)$
	$-\frac{1}{x}\ln x + \int \frac{1}{x^2} (\mathrm{d}x) \text{AEF}$	A1		Correct first stage result
	$-\frac{1}{x}\ln x - \frac{1}{x}$	A1		Correct overall result
	Limits used correctly	dep*M1		
	$\frac{2}{3} - \frac{1}{3} \ln 3$	A1	5	
	3 3			
	If substitution attempted in part (ii)			
	$\ln x = t$	B1		
	Reduces to $\int t e^{-t} dt$	B1		
	Parts with $u = t$, $dv = e^{-t}$	M1		
	$-te^{-t}-e^{-t}$	A1		
	$\frac{2}{3} - \frac{1}{3} \ln 3$	A1		
	3 3			

4725 Further Pure Mathematics 1

1	(i) 1 1 1	M1		For 2 other correct vertices seen, correct
	(1, -1)	A1	2	direction of shear seen For completely correct diagram, must include
	1			scales
	$ \begin{pmatrix} (ii) & \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \end{pmatrix} $	B1 B1	2	
			4	Each column correct
2		M1		Consider sum as two separate parts
	$\frac{a}{6}n(n+1)(2n+1) + bn$	A1		Correct answer a.e.f.
	$a = 6 \ b = -3$	M1		Compare co-efficients
		A1 A1	5 5	Obtain correct answers
3	(i) $7u^3 + 24u^2 - 3u + 2 = 0$	M1	3	Use given substitution
		A1	2	Obtain correct equation a.e.f.
	(ii) EITHER	M1		Required expression related to new cubic
	correct value is $-\frac{3}{7}$	A1ft	2	Their c / their a
	OR			$\alpha + \beta + \gamma$
	OR .	M1		Use $\frac{\alpha + \beta + \gamma}{\alpha\beta\gamma}$ or equivalent
	correct value is $-\frac{3}{7}$	A1		Obtain correct answer
4	(i) $z^* = 3 + 4i$	B1	4	Conjugate seen or implied
-	21 +12i	B1	2	Obtain correct answer
	(ii) 3 – 5i	B1		Correct $z - i$ or expansion of $(z - I)^2$ seen
		B1ft		Real part correct
	-16 – 30i	B1ft	3	Imaginary part correct
	(iii)	M1		Multiply by conjugate
	$\frac{9}{25} + \frac{12}{25}i$	A1	,	Numerator correct
		A1	3 8	Denominator correct
5	(12)	B1		4D soon or implied or 2 elements correct
	$\begin{pmatrix} -13 \\ 1 \end{pmatrix}$	B1	2	4 B seen or implied or 2 elements correct Obtain correct answer
	(i) 1 1 10 10 10 10 10 10 10 10 10 10 10 10			
	(-10)			
	$\begin{bmatrix} 8 & 16 & -4 \\ 0 & 0 & 0 \end{bmatrix}$	M1		Obtain a 3 x 3 matrix
	(ii) $ \begin{pmatrix} 8 & 16 & -4 \\ 0 & 0 & 0 \\ 6 & 12 & -3 \end{pmatrix} $	A1A1A1	4	Each row (or column) correct
	(0 12 -3)			
	(iii) (8)	M1		Obtain a single value
		A1	2	Obtain correct answer, must have matrix
L			8	