Mark Scheme 4724 June 2007

4724	Mark Sche	eme	June 2007
1	(i) Correct format $\frac{A}{x+2} + \frac{B}{x-3}$	M1	s.o.i. in answer
	A = 1 and $B = 2(ii) -A(x+2)^{-2} - B(x-3)^{-2} f.t.$	A1 2 √A1	for both
	Convincing statement that each denom > 0 State whole exp < 0 AG	B1 B1 3	accept ≥ 0 . Do not accept $x^2 > 0$. Dep on previous 4 marks. 5
2	Use parts with $u = x^2$, $dv = e^x$	*M1	obtaining a result $f(x) + 7 - \int g(x)(dx)$
	Obtain $x^2 e^x - \int 2x e^x (dx)$	A1	
	Attempt parts again with $u = (-)(2)x$, $dv = e^x$ Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets Use limits correctly throughout $e^{(1)} - 2$ ISW Exact answer only	M1 A1 dep*M1 A1 6	s.o.i. eg $e + (-2x + 2)e^x$ Tolerate (their value for $x = 1$) (-0) Allow 0.718 \rightarrow M1 6
3	Volume = $(k) \int_{0}^{\pi} \sin^2 x (dx)$	B1	where $k = \pi$, 2π or 1; limits necessary
	⁰ Suitable method for integrating $\sin^2 x$	*M1	eg $\int + / -1 + / -\cos 2x (dx)$ or single integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x (\mathrm{d}x) = \frac{1}{2} \int 1 - \cos 2x (\mathrm{d}x)$	A1	or $-\sin x \cos x + \int \cos^2 x(\mathrm{d}x)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1	or $-\sin x \cos x + \int 1 - \sin^2 x (dx)$
	Use limits correctly Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	dep*M1 A1 6	Beware : wrong working leading to $\frac{1}{2}\pi^2$
4	(i) $ \frac{\left(1+\frac{x}{2}\right)^{-2}}{=1+\left(-2\right)\left(\frac{x}{2}\right)+\frac{-23}{2}\left(\frac{x}{2}\right)^{2}+\frac{-234}{3!}\left(\frac{x}{2}\right)^{3}} $	M1	Clear indication of method of ≥ 3 terms
	$= 1 - x + \frac{3}{4}x^{2} - \frac{1}{2}x^{3}$	B1 A1	First two terms, not dependent on M1 For both third and fourth terms
	$(2+x)^{-2} = \frac{1}{4} (\text{their exp of } (1+ax)^{-2}) \text{ mult out}$	√B1	Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ x < 2$ or $-2 < x < 2$ (but not $ \frac{1}{2}x < 1$)	B1 5	4 4 IO Ŏ
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d$	M1	
	$-\frac{3}{8}$ (x^3)	√A1 2	Follow-through from $b + d$

Mark Scheme

_

5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1	
	$= \frac{-4\sin 2t}{-\sin t}$	A1	Accept $\frac{4\sin 2t}{\sin t}$ WWW
	$= 8 \cos t$	A1	
	≤ 8 AG (ii) Use $\cos 2t = 2\cos^2 t + /-1$ or $1 - 2\cos^2 t$		with brief explanation eg COS $t \le 1$ <u>If starting with</u> $y = 4x^2 + 1$, then
	(ii) Use $\cos 2t = 2\cos t + 7 - 1 \text{ of } 1 - 2\cos t$ Use correct version $\cos 2t = 2\cos^2 t - 1$	M1	
			Subst $x = \cos t$, $y = 3 + 2\cos 2t$ M1
	Produce WWW $y = 4x^2 + 1$ AG (iii) U-shaped parabola abve <i>x</i> -axis, sym abt <i>y</i> -axis Portion between $(-1, 5)$ and $(1, 5)$	A1 3 B1 B1 2	<u>Either</u> substitute <u>a</u> formula for cos 2t M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 <u>Or</u> Manip to give formula for cos 2t M1 Obtain corr formula & say it's correct A1 Any labelling must be correct either $x = \pm 1$ or $y = 5$ must be marked
	N.B. If (ii) answered or quoted before (i) attempted,		(i) B2 for $\frac{dy}{dx} = 8x$ +B1,B1 if earned. 9
			··· ut
6	(i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1	
	Using $d(uv) = u dv + v du$ for the (3)xy term	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2 + 3xy + 4y^2\right) = 2x + 3x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y + 8y\frac{\mathrm{d}y}{\mathrm{d}x}$	A1	
	Solve for $\frac{dy}{dx}$ & subst (x, y) = (2,3)	M1	or v.v. Subst now or at normal eqn stage;
	ů.		(M1 dep on either/both B1 M1 earned)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{13}{30}$	A1	Implied if grad normal = $\frac{30}{13}$
	Grad normal = $\frac{30}{13}$ follow-through	√B1	This f.t. mark awarded only if numerical
	Find equ any line thro (2,3) with any num grac 30x - 13y - 21 = 0 AEF	M1 A1 8	No fractions in final answer 8
7	(i) Leading term in quotient = $2x$	B1	
7	Suff evidence of division or identity process	M1	
	Quotient = $2x + 3$	A1	Stated or in relevant position in division
	Remainder = x	A1 4	Accept $\frac{x}{x^2+4}$ as remainder
	(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$	√B1 1	$2x+3+\frac{x}{x^2+4}$
	(iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$	√B1	
	their $\frac{Cx}{x^2+4}$ integrated as $k \ln(x^2+4)$	M1	Ignore any integration of $\frac{D}{x^2 + 4}$
	$k = \frac{1}{2}C$	√A1	
	Limits used correctly throughout	M1	
	$14 + \frac{1}{2} \ln \frac{13}{5}$	A1 5	logs need not be combined.
			10

4724

_

8	(i) Sep variables eg $\int \frac{1}{6-h} (dh) = \int \frac{1}{20} (dt)$	*M1		s.o.i. Or $\frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$
	$LHS = -\ln(6-h)$	A1		& then $t = -20 \ln(6 - h)$ (+c) \rightarrow A1+A1
	$RHS = \frac{1}{20}t (+c)$	A1		
	Subst $t = 0, h = 1$ into equation containing 'c'	dep*M1		
	Correct value of their c = $-(20)\ln 5$ WWW	A1		or (20) In 5 if on LHS
	Produce $t = 20 \ln \frac{5}{6-h}$ WWW AG	A1	6	Must see $\ln 5 - \ln(6 - h)$
	(ii) When $h = 2$, $t = 20 \ln \frac{5}{4} = 4.46(2871)$	B1	1	Accept 4.5, $4\frac{1}{2}$
	(iii) Solve $10 = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$	M1		or $\frac{6-h}{5} = e^{-0.5}$ or suitable $\frac{1}{2}$ -way stage
	<i>h</i> = 2.97(2.9673467)	A1	2	$6-5e^{-0.5}$ or $6-e^{1.109}$
	[In (ii),(iii) accept non-decimal (exact) answers Accept truncated values in (ii),(iii).	but –1 o	onc	e.]
	(iv) Any indication of (approximately) 6 (m)	B1	1	10
9	(i) Use $-6i + 8j - 2k$ and $i + 3j + 2k$ only	M1		
9	(i) Use $-6i + 8j - 2k$ and $i + 3j + 2k$ only Correct method for scalar product	M1 M1		of any two vectors $(-6+24-4=14)$
9				of \overline{any} vector $(\sqrt{36+64+4} = \sqrt{104})$ or
9	Correct method for scalar product Correct method for magnitude	M1 M1		
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad	M1 M1 A1	4 5i	of any vector $(\sqrt{36+64+4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$)
9	Correct method for scalar product Correct method for magnitude	M1 M1 A1	4 5i -	of any vector $(\sqrt{36+64+4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$)
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad	M1 M1 A1	4 5i	of any vector $(\sqrt{36+64+4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$) - j - 2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel	M1 M1 A1 erated by M1		of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k)
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene	M1 M1 A1 erated by	4 5i 2	of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k)
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel	M1 M1 A1 erated by M1		of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k)
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c'	M1 M1 erated by M1 A1 M1 M1		of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$ - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, u = 1	M1 M1 erated by M1 A1 M1 M1 A1		of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$ - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, u = 1 Subst their (<i>t</i> , <i>u</i>) into equation containing c	M1 M1 A1 erated by M1 A1 M1 A1 M1 A1 M1	2	of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$ - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, $u = 1Subst their (t, u) into equation containing cc = -3$	M1 M1 erated by M1 A1 M1 M1 A1		of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$ - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, u = 1 Subst their (<i>t</i> , <i>u</i>) into equation containing c	M1 M1 A1 erated by M1 A1 M1 A1 M1 A1 M1	2	of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$ - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
9	Correct method for scalar product Correct method for magnitude 68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, $u = 1Subst their (t, u) into equation containing cc = -3Alternative method for final 4 marks$	M1 M1 A1 erated by M1 A1 M1 A1 M1 A1 A1	2	of any vector $(\sqrt{36 + 64 + 4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$ - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu