Edexcel Maths Core 1

Mark Scheme Pack
2005-2014

GCE
 Edexcel GCE
 Core Mathematics C1(6663)

Summer 2005

Mark Scheme (Results)

Mark Scheme

Question Number	Scheme	Marks
3. (a)	$\begin{array}{rr} \hline x^{2}-8 x-29 \equiv(x-4)^{2}-45 & (x \pm 4)^{2} \\ (x-4)^{2}-16+(-29) \\ (x \pm 4)^{2}-45 \end{array}$	M1 A1 A1 (3)
ALT	$\begin{array}{lc} \text { Compare coefficients } & \begin{aligned} -8 & =2 a \\ a^{2}+b & =-29 \end{aligned} \tag{3}\\ \qquad a=-45 \end{array} \quad \text { equation for } a$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{aligned} & (x-4)^{2}=45 \\ & \Rightarrow x-4= \pm \sqrt{45} \\ & x=4 \pm 3 \sqrt{5} \end{aligned}$ (follow through their a and b from (a))	M1 A1 A1 (3) (6)
(a) (b)	M1 for $(x \pm 4)^{2}$ or an equation for a. M1 for a full method leading to $x-4=\ldots$ or $x=\ldots$ A1 for c and A1 for d Note Use of formula that ends with $\frac{8 \pm 6 \sqrt{5}}{2}$ scores M1 A1 A0 (but must be $\sqrt{5}$) i.e. only penalise non-integers by one mark.	

Question	Scheme	Marks
4. (a) (b)		B1 B1 (2) M1
	-2 and 4 max	A1 A1 (3) (5)
(a) (b)	Marks for shape: graphs must have curved sides and round top. $1^{\text {st }} \mathrm{B} 1$ for \cap shape through $(0,0)$ and $((k, 0)$ where $k>0)$ $2^{\text {nd }} \mathrm{B} 1$ for max at $(3,15)$ and 6 labelled or $(6,0)$ seen Condone $(15,3)$ if 3 and 15 are correct on axes. Similarly (5,1) in (b) M1 for \cap shape NOT through $(0,0)$ but must cut x-axis twice. $1^{\text {st }} \mathrm{A} 1$ for -2 and 4 labelled or $(-2,0)$ and $(4,0)$ seen $2^{\text {nd }}$ A1 for max at $(1,5)$. Must be clearly in $1^{\text {st }}$ quadrant	
5.	$\begin{aligned} & x=1+2 y \text { and sub } \rightarrow(1+2 y)^{2}+y^{2}=29 \\ & \Rightarrow 5 y^{2}+4 y-28(=0) \\ & \text { i.e. }(5 y+14)(y-2)=0 \\ & \qquad \quad(y=) 2 \text { or }-\frac{14}{5} \quad \text { (o.e.) } \end{aligned}$ (both) $y=2 \Rightarrow x=1+4=5 ; \quad y=-\frac{14}{5} \Rightarrow x=-\frac{23}{5}(\text { o.e) }$	M1 A1 M1 A1 M1A1 f.t. (6)
	$\begin{aligned} & 1^{\text {st }} \mathrm{M} 1 \quad \text { Attempt to sub leading to equation in } 1 \text { variable } \\ & 1^{\text {st }} \mathrm{A} 1 \quad \text { Correct 3TQ (condone }=0 \text { missing) } \\ & 2^{\text {nd }} \mathrm{M} 1 \quad \text { Attempt to solve 3TQ leading to } 2 \text { values for } y . \\ & 2^{\text {nd }} \mathrm{A} 1 \quad \text { Condone mislabelling } x=\text { for } y=\ldots \text { but then M0A0 in part (c). } \\ & 3^{\text {rd }} \mathrm{M} 1 \quad \text { Attempt to find at least one } x \text { value } \\ & 3^{\mathrm{r}_{\mathrm{d}}} \text { A1 f.t. f.t. only in } x=1+2 y \quad \text { (3sf if not exact) Both values } \end{aligned}$ N.B. False squaring (e.g. $y=x^{2}+4 y^{2}=1$) can only score the last 2 marks.	

Question Number	Scheme	Marks
7. (a)	$\begin{aligned} & (3-\sqrt{x})^{2}=9-6 \sqrt{x}+x \\ & \div b y \sqrt{x} \quad \rightarrow 9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}} \end{aligned}$	M1 A1 c.s.o. (2)
(b)	$\int\left(9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}}\right) d x=\frac{9 x^{\frac{1}{2}}}{\frac{1}{2}}-6 x+\frac{x^{\frac{3}{2}}}{\frac{3}{2}}(+c)$	M1 A2/1/0
	use $y=\frac{2}{3}$ and $x=1: \quad \frac{2}{3}=18-6+\frac{2}{3}+c$	M1
	So $y=18 x^{\frac{1}{2}}-6 x+\frac{2}{3} x^{\frac{3}{2}}-12$	A1 c.s..o. A1f.t. (6)
(a)	M1 Attempt to multiply out $(3-\sqrt{x})^{2}$. Must have 3 or 4 terms, allow one sign error	
(b)	$1^{\text {st }}$ M1 Some correct integration: $x^{n} \rightarrow x^{n+1}$	
	Ignore $+c$ A2 All 3 terms correct (unsimplified) $2^{\text {nd }}$ M1 Use of $y=\frac{2}{3}$ and $x=1$ to find c. No $+c$ is M0. A1c.s.o. for -12. (o.e.) Award this mark if " $c=-12$ " stated i.e. not as part of an expression for y A1f.t. for 3 simplified x terms with $y=\ldots$ and a numerical value for c. Follow through their value of c but it must be a number.	

Question Number	Scheme	Marks
10 (a)	$\begin{equation*} x=3, \quad y=9-36+24+3=0 \tag{1} \end{equation*}$ $(9-36+27=0$ is OK$)$	B1
(b)	$\frac{d y}{d x}=\frac{3}{3} x^{2}-2 \times 4 \times x+8 \quad\left(=x^{2}-8 x+8\right)$	M1 A1
	When $x=3, \frac{d y}{d x}=9-24+8 \Rightarrow m=-7$	M1
	Equation of tangent: $\quad y-0=-7(x-3)$	M1
	$y=-7 x+21$	A1 c.a.o
(c)	$\frac{d y}{d x}=m \quad \text { gives } \quad x^{2}-8 x+8=-7$	M1
	$\begin{gathered} \left(x^{2}-8 x+15=0\right) \\ (x-5)(x-3)=0 \\ x=(3) \text { or } 5 \end{gathered}$ $x=5$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$
	$\begin{aligned} \therefore y & =\frac{1}{3} 5^{3}-4 \times 5^{2}+8 \times 5+3 \\ y & =-15 \frac{1}{3} \text { or }-\frac{46}{3} \end{aligned}$	M1 A1 (5)
(b)	$1^{\text {st }}$ M1 some correct differentiation ($x^{n} \rightarrow x^{n-1}$ for one term) $1^{\text {st }}$ A1 correct unsimplified (all 3 terms) $2^{\text {nd }}$ M1 substituting $x_{P}(=3)$ in their $\frac{d y}{d x}$ clear evidence $3^{\text {rd }}$ M1 using their m to find tangent at p.	
(c)	$1^{\text {st }}$ M1 forming a correct equation " their $\frac{d y}{d x}=$ gradient of their tangent" $2^{\text {nd }} \mathrm{M} 1$ for solving a quadratic based on their $\frac{d y}{d x}$ leading to $x=$ $3^{\text {rd }}$ M1 for using their x value in y to obtain y coordinate	
MR	For misreading $(0,3)$ for $(3,0)$ award B 0 and then M1A1 as in scheme. Then allow all M marks but no A ft. (Max 7)	

GENERAL PRINCIPLES FOR C1 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad(x \pm p)^{2} \pm q \pm c, \quad p \neq 0, q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

GCE

Edexcel GCE
Core Mathematics C1 (6663)

J anuary 2006

Mark Scheme (Results)

Question number	Scheme	Marks
1.	$\begin{array}{ll} x\left(x^{2}-4 x+3\right) & \text { Factor of } x . \text { (Allow }(x-0)) \\ =x(x-3)(x-1) & \text { Factorise } 3 \text { term quadratic } \end{array}$	M1 M1 A1 Total 3 marks
	Alternative: $\left(x^{2}-3 x\right)(x-1)$ or $\left(x^{2}-x\right)(x-3)$ scores the second M1 (allow \pm for each sign), then $x(x-3)(x-1)$ scores the first M1, and A1 if correct. Alternative: Finding factor $(x-1)$ or $(x-3)$ by the factor theorem scores the second M1, then completing, using factor x, scores the first M1, and A1 if correct. Factors "split": e.g. $x\left(x^{2}-4 x+3\right) \Rightarrow(x-3)(x-1)$. Allow full marks. Factor x not seen: e.g. Dividing by $x \Rightarrow(x-3)(x-1)$. M0 M1 A0. If an equation is solved, i.s.w.	

Question number	Scheme	Marks
2.	(a) $\begin{align*} & u_{2}=(-2)^{2}=4 \\ & u_{3}=1, u_{4}=4 \tag{3} \end{align*}$ For u_{3}, $\mathrm{ft}\left(u_{2}-3\right)^{2}$ (b) $u_{20}=4$	B1 B1ft, B1 B1ft (1) Total 4 marks
	(b) ft only if sequence is "oscillating". Do not give marks if answers have clearly been obtained from wrong working, $\text { e.g. } \begin{aligned} u_{2} & =(3-3)^{2}=0 \\ u_{3} & =(4-3)^{2}=1 \\ u_{4} & =(5-3)^{2}=4 \end{aligned}$	

Question number	Scheme	Marks
3.	(a) $y=5-(2 \times 3)=-1$ (or equivalent verification) (b) $\begin{aligned} & \text { Gradient of } L \text { is } \frac{1}{2} \\ & y-(-1)=\frac{1}{2}(x-3) \\ & x-2 y-5=0 \end{aligned}$ (ft from a changed gradient) (or equiv. with integer coefficients)	B1 (1) B1 M1 A1ft A1 (4) Total 5 marks
	(a) $y-(-1)=-2(x-3) \Rightarrow y=5-2 x$ is fine for B1. Just a table of values including $x=3, y=-1$ is insufficient. (b) M1: eqn of a line through $(3,-1)$, with any numerical gradient (except 0 or ∞). For the M1 A1ft, the equation may be in any form, e.g. $\frac{y-(-1)}{x-3}=\frac{1}{2}$. Alternatively, the M1 may be scored by using $y=m x+c$ with a numerical gradient and substituting $(3,-1)$ to find the value of c, with A1ft if the value of c follows through correctly from a changed gradient. Allow $x-2 y=5$ or equiv., but must be integer coefficients. The " $=0$ " can be implied if correct working precedes.	

Question number	Scheme	Marks
4.	(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+18 x^{-4}$ M1: $x^{2} \rightarrow x$ or $x^{-3} \rightarrow x^{-4}$ (b) $\frac{2 x^{3}}{3}-\frac{6 x^{-2}}{-2}+C$ M1: $x^{2} \rightarrow x^{3}$ or $x^{-3} \rightarrow x^{-2}$ or $+C$ $\left(=\frac{2 x^{3}}{3}+3 x^{-2}+C\right)$ First A1: $\frac{2 x^{3}}{3}+C$ Second A1: $-\frac{6 x^{-2}}{-2}$	M1 A1 (2) M1 A1 A1 (3) Total 5 marks
	In both parts, accept any correct version, simplified or not. Accept $4 x^{1}$ for $4 x$. $+C$ in part (a) instead of part (b): Penalise only once, so if otherwise correct scores M1 A0, M1 A1 A1.	

Question number	Scheme	Marks
5.	(a) $3 \sqrt{ } 5 \quad$ (or $a=3$) (b) $\frac{2(3+\sqrt{ } 5)}{(3-\sqrt{ } 5)} \times \frac{(3+\sqrt{ } 5)}{(3+\sqrt{ } 5)}$ $(3-\sqrt{5})(3+\sqrt{ } 5)=9-5 \quad(=4) \quad$ (Used as or intended as denominator) $(3+\sqrt{ } 5)(p \pm q \sqrt{ } 5)=\ldots 4$ terms $(p \neq 0, q \neq 0)$ (Independent) or $(6+2 \sqrt{ } 5)(p \pm q \sqrt{ } 5)=\ldots 4$ terms $(p \neq 0, q \neq 0)$ [Correct version: $(3+\sqrt{ } 5)(3+\sqrt{ } 5)=9+3 \sqrt{ } 5+3 \sqrt{ } 5+5$, or double this.] $\frac{2(14+6 \sqrt{ } 5)}{4}=7+3 \sqrt{ } 5 \quad 1^{\text {st }} \mathrm{A} 1: b=7, \quad 2^{\text {nd }} \mathrm{A} 1: c=3$	B1 (1) M1 B1 M1 A1 A1 (5) Total 6 marks
	(b) $2^{\text {nd }} \mathrm{M}$ mark for attempting $(3+\sqrt{ } 5)(p+q \sqrt{ } 5)$ is generous. Condone errors.	

Question number	Scheme	Marks
6.	(a) (See below) Clearly through origin (or $(0,0)$ seen) 3 labelled (or $(3,0)$ seen) (b) Stretch parallel to y-axis 1 and 4 labelled (or $(1,0)$ and $(4,0)$ seen) 6 labelled (or $(0,6)$ seen) (c) Stretch parallel to x-axis 2 and 8 labelled (or $(2,0)$ and $(8,0)$ seen) 3 labelled (or (0,3) seen)	A1 A1 (3) M1 A1 A1 (3) M1 A1 A1 (3) Total 9 marks
	(a) M1: (b) M1: with at least two of: $(1,0)$ unchanged $(4,0)$ unchanged $(0,3)$ changed (c) M1: with at least two of: $(1,0)$ changed $(4,0)$ changed $(0,3)$ unchanged Beware: Candidates may sometimes re-label the parts of their solution.	

Question number	Scheme	Marks
7.	(a) $500+(500+200)=1200$ or $S_{2}=\frac{1}{2} 2\{1000+200\}=1200$ (b) Using $a=500, d=200$ with $n=7,8$ or $9 \quad a+(n-1) d$ or "listing" $500+(7 \times 200)=(£) 1900$ (c) Using $\frac{1}{2} n\{2 a+(n-1) d\}$ or $\frac{1}{2} n\{a+l\}$, or listing and "summing" terms $S_{8}=\frac{1}{2} 8\{2 \times 500+7 \times 200\}$ or $S_{8}=\frac{1}{2} 8\{500+1900\}$, or all terms in list correct $=(£) 9600$ (d) $\frac{1}{2}$ M1: General S_{n}, equated to 32000 $n^{2}+4 n-320=0$ (or equiv.) M1: Simplify to 3 term quadratic $(n+20)(n-16)=0 \quad n=\ldots$ M1: Attempt to solve 3 t.q. $n=16$, Age is 26	B1 (1) M1 A1 (2) M1 A1 A1 M1 A1 M1 A1 M1 A1cso,A1cso Total 13 marks
	(b) Correct answer with no working: Allow both marks. (c) Some working must be seen to score marks: Minimum working: $500+700+900+\ldots(+1900)=\ldots$ scores M1 (A1). (d) Allow \geq or $>$ throughout , apart from "Age 26". A common misread here is 3200 . This gives $n=4$ and age 14 , and can score M1 A0 M1 A0 M1 A1 A1 with the usual misread rule. Alternative: (Listing sums) (500, 1200, 2100, 3200, 4500, 6000, 7700, 9600,) 11700, 14000, 16500, 19200, 22100, 25200, 28500, 32000. List at least up to 32000 M3 All values correct A2 $n=16$ (perhaps implied by age) A1cso Age 26 A1cso If there is a mistake in the list, e.g. $16^{\text {th }}$ sum $=32100$, possible marks are: M3 A0 A0 A0 Alternative: (Trial and improvement) Use of S_{n} formula with $n=16$ (and perhaps other values) M3 Accurately achieving 32000 for $n=16$ A3 Age 26	

Question number	Scheme	Marks
8.		M1 A1 M1 A1ft M1 A1cso A1 (ft C) (7) Total 7 marks
	For the integration: M1 requires evidence from just one term (e.g. $3 \rightarrow 3 x$), but not just " $+C$ ". A1ft requires correct integration of at least 3 terms, with at least one of these terms having a fractional power. For the final A1, follow through on C only.	

Question number	Scheme	Marks
10.	(a) $x^{2}+2 x+3=(x+1)^{2},+2$ $(a=1, \quad b=2)$ (b) "U"-shaped parabola Vertex in correct quadrant (ft from $(-a, b$) $(0,3)$ (or 3 on y-axis) (c) $b^{2}-4 a c=4-12=-8$ Negative, so curve does not cross x-axis (d) $\begin{aligned} & b^{2}-4 a c=k^{2}-12 \\ & k^{2}-12<0 \\ & -\sqrt{12}<k<\sqrt{12} \end{aligned}$ (May be within the quadratic formula) (Correct inequality expression in any form) $\text { (or }-2 \sqrt{3}<k<2 \sqrt{3} \text {) }$	$\mathrm{B} 1, \mathrm{~B} 1$ M 1 (2) A 1 ft B 1 (3) B 1 B 1 (2) M 1 A1 M1 A1 Total 11 marks
	(b) The B mark can be scored independently of the sketch. $(3,0)$ shown on the y-axis scores the B 1 , but if not shown on the axis, it is B 0 . (c) ".... no real roots" is insufficient for the $2^{\text {nd }} B$ mark. ".... curve does not touch x-axis" is insufficient for the $2^{\text {nd }} \mathrm{B}$ mark. (d) $2^{\text {nd }} \mathrm{M} 1$: correct solution method for their quadratic inequality, e.g. $k^{2}-12<0$ gives k between the 2 critical values $\alpha<k<\beta$, whereas $k^{2}-12>0$ gives $k<\alpha, k>\beta$. " $k>-\sqrt{12}$ and $k<\sqrt{12}$ " scores the final M1 A1, but " $k>-\sqrt{12}$ or $k<\sqrt{12}$ " scores M1 A0, " $k>-\sqrt{12}, k<\sqrt{12}$ " scores M1 A0. N.B. $k< \pm \sqrt{12}$ does not score the $2^{\text {nd }} \mathrm{M}$ mark. $k<\sqrt{12}$ does not score the $2^{\text {nd }} \mathrm{M}$ mark. \leq instead of $<$: Penalise only once, on first occurrence.	

GENERAL PRINCIPLES FOR C1 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad(x \pm p)^{2} \pm q \pm c, \quad p \neq 0, q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

(See the next sheet for a simple example).
A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

MISREADS

Question 8. $\quad 5 x^{2}$ misread as $5 x^{3}$
8. $\frac{5 x^{3}+2}{x^{\frac{1}{2}}}=5 x^{\frac{5}{2}}+2 x^{-\frac{1}{2}}$ M1 A0
$f(x)=3 x+\frac{5 x^{\frac{7}{2}}}{\left(\frac{7}{2}\right)}+\frac{2 x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}(+C)$
$6=3+\frac{10}{7}+4+C$
M1 A1ft
$C=-\frac{17}{7}, \quad \mathrm{f}(x)=3 x+\frac{10}{7} x^{\frac{7}{2}}+4 x^{\frac{1}{2}}-\frac{17}{7}$
A0, A1

GCE

Edexcel GCE
Mathematics
Core Mathematics C1 (6663)

J une 2006

Mark Scheme (Results)

J une 2006
 6663 Core Mathematics C1
 Mark Scheme

Question number	Scheme	Marks
1.	$\frac{6 x^{3}}{3}+2 x+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}(+c)$ $=2 x^{3}+2 x+2 x^{\frac{1}{2}}$	M1 A1 A1 B1 4
	M1 for some attempt to integrate $x^{n} \rightarrow x^{n+1}$ $1^{\text {st }} \mathrm{A} 1$ for either $\frac{6}{3} x^{3}$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better $2^{\text {nd }}$ A1 for all terms in x correct. Allow $2 \sqrt{x}$ and $2 x^{1}$. B1 for $+c$, when first seen with a changed expression.	

Question number	Scheme	Marks
3.	(a) U shape touching x-axis $\begin{aligned} & (-3,0) \\ & (0,9) \end{aligned}$ (b) Translated parallel to y-axis up $(0,9+k)$	B1 B1 B1 (3) M1 B1f.t. (2)
(a) (b)	$2^{\text {nd }}$ B1 They can score this even if other intersections with the x-axis are given. $2^{\text {nd }}$ B1 \& $3^{\text {rd }}$ B1 The -3 and 9 can appear on the sketch as shown M1 Follow their curve in (a) up only. If it is not obvious do not give it. e.g. if it cuts y-axis in (a) but doesn't in (b) then it is M0. B1f.t. Follow through their 9	

Question number	Scheme	Marks
4. (a) (b)	$\begin{aligned} & a_{2}=4 \\ & a_{3}=3 \times a_{2}-5=7 \\ & a_{4}=3 a_{3}-5(=16) \text { and } a_{5}=3 a_{4}-5(=43) \\ & 3+4+7+16+43 \\ & =73 \end{aligned}$	B1 B1f.t. (2) M1 M1 A1c.a.o. (3)
(a) (b)	$2^{\text {nd }}$ B1f.t. Follow through their a_{2} but it must be a value. $3 \times 4-5$ is B0 Give wherever it is first seen. $1^{\text {st }}$ M1 $2^{\text {nd }}$ M1 For two further attempts to use of $a_{n+1}=3 a_{n}-5$, wherever seen. Condone arithmetic slips For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_{2}-a_{5}$ Use of formulae for arithmetic series is M0A0 but could get $1^{\text {st }} \mathrm{M} 1$ if a_{4} and a_{5} are correctly attempted.	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {arks }}\) \\
\hline \begin{tabular}{l}
5. (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{align*}
\& \left(y=x^{4}+6 x^{\frac{1}{2}} \Rightarrow y^{\prime}=\right) 4 x^{3}+3 x^{-\frac{1}{2}} \quad \text { or } \quad 4 x^{3}+\frac{3}{\sqrt{x}} \tag{3}\\
\& (x+4)^{2}=x^{2}+8 x+16 \\
\& \frac{(x+4)^{2}}{x}=x+8+16 x^{-1} \\
\& \left(y=\frac{(x+4)^{2}}{x} \Rightarrow y^{\prime}=\right) 1-16 x^{-2} \tag{4}\\
\& \text { o.e. }
\end{align*}
\] \\
(allow \(4+4\) for 8)
\end{tabular} \\
\hline (a)
(b)

ALT \& \begin{tabular}{ll}
M1 \& For some attempt to differentiate $x^{n} \rightarrow x^{n-1}$

$1^{\text {st }}$ A1 \& For one correct term as printed.

$2^{\text {nd }}$ A1 \& For both terms correct as printed.

\& $4 x^{3}+3 x^{-\frac{1}{2}}+c$ scores M1A1A0

$1^{\text {st }}$ M1 \& For attempt to expand $(x+4)^{2}$, must have x^{2}, x, x^{0} terms and at least 2 correct

\& e.g. $x^{2}+8 x+8$ or $x^{2}+2 x+16$

$1^{\text {st }}$ A1 \& Correct expression for $\frac{(x+4)^{2}}{x}$. As printed but allow $\frac{16}{x}$ and $8 x^{0}$.

$2^{\text {nd }}$ M1 \& For some correct differentiation, any term. Can follow through their simplification.

N.B. $\frac{x^{2}+8 x+16}{x}$ giving rise to (2x+8)/1 is M0A0

$\frac{\text { Product or Quotient rule (If in doubt send to review) }}{\text { M2 }}$| For correct use of product or quotient rule. Apply usual rules on formulae. |
| :--- |
| $1^{\text {st }}$ A1 | | For $\frac{2(x+4)}{x}$ or $\frac{2 x(x+4)}{x^{2}}$ |
| :--- |
| $2^{\text {nd }}$ A1 | | for $-\frac{(x+4)^{2}}{x^{2}}$ |
| :--- |

\end{tabular}

\hline
\end{tabular}

Question number	Scheme	Marks
6. (a) (b)	$\begin{aligned} & 16+4 \sqrt{3}-4 \sqrt{3}-(\sqrt{3})^{2} \text { or } 16-3 \\ & =13 \\ & \frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}} \\ & =\frac{26(4-\sqrt{3})}{13}=8-2 \sqrt{3} \\ & \text { or } \quad 8+(-2) \sqrt{3} \quad \text { or } \quad a=8 \text { and } b=-2 \end{aligned}$	M1 A1c.a.o M1 A1 (2) 4
(a) (b)	For 4 terms, at least 3 correct e.g. $8+4 \sqrt{3}-4 \sqrt{3}-(\sqrt{3})^{2}$ or $16 \pm 8 \sqrt{3}-(\sqrt{3})^{2}$ or $16+3$ 4^{2} instead of 16 is OK $(4+\sqrt{3})(4+\sqrt{3})$ scores M0A0 M1 For a correct attempt to rationalise the denominator Can be implied NB $\frac{-4+\sqrt{3}}{-4+\sqrt{3}}$ is OK	

Question number	Scheme ${ }^{\text {a }}$ Marks
7.	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline 8. (a) \& \begin{tabular}{l}
\[
\begin{align*}
\& b^{2}-4 a c=4 p^{2}-4(3 p+4)=4 p^{2}-12 p-16(=0) \\
\& \text { or }(x+p)^{2}-p^{2}+(3 p+4)=0 \Rightarrow p^{2}-3 p-4(=0) \\
\& \qquad \begin{array}{c}
(p-4)(p+1)=0 \\
\qquad p=(-1 \text { or }) 4 \\
x=\frac{-b}{2 a} \text { or }(x+p)(x+p)=0 \Rightarrow x=\ldots \\
x(=-p)=\underline{-4}
\end{array}
\end{align*}
\] \\
M1, A1
\end{tabular} \\
\hline (a)

(b) \&

\hline
\end{tabular}

Question number	Scheme Marks
9. (a)	

\begin{tabular}{|c|c|c|}
\hline Question number \& Scheme \& Marks \\
\hline 10.(a)
(b)
(c) \& \begin{tabular}{l}
\[
\begin{align*}
\& \mathrm{f}(x)=\frac{2 x^{2}}{2}+\frac{3 x^{-1}}{-1}(+c) \\
\& \left(3,7 \frac{1}{2}\right) \text { gives } \frac{15}{2}=9-\frac{3}{3}+c \\
\& c=-\frac{3}{x} \text { is OK } \\
\& \mathrm{f}(-2)=4+\frac{3}{2}-\frac{1}{2} \quad \quad^{2} \text { or } 3^{-1} \text { are OK instead of } 9 \text { or } \frac{1}{3} \\
\& m=-4+\frac{3}{4},=-3.25
\end{align*}
\] \\
Equation of tangent is: \(y-5=-3.25(x+2)\)
\[
4 y+13 x+6=0
\]
\end{tabular} \& \begin{tabular}{ll}
M1A1 \\
M1A1f.t. \\
A1 \& \\
B1c.s.o. (5) \\
M1,A1 \\
M1 \\
A1 \& \\
\end{tabular} \\
\hline (a)

(b) \& \multicolumn{2}{|l|}{\begin{tabular}{ll}
$1^{\text {st }}$ M1 \& for some attempt to integrate $x^{n} \rightarrow x^{n+1}$

$1^{\text {st }}$ A1 \& | for both x terms as printed or better. Ignore $(+c)$ here. |
| :--- |
| for use of $\left(3,7 \frac{1}{2}\right)$ or $(-2,5)$ to form an equation for c. There must be some correct |
| $2^{\text {nd }}$ M1 | | substitution. No $+c$ is M0. Some changes in x terms of function needed. |
| :--- |

$2^{\text {nd }}$ A1f.t. \& | for a correct equation for c. Follow through their integration. They must tidy up |
| :--- |
| fraction/fraction and signs (e.g. - to +). |

\end{tabular}}

\hline (c) \& | $1^{\text {st }}$ M1 for attempting $m=\mathrm{f}^{\prime}(\pm 2)$
 $1^{\text {st }}$ A1 for $-\frac{13}{4}$ or -3.25
 $2^{\text {nd }}$ M1 for attempting equation of tangent at $(-2,5)$, f.t. their m, based on $\frac{\mathrm{d} y}{\mathrm{~d}}$
 $2^{\text {nd }}$ A1 o.e. must have a, b and c integers and $=0$. |
| :--- |
| Treat (a) and (b) together as a batch of 6 marks. | \&

\hline
\end{tabular}

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad(x \pm p)^{2} \pm q \pm c, \quad p \neq 0, q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values. There must be some correct substitution.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

J une 2006 Advanced Subsidiary/ Advanced Level in GCE Mathematics

Mark Scheme (Results) J anuary 2007

GCE

GCE Mathematics

Core Mathematics C1 (6663)

Mark Scheme

Question number	Scheme	Marks
1.	$4 x^{3} \rightarrow k x^{2}$ or $2 x^{\frac{1}{2}} \rightarrow k x^{-\frac{1}{2}} \quad$ (k a non-zero constant) $\begin{equation*} 12 x^{2},+x^{-\frac{1}{2}} \ldots \ldots, \quad(-1 \rightarrow 0) \tag{4} \end{equation*}$	M1 A1, A1, B1
	Accept equivalent alternatives to $x^{-\frac{1}{2}}$, e.g. $\frac{1}{x^{1 / 2}}, \frac{1}{\sqrt{x}}, x^{-0.5}$. M1: $4 x^{3}$ 'differentiated' to give $k x^{2}$, or... $2 x^{\frac{1}{2}} \text { 'differentiated' to give } k x^{-\frac{1}{2}} \quad \text { (but not for just }-1 \rightarrow 0 \text {). }$ $1^{\text {st }}$ A1: $12 x^{2} \quad$ (Do not allow just $3 \times 4 x^{2}$) $2^{\text {nd }}$ A1: $x^{-\frac{1}{2}}$ or equivalent. (Do not allow just $\frac{1}{2} \times 2 x^{-\frac{1}{2}}$, but allow $1 x^{-\frac{1}{2}}$ or $\frac{2}{2} x^{-\frac{1}{2}}$). B1: -1 differentiated to give zero (or 'disappearing'). Can be given provided that at least one of the other terms has been changed. Adding an extra term, e.g. $+C$, is B0.	

Question number	Scheme	Marks
3.	(a) Shape of $\mathrm{f}(x)$ Moved up \uparrow Asymptotes: $y=3$ $x=0$ (Allow " y-axis") $(y \neq 3$ is $\mathrm{B} 0, x \neq 0$ is B 0$)$. (b) $\frac{1}{x}+3=0$ No variations accepted. $x=-\frac{1}{3}($ or $-0.33 \ldots)$ Decimal answer requires at least 2 d.p.	B1 M1 B1 B1 M1 A1 (2) 6
	(a) B1: Shape requires both branches and no obvious "overlap" with the asymptotes (see below), but otherwise this mark is awarded generously. The curve may, e.g., bend away from the asymptote a little at the end. Sufficient curve must be seen to suggest the asymptotic behaviour, both horizontal and vertical. M1: Evidence of an upward translation parallel to the y-axis. The shape of the graph can be wrong, but the complete graph (both branches if they have 2 branches) must be translated upwards. This mark can be awarded generously by implication where the graph drawn is an upward translation of another standard curve (but not a straight line). The B marks for asymptote equations are independent of the graph. Ignore extra asymptote equations, if seen. (b) Correct answer with no working scores both marks. The answer may be seen on the sketch in part (a). Ignore any attempts to find an intersection with the y-axis. (a) This scores B0 (clear overlap with horiz. asymp.) M1 (Upward translation... bod that both branches have been translated). No marks unless the original curve is seen, to show upward translation.	

Question number	Scheme	Marks
4.	$(x-2)^{2}=x^{2}-4 x+4$ or $(y+2)^{2}=y^{2}+4 y+4$ M: 3 or 4 terms $(x-2)^{2}+x^{2}=10$ or $y^{2}+(y+2)^{2}=10$ M: Substitute $2 x^{2}-4 x-6=0$ or $2 y^{2}+4 y-6=0$ Correct 3 terms $(x-3)(x+1)=0, \quad x=\ldots$ or $(y+3)(y-1)=0, \quad y=\ldots$ (The above factorisations may also appear as $(2 x-6)(x+1)$ or equivalent). $x=3 \quad x=-1$ or $y=-3 \quad y=1$ $y=1 \quad y=-3$ or $x=-1 \quad x=3$ (Allow equivalent fractions such as: $x=\frac{6}{2}$ for $\left.x=3\right)$.	M1 M1 A1 M1 A1 M1 A1 (7)
	$1^{\text {st }} \mathrm{M}$: ‘Squaring a bracket', needs 3 or 4 terms, one of which must be an x^{2} or y^{2} term. $2^{\text {nd }} \mathrm{M}$: Substituting to get an equation in one variable (awarded generously). $1^{\text {st }} \mathrm{A}$: Accept equivalent forms, e.g. $2 x^{2}-4 x=6$. $3^{\text {rd }} \mathrm{M}$: Attempting to solve a 3-term quadratic, to get 2 solutions. $4^{\text {th }} \mathrm{M}$: Attempting at least one y value (or x value). If y solutions are given as x values, or vice-versa, penalise at the end, so that it is possible to score M1 M1A1 M1 A1 M0 A0. Strict "pairing of values" at the end is not required. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x=3, y=1$): M0 M0 A0 M0 A0 M1 A0 No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A1 Both correct solution pairs found, and demonstrated, perhaps in a table of values: Full marks	

Question number	Scheme	Marks
6.	(a) $(4+3 \sqrt{ } x)(4+3 \sqrt{ } x)$ seen, or a numerical value of k seen, $(k \neq 0)$. (The k value need not be explicitly stated... see below). $16+24 \sqrt{ } x+9 x, \text { or } k=24$ (b) $16 \rightarrow c x$ or $k x^{1 / 2} \rightarrow c x^{3 / 2}$ or $9 x \rightarrow c x^{2}$ $\int(16+24 \sqrt{ } x+9 x) \mathrm{d} x=16 x+\frac{9 x^{2}}{7}+C,+16 x^{3 / 2}$	M1 A1cso M1 A1, A1ft
	(a) e.g. $(4+3 \sqrt{ } x)(4+3 \sqrt{ } x)$ alone scores M1 A0, (but not $(4+3 \sqrt{ } x)^{2}$ alone). e.g $16+12 \sqrt{ } x+9 x$ scores M1 A0. $k=24$ or $16+24 \sqrt{ } x+9 x$, with no further evidence, scores full marks M1 A1. Correct solution only (cso): any wrong working seen loses the A mark. (b) A1: $16 x+\frac{9 x^{2}}{2}+C . \quad$ Allow 4.5 or $4 \frac{1}{2}$ as equivalent to $\frac{9}{2}$. A1ft: $\frac{2 k}{3} x^{3 / 2}$ (candidate's value of k, or general k). For this final mark, allow for example $\frac{48}{3}$ as equivalent to 16 , but do not allow unsimplified "double fractions" such as $\frac{24}{(3 / 2)}$, and do not allow unsimplified "products" such as $\frac{2}{3} \times 24$. A single term is required, e.g. $8 x^{3 / 2}+8 x^{3 / 2}$ is not enough. An otherwise correct solution with, say, C missing, followed by an incorrect solution including $+C$ can be awarded full marks (isw, but allowing the C to appear at any stage).	

Question number	Scheme	Marks
7.	(a) $3 x^{2} \rightarrow c x^{3}$ or $-6 \rightarrow c x$ or $-8 x^{-2} \rightarrow c x^{-1}$ $\mathrm{f}(x)=\frac{3 x^{3}}{3}-6 x-\frac{8 x^{-1}}{-1}$ $(+C) \quad\left(x^{3}-6 x+\frac{8}{x}\right)$ Substitute $x=2$ and $y=1$ into a 'changed function' to form an equation in C. $1=8-12+4+C \quad C=1$ (b) $3 \times 2^{2}-6-\frac{8}{2^{2}}$ $=4$ Eqn. of tangent: $\quad y-1=4(x-2)$ $y=4 x-7$ (Must be in this form)	M1 A1 A1 M1 A1cso M1 A1 M1 A1
	(a) First 2 A marks: $+C$ is not required, and coefficients need not be simplified, but powers must be simplified. All 3 terms correct: A1 A1 Two terms correct: A1 A0 Only one term correct: A0 A0 Allow the M1 A1 for finding C to be scored either in part (a) or in part (b). (b) $1^{\text {st }} \mathrm{M}$: Substituting $x=2$ into $3 x^{2}-6-\frac{8}{x^{2}}$ (must be this function). $2^{\text {nd }} \mathrm{M}$: Awarded generously for attempting the equation of a straight line through $(2,1)$ or $(1,2)$ with any value of m, however found. $2^{\text {nd }} \mathrm{M}$: Alternative is to use $(2,1)$ or $(1,2)$ in $y=m x+c$ to find a value for c. If calculation for the gradient value is seen in part (a), it must be used in part (b) to score the first M1 A1 in (b). Using (1,2) instead of $(2,1)$: Loses the $2^{\text {nd }}$ method mark in (a). Gains the $2^{\text {nd }}$ method mark in (b).	

Question number	Scheme	Marks
8.	(a) $4 x \rightarrow k$ or $3 x^{3 / 2} \rightarrow k x^{1 / 2}$ or $-2 x^{2} \rightarrow k x$ $\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=4+\frac{9}{2} x^{1 / 2}-4 x \tag{*} \end{equation*}$ (b) For $x=4, y=(4 \times 4)+(3 \times 4 \sqrt{4})-(2 \times 16)=16+24-32=8$ (c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=4+9-16=-3$ M: Evaluate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=4$ Gradient of normal $=\frac{1}{3}$ Equation of normal: $y-8=\frac{1}{3}(x-4)$, $\begin{equation*} 3 y=x+20 \tag{*} \end{equation*}$ (d) $y=0: x=\ldots . .(-20) \quad$ and use $\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$ $P Q=\sqrt{24^{2}+8^{2}}$ or $P Q^{2}=24^{2}+8^{2} \quad$ Follow through from $(k, 0)$ May also be scored with $(-24)^{2}$ and $(-8)^{2}$. $=8 \sqrt{ } 10$	M1 A1 A1 (3) B1 (1) M1 A1ft M1, A1 (4) M1 A1ft A1 (3)
	(a) For the 2 A marks coefficients need not be simplified, but powers must be simplified. For example, $\frac{3}{2} \times 3 x^{1 / 2}$ is acceptable. All 3 terms correct: A1 A1 Two terms correct: A1 A0 Only one term correct: A0 A0 (b) There must be some evidence of the " 24 " value. (c) In this part, beware 'working backwards' from the given answer. A1ft: Follow through is just from the candidate's value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$. $2^{\text {nd }} \mathrm{M}$: Is not given if an m value appears "from nowhere". $2^{\text {nd }} \mathrm{M}$: Must be an attempt at a normal equation, not a tangent. $2^{\text {nd }} \mathrm{M}$: Alternative is to use $(4,8)$ in $y=m x+c$ to find a value for c. (d) M: Using the normal equation to attempt coordinates of Q, (even if using $x=0$ instead of $y=0$), and using Pythagoras to attempt $P Q$ or $P Q^{2}$. Follow through from ($k, 0$), but not from $(0, k) \ldots$ A common wrong answer is to use $x=0$ to give $\frac{20}{3}$. This scores M1 A0 A0. For final answer, accept other simplifications of $\sqrt{ } 640$, e.g. $2 \sqrt{ } 160$ or $4 \sqrt{ } 40$.	

Question number	Scheme	Marks
9.	(a) Recognising arithmetic series with first term 4 and common difference 3. (If not scored here, this mark may be given if seen elsewhere in the solution). $a+(n-1) d=4+3(n-1) \quad(=3 n+1)$ (b) $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}=\frac{10}{2}\{8+(10-1) \times 3\},=175$, (c) $S_{k}<1750: \frac{k}{2}\{8+3(k-1)\}<1750\left(\right.$ or $\left.S_{k+1}>1750: \frac{k+1}{2}\{8+3 k\}>1750\right)$ $3 k^{2}+5 k-3500<0\left(\text { or } 3 k^{2}+11 k-3492>0\right)$ (Allow equivalent 3 -term versions such as $3 k^{2}+5 k=3500$). $(3 k-100)(k+35)<0 \quad$ Requires use of correct inequality throughout.(*) (d) $\frac{100}{3}$ or equiv. seen $\left(\right.$ or $\left.\frac{97}{3}\right), k=33$ (and no other values)	B1 M1 A1 (3) M1 A1, A1 (3) M1 M1 A1 A1cso (4) M1, A1 (2) 12,l
	(a) B1: Usually identified by $a=4$ and $d=3$. M1: Attempted use of term formula for arithmetic series, or... answer in the form ($3 n+$ constant), where the constant is a non-zero value Answer for (a) does not require simplification, and a correct answer without working scores all 3 marks. (b) M1: Use of correct sum formula with $n=9,10$ or 11 . A1: Correct, perhaps unsimplified, numerical version. A1: 175 Alternative: (Listing and summing terms). M1: Summing 9, 10 or 11 terms. (At least $1^{\text {st }}, 2^{\text {nd }}$ and last terms must be seen). A1: Correct terms (perhaps implied by last term 31). A1: 175 Alternative: (Listing all sums) M1: Listing 9, 10 or 11 sums. (At least 4, 7,, "last"). A1: Correct sums, correct finishing value 175. A1: 175 Alternative: (Using last term). M1: Using $S_{n}=\frac{n}{2}(a+l)$ with T_{9}, T_{10} or T_{11} as the last term. A1: Correct numerical version $\frac{10}{2}(4+31)$. A1: 175 Correct answer with no working scores 1 mark: 1,0,0. (c) For the first 3 marks, allow any inequality sign, or equals. $1^{\text {st }} \mathrm{M}$: Use of correct sum formula to form inequality or equation in k, with the 1750 . $2^{\text {nd }} \mathrm{M}$: (Dependent on $1^{\text {st }} \mathrm{M}$). Form 3-term quadratic in k. $1^{\text {st }} \mathrm{A}$: Correct 3 terms. Allow credit for part (c) if valid work is seen in part (d). (d) Allow both marks for $k=33$ seen without working. Working for part (d) must be seen in part (d), not part (c).	

GENERAL PRINCIPLES FOR C1 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \quad \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad(x \pm p)^{2} \pm q \pm c, \quad p \neq 0, q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

(See the next sheet for a simple example).
A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

MISREADS

Question 7. $3 x^{2}$ misread as $3 x^{3}$
(a) $\mathrm{f}(x)=\frac{3 x^{4}}{4}-6 x-\frac{8 x^{-1}}{-1}$

M1 A1 A0
$1=12-12+4+C \quad C=-3$
M1 A0
(b) $m=3 \times 2^{3}-6-\frac{8}{2^{2}}=16$

M1 A1

Eqn. of tangent: $\quad y-1=16(x-2)$
M1

$$
y=16 x-31
$$

Mark Scheme (Results)

Summer 2007

GCE

GCE Mathematics

Core Mathematics C1 (6663)

6663 Core Mathematics C1
Mark Scheme

Question number	Scheme Marks
1.	$\begin{aligned} & 9-5 \text { or } 3^{2}+3 \sqrt{5}-3 \sqrt{5}-\sqrt{5} \times \sqrt{5} \text { or } 3^{2}-\sqrt{5} \times \sqrt{5} \text { or } 3^{2}-(\sqrt{5})^{2} \\ & =\underline{4} \end{aligned}$
	M1 for an attempt to multiply out. There must be at least 3 correct terms. Allow one sign slip only, no arithmetic errors. e.g. $\quad 3^{2}+3 \sqrt{5}-3 \sqrt{5}+(\sqrt{5})^{2}$ is M1A0 $3^{2}+3 \sqrt{5}+3 \sqrt{5}-(\sqrt{5})^{2}$ is M1A0 as indeed is $9 \pm 6 \sqrt{5}-5$ BUT $9+\sqrt{15}-\sqrt{15}-5(=4)$ is M0A0 since there is more than a sign error. $6+3 \sqrt{5}-3 \sqrt{5}-5$ is M0A0 since there is an arithmetic error. If all you see is 9 ± 5 that is M1 but please check it has not come from incorrect working. Expansion of $(3+\sqrt{5})(3+\sqrt{5})$ is M0A0 A1cso for 4 only. Please check that no incorrect working is seen. Correct answer only scores both marks.

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline 3. \& \begin{tabular}{l}
(a) \(\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=\underline{6 x^{1}+\frac{4}{2} x^{-\frac{1}{2}}} \quad\) or \(\left(6 x+2 x^{-\frac{1}{2}}\right)\) \\
 \\
(c) \(x^{3}+\frac{8}{3} x^{\frac{3}{2}}+C\) \\
A1: \(\frac{3}{3} x^{3}\) or \(\frac{4 x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}\) \\
A1: both, simplified and \(+C\) \\
M1 A1 A1
\end{tabular} \\
\hline (a)

(b)

(c) \& | M1 for some attempt to differentiate: $x^{n} \rightarrow x^{n-1}$ Condone missing $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $y=\ldots$ |
| :--- |
| A1 for both terms correct, as written or better. No $+C$ here. Of course $\frac{2}{\sqrt{x}}$ is acceptable. |
| M1 for some attempt to differentiate again. Follow through their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, at least one term correct or correct follow through. |
| |
| M1 for some attempt to integrate: $x^{n} \rightarrow x^{n+1}$. Condone misreading $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for y. ($+C$ alone is not sufficient) |
| $1^{\text {st }}$ A1 for either $\frac{3}{3} x^{3}$ or $\frac{4 x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ (or better) $\frac{2}{3} \times 4 x^{\frac{3}{2}}$ is OK here too but not for $2^{\text {nd }}$ A1. |
| $2^{\text {nd }}$ A1 for both x^{3} and $\frac{8}{3} x^{\frac{3}{2}}$ or $\frac{8}{3} x \sqrt{x} \quad$ i.e. simplified terms and $+C$ all on one line. $2 \frac{2}{3}$ instead of $\frac{8}{3}$ is OK |

\hline
\end{tabular}

Question number	Scheme Marks
4.	
(a) N.B. (b)	B1 can be implied if the correct answer is obtained. If 403 is not obtained then the values of a and d must be clearly identified as $a=5$ and $d=2$. This mark can be awarded at any point. M1 for attempt to use nth term formula with $n=200$. Follow through their a and d. Must have use of $n=200$ and one of a or d correct or correct follow through. Must be 199 not 200. A1 for 403 or 4.03 (i.e. condone missing $£$ sign here). Condone $£ 403$ here. $a=3, d=2$ is B0 and $a+200 d$ is M0 BUT $3+200 \times 2$ is B1M1 and A1 if it leads to 403 . Answer only of 403 (or 4.03) scores $3 / 3$. M1 for use of correct sum formula with $n=200$. Follow through their a and d and their 403. Must have some use of $n=200$, and some of a, d or l correct or correct follow through. $1^{\text {st }} \mathrm{A} 1$ for any correct expression (i.e. must have $a=5$ and $d=2$) but can f.t. their 403 still. $2^{\text {nd }} \mathrm{A} 1$ for 40800 or $£ 408$ (i.e. the $£$ sign is required before we accept 408 this time). 40800 p is fine for A1 but $£ 40800$ is A0.
ALT (a) (b)	Listing They might score B1 if $a=5$ and $d=2$ are clearly identified. Then award M1A1 together for 403. $\sum_{r=1}^{200}(2 r+3)$. Give M1 for $2 \times \frac{200}{2} \times(201)+3 k($ with $k>1)$, A1 for $k=200$ and A1 for 40800.

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline 7. \& \begin{tabular}{l}
(a) Attempt to use discriminant \(b^{2}-4 a c\)
\[
k^{2}-4(k+3)>0 \Rightarrow k^{2}-4 k-12>0
\] \\
(b) \(k^{2}-4 k-12=0 \quad \Rightarrow\) \\
\((k \pm a)(k \pm b)\), with \(a b=12\) or \((k=) \frac{4 \pm \sqrt{4^{2}--4 \times 12}}{2}\) or \((k-2)^{2} \pm 2^{2}-12\)
\[
k=-2 \text { and } 6
\]
\[
\underline{k<-2, k>6} \text { or } \underline{(-\infty,-2) ;(6, \infty)}
\] \\
M: choosing "outside'
\end{tabular} \\
\hline (a)

(b) \& | M1 for use of $b^{2}-4 a c$, one of b or c must be correct. |
| :--- |
| Or full attempt using completing the square that leads to a 3TQ in k $\text { e.g. }\left(\left[x+\frac{k}{2}\right]^{2}=\right) \frac{k^{2}}{4}-(k+3)$ |
| A1cso Correct argument to printed result. Need to state (or imply) that $b^{2}-4 a c>0$ and no incorrect working seen. Must have >0. If >0 just appears with $k^{2}-4(k+3)>0$ that is OK. If >0 appears on last line only with no explanation give A0. |
| $b^{2}-4 a c$ followed by $k^{2}-4 k-12>0$ only is insufficient so M0A0 |
| e.g. $k^{2}-4 \times 1 \times k+3$ (missing brackets) can get M1A0 but $k^{2}+4(k+3)$ is M0A0 (wrong formula) |
| Using $\sqrt{b^{2}-4 a c}>0$ is M0. |
| $1^{\text {st }}$ M1 for attempting to find critical regions. Factors, formula or completing the square. |
| $1^{\text {st }}$ A1 \quad for $k=6$ and -2 only |
| $2^{\text {nd }}$ M1 for choosing the outside regions |
| $2^{\text {nd }}$ A1f.t. as printed or f.t. their (non identical) critical values |
| $6<k<-2$ is M1A0 but ignore if it follows a correct version |
| $-2<k<6$ is M0A0 whatever their diagram looks like |
| Condone use of x instead of k for critical values and final answers in (b). |
| Treat this question as 3 two mark parts. If part (a) is seen in (b) or vice versa marks can be awarded. |

\hline
\end{tabular}

Question number	Scheme	Marks
8.	(a) $\left(a_{2}=\right) \underline{3 k+5} \quad$ [must be seen in part (a) or labelled $a_{2}=$] $\text { (b) } \begin{align*} \left(a_{3}\right. & =) 3(3 k+5)+5 \\ & =\underline{9 k+20} \tag{*} \end{align*}$ $\text { (c)(i) } a_{4}=3(9 k+20)+5 \quad(=27 k+65)$ $\sum_{r=1}^{4} a_{r}=k+(3 k+5)+(9 k+20)+(27 k+65)$ (ii) $=40 k+90$ $=\underline{10(4 k+9)} \quad(\text { or explain why divisible by } 10)$	B1 M1 A1cso M1 M1 M1 A1 A1ft (4) 7
(b)	M1 for attempting to find a_{3}, follow through their $a_{2} \neq k$. A1cso for simplifying to printed result with no incorrect working seen. $1^{\text {st }}$ M1 for attempting to find a_{4}. Can allow a slip here e.g. $3(9 k+20)$ [i.e. forgot +5] $2^{\text {nd }}$ M1 for attempting sum of 4 relevant terms, follow through their (a) and (b). Must have 4 terms starting with k. Use of arithmetic series formulae at this point is MOA0A0 $1^{\text {st }}$ A1 for simplifying to $40 k+90$ or better $2^{\text {nd }}$ A1ft for taking out a factor of 10 or dividing by 10 or an explanation in words true $\forall k$. Follow through their sum of 4 terms provided that both Ms are scored and their sum is divisible by 10 . A comment is not required. e.g. $\frac{40 k+90}{10}=4 k+9$ is OK for this final A1. $\sum_{r=2}^{5} a_{r}=120 k+290=10(12 k+29) \text { can have M1M0A0A1ft. }$	

\begin{tabular}{|c|c|}
\hline Question number \& \begin{tabular}{|l|l}
Scheme \& Marks
\end{tabular} \\
\hline 9. \& \begin{tabular}{l}
(a) \\
\(f(x)=\frac{6 x^{3}}{3}-\frac{10 x^{2}}{2}-12 x(+C)\)
\[
x=5: \quad 250-125-60+C=65 \quad C=0
\] \\
(b) \(x\left(2 x^{2}-5 x-12\right)\) or \(\left(2 x^{2}+3 x\right)(x-4)\) or \((2 x+3)\left(x^{2}-4 x\right)\)
\[
=x(2 x+3)(x-4)
\] \\
(c)
\end{tabular} \\
\hline (a)
(b)

(c) \& | $1^{\text {st }}$ M1 for attempting to integrate, $x^{n} \rightarrow x^{n+1}$ |
| :--- |
| $1^{\text {st }}$ A1 for all x terms correct, need not be simplified. Ignore $+C$ here. |
| $2^{\text {nd }}$ M1 for some use of $x=5$ and $\mathrm{f}(5)=65$ to form an equation in C based on their integration. |
| There must be some visible attempt to use $x=5$ and $\mathrm{f}(5)=65$. No $+C$ is M0. |
| $2^{\text {nd }} \mathrm{A} 1$ for $C=0$. This mark cannot be scored unless a suitable equation is seen. |
| M1 for attempting to take out a correct factor or to verify. Allow usual errors on signs. |
| They must get to the equivalent of one of the given partially factorised expressions or, if verifying, $x\left(2 x^{2}+3 x-8 x-12\right)$ i.e. with no errors in signs. |
| A1cso for proceeding to printed answer with no incorrect working seen. Comment not required. This mark is dependent upon a fully correct solution to part (a) so M1A1M0A0M1A0 for (a) \& (b). Will be common or M1A1M1A0M1A0. To score 2 in (b) they must score 4 in (a). |
| $1^{\text {st }} \mathrm{B} 1$ for positive x^{3} shaped curve (with a max and a min) positioned anywhere. |
| $2^{\text {nd }} \mathrm{B} 1$ for any curve that passes through the origin (B 0 if it only touches at the origin) |
| $3^{\text {rd }} \mathrm{B} 1$ for the two points clearly given as coords or values marked in appropriate places on x axis. Ignore any extra crossing points (they should have lost first B1). |
| Condone $(1.5,0)$ if clearly marked on -ve x-axis. Condone $(0,4)$ etc if marked on $+\mathrm{ve} x$ axis. Curve can stop (i.e. not pass through) at $(-1.5,0)$ and $(4,0)$. |
| A point on the graph overrides coordinates given elsewhere. |

\hline
\end{tabular}

11.

$$
\begin{array}{rr}
\text { (a) } y=-\frac{3}{2} x(+4) & \text { Gradient }=-\frac{3}{2} \\
\text { (b) } 3 x+2=-\frac{3}{2} x+4 & x=\ldots, \frac{4}{9} \\
y=3\left(\frac{4}{9}\right)+2=\frac{10}{3}\left(=3 \frac{1}{3}\right)
\end{array}
$$

M1 A1

M1, A1

A1
(a) M1 for an attempt to write $3 x+2 y-8=0$ in the form $y=m x+c$
or a full method that leads to $m=$, e.g find 2 points, and attempt gradient using $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
e.g. finding $y=-1.5 x+4$ alone can score M1 (even if they go on to say $m=4$)

A1 for $m=-\frac{3}{2}$ (can ignore the $+c$) or $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3}{2}$
(b) M1 for forming a suitable equation in one variable and attempting to solve leading to $x=$..or $y=$ $1^{\text {st }} \mathrm{A} 1$ for any exact correct value for x
$2^{\text {nd }} \mathrm{A} 1$ for any exact correct value for y
(These 3 marks can be scored anywhere, they may treat (a) and (b) as a single part)
(c) $\quad 1^{\text {st }} \mathrm{M} 1$ for attempting the x coordinate of A or B. One correct value seen scores M1.
$1^{\text {st }} \mathrm{A} 1$ for $x_{A}=-\frac{1}{3}$ and $x_{B}=2$
$2^{\text {nd }} \mathrm{M} 1$ for a full method for the area of the triangle - follow through their x_{A}, x_{B}, y_{P}.
e.g. determinant approach $\frac{1}{2}\left|\begin{array}{cccc}2 & -\frac{1}{3} & \frac{4}{9} & 2 \\ 1 & 1 & \frac{10}{3} & 1\end{array}\right|=\frac{1}{2}\left|2-\ldots-\left(-\frac{1}{3} \ldots\right)\right|$
$2^{\text {nd }}$ A1 for $\frac{49}{18}$ or an exact equivalent.
All accuracy marks require answers as single fractions or mixed numbers not necessarily in lowest terms.

Mark Scheme (Results) J anuary 2008

GCE

GCE Mathematics (6663/ 01)

J anuary 2008
 6663 Core Mathematics C1
 Mark Scheme

Question number	Scheme	Marks	
2.	(a) 2 (b) x^{9} seen, or $(\text { answer to }(\mathrm{a}))^{3}$ seen, or $\left(2 x^{3}\right)^{3}$ seen. $8 x^{9}$	B1 M1 A1	(1) (2) 3
	(b) M: Look for x^{9} first... if seen, this is M1. If not seen, look for (answer to (a) $)^{3}$, e.g. $2^{3} \ldots$ this would score M1 even if it does not subsequently become 8. (Similarly for other answers to (a)). In $\left(2 x^{3}\right)^{3}$, the 2^{3} is implied, so this scores the M mark. Negative answers: (a) Allow -2 . Allow ± 2. Allow' 2 or -2 '. (b) Allow $\pm 8 x^{9}$. Allow ' $8 x^{9}$ or $-8 x^{9}$, N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full marks in part (b).		

Question number	Scheme	Marks
3.	$\begin{aligned} & \frac{(5-\sqrt{3})}{(2+\sqrt{3})} \times \frac{(2-\sqrt{3})}{(2-\sqrt{3})} \\ & =\frac{10-2 \sqrt{3}-5 \sqrt{3}+(\sqrt{3})^{2}}{\cdots} \quad\left(=\frac{10-7 \sqrt{3}+3}{\cdots}\right) \\ & (=13-7 \sqrt{3}) \quad\left(\text { Allow } \frac{13-7 \sqrt{3}}{1}\right) \\ & 13 \quad(a=13) \end{aligned}$	M1 M1 A1 A1 (4)
	$1^{\text {st }} \mathrm{M}$: Multiplying top and bottom by $(2-\sqrt{3})$. (As shown above is sufficient). $2^{\text {nd }}$ M: Attempt to multiply out numerator $(5-\sqrt{3})(2-\sqrt{3})$. Must have at least 3 terms correct. obviously be the final answer (not an intermediate step), to score full marks. (Also M0 M1 A1 A1 is not an option). The A marks cannot be scored unless the $1^{\text {st }} \mathrm{M}$ mark has been scored, but this $1^{\text {st }} \mathrm{M}$ mark could be implied by correct expansions of both numerator and denominator. It is possible to score M1 M0 A1 A0 or M1 M0 A0 A1 (after 2 correct terms in the numerator). Special case: If numerator is multiplied by $(2+\sqrt{3})$ instead of $(2-\sqrt{3})$, the $2^{\text {nd }} \mathrm{M}$ can still be scored for at least 3 of these terms correct: $10-2 \sqrt{3}+5 \sqrt{3}-(\sqrt{3})^{2}$ The maximum score in the special case is 1 mark: M0 M1 A0 A0. Answer only: Scores no marks. Alternative method: $\begin{array}{ll} 5-\sqrt{3}=(a+b \sqrt{3})(2+\sqrt{3}) & \\ \begin{array}{ll} (a+b \sqrt{3})(2+\sqrt{3})=2 a+a \sqrt{3}+2 b \sqrt{3}+3 & \text { M1: At least } 3 \text { terms correct. } \\ 5=2 a+3 b & \\ -1=a+2 b & a=\ldots \text { or } b=\ldots \end{array} & \begin{array}{c} \text { M1: Form and attempt to solve } \\ \text { simultaneous equations. } \end{array} \\ a=13, \quad b=-7 & \text { A1, A1 } \end{array}$	

Question number	Scheme	Marks
8.	(a) $x^{2}+k x+(8-k) \quad(=0) \quad 8-k$ need not be bracketed $\begin{align*} & b^{2}-4 a c=k^{2}-4(8-k) \\ & b^{2}-4 a c<0 \Rightarrow k^{2}+4 k-32<0 \tag{*} \end{align*}$ (b) $\begin{array}{lll} (k+8)(k-4)=0 & k=\ldots & \\ & k=-8 & k=4 \end{array}$ Choosing 'inside' region (between the two k values) $-8<k<4 \quad \text { or } \quad 4>k>-8$	M1 M1 A1cso (3) M1 A1 M1 A1 (4)
	(a) $1^{\text {st }} \mathrm{M}$: Using the k from the right hand side to form 3-term quadratic in x ('= 0 ' can be implied), or... attempting to complete the square $\left(x+\frac{k}{2}\right)^{2}-\frac{k^{2}}{4}+8-k(=0)$ or equiv., using the k from the right hand side. For either approach, condone sign errors. $1^{\text {st }} \mathrm{M}$ may be implied when candidate moves straight to the discriminant $2^{\text {nd }} \mathrm{M}$: Dependent on the $1^{\text {st }} \mathrm{M}$. Forming expressions in k (with no x 's) by using b^{2} and 4ac. (Usually seen as the discriminant $b^{2}-4 a c$, but separate expressions are fine, and also allow the use of $b^{2}+4 a c$. (For 'completing the square' approach, the expression must be clearly separated from the equation in x). If b^{2} and $4 a c$ are used in the quadratic formula, they must be clearly separated from the formula to score this mark. For any approach, condone sign errors. If the wrong statement $\sqrt{b^{2}-4 a c}<0$ is seen, maximum score is M1 M1 A0. (b) Condone the use of x (instead of k) in part (b). 1st M: Attempt to solve a 3-term quadratic equation in k. It might be different from the given quadratic in part (a). Ignore the use of $<$ in solving the equation. The $1^{\text {st }} \mathrm{M} 1 \mathrm{~A} 1$ can be scored if -8 and 4 are achieved, even if stated as $k<-8, k<4$. Allow the first M1 A1 to be scored in part (a). $\begin{aligned} & \text { N.B. ' } k>-8, k<4 \text { ' scores } 2^{\text {nd }} \text { M1 A0 } \\ & \text { ' } k>-8 \text { or } k<4 \text { ' scores } 2^{\text {nd }} \text { M1 A0 } \\ & \text { ' } k>-8 \text { and } k<4 \text { ' scores } 2^{\text {nd }} \text { M1 A1 } \\ & \text { ' } k=-7,-6,-5,-4,-3,-2,-1,0,1,2,3 \text { ' scores } 2^{\text {nd }} \text { M0 A0 } \end{aligned}$ Use of \leq (in the answer) loses the final mark.	

Question number	Scheme	Marks
9.	(a) $4 x \rightarrow k x^{2}$ or $6 \sqrt{x} \rightarrow k x^{3 / 2}$ or $\frac{8}{x^{2}} \rightarrow k x^{-1} \quad$ (k a non-zero constant) $\mathrm{f}(x)=2 x^{2},-4 x^{3 / 2},-8 x^{-1} \quad(+C) \quad(+C$ not required $)$ At $x=4, y=1: \quad 1=(2 \times 16)-\left(4 \times 4^{3 / 2}\right)-\left(8 \times 4^{-1}\right)+C \quad$ Must be in part (a) $C=3$ (b) $f^{\prime}(4)=16-(6 \times 2)+\frac{8}{16}=\frac{9}{2}(=m)$ Gradient of normal is $-\frac{2}{9}\left(=-\frac{1}{m}\right) \quad\left[\begin{array}{l}\text { M: Attempt perp. grad. rule. } \\ \text { Dependent on the use of their } \mathrm{f}^{\prime}(x)\end{array}\right]$ Eqn. of normal: $y-1=-\frac{2}{9}(x-4) \quad$ (or any equiv. form, e.g. $\frac{y-1}{x-4}=-\frac{2}{9}$) Typical answers for A1: $\left(y=-\frac{2}{9} x+\frac{17}{9}\right)(2 x+9 y-17=0)(y=-0 . \dot{2} x+1 . \dot{8})$ Final answer: gradient $-\frac{1}{(9 / 2)}$ or $-\frac{1}{4.5}$ is A0 (but all M marks are available).	M1 A1, A1, A1 M1 A1 M1 M1 M1 A1
	(a) The first 3 A marks are awarded in the order shown, and the terms must be simplified. 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common factors. Only a single + or - sign is allowed (e.g. +- must be replaced by -). $2^{\text {nd }} \mathrm{M}$: Using $x=4$ and $y=1$ (not $y=0$) to form an eqn in C. (No C is M0) (b) $2^{\text {nd }} \mathrm{M}$: Dependent upon use of their $\mathrm{f}^{\prime}(x)$. $3^{\text {rd }} \mathrm{M}$: eqn. of a straight line through $(4,1)$ with any gradient except 0 or ∞. Alternative for $3^{\text {rd }} \mathrm{M}$: Using $(4,1)$ in $y=m x+c$ to find a value of c, but an equation (general or specific) must be seen. Having coords the wrong way round, e.g. $y-4=-\frac{2}{9}(x-1)$, loses the $3^{\text {rd }} \mathrm{M}$ mark unless a correct general formula is seen, e.g. $y-y_{1}=m\left(x-x_{1}\right)$. N.B. The A mark is scored for any form of the correct equation... be prepared to apply isw if necessary.	

Question number	Scheme	Marks
11.	(a) $u_{25}=a+24 d=30+24 \times(-1.5)$ $=-6$ (b) $a+(n-1) d=30-1.5(r-1)=0$ $r=21$ (c) $\begin{aligned} S_{20} & =\frac{20}{2}\{60+19(-1.5)\} \text { or } S_{21}=\frac{21}{2}\{60+20(-1.5)\} \text { or } S_{21}=\frac{21}{2}\{30+0\} \\ & =315 \end{aligned}$	M1 A1 (2) M1 A1 (2) M1 A1ft A1
	(a) M: Substitution of $a=30$ and $d= \pm 1.5$ into $(a+24 d)$. Use of $a+25 d$ (or any other variations on 24) scores M0. (b) M: Attempting to use the term formula, equated to 0 , to form an equation in r (with no other unknowns). Allow this to be called n instead of r. Here, being 'one off' (e.g. equivalent to $a+n d$), scores M1. (c) M: Attempting to use the correct sum formula to obtain S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or S_{r}. $1^{\text {st }} \mathrm{A}(\mathrm{ft})$: A correct numerical expression for S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or $S_{r} \ldots$ but the ft is dependent on an integer value of r. Methods such as calculus to find a maximum only begin to score marks after establishing a value of r at which the maximum sum occurs. This value of r can be used for the M1 A1ft, but must be a positive integer to score A marks, so evaluation with, say, $n=20.5$ would score M1 A0 A0. 'Listing' and other methods (a) M: Listing terms (found by a correct method), and picking the $\underline{25^{\text {th }}}$ term. (There may be numerical slips). (b) M: Listing terms (found by a correct method), until the zero term is seen. (There may be numerical slips). 'Trial and error' approaches (or where working is unclear or non-existent) score M1 A1 for 21, M1 A0 for 20 or 22, and M0 A0 otherwise. (c) M: Listing sums, or listing and adding terms (found by a correct method), at least as far as the $20^{\text {th }}$ term. (There may be numerical slips). A2 (scored as A1 A1) for 315 (clearly selected as the answer). 'Trial and error' approaches essentially follow the main scheme, beginning to score marks when trying S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or S_{r}. If no working (or no legitimate working) is seen, but the answer 315 is given, allow one mark (scored as M1 A0 A0). For reference: Sums: 30, 58.5, 85.5, 111, 135, 157.5, 178.5, 198, 216, 232.5, 247.5, 261, 273, $283.5,292.5,300,306,310.5,313.5,315, \ldots \ldots .$.	

Mark Scheme (Results) Summer 2008

GCE Mathematics (6663/ 01)

GCE

J une 2008
 6663 Core Mathematics C1
 Mark Scheme

Question number	Scheme Marks
1.	$2 x+\frac{5}{3} x^{3}+c \times \begin{array}{ll}\text { M1A1A1 } \\ & \\ \text { (3) } \\ 3\end{array}$
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$. Can be given if $+c$ is only correct term. $1^{\text {st }}$ A1 for $\frac{5}{3} x^{3}$ or $2 x+c$. Accept $1 \frac{2}{3}$ for $\frac{5}{3}$. Do not accept $\frac{2 x}{1}$ or $2 x^{1}$ as final answer $2^{\text {nd }}$ A1 for as printed (no extra or omitted terms). Accept $1 \frac{2}{3}$ or $1 . \dot{6}$ for $\frac{5}{3}$ but not 1.6 or 1.67 etc Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.67 , the 1.67 is treated as ISW NB M1A0A1 is not possible

Question number	Scheme	Marks
2.	$\begin{aligned} & x\left(x^{2}-9\right) \text { or }(x \pm 0)\left(x^{2}-9\right) \text { or }(x-3)\left(x^{2}+3 x\right) \text { or }(x+3)\left(x^{2}-3 x\right) \\ & x(x-3)(x+3) \end{aligned}$	B1 M1A1 (3)
	B1 for first factor taken out correctly as indicated in line 1 above. So $x\left(x^{2}+9\right)$ is B0 M1 for attempting to factorise a relevant quadratic. "Ends" correct so e.g. $\left(x^{2}-9\right)=(x \pm p)(x \pm q)$ where $p q=9$ is OK. This mark can be scored for $\left(x^{2}-9\right)=(x+3)(x-3)$ seen anywhere. A1 for a fully correct expression with all 3 factors. Watch out for $-x(3-x)(x+3)$ which scores A1 Treat any working to solve the equation $x^{3}-9 x$ as ISW.	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks

\hline 3 \&

\hline (a)

(b) \& | Allow "stopping at" $(0,10)$ or $(0,7)$ instead of "cutting" |
| :--- |
| $1^{\text {st }} \mathrm{B} 1$ for moving the given curve up. Must be U shaped curve, minimum in first quadrant, not touching x-axis but cutting positive y-axis. Ignore any values on axes. |
| $2^{\text {nd }} \mathrm{B} 1$ for curve cutting y-axis at $(0,10)$. Point 10 (or even $(10,0)$ marked on positive y-axis is OK) |
| $3^{\text {rd }} \mathrm{B} 1$ for minimum indicated at $(7,3)$. Must have both coordinates and in the right order. |
| If the curve flattens out to a turning point like this penalise once at first offence ie $1^{\text {st }} \mathrm{B} 1$ in (a) or in (b) but not in both. |
| this would score B0B1B0 |
| The U shape mark can be awarded if the sides are fairly straight as long as the vertex is rounded. |
| $1^{\text {st }} \mathrm{B} 1$ for U shaped curve, touching positive x-axis and crossing y-axis at $(0,7)$ [condone $(7,0)$ if marked on positive y axis] or 7 marked on y-axis |
| $2^{\text {nd }} \mathrm{B} 1$ for minimum at $(3.5,0)$ or 3.5 or $\frac{7}{2}$ marked on x-axis. Do not condone $(0,3.5)$ here. Redrawing $\mathrm{f}(x)$ will score B1B0 in part (b). |
| Points on sketch override points given in text/table. |
| If coordinates are given elsewhere (text or table) marks can be awarded if they are compatible with the sketch. |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline \begin{tabular}{l}
4. (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{rl|l}
{\(\left[\mathrm{f}^{\prime}(x)\right.\)} \& \(=] 3+3 x^{2}\) \& M1A1 \\
\(3+3 x^{2}\) \& \(=15\) and start to try and simplify \& M1 \\
\(x^{2}\) \& \(=k \rightarrow x=\sqrt{k} \quad\) (ignore \(\pm)\) \& M1 \\
\(x\) \& \(=2\) (ignore \(x=-2)\) \& A1
\end{tabular} \\
\(x=2\) (ignore \(x=-2\))
\end{tabular} \\
\hline (a)

(b) \& | M1 for attempting to differentiate $x^{n} \rightarrow x^{n-1}$. Just one term will do. |
| :--- |
| A poor integration attempt that gives $3 x^{2}+\ldots$ (or similar) scores M0A0 |
| A1 for a fully correct expression. Must be $3 \operatorname{not} 3 x^{0}$. If there is a $+c$ they score A0. |
| $1^{\text {st }} \mathrm{M} 1$ for forming a correct equation and trying to rearrange their $\mathrm{f}^{\prime}(x)=15$ e.g. collect terms. e.g. $3 x^{2}=15-3$ or $1+x^{2}=5$ or even $3+3 x^{2} \rightarrow 3 x^{2}=\frac{15}{3}$ or $3 x^{-1}+3 x^{2}=15 \rightarrow 6 x=15$ (i.e algebra can be awful as long as they try to collect terms in their $\mathrm{f}^{\prime}(x)=15$ equation) |
| $2^{\text {nd }}$ M1 this is dependent upon their $\mathrm{f}^{\prime}(x)$ being of the form $a+b x^{2}$ and |
| attempting to solve $a+b x^{2}=15$ |
| For correct processing leading to $x=\ldots$ |
| Can condone arithmetic slips but processes should be correct so |
| e.g. $\quad 3+3 x^{2}=15 \rightarrow 3 x^{2}=\frac{15}{3} \rightarrow x=\frac{\sqrt{15}}{3}$ scores M1M0A0 |
| $3+3 x^{2}=15 \rightarrow 3 x^{2}=12 \rightarrow x^{2}=9 \rightarrow x=3$ scores M1M0A0 |
| $3+3 x^{2}=15 \rightarrow 3 x^{2}=12 \rightarrow 3 x=\sqrt{12} \rightarrow x=\frac{\sqrt{12}}{3}$ scores M1M0A0 |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline \begin{tabular}{l}
5. (a) \\
(b) \\
(c)
\end{tabular} \& \\
\hline (a)
(b)

(c) \& | B1 for $a \times 1-3$ or better. Give for $a-3$ in part (a) or if it appears in (b) they must state $x_{2}=a-3$ This must be seen in (a) or before the $a(a-3)-3$ step. |
| :--- |
| M1 for clear show that. Usually for $a(a-3)-3$ but can follow through their x_{2} and even allow $a x_{2}-3$ |
| A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. |
| $1^{\text {st }}$ M1 for attempt to form a correct equation and start to collect terms. It must be a quadratic but need not lead to a $3 \mathrm{TQ}=0$ |
| $2^{\text {nd }}$ dM1 This mark is dependent upon the first M1. |
| for attempt to factorize their $3 \mathrm{TQ}=0$ or to solve their $3 \mathrm{TQ}=0$. The " $=0$ "can be implied. |
| $(x \pm p)(x \pm q)=0$, where $p q=10$ or $\left(x \pm \frac{3}{2}\right)^{2} \pm \frac{9}{4}-10=0$ or correct use of quadratic formula with \pm |
| They must have a form that leads directly to 2 values for a. |
| Trial and Improvement that leads to only one answer gets M0 here. |
| A1 for both correct answers. Allow $x=\ldots$ |
| Give $3 / 3$ for correct answers with no working or trial and improvement that gives both values for a |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme Marks \\
\hline \(6 .(a)\)
(b) \& \\
\hline (a)

(b) \& | B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughly the correct shape and no touching or intersections with axes. |
| :--- |
| Condone up to 2 inward bends but there must be some ends that are roughly asymptotic. |
| M1 for a straight line cutting the positive y-axis and the negative x-axis. Ignore any values. |
| A1 for $(0,5)$ and $(-2.5,0)$ or points correctly marked on axes. Do not give for values in tables. Condone mixing up (x, y) as (y, x) if one value is zero and other value correct. |
| $1^{\text {st }}$ M1 for attempt to form a suitable equation and multiply by x (at least one of $2 x$ or +5) should be multiplied. |
| $1^{\text {st }} \mathrm{A} 1$ for correct 3 TQ - condone missing $=0$ |
| $2^{\text {nd }} \mathrm{M} 1$ for an attempt to solve a relevant 3TQ leading to 2 values for $x=\ldots$ |
| $2^{\text {nd }} \mathrm{A} 1$ for both $x=-3$ and 0.5 . |
| T\&I for x values may score $1^{\text {st }}$ M1A1 otherwise no marks unless both values correct. |
| Answer only of $x=-3$ and $x=\frac{1}{2}$ scores $4 / 4$, then apply the scheme for the final M1A1ft |
| $3^{\text {rd }}$ M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{x}$ or $2 x+5$ |
| $3^{\text {rd }}$ A1ft follow through both their x values, in either equation but the same for each, correct pairings required but can be $x=-3, y=-1$ etc |

\hline
\end{tabular}

Question number	Scheme Marks
7. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline 8. (a)
(b) \& \begin{tabular}{l}
[No real roots implies \(b^{2}-4 a c<0\).] \(b^{2}-4 a c=q^{2}-4 \times 2 q \times(-1)\) \\
So \(q^{2}-4 \times 2 q \times(-1)<0\) i.e. \(q^{2}+8 q<0\) \\
(*)
\[
q(q+8)=0 \quad \text { or } \quad(q \pm 4)^{2} \pm 16=0
\] \\
\((q)=0\) or -8 \\
\(-8<q<0\) or \(q \in(-8,0)\) or \(q<0\) and \(q>-8\)
\end{tabular} \\
\hline (a)

(b) \& | M1 for attempting $b^{2}-4 a c$ with one of b or a correct. <0 not needed for M1 |
| :--- |
| This may be inside a square root. |
| A1cso for simplifying to printed result with no incorrect working or statements seen. |
| Need an intermediate step |
| e.g. $q^{2}--8 q<0$ or $q^{2}-4 \times 2 q \times-1<0$ or $q^{2}-4(2 q)(-1)<0$ or $q^{2}-8 q(-1)<0$ or $q^{2}-8 q \times-1<0$ |
| i.e. must have \times or brackets on the 4ac term |
| <0 must be seen at least one line before the final answer. |
| M1 for factorizing or completing the square or attempting to solve $q^{2} \pm 8 q=0$. A method that would lead to 2 values for q. The " $=0$ " may be implied by values appearing later. |
| $1^{\text {st }} \mathrm{A} 1$ for $q=0$ and $q=-8$ |
| $2^{\text {nd }}$ A1 for $-8<q<0$. Can follow through their cvs but must choose "inside" region. |
| $q<0, q>-8$ is A0, $q<0$ or $q>-8$ is A0, $(-8,0)$ on its own is A0 |
| BUT " $q<0$ and $q>-8$ " is A1 |
| Do not accept a number line for final mark |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme ${ }^{\text {a }}$ Marks

\hline 9. (a)
(b)

(c) \& | $\begin{equation*} \left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] 3 k x^{2}-2 x+1 \tag{2} \end{equation*}$ |
| :--- |
| Gradient of line is $\frac{7}{2}$ |
| When $x=-\frac{1}{2}: \quad 3 k \times\left(\frac{1}{4}\right)-2 \times\left(-\frac{1}{2}\right)+1,=\frac{7}{2}$ $\begin{equation*} \frac{3 k}{4}=\frac{3}{2} \Rightarrow k=2 \tag{4} \end{equation*}$ $\begin{equation*} x=-\frac{1}{2} \Rightarrow y=k \times\left(-\frac{1}{8}\right)-\left(\frac{1}{4}\right)-\frac{1}{2}-5,=-6 \tag{2} \end{equation*}$ |

\hline (a) \& | M1 for attempting to differentiate $x^{n} \rightarrow x^{n-1}$ (or -5 going to 0 will do) |
| :--- |
| A1 all correct. A "+ c " scores A0 |
| B1 for $m=\frac{7}{2}$. Rearranging the line into $y=\frac{7}{2} x+c$ does not score this mark until you are sure they are using $\frac{7}{2}$ as the gradient of the line or state $m=\frac{7}{2}$ |
| $1^{\text {st }}$ M1 for substituting $x=-\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, some correct substitution seen $2^{\text {nd }} \mathrm{M} 1$ for forming a suitable equation in k and attempting to solve leading to $k=\ldots$ |
| Equation must use their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and their gradient of line. Assuming the gradient is 0 or 7 scores M0 unless they have clearly stated that this is the gradient of the line. |
| A1 \quad for $k=2$ |
| M1 for attempting to substitute their k (however it was found or can still be a letter) and $x=-\frac{1}{2}$ into y (some correct substitution) |
| A1 for - 6 |

\hline
\end{tabular}

Question number	Scheme Marks
11. (a) (b)	$\begin{align*} & \left(x^{2}+3\right)^{2}=x^{4}+3 x^{2}+3 x^{2}+3^{2} \\ & \frac{\left(x^{2}+3\right)^{2}}{x^{2}}=\frac{x^{4}+6 x^{2}+9}{x^{2}}=x^{2}+6+9 x^{-2} \tag{*}\\ & y=\frac{x^{3}}{3}+6 x+\frac{9}{-1} x^{-1}(+c) \tag{2}\\ & 20=\frac{27}{3}+6 \times 3-\frac{9}{3}+c \\ & c=-4 \\ & {[y=] \frac{x^{3}}{3}+6 x-9 x^{-1}-4} \end{align*}$
(a) (b)	M1 for attempting to expand $\left(x^{2}+3\right)^{2}$ and having at least 3(out of the 4) correct terms. A1 at least this should be seen and no incorrect working seen. If they never write $\frac{9}{x^{2}}$ as $9 x^{-2}$ they score A0. $1^{\text {st }}$ M1 for some correct integration, one correct x term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second. $1^{\text {st }}$ A1 for two correct x terms, un-simplified, as printed or better $2^{\text {nd }}$ A1 for a fully correct expression. Terms need not be simplified and $+c$ is not required. No $+c$ loses the next 3 marks $2^{\text {nd }}$ M1 for using $x=3$ and $y=20$ in their expression for $\mathrm{f}(x)\left[\neq \frac{\mathrm{d} y}{\mathrm{~d} x}\right]$ to form a linear equation for c $3^{\text {rd }}$ A1 for $c=-4$ $4^{\text {th }}$ A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9 x^{-1}$ is OK . Condone missing " $y=$ " Follow through their numerical value of c only.

Mark Scheme (Results) J anuary 2009

GCE

GCE Mathematics (6663/ 01)

6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme	Marks
1 (a) (b)	$\begin{array}{rlr} \frac{5}{(\text { their } 5)^{2}} & \text { or }\left(\frac{1}{\text { their } 5}\right)^{2} & (\pm 5 \text { is B0) } \tag{1}\\ & =\frac{1}{25} \text { or } \mathbf{0 . 0 4} & \left(\pm \frac{1}{25} \text { is } \mathrm{A} 0\right) \end{array}$	B1 M1 A1 (2) [3]
(b)	M1 follow through their value of 5 . Must have reciprocal and square. 5^{-2} is not sufficient to score this mark, unless $\frac{1}{5^{2}}$ follows this. A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-2 / 3}=\left(-\frac{1}{5}\right)^{2}=\frac{1}{25}$ scores M1 A0 $125^{-2 / 3}=-\left(\frac{1}{5}\right)^{2}=-\frac{1}{25} \quad \text { scores M1 A0. }$ Correct answer with no working scores both marks. Alternative: $\frac{1}{\sqrt[3]{125^{2}}}$ or $\frac{1}{\left(125^{2}\right)^{1 / 3}} \quad$ M1 (reciprocal and the correct number squared) $\begin{aligned} (& \left.=\frac{1}{\sqrt[3]{15625}}\right) \\ & =\frac{1}{25} \quad \text { A1 } \end{aligned}$	

Question Number	Scheme	Marks
2	$\begin{aligned} & (I=) \frac{12}{6} x^{6}-\frac{8}{4} x^{4}+3 x+c \\ & =2 x^{6}-2 x^{4}+3 x+c \end{aligned}$	M1 A1A1A1 [4]
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$ (i.e. $a x^{6}$ or $a x^{4}$ or $a x$, where a is any non-zero constant). Also, this M mark can be scored for just the $+c$ (seen at some stage), even if no other terms are correct. $1^{\text {st }}$ A1 for $2 x^{6}$ $2^{\text {nd }}$ A1 for $-2 x^{4}$ $3^{\text {rd }} \mathrm{A} 1$ for $3 x+c$ (or $3 x+k$, etc., any appropriate letter can be used as the constant) Allow $3 x^{1}+c$, but not $\frac{3 x^{1}}{1}+c$. Note that the A marks can be awarded at separate stages, e.g. $\begin{array}{ll} \frac{12}{6} x^{6}-2 x^{4}+3 x & \text { scores } 2^{\text {nd }} \mathrm{A} 1 \\ \frac{12}{6} x^{6}-2 x^{4}+3 x+c & \text { scores } 3^{\text {rd }} \mathrm{A} 1 \\ 2 x^{6}-2 x^{4}+3 x & \text { scores } 1^{\text {st }} \text { A1 (even though the } c \text { has now been lost). } \end{array}$ Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen. Ignore wrong notation if the intention is clear, e.g. Answer $\int 2 x^{6}-2 x^{4}+3 x+c \mathrm{~d} x$.	

Question Number	Scheme	Marks
3	$\sqrt{7}^{2}+2 \sqrt{7}-2 \sqrt{7}-2^{2}$, or $7-4$ or an exact equivalent such as $\sqrt{49}-2^{2}$ $=3$	M1 A1 [2]
	M1 for an expanded expression. At worst, there can be one wrong term and one wrong sign, or two wrong signs. $\begin{aligned} & \text { e.g. } 7+2 \sqrt{7}-2 \sqrt{7}-2 \text { is M1 (one wrong term }-2 \text {) } \\ & 7+2 \sqrt{7}+2 \sqrt{7}+4 \text { is M1 (two wrong signs }+2 \sqrt{7} \text { and }+4 \text {) } \\ & 7+2 \sqrt{7}+2 \sqrt{7}+2 \text { is M1 (one wrong term }+2 \text {, one wrong sign }+2 \sqrt{7} \text {) } \\ & \sqrt{7}+2 \sqrt{7}-2 \sqrt{7}+4 \text { is M1 (one wrong term } \sqrt{7} \text {, one wrong sign }+4 \text {) } \\ & \sqrt{7}+2 \sqrt{7}-2 \sqrt{7}-2 \text { is M0 (two wrong terms } \sqrt{7} \text { and }-2 \text {) } \\ & 7+\sqrt{14}-\sqrt{14}-4 \text { is M0 (two wrong terms } \sqrt{14} \text { and }-\sqrt{14} \text {) } \end{aligned}$ If only 2 terms are given, they must be correct, i.e. $(7-4)$ or an equivalent unsimplified version to score M1. The terms can be seen separately for the M1. Correct answer with no working scores both marks.	

Question Number	Scheme	Marks
4	$\begin{aligned} (\mathrm{f}(x) & =) \frac{3 x^{3}}{3}-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}-7 x(+c) \\ & =x^{3}-2 x^{\frac{3}{2}}-7 x \quad(+c) \\ \mathrm{f}(4) & =22 \Rightarrow \quad 22=64-16-28+c \end{aligned}$	M1 A1A1 M1 Alcso (5) [5]
	$1^{\text {st }}$ M1 for an attempt to integrate (x^{3} or $x^{\frac{3}{2}}$ seen). The x term is insufficient for this mark and similarly the $+c$ is insufficient. $1^{\text {st }}$ A1 for $\frac{3}{3} x^{3}$ or $-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) $2^{\text {nd }}$ A1 for all three x terms correct and simplified... (the simplification may be seen later). The $+c$ is not required for this mark. Allow $-7 x^{1}$, but not $-\frac{7 x^{1}}{1}$. $2^{\text {nd }}$ M1 for an attempt to use $x=4$ and $y=22$ in a changed function (even if differentiated) to form an equation in c. $3^{\text {rd }}$ A1 for $c=2$ with no earlier incorrect work (a final expression for $\mathrm{f}(x)$ is not required).	

Question Number	Scheme	Marks
5 (a)	Shape $\sim_{\text {, touching the } x \text {-axis at its }}$maximum. Through $(0,0) \&-3$ marked on x-axis, or $(-3,0)$ seen. Allow $(0,-3)$ if marked on the x-axis. Marked in the correct place, but 3, is A0. Min at $(-1,-1)$Correct shape (top left - bottom right)Through -3 and max at $(0,0)$. Marked in the correct place, but 3, is B0. Min at ($-2,-1)$	M1 A1 A1 (3) B1 B1 B1 (3)
(a) (b)	M1 as described above. Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. $1^{\text {st }}$ A1 for curve passing through -3 and the origin. Max at $(-3,0)$ $2^{\text {nd }}$ A1 for minimum at $(-1,-1)$. Can simply be indicated on sketch. $1^{\text {st }} \mathrm{B} 1$ for the correct shape. A negative cubic passing from top left to bottom right. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. $2^{\text {nd }}$ B1 for curve passing through $(-3,0)$ having a max at $(0,0)$ and no other max. $3^{\text {rd }}$ B1 for minimum at $(-2,-1)$ and no other minimum. If in correct quadrant but labelled, e.g. $(-2,1)$, this is B0. In each part the $(0,0)$ does not need to be written to score the second mark... having the curve pass through the origin is sufficient. The last mark (for the minimum) in each part is dependent on a sketch being attempted, and the sketch must show the minimum in approximately the correct place (not, for example, $(-2,-1)$ marked in the wrong quadrant). The mark for the minimum is not given for the coordinates just marked on the axes unless these are clearly linked to the minimum by vertical and horizontal lines.	

Question Number	Scheme	Marks
(a) (b)	$\begin{aligned} & 2 x^{3 / 2} \quad \text { or } p=\frac{3}{2} \quad \text { (Not } 2 x \sqrt{x} \text {) } \\ & -x \text { or }-x^{1} \text { or } q=1 \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) 20 x^{3}+2 \times \frac{3}{2} x^{1 / 2}-1 \\ & \quad=20 x^{3}+3 x^{\frac{1}{2}}-1 \end{aligned}$	B1 B1 (2) M1 A1A1ftA1ft (4) [6]
(a) (b)	$1^{\text {st }} \mathrm{B} 1$ for $p=1.5$ or exact equivalent $2^{\text {nd }} B 1$ for $q=1$ M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ (for any of the 4 terms) $1^{\text {st }} \mathrm{A} 1$ for $20 x^{3}$ (the -3 must 'disappear') $2^{\text {nd }}$ A1ft for $3 x^{\frac{1}{2}}$ or $3 \sqrt{x}$. Follow through their p but they must be differentiating $2 x^{p}$, where p is a fraction, and the coefficient must be simplified if necessary. $3^{\text {rd }}$ A1ft for -1 (not the unsimplified $-x^{0}$), or follow through for correct differentiation of their $-x^{q}$ (i.e. coefficient of x^{q} is -1). If ft is applied, the coefficient must be simplified if necessary. 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common factors. Only a single + or - sign is allowed (e.g. -- must be replaced by +). If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Multiplying by \sqrt{x} : (assuming this is a restart) e.g. $y=5 x^{4} \sqrt{x}-3 \sqrt{x}+2 x^{2}-x^{3 / 2}$ $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{45}{2} x^{7 / 2}-\frac{3}{2} x^{-1 / 2}+4 x-\frac{3}{2} x^{1 / 2} \text { scores M1 A0 A0 (} p \text { not a fraction) A1ft. }$ Extra term included: This invalidates the final mark. $\begin{aligned} & \text { e.g. } y=5 x^{4}-3+2 x^{2}-x^{3 / 2}-x^{1 / 2} \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) 20 x^{3}+4 x-\frac{3}{2} x^{1 / 2}-\frac{1}{2} x^{-1 / 2} \text { scores M1 A1 A0 (} p \text { not a fraction) A0. } \end{aligned}$ Numerator and denominator differentiated separately: For this, neither of the last two (ft) marks should be awarded. Quotient/product rule: Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)	

Question Number	Scheme ${ }^{\text {a }}$ Marks
7 (a) (b)	
(a)	For this question, ignore (a) and (b) labels and award marks wherever correct work is seen. M1 for attempting to use the discriminant of the initial equation (> 0 not required, but substitution of a, b and c in the correct formula is required). If the formula $b^{2}-4 a c$ is seen, at least 2 of a, b and c must be correct. If the formula $b^{2}-4 a c$ is not seen, all 3 (a, b and c) must be correct. This mark can still be scored if substitution in $b^{2}-4 a c$ is within the quadratic formula. This mark can also be scored by comparing b^{2} and $4 a c$ (with substitution). However, use of $b^{2}+4 a c$ is M0. $1^{\text {st }}$ A1 for fully correct expression, possibly unsimplified, with > symbol. NB must appear before the last line, even if this is simply in a statement such as $b^{2}-4 a c>0$ or 'discriminant positive'. Condone a bracketing slip, e.g. $16-4 \times k \times 5-k$ if subsequent work is correct and convincing. $2^{\text {nd }} \mathrm{A} 1$ for a fully correct derivation with no incorrect working seen. Condone a bracketing slip if otherwise correct and convincing. Using $\sqrt{b^{2}-4 a c}>0$: Only available mark is the first M1 (unless recovery is seen). $1^{\text {st }} \mathrm{M} 1$ for attempt to solve an appropriate 3TQ $1^{\text {st }}$ A1 for both $k=1$ and 4 (only the critical values are required, so accept, e.g. $k>1$ and $k>4$). ${ }^{* *}$ $2^{\text {nd }}$ M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k. The set of values must be 'narrowed down' to score this M mark... listing everything $k<1,1<k<4, k>4$ is M0. $2^{\text {nd }}$ A1 for correct answer only, condone " $k<1, k>4$ " and even " $k<1$ and $k>4$ ", but " $1>k>4$ " is A0. ** Often the statement $k>1$ and $k>4$ is followed by the correct final answer. Allow full marks. Seeing 1 and 4 used as critical values gives the first M1 A1 by implication. In part (b), condone working with x 's except for the final mark, where the set of values must be a set of values of k (i.e. 3 marks out of 4). Use of \leq (or \geq) in the final answer loses the final mark.

Question Number	Scheme ${ }_{\text {arks }}$
(a) (b) (c)	
(b)	$1^{\text {st }}$ B1 for shape ${ }^{\wedge}$ or Can be anywhere, but there must be one max. and one min. and no further max. and min. turning points. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. $2^{\text {nd }} \mathrm{B} 1$ for minimum at $(-1,0)$ (even if there is an additional minimum point shown) $3^{\text {rd }} \mathrm{B} 1$ for the sketch meeting axes at $(2,0)$ and $(0,2)$. They can simply mark 2 on the axes. The marks for minimum and intersections are dependent upon having a sketch. Answers on the diagram for min. and intersections take precedence over answers seen elsewhere. $4^{\text {th }} \mathrm{B} 1$ for the branch fully within $1^{\text {st }}$ quadrant having 2 intersections with (not just 'touching') the other curve. The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes, and when the curve looks like two straight lines with a small curve at the join. Allow, for example, shapes like these: $5^{\text {th }} \mathrm{B} 1$ for a branch fully in the $3^{\text {rd }}$ quadrant (ignore any intersections with the other curve for this branch). The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes. B1ft for a statement about the number of roots - compatible with their sketch. No sketch is B0. The answer 2 incompatible with the sketch is B0 (ignore any algebra seen). If the sketch shows the 2 correct intersections and, for example, one other intersection, the answer here should be 3, not 2, to score the mark.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {arks }}\) \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \\
\hline (a)
(b)
(c)

(d) \& | Mark parts (a) and (b) as 'one part', ignoring labelling. |
| :--- |
| Alternative: |
| $1^{\text {st }} \mathrm{B} 1: d=2.5$ or equiv. or $d=\frac{32.5-25}{3}$. No method required, but $a=-17.5$ must not be assumed. |
| $2^{\text {nd }} \mathrm{B} 1$: Either $a+17 d=25$ or $a+20 d=32.5$ seen, or used with a value of $d \ldots$ |
| or for 'listing terms' or similar methods, 'counting back' 17 (or 20) terms. |
| M1: In main scheme: for a full method (allow numerical or sign slips) leading to solution for d or a without assuming $a=-17.5$ |
| In alternative scheme: for using a d value to find a value for a. |
| A1: Finding correct values for both a and d (allowing equiv. fractions such as $d=\frac{15}{6}$), with no incorrect working seen. |
| In the main scheme, if the given a is used to find d from one of the equations, then allow M1A1 if both values are checked in the $2^{\text {nd }}$ equation. |
| $1^{\text {st }}$ M1 for attempt to form equation with correct S_{n} formula and 2750, with values of a and d. |
| $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct equation following through their d. |
| $2^{\text {nd }}$ M1 for expanding and simplifying to a 3 term quadratic. |
| $2^{\text {nd }}$ A1 for correct working leading to printed result (no incorrect working seen). |
| $1^{\text {st }}$ M1 forming the correct $3 T Q=0$. Can condone missing " $=0$ " but all terms must be on one side. First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it to be scored). $2^{\text {nd }} \mathrm{M} 1$ for attempt to solve 3TQ, by factorisation, formula or completing the square (see general marking principles at end of scheme). If this mark is earned for the 'completing the square' method or if the factors are written down directly, the $1^{\text {st }} \mathrm{M} 1$ is given by implication. |
| A1 for $n=55$ dependent on both Ms. Ignore - 40 if seen. |
| No working or 'trial and improvement' methods in (d) score all 3 marks for the answer 55, otherwise no marks. |

\hline
\end{tabular}

Question Number	Scheme	Marks
(a) (b) (c) (d)	$y-5=-\frac{1}{2}(x-2) \quad$ or equivalent, e.g. $\frac{y-5}{x-2}=-\frac{1}{2}, \quad y=-\frac{1}{2} x+6$ $x=-2 \Rightarrow y=-\frac{1}{2}(-2)+6=7$ (therefore B lies on the line) (or equivalent verification methods) $\left(A B^{2}=\right)(2--2)^{2}+(7-5)^{2}, \quad=16+4=20, \quad A B=\sqrt{20}=2 \sqrt{5}$ C is $\left(p,-\frac{1}{2} p+6\right)$, so $\quad A C^{2}=(p-2)^{2}+\left(-\frac{1}{2} p+6-5\right)^{2}$ Therefore $\quad 25=p^{2}-4 p+4+\frac{1}{4} p^{2}-p+1$ $25=1.25 p^{2}-5 p+5$ or $100=5 p^{2}-20 p+20$ (or better, RHS simplified to 3 terms) Leading to: $\quad 0=p^{2}-4 p-16$ (*)	M1A1, Alcao (3) B1 (1) M1, A1, A1 (3) M1 M1 A1 Alcso (4) [11]
(a) (b) (c) (d)	M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) is seen, otherwise M0. If $(2,5)$ is substituted into $y=m x+c$ to find c, the M mark is for attempting this and the $1^{\text {st }} \mathrm{A}$ mark is for $c=6$. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through $(-2,7)$ with gradient $-\frac{1}{2}$ has the same eqn. as found in part (a), or to establish that the line through $(-2,7)$ and $(2,5)$ has gradient $-\frac{1}{2}$. In these cases a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient. M1 for attempting $A B^{2}$ or $A B$. Allow one slip (sign or number) inside a bracket, i.e. do not allow $(2--2)^{2}-(7-5)^{2}$. $1^{\text {st }} \mathrm{A} 1$ for 20 (condone bracketing slips such as $-2^{2}=4$) $2^{\text {nd }}$ A1 for $2 \sqrt{5}$ or $k=2$ (Ignore \pm here). $1^{\text {st }}$ M1 for $(p-2)^{2}+$ (linear function of $\left.p\right)^{2}$. The linear function may be unsimplified but must be equivalent to $a p+b, a \neq 0, b \neq 0$. $2^{\text {nd }}$ M1 (dependent on $1^{\text {st }} \mathrm{M}$) for forming an equation in p (using 25 or 5) and attempting (perhaps not very well) to multiply out both brackets. $1^{\text {st }} \mathrm{A} 1$ for collecting like p terms and having a correct expression. $2^{\text {nd }}$ A1 for correct work leading to printed answer. Alternative, using the result: Solve the quadratic $(p=2 \pm 2 \sqrt{5})$ and use one or both of the two solutions to find the length of $A C^{2}$ or $C_{1} C_{2}^{2}$: e.g. $A C^{2}=(2+2 \sqrt{5}-2)^{2}+(5-\sqrt{5}-5)^{2}$ scores $1^{\text {st }} \mathrm{M} 1$, and $1^{\text {st }} \mathrm{A} 1$ if fully correct. Finding the length of $A C$ or $A C^{2}$ for both values of p, or finding $C_{1} C_{2}$ with some evidence of halving (or intending to halve) scores the $2^{\text {nd }}$ M1. Getting $A C=5$ for both values of p, or showing $\frac{1}{2} C_{1} C_{2}=5$ scores the $2^{\text {nd }} \mathrm{A} 1$ (cso).	

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {arks }}\) \\
\hline 11 (a) \& \\
\hline (a)
(b)

(c) \& | $1^{\text {st }}$ M1 for 4 or $8 x^{-2}$ (ignore the signs). |
| :--- |
| $1^{\text {st }}$ A1 for both terms correct (including signs). |
| $2^{\text {nd }}$ M1 for substituting $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (must be different from their y) |
| B1 for $y_{P}=-3$, but not if clearly found from the given equation of the tangent. |
| $3^{\text {rd }}$ M1 for attempt to find the equation of tangent at P, follow through their m and y_{P}. |
| Apply general principles for straight line equations (see end of scheme). |
| NO DIFFERENTIATION ATTEMPTED: Just assuming $m=-2$ at this stage is M0 |
| $2^{\text {nd }}$ A1cso for correct work leading to printed answer (allow equivalents with $2 x, y$, and 1 terms... such as $2 x+y-1=0$). |
| B1ft for correct use of the perpendicular gradient rule. Follow through their m, but if $m \neq-2$ there must be clear evidence that the m is thought to be the gradient of the tangent. |
| M1 for an attempt to find normal at P using their changed gradient and their y_{P}. |
| Apply general principles for straight line equations (see end of scheme). |
| A1 for any correct form as specified above (correct answer only). |
| $1^{\text {st }} \mathrm{B} 1$ for $\frac{1}{2}$ and $2^{\text {nd }} \mathrm{B} 1$ for 8 . |

\hline
\end{tabular}

M1 for a full method for the area of triangle $A B P$. Follow through their x_{A}, x_{B} and their y_{P}, but the mark is to be awarded 'generously', condoning sign errors.. The final answer must be positive for A1, with negatives in the working condoned.
Determinant: Area $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1\end{array}\right|=\ldots$ (Attempt to multiply out required for M1)
Alternative: $A P=\sqrt{(2-0.5)^{2}+(-3)^{2}}, B P=\sqrt{(2-8)^{2}+(-3)^{2}}$, Area $=\frac{1}{2} A P \times B P=\ldots$
Intersections with y-axis instead of x-axis: Only the M mark is available B0 B0 M1 A0.

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6663/ 01)

6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b)	$\begin{aligned} & (3 \sqrt{ } 7)^{2}=63 \\ & (8+\sqrt{ } 5)(2-\sqrt{ } 5)=16-5+2 \sqrt{ } 5-8 \sqrt{ } 5 \\ & \quad=11,-6 \sqrt{ } 5 \end{aligned}$	(1) M1 A1, A1 (3) [4]
(a) (b)	B1 for 63 only M1 for an attempt to expand their brackets with ≥ 3 terms correct. They may collect the $\sqrt{5}$ terms to get $16-5-6 \sqrt{5}$ Allow $-\sqrt{5} \times \sqrt{5}$ or $-(\sqrt{5})^{2}$ or $-\sqrt{25}$ instead of the -5 These 4 values may appear in a list or table but they should have minus signs included The next two marks should be awarded for the final answer but check that correct values follow from correct working. Do not use ISW rule $1^{\text {st }}$ A1 for 11 from $16-5$ or $-6 \sqrt{5}$ from $-8 \sqrt{5}+2 \sqrt{5}$ $2^{\text {nd }}$ A1 for both 11 and $-6 \sqrt{5}$. S.C - Double sign error in expansion For $16-5-2 \sqrt{5}+8 \sqrt{5}$ leading to $11+\ldots$ allow one mark	

Question Number	Scheme	Marks
Q2	$\begin{aligned} & 32=2^{5} \text { or } 2048=2^{11}, \quad \sqrt{2}=2^{1 / 2} \text { or } \sqrt{2048}=(2048)^{\frac{1}{2}} \\ & a=\frac{11}{2} \quad\left(\text { or } 5 \frac{1}{2} \text { or } 5.5\right) \end{aligned}$	B1, B1 B1 [3]
	$1^{\text {st }}$ B1 for $32=2^{5}$ or $2048=2^{11}$ This should be explicitly seen: $32 \sqrt{2}=2^{a}$ followed by $2^{5} \sqrt{2}=2^{a}$ is OK Even writing $32 \times 2=2^{5} \times 2\left(=2^{6}\right)$ is OK but simply writing $32 \times 2=2^{6}$ is NOT $2^{\text {nd }}$ B1 for $2^{\frac{1}{2}}$ or $(2048)^{\frac{1}{2}}$ seen. This mark may be implied $3^{\text {rd }} \mathrm{B} 1$ for answer as written. Need $\boldsymbol{a}=\ldots$ so $2^{\frac{11}{2}}$ is B0 $a=\frac{11}{2}\left(\right.$ or $5 \frac{1}{2}$ or 5.5$)$ with no working scores full marks. If $a=5.5$ seen then award $3 / 3$ unless it is clear that the value follows from totally incorrect work. Part solutions: e.g. $2^{5} \sqrt{2}$ scores the first B1. Special case: If $\sqrt{2}=2^{1 / 2}$ is not explicitly seen, but the final answer includes $\frac{1}{2}$, e.g. $a=2 \frac{1}{2}, a=4 \frac{1}{2}$, the second B 1 is given by implication.	

Question Number	Scheme	Marks
Q3 (a) (b)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-6 x^{-3} \\ & \frac{2 x^{4}}{4}+\frac{3 x^{-1}}{-1}(+C) \\ & \frac{x^{4}}{2}-3 x^{-1}+C \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) [6]
(a) (b)	M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ $1^{\text {st }} \mathrm{A} 1$ for $6 x^{2}$ $2^{\text {nd }}$ A1 for $-6 x^{-3}$ or $-\frac{6}{x^{3}}$ Condone $+-6 x^{-3}$ here. Inclusion of $+c$ scores A0 here. M1 for some attempt to integrate an x term of the given $y . \quad x^{n} \rightarrow x^{n+1}$ $1^{\text {st }}$ A1 for both x terms correct but unsimplified- as printed or better. Ignore $+c$ here $2^{\text {nd }}$ A1 for both x terms correct and simplified and $+c$. Accept $-\frac{3}{x}$ but NOT $+-3 x^{-1}$ Condone the $+c$ appearing on the first (unsimplified) line but missing on the final (simplified) line Apply ISW if a correct answer is seen If part (b) is attempted first and this is clearly labelled then apply the scheme and allow the marks. Otherwise assume the first solution is for part (a).	

Question Number	Scheme	Marks
Q4 (a) (b) (c)	$5 x>10, x>2 \quad$ [Condone $x>\frac{10}{2}=2$ for M1A1] $(2 x+3)(x-4)=0, \quad$ 'Critical values' are $-\frac{3}{2}$ and 4 $\begin{aligned} & -\frac{3}{2}<x<4 \\ 2 & <x<4 \end{aligned}$	M1, A1 (2) M1, A1 M1 A1ft (4) B1ft (1) [7]
(a) (b)	M1 for attempt to collect like terms on each side leading to $a x>b$, or $a x<b$, or $a x=b$ Must have a or b correct so eg $3 x>4$ scores M0 $1^{\text {st }}$ M1 for an attempt to factorize or solve to find critical values. Method must potentially give 2 critical values $1^{\text {st }}$ A1 for $-\frac{3}{2}$ and 4 seen. They may write $x<-\frac{3}{2}, x<4$ and still get this A1 $2^{\text {nd }}$ M1 for choosing the "inside region" for their critical values $2^{\text {nd }}$ A1ft follow through their 2 distinct critical values Allow $x>-\frac{3}{2}$ with "or" "," " \cup " " " $x<4$ to score M1A0 but "and" or " \cap " score M1A1 $x \in\left(-\frac{3}{2}, 4\right)$ is M1A1but $x \in\left[-\frac{3}{2}, 4\right]$ is M1A0. Score M0A0 for a number line or graph only	
(c)	B1ft Allow if a correct answer is seen or follow through their answer to (a) and their answer to (b) but their answers to (a) and (b) must be regions. Do not follow through single values. If their follow through answer is the empty set accept \varnothing or $\}$ or equivalent in words If (a) or (b) are not given then score this mark for cao NB You may see $x<4$ (with anything or nothing in-between) $x<-1.5$ in (b) and empty set in (c) for B1ft Do not award marks for part (b) if only seen in part (c) Use of \leq instead of $<$ (or \geq instead of $>$) loses one accuracy mark only, at first occurrence.	

Question Number	Scheme	Marks
Q5 (a) (b) (c)	$\begin{aligned} a+9 d=2400 \quad a+39 d=600 \\ d=\frac{-1800}{30} \quad d=-60 \quad(\text { accept } \pm 60 \text { for A1) } \\ a-540=2400 \quad a=2940 \end{aligned} \quad \begin{aligned} \text { Total }=\frac{1}{2} n\{2 a+(n-1) d\} & =\frac{1}{2} \times 40 \times(5880+39 \times-60) \quad(\mathrm{ft} \text { values of } a \text { and } d) \\ & =\underline{70800} \end{aligned}$	M1 M1 A1 (3) M1 A1 (2) M1 A1ft Alcao (3) [8]
(a) (b) (c)	Note: If the sequence is considered 'backwards', an equivalent solution may be given using $d=60$ with $a=600$ and $l=2940$ for part (b). This can still score full marks. Ignore labelling of (a) and (b) $1^{\text {st }}$ M1 for an attempt to use 2400 and 600 in $a+(n-1) d$ formula. Must use both values i.e. need $a+p d=2400$ and $a+q d=600$ where $p=8$ or 9 and $q=38$ or 39 (any combination) $2^{\text {nd }}$ M1 for an attempt to solve their 2 linear equations in a and d as far as $d=\ldots$ A1 for $d= \pm 60$. Condone correct equations leading to $d=60$ or $a+8 d=2400$ and $\quad a+38 d=600$ leading to $d=-60$. They should get penalised in (b) and (c). NB This is a "one off" ruling for A1. Usually an A mark must follow from their work. ALT $\quad 1^{\text {st }} \mathrm{M} 1$ for $(30 d)= \pm(2400-600)$ $2^{\text {nd }} \text { M1 for }(d=) \pm \frac{(2400-600)}{30}$ A1 for $d= \pm 60$ $a+9 d=600, a+39 d=2400$ only scores M0 BUT if they solve to find $d= \pm 60$ then use ALT scheme above. M1 for use of their d in a correct linear equation to find a leading to $a=\ldots$ A1 their a must be compatible with their d so $d=60$ must have $a=600$ and $d=-60$, $a=2940$ So for example they can have $2400=a+9(60)$ leading to $a=\ldots$ for M1 but it scores A0 Any approach using a list scores M1A1 for a correct a but M0A0 otherwise M1 for use of a correct S_{n} formula with $n=40$ and at least one of a, d or l correct or correct ft. $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for use of a correct S_{40} formula and both a, d or a, l correct or correct follow through ALT Total $=\frac{1}{2} n\{a+l\}=\frac{1}{2} \times 40 \times(2940+600) \quad(\mathrm{ft}$ value of $a)$ M1 A1ft $2^{\text {nd }} \mathrm{A} 1$ for 70800 only	

Question Number	Scheme	Marks
Q6	$b^{2}-4 a c$ attempted, in terms of p. $(3 p)^{2}-4 p=0 \quad$ o.e. Attempt to solve for p e.g. $p(9 p-4)=0 \quad$ Must potentially lead to $p=k, k \neq 0$ $p=\frac{4}{9}$ (Ignore $p=0$, if seen)	M1 A1 M1 Alcso [4]
	$1^{\text {st }}$ M1 for an attempt to substitute into $b^{2}-4 a c$ or $b^{2}=4 a c$ with b or c correct Condone x 's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the \mathbf{M} marks only $1^{\text {st }} \mathrm{A} 1$ for any correct equation: $(3 p)^{2}-4 \times 1 \times p=0$ or better $2^{\text {nd }} \mathrm{M} 1$ for an attempt to factorize or solve their quadratic expression in p. Method must be sufficient to lead to their $p=\frac{4}{9}$. Accept factors or use of quadratic formula or $\left(p \pm \frac{2}{9}\right)^{2}=k^{2}$ (o.e. eg) $\left(3 p \pm \frac{2}{3}\right)^{2}=k^{2}$ or equivalent work on their eqn. $9 p^{2}=4 p \Rightarrow \frac{9 p^{\ell}}{R}=4$ which would lead to $9 p=4$ is OK for this $2^{\text {nd }}$ M1 ALT Comparing coefficients M1 for $(x+\alpha)^{2}=x^{2}+\alpha^{2}+2 \alpha x$ and A1 for a correct equation eg $3 p=2 \sqrt{p}$ M1 for forming solving leading to $\sqrt{p}=\frac{2}{3}$ or better Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.	

Question Number	Scheme	Marks
Q7 (a) (b) (c)	$\begin{align*} & \left(a_{2}=\right) 2 k-7 \\ & \left(a_{3}=\right) 2(2 k-7)-7 \text { or } 4 k-14-7,=4 k-21 \tag{*}\\ & \left(a_{4}=\right) 2(4 k-21)-7 \quad(=8 k-49) \\ & \quad \sum_{r=1}^{4} a_{r}=k+"(2 k-7) "+(4 k-21)+"(8 k-49) " \\ & \quad k+(2 k-7)+(4 k-21)+(8 k-49)=15 k-77=43 \end{align*}$	B1 (1) M1, A1cso (2) M1 M1 M1 A1 (4) $[7]$
(b) (c)	M1 must see 2(their $\left.a_{2}\right)-7$ or $2(2 k-7)-7$ or $4 k-14-7$. Their a_{2} must be a function of k. A1cso must see the $2(2 k-7)-7$ or $4 k-14-7$ expression and the $4 k-21$ with no incorrect working $1^{\text {st }}$ M1 for an attempt to find a_{4} using the given rule. Can be awarded for $8 k-49$ seen. Use of formulae for the sum of an arithmetic series scores M0M0A0 for the next 3 marks. $2^{\text {nd }}$ M1 for attempting the sum of the $1^{\text {st }} 4$ terms. Must have "+" not just, or clear attempt to sum. Follow through their a_{2} and a_{4} provided they are linear functions of k. Must lead to linear expression in k. Condone use of their linear $a_{3} \neq 4 k-21$ here too. $3^{\text {rd }} \mathrm{M} 1$ for forming a linear equation in k using their sum and the 43 and attempt to solve for k as far as $p k=q$ A1 for $k=8$ only so $k=\frac{120}{15}$ is A0 Answer Only (e.g. trial improvement) Accept $k=8$ only if $8+9+11+15=43$ is seen as well Sum $a_{2}+a_{3}+a_{4}+a_{5}$ or $a_{2}+a_{3}+a_{4}$ Allow: M1 if $8 k-49$ is seen, M0 for the sum (since they are not adding the $1^{\text {st }} 4$ terms) then M1 if they use their sum along with the 43 to form a linear equation and attempt to solve but A0	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\(A B: m=\frac{2-7}{8-6},\left(=-\frac{5}{2}\right)\) \\
Using \(m_{1} m_{2}=-1: m_{2}=\frac{2}{5}\)
\[
y-7=\frac{2}{5}(x-6), \quad 2 x-5 y+23=0
\] \\
(o.e. with integer coefficients) \\
Using \(x=0\) in the answer to (a), \(y=\frac{23}{5}\) or 4.6 \\
Area of triangle \(=\frac{1}{2} \times 8 \times \frac{23}{5}=\frac{92}{5}\) (o.e) e.g. \(\left(18 \frac{2}{5}, 18.4, \frac{184}{10}\right)\)
\end{tabular} \& \begin{tabular}{l}
M1, A1 (4) \\
M1, A1ft (2) \\
M1 A1 \\
(2) \\
[8]
\end{tabular} \\
\hline (a)
(b)

(c) \& | B1 for an expression for the gradient of $A B$. Does not need the $=-2.5$ |
| :--- |
| $1^{\text {st }}$ M1 for use of the perpendicular gradient rule. Follow through their m |
| $2^{\text {nd }}$ M1 for the use of $(6,7)$ and their changed gradient to form an equation for l. |
| Can be awarded for $\frac{y-7}{x-6}=\frac{2}{5}$ o.e. |
| Alternative is to use $(6,7)$ in $y=m x+c$ to find a value for c. Score when $c=\ldots$ is reached. |
| A1 for a correct equation in the required form and must have " $=0$ " and integer coefficients |
| M1 for using $x=0$ in their answer to part (a) e.g. $-5 y+23=0$ |
| A1ft for $y=\frac{23}{5}$ provided that $x=0$ clearly seen or $C(0,4.6)$. Follow through their equation in (a) |
| If $x=0, y=4.6$ are clearly seen but C is given as $(4.6,0)$ apply ISW and award the mark. |
| This A mark requires a simplified fraction or an exact decimal |
| Accept their 4.6 marked on diagram next to C for M1A1ft |
| M1 for $\frac{1}{2} \times 8 \times y_{C}$ so can follow through their y coordinate of C. |
| A1 for 18.4 (o.e.) but their y coordinate of C must be positive |
| Use of 2 triangles or trapezium and triangle |
| Award M1 when an expression for area of OCB only is seen |
| Determinant approach |
| Award M1 when an expression containing $\frac{1}{2} \times 8 \times y_{C}$ is seen | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
(a) (b) (c)	$\begin{align*} & {\left[(3-4 \sqrt{x})^{2}=\right] 9-12 \sqrt{x}-12 \sqrt{x}+(-4)^{2} x } \\ & 9 x^{-\frac{1}{2}}+16 x^{\frac{1}{2}}-24 \tag{3}\\ \mathrm{f}^{\prime}(x)= & -\frac{9}{2} x^{-\frac{3}{2}},+\frac{16}{2} x^{-\frac{1}{2}} \\ \mathrm{f}^{\prime}(9)= & -\frac{9}{2} \times \frac{1}{27}+\frac{16}{2} \times \frac{1}{3}=-\frac{1}{6}+\frac{16}{6}=\frac{5}{2} \end{align*}$	M1 A1, A1ft (3) M1 A1 (2) [8]
(a) (b) (c)	M1 for an attempt to expand $(3-4 \sqrt{ } x)^{2}$ with at least 3 terms correct- as printed or better Or $9-k \sqrt{x}+16 x \quad(k \neq 0)$. See also the MR rule below $1^{\text {st }}$ A1 for their coefficient of $\sqrt{x}=16$. Condone writing $(\pm) 9 x^{\left(\pm \frac{1}{2}\right.}$ instead of $9 x^{-\frac{1}{2}}$ $2^{\text {nd }} A 1$ for $B=-24$ or their constant term $=-24$ M1 for an attempt to differentiate an x term $x^{n} \rightarrow x^{n-1}$ $1^{\text {st }} \mathrm{A} 1$ for $-\frac{9}{2} x^{-\frac{3}{2}}$ and their constant B differentiated to zero. NB $-\frac{1}{2} \times 9 x^{-\frac{3}{2}}$ is A0 $2^{\text {nd }}$ A1ft follow through their $A x^{\frac{1}{2}}$ but can be scored without a value for A, i.e. for $\frac{A}{2} x^{-\frac{1}{2}}$ M1 for some correct substitution of $x=9$ in their expression for $\mathrm{f}^{\prime}(x)$ including an attempt at $(9)^{\frac{k_{2}^{2}}{2}}$ (k odd) somewhere that leads to some appropriate multiples of $\frac{1}{3}$ or 3 A1 accept $\frac{15}{6}$ or any exact equivalent of 2.5 e.g. $\frac{45}{18}, \frac{135}{54}$ or even $\frac{67.5}{27}$ Misread (MR) Only allow MR of the form $\frac{(3-k \sqrt{x})^{2}}{\sqrt{x}}$ N.B. Leads to answer in (c) of $\frac{k^{2}-1}{6}$ Score as M1A0A0, M1A1A1ft, M1A1ft	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
Q11 (a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l}
M1 A1 \\
Alft \\
M1, A1 \\
(5) \\
B1ft \\
M1, A1 \\
M1 \\
Alcso \\
(5) \\
[11]
\end{tabular} \\
\hline (a)
(b)

(c)

ALT \& | B1 there must be a clear attempt to substitute $x=2$ leading to 7 |
| :--- |
| e.g. $2^{3}-2 \times 2^{2}-2+9=7$ |
| $1^{\text {st }}$ M1 for an attempt to differentiate with at least one of the given terms fully correct. |
| $1^{\text {st }}$ A1 for a fully correct expression |
| $2^{\text {nd }}$ A1ft for sub. $x=2$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ accept for a correct expression e.g. $3 \times(2)^{2}-4 \times 2-1$ |
| $2^{\text {nd }}$ M1 for use of their " 3 " (provided it comes from their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ and $x=2$) to find equation of tangent. Alternative is to use $(2,7)$ in $y=m x+c$ to find a value for c. Award when $c=\ldots$ is seen. |
| No attempted use of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in (b) scores $0 / 5$ |
| $1^{\text {st }}$ M1 for forming an equation from their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ and their $-\frac{1}{m}$ (must be changed from m) |
| $1^{\text {st }} \mathrm{A} 1$ for a correct 3 TQ all terms on LHS (condone missing $=0$) |
| $2^{\text {nd }}$ M1 for proceeding to $x=\ldots$ or $3 x=\ldots$ by formula or completing the square for |
| a 3TQ. |
| Not factorising. Condone \pm |
| $2^{\text {nd }}$ A1 for proceeding to given answer with no incorrect working seen. Can still |
| have \pm. |
| Verify (for M1A1M1A1) |
| $1^{\text {st }}$ M1 for attempting to square need ≥ 3 correct values in $\frac{4+6+4 \sqrt{6}}{9}, 1^{\text {st }} \mathrm{A} 1$ for $\frac{10+4 \sqrt{6}}{9}$ |
| $2^{\text {nd }}$ M1 Dependent on $1^{\text {st }}$ M1 in this case for substituting in all terms of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ |
| $2^{\text {nd }}$ A1cso for cso with a full comment e.g. "the x co-ord of Q is ..." | \&

\hline
\end{tabular}

Mark Scheme (Results) J anuary 2010

GCE

Core Mathematics C1 (6663)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2010
Publications Code US022704
All the material in this publication is copyright
© Edexcel Ltd 2010

J anuary 2010
Core Mathematics C1 6663
Mark Scheme

Question number	Scheme	Marks
Q1	$x^{4} \rightarrow k x^{3}$ or $x^{1 / 3} \rightarrow k x^{-2 / 3}$ or $3 \rightarrow 0 \quad$ (k a non-zero constant) $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 4 x^{3} \ldots \quad$, with '3' differentiated to zero (or 'vanishing') $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \ldots \ldots \ldots .+\frac{1}{3} x^{-2 / 3} \quad$ or equivalent, e.g. $\frac{1}{3 \sqrt[3]{x^{2}}}$ or $\frac{1}{3(\sqrt[3]{x})^{2}}$	\square
	$1^{\text {st }} \mathrm{A} 1$ requires $4 x^{3}$, and 3 differentiated to zero. Having ' $+C$ ' loses the $1^{\text {st }} \mathrm{A}$ mark. Terms not added, but otherwise correct, e.g. $4 x^{3}, \frac{1}{3} x^{-2 / 3}$ loses the $2^{\text {nd }}$ A mark.	

Question number	Scheme	Marks
Q2	(a) $\begin{align*} &(7+\sqrt{ } 5)(3-\sqrt{ } 5)=21-5+3 \sqrt{ } 5-7 \sqrt{ } 5 \quad \text { Expand to get } 3 \text { or } 4 \text { terms } \\ &=16,-4 \sqrt{ } 5 \quad\left(1^{\text {st }} \mathrm{A} \text { for } 16, \quad 2^{\text {nd }} \mathrm{A} \text { for }-4 \sqrt{ } 5\right) \\ &\text { (i.s.w. if necessary, e.g. } 16-4 \sqrt{ } 5 \rightarrow 4-\sqrt{ } 5) \tag{3} \end{align*}$	M1 $\mathrm{A} 1, \mathrm{~A} 1$
	(b) $\frac{7+\sqrt{ } 5}{3+\sqrt{ } 5} \times \frac{3-\sqrt{ } 5}{3-\sqrt{5}}$ (This is sufficient for the M mark) Correct denominator without surds, i.e. $9-5$ or 4 $4-\sqrt{ } 5$ or $4-1 \sqrt{ } 5$	M1 A1 A1 (3) [6]
	(a) M1: Allowed for an attempt giving 3 or 4 terms, with at least 2 correct (even if unsimplified). e.g. $21-\sqrt{ } 5^{2}+\sqrt{ } 15$ scores M1. Answer only: $16-4 \sqrt{ } 5$ scores full marks One term correct scores the M mark by implication, e.g. $26-4 \sqrt{ } 5$ scores M1 A0 A1 (b) Answer only: $4-\sqrt{ } 5$ scores full marks One term correct scores the M mark by implication, e.g. $4+\sqrt{ } 5$ scores M1 A0 A0 $16-\sqrt{ } 5$ scores M1 A0 A0 Ignore subsequent working, e.g. $4-\sqrt{ } 5$ so $a=4, b=1$ Note that, as always, A marks are dependent upon the preceding M mark, so that, for example, $\frac{7+\sqrt{ } 5}{3+\sqrt{ } 5} \times \frac{3+\sqrt{ } 5}{3-\sqrt{ } 5}=\frac{\ldots}{4}$ is M0 A0. Alternative $(a+b \sqrt{ } 5)(3+\sqrt{ } 5)=7+\sqrt{ } 5$, then form simultaneous equations in a and b. M1 Correct equations: $\begin{array}{cccc} 3 a+5 b=7 & \text { and } & 3 b+a=1 & \text { A1 } \\ a=4 & \text { and } & b=-1 & \text { A1 } \end{array}$	

Question number	Scheme	Marks
Q3	(a) Putting the equation in the form $y=m x(+c)$ and attempting to extract the m or $m x$ (not the c), or finding 2 points on the line and using the correct gradient formula. Gradient $=-\frac{3}{5} \quad$ (or equivalent)	M1 A1 (2)
	(b) Gradient of perp. line $=\frac{-1}{"(-3 / 5) "} \quad\left(\right.$ Using $-\frac{1}{m}$ with the m from part (a)) $y-1="\left(\frac{5}{3}\right) "(x-3)$ $y=\frac{5}{3} x-4$ (Must be in this form... allow $y=\frac{5}{3} x-\frac{12}{3}$ but not $y=\frac{5 x-12}{3}$) This A mark is dependent upon both M marks.	M1 M1 A1 (3) [5]
	(a) Condone sign errors and ignore the c for the M mark, so... both marks can be scored even if c is wrong (e.g. $c=-\frac{2}{5}$) or omitted. Answer only: $-\frac{3}{5}$ scores M1 A1. Any other answer only scores M0 A0. $y=-\frac{3}{5} x+\frac{2}{5}$ with no further progress scores M0 A0 (m or $m x$ not extracted). (b) 2nd M: For the equation, in any form, of a straight line through $(3,1)$ with any numerical gradient (except 0 or ∞). (Alternative is to use $(3,1)$ in $y=m x+c$ to find a value for c, in which case $y=\frac{5}{3} x+c$ leading to $c=-4$ is sufficient for the A1). (See general principles for straight line equations at the end of the scheme).	

Question number	Scheme	Marks
Q4	$x \sqrt{x}=x^{\frac{3}{2}} \quad$ (Seen, or implied by correct integration) $x^{-1 / 2} \rightarrow k x^{1 / 2}$ or $x^{3 / 2} \rightarrow k x^{5 / 2}$ (k a non-zero constant) $(y=) \frac{5 x^{1 / 2}}{1 / 2} \ldots+\frac{x^{5 / 2}}{5 / 2}(+C) \quad(" y="$ and " $+C$ " are not required for these marks) $35=\frac{5 \times 4^{1 / 2}}{1 / 2}+\frac{4^{5 / 2}}{5 / 2}+C \quad$ An equation in C is required (see conditions below). (With their terms simplified or unsimplified). $C=\frac{11}{5} \quad$ or equivalent $\quad 2 \frac{1}{5}, \quad 2.2$ $y=10 x^{1 / 2}+\frac{2 x^{5 / 2}}{5}+\frac{11}{5}$ (Or equivalent simplified) I.s.w. if necessary, e.g. $y=10 x^{1 / 2}+\frac{2 x^{5 / 2}}{5}+\frac{11}{5}=50 x^{1 / 2}+2 x^{5 / 2}+11$ The final A mark requires an equation " $y=$ =.." with correct x terms (see below).	B1 M1 A1... A1 M1 A1 A1 ft
	B mark: $x^{\frac{3}{2}}$ often appears from integration of \sqrt{x}, which is B0. $1^{\text {st }} \mathrm{A}$: Any unsimplified or simplified correct form, e.g. $\frac{5 \sqrt{x}}{0.5}$. $2^{\text {nd }} A$: Any unsimplified or simplified correct form, e.g. $\frac{x^{2} \sqrt{x}}{2.5}, \frac{2(\sqrt{x})^{5}}{5}$. $2^{\text {nd }} \mathrm{M}$: Attempting to use $x=4$ and $y=35$ in a changed function (even if differentiated) to form an equation in C. $3^{\text {rd }}$ A: Obtaining $C=\frac{11}{5}$ with no earlier incorrect work. 4th A: Follow-through only the value of C (i.e. the other terms must be correct). Accept equivalent simplified terms such as $10 \sqrt{x}+0.4 x^{2} \sqrt{x} \ldots$	

Question number	Scheme	Marks
Q5		M1 M1 A1cso M1 A1 M1 A1
	$1^{\text {st }} \mathrm{M}$: Obtaining an equation in x only (or y only). Condone missing " $=0$ " Condone sign slips, e.g. $(3 x+2)^{2}-x-6 x^{2}=0$, but not other algebraic mistakes (such as squaring individual terms... see bottom of page). $2^{\text {nd }} \mathrm{M}$: Multiplying out their $(3 x-2)^{2}$, which must lead to a 3 term quadratic, i.e. $a x^{2}+b x+c$, where $a \neq 0, b \neq 0, c \neq 0$, and collecting terms. $3^{\text {rd }} \mathrm{M}$: Solving a 3-term quadratic (see general principles at end of scheme). $2^{\text {nd }} A$: Both values. $4^{\text {th }} \mathrm{M}$: Using an x value, found algebraically, to attempt at least one y value (or using a y value, found algebraically, to attempt at least one x value)... allow b.o.d. for this mark in cases where the value is wrong but working is not shown. $3^{\text {rd }} \mathrm{A}$: Both values. If y solutions are given as x values, or vice-versa, penalise at the end, so that it is possible to score M1 M1A1 M1 A1 M0 A0. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x=4, y=10$): M0 M0 A0 M0 A0 M1 A0 No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A1 Both correct solution pairs found, and demonstrated: Full marks Alternative: $\begin{array}{lll} x=\frac{y+2}{3} \quad y^{2}-\frac{y+2}{3}-6\left(\frac{y+2}{3}\right)^{2}=0 & \text { M1 } \\ y^{2}-\frac{y+2}{3}-6\left(\frac{y^{2}+4 y+4}{9}\right)=0 & y^{2}-9 y-10=0 & \text { M1 A1 } \\ (y+1)(y-10)=0 \quad y=\ldots & y=-1 \quad y=10 & \text { M1 A1 } \\ & x=\frac{1}{3} \quad x=4 & \text { M1 A1 } \end{array}$ Squaring each term in the first equation, e.g. $y^{2}-9 x^{2}+4=0$, and using this to obtain an equation in x only could score at most 2 marks: M0 M0 A0 M1 A0 M1 A0.	

Question number	Scheme	Marks
Q6	$\begin{aligned} & \text { (a) } \begin{array}{l} y=\frac{x^{2}-5 x-24}{x}=x-5-24 x^{-1} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+24 x^{-2} \quad \text { or } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=1+\frac{24}{x^{2}} \end{array} \quad \text { (or equiv., e.g. } x+3-8-\frac{24}{x} \text {) } \end{aligned}$	M1 A1 M1 A1 (4)
	(b) $x=2: \quad y=-15 \quad$ Allow if seen in part (a). $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \quad 1+\frac{24}{4}=7 \quad$ Follow-through from candidate's non-constant $\frac{\mathrm{d} y}{\mathrm{~d} x}$. This must be simplified to a "single value". $y+15=7(x-2) \quad$ (or equiv., e.g. $y=7 x-29$) Allow $\frac{y+15}{x-2}=7$	B1 B1ft M1 A1 (4) [8]
	(a) $1^{\text {st }} \mathrm{M}$: Mult. out to get $x^{2}+b x+c, b \neq 0, c \neq 0$ and dividing by x (not x^{2}). Obtaining one correct term, e.g. $x \ldots \ldots$. . is sufficient evidence of a division attempt. $2^{\text {nd }} \mathrm{M}$: Dependent on the $1^{\text {st }} \mathrm{M}$: Evidence of $x^{n} \rightarrow k x^{n-1}$ for one x term (i.e. not just the constant term) is sufficient). Note that mark is not given if, for example, the numerator and denominator are differentiated separately. A mistake in the 'middle term', e.g. $x+5-24 x^{-1}$, does not invalidate the $2^{\text {nd }}$ A mark, so M1 A0 M1 A1 is possible. (b) B1 ft: For evaluation, using $x=2$, of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, even if unlabelled or called y. M: For the equation, in any form, of a straight line through ($2,{ }^{\prime}-15$ ') with candidate's $\frac{\mathrm{d} y}{\mathrm{~d} x}$ value as gradient. Alternative is to use (2, ' -15 ') in $y=m x+c$ to find a value for c, in which case $y=7 x+c$ leading to $c=-29$ is sufficient for the A1). (See general principles for straight line equations at the end of the scheme). Final A: 'Unsimplified' forms are acceptable, but... $y-(-15)=7(x-2)$ is A0 (unresolved 'minus minus').	

Question number	Scheme	Marks
Q8	(a) (b) (c)	
	(a) (-2, 7), y=3 $\begin{aligned} & \text { (Marks are dependent upon a sketch being attempted) } \\ & \text { See conditions below. }\end{aligned}$	B1, B1 (2)
	(b) $(-2,20), y=4 \quad$(Marks are dependent upon a sketch being attempted) See conditions below.	B1, B1 (2)
	$\begin{align*} & \text { (c) Sketch: Horizontal translation (either way)... (There must be evidence that } \\ & \qquad y=5 \text { at the max and that the asymptote is still } y=1 \text {) } \\ & (-3,5), \quad y=1 \tag{3} \end{align*}$	$\overline{B 1}$ B1, B1
	Parts (a) and (b): (i) If only one of the B marks is scored, there is no penalty for a wrong sketch. (ii) If both the maximum and the equation of the asymptote are correct, the sketch must be "correct" to score B1 B1. If the sketch is "wrong", award B1 B0. The (generous) conditions for a "correct" sketch are that the maximum must be in the $2^{\text {nd }}$ quadrant and that the curve must not cross the positive x-axis... ignore other "errors" such as "curve appearing to cross its asymptote" and "curve appearing to have a minimum in the $1^{\text {st }}$ quadrant". Special case: (b) Stretch $\frac{1}{4}$ instead of 4: Correct shape, with $\left(-2, \frac{5}{4}\right), y=\frac{1}{4}:$ B1 B0. Coordinates of maximum: If the coordinates are the wrong way round (e.g. (7, -2) in part (a)), or the coordinates are just shown as values on the x and y axes, penalise only once in the whole question, at first occurrence. Asymptote marks: If the equation of the asymptote is not given, e.g. in part (a), 3 is marked on the y-axis but $y=3$ is not seen, penalise only once in the whole question, at first occurrence. Ignore extra asymptotes stated (such as $x=0$).	

Question number	Scheme	Marks
Q9	(a) $x\left(x^{2}-4\right) \quad$ Factor x seen in a correct factorised form of the expression. $=x(x-2)(x+2) \quad \mathrm{M}$: Attempt to factorise quadratic (general principles). Accept $(x-0)$ or $(x+0)$ instead of x at any stage. Factorisation must be seen in part (a) to score marks.	B1 M1 A1 (3)
	(b) Shape \square (2 turning points required) Through (or touching) origin Crossing x-axis or "stopping at x-axis" (not a turning point) at $(-2,0)$ and $(2,0)$. Allow -2 and 2 on x-axis. Also allow $(0,-2)$ and $(0,2)$ if marked on x-axis. Ignore extra intersections with x-axis.	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ (3)
	(c) Either $y=3($ at $x=-1) \quad$ or $y=15($ at $x=3) \quad$ Allow if seen elsewhere. $\text { Gradient }=\frac{\text { "15-3" }}{3-(-1)}(=3) \quad \text { Attempt correct grad. formula with their } y \text { values. }$ For gradient M mark, if correct formula not seen, allow one slip, e.g. "15-3" $y-" 15 "=m(x-3) \quad$ or $\quad y-" 3 "=m(x-(-1))$, with any value for m. $y-15=3(x-3)$ or the correct equation in any form, e.g. $y-3=\frac{15-3}{3-(-1)}(x-(-1)), \frac{y-3}{x+1}=\frac{15-3}{3+1}$ $y=3 x+6$	B1 M1 M1 A1 A1 (5)
	(d) $A B=\sqrt{(" 15-3 ")^{2}+(3-(-1))^{2}}$ (With their non-zero y values)... Square root is required. $=\sqrt{160}(=\sqrt{16} \sqrt{10})=4 \sqrt{10}$ (Ignore \pm if seen) $(\sqrt{16} \sqrt{10}$ need not be seen).	M1 A1 (2) $[13]$
	(a) $\begin{array}{ll} x^{3}-4 x \rightarrow x\left(x^{2}-4\right) \rightarrow(x-2)(x+2) & \text { scores B1 M1 A0. } \\ x^{3}-4 x \rightarrow x^{2}-4 \rightarrow(x-2)(x+2) & \text { scores B0 M1 A0 (dividing by } x) . \\ x^{3}-4 x \rightarrow x\left(x^{2}-4 x\right) \rightarrow x^{2}(x-4) & \text { scores B0 M1 A0. } \\ x^{3}-4 x \rightarrow x\left(x^{2}-4\right) \rightarrow x(x-2)^{2} & \text { scores B1 M1 A0 } \end{array}$ Special cases: $x^{3}-4 x \rightarrow(x-2)\left(x^{2}+2 x\right)$ scores B0 M1 A0. $x^{3}-4 x \rightarrow x(x-2)^{2}$ (with no intermediate step seen) scores B0 M1 A0 (b) The $2^{\text {nd }}$ and $3^{\text {rd }} \mathrm{B}$ marks are not dependent upon the $1^{\text {st }} \mathrm{B}$ mark, but are dependent upon a sketch having been attempted. (c) $1^{\text {st }} \mathrm{M}$: May be implicit in the equation of the line, e.g. $\frac{y-" 15 "}{3-" 15 "}=\frac{x-" 3 "}{-1-" 3 "}$ $2^{\text {nd }} M$: An equation of a line through (3, "15") or (-1, " 3 ") in any form, with any gradient (except 0 or ∞). $2^{\text {nd }} \mathrm{M}$: Alternative is to use one of the points in $y=m x+c$ to find a value for c, in which case $y=3 x+c$ leading to $c=6$ is sufficient for both A marks. $1^{\text {st }} \mathrm{A} 1$: Correct equation in any form.	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code USO22704 J anuary 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

Core Mathematics C1 (6663)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA023696
All the material in this publication is copyright
© Edexcel Ltd 2010

SOME GENERAL PRINCIPLES FOR C1 MARKING

(But the particular mark scheme always takes precedence)

Method marks

Usually we would overlook simple arithmetic errors or sign slips but the correct processes should be used. So dividing by a number instead of subtracting would be MO but adding a number instead of subtracting would be treated as the correct process but a sign error.

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|, \quad$ leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|, \quad$ leading to $\mathrm{x}=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0, \quad$ leading to $x=\ldots$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values (but refer to the mark scheme first... the application of this principle may vary). Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Equation of a straight line

Apply the following conditions to the M mark for the equation of a line through (a, b) :
If the a and b are the wrong way round the M mark can still be given if a correct formula is seen, (e.g. $\left.y-y_{1}=m\left(x-x_{1}\right)\right)$ otherwise M0.

If (a, b) is substituted into $y=m x+c$ to find c , the M mark is for attempting this and scored when $\mathrm{c}=\ldots$ is reached.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.
If in doubt, send the response to Review.

J une 2010
Core Mathematics C1 6663
Mark Scheme

Question Number	Scheme	Marks
1.	$\begin{aligned} (\sqrt{75}-\sqrt{27}) & =5 \sqrt{3}-3 \sqrt{3} \\ & =2 \sqrt{3} \end{aligned}$	M1 A1
Notes		
	M1 for $5 \sqrt{ } 3$ from $\sqrt{ } 75$ or $3 \sqrt{ } 3$ from $\sqrt{27}$ seen anywhere A1 for $2 \sqrt{3}$; allow $\sqrt{12}$ or or $\begin{array}{r}\text { or } \\ \text { allow } k \\ k\end{array}=1, x=12=3$ Some Common errors $\sqrt{75}-\sqrt{27}=\sqrt{48}$ leading to $4 \sqrt{3}$ is M0A0 $25 \sqrt{3}-9 \sqrt{3}=16 \sqrt{3}$ is MOA0	

Question Number	Scheme Marks
2.	$\begin{array}{l\|l} \frac{8 x^{4}}{4}+\frac{6 x^{\frac{3}{2}}}{\frac{3}{2}}-5 x+c & \text { M1 A1 } \\ =2 x^{4}+4 x^{\frac{3}{2}},-5 x+c & \text { A1 A1 } \end{array}$
	Notes
	M1 for some attempt to integrate a term in $x: x^{n} \rightarrow x^{n+1}$ $1^{\text {st }} \mathrm{A} 1$ for correct, possibly un-simplified x^{4} or $x^{\frac{3}{2}}$ term. e.g. $\frac{8 x^{4}}{4}$ or $\frac{6 x^{\frac{3}{2}}}{\frac{3}{2}}$ $2^{\text {nd }}$ A1 for both $2 x^{4}$ and $4 x^{\frac{3}{2}}$ terms correct and simplified on the same line N.B. some candidates write $4 \sqrt{x^{3}}$ or $4 x^{1 \frac{1}{2}}$ which are, of course, fine for A1 $3^{\text {rd }} \mathrm{A} 1$ for $-5 x+c$. Accept $-5 x^{1}+c$. The $+c$ must appear on the same line as the $-5 x$ N.B. We do not need to see one line with a fully correct integral Ignore ISW (ignore incorrect subsequent working) if a correct answer is followed by an incorrect version. Condone poor use of notation e.g. $\int 2 x^{4}+4 x^{\frac{3}{2}}-5 x+c$ will score full marks.

Question Number	Scheme	
7.	$\begin{aligned} & \frac{3 x^{2}+2}{x}=3 x+2 x^{-1} \\ & \left(y^{\prime}=\right) 24 x^{2},-2 x^{-\frac{1}{2}},+3-2 x^{-2} \\ & {\left[24 x^{2}-2 x^{-\frac{1}{2}}+3-2 x^{-2}\right]} \end{aligned}$	M1 A1 M1 A1 A1A1
	$1^{\text {st }}$ M1 for attempting to divide(one term correct) $1^{\text {st }}$ A1 for both terms correct on the same line, accept These first two marks may be implied by a correc $2^{\text {nd }}$ M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ for a "Differentiating" $\frac{3 x^{2}+2}{x}$ and getting $\frac{6 x}{1}$ is $2^{\text {nd }}$ A1 for $24 x^{2}$ only $3^{\text {rd }}$ A1 for $-2 x^{-\frac{1}{2}}$ allow $\frac{-2}{\sqrt{x}}$. Must be simplified $4^{\text {th }}$ A1 for $3-2 x^{-2}$ allow $\frac{-2}{x^{2}}$. Both terms needed If " $+c$ " is included then they lose this final ma They do not need one line with all terms correct for Award marks when first seen in this question and Condone a mixed line of some differentiation and e.g. $24 x^{2}-4 x^{\frac{1}{2}}+3 x+2 x^{-1}$ can score $1^{\text {st }}$ M1A1	$3 x^{1}$ for $3 x$ or $\frac{2}{x}$ for $2 x^{-1}$ ifferentiation at the end. east one term of their expression 0 this, not e.g. $\frac{-4}{2} x^{-\frac{1}{2}}$ Condone $3+(-2) x^{-2}$ full marks. ply ISW. me division $2^{\text {nd }}$ M1A1
Quotient /Product Rule	$\begin{aligned} & \frac{x(6 x)-\left(3 x^{2}+2\right) \times 1}{x^{2}} \text { or } 6 x\left(x^{-1}\right)+\left(3 x^{2}+2\right)\left(-x^{-2}\right) \\ & \frac{3 x^{2}-2}{x^{2}} \text { or } 3-\frac{2}{x^{2}} \text { (o.e.) } \end{aligned}$	$1^{\text {st }} \mathrm{M} 1$ for an attempt: $\frac{P-Q}{x^{2}}$ or $R+(-S)$ with one of P, Q or R, S correct. $1^{\text {st }}$ A1 for a correct expression $4^{\text {th }}$ A1 same rules as above

Question Number	Scheme ${ }^{\text {a }}$ Marks
11. (a) (b)	
(a) (b)	$1^{\text {st }} \mathrm{M} 1$ for an attempt to integrate $x^{n} \rightarrow x^{n+1}$ $1^{\text {st }}$ A1 for at least 2 correct terms in x (unsimplified) $2^{\text {nd }}$ A1 for all 3 terms in x correct (condone missing $+c$ at this point). Needn't be simplified $2^{\text {nd }}$ M1 for using the point $(4,5)$ to form a linear equation for c. Must use $x=4$ and $y=5$ and have no x term and the function must have "changed". $3^{\text {rd }} \mathrm{A} 1$ for $c=9$. The final expression is not required. $1^{\text {st }}$ M1 for an attempt to evaluate $\mathrm{f}^{\prime}(4)$. Some correct use of $x=4$ in $\mathrm{f}^{\prime}(x)$ but condone slips. They must therefore have at least 3×4 or $-\frac{5}{2}$ and clearly be using $\mathrm{f}^{\prime}(x)$ with $x=4$. Award this mark wherever it is seen. $2^{\text {nd }}$ M1 for using their value of m [or their $-\frac{1}{m}$] (provided it clearly comes from using $x=4$ in $f^{\prime}(x)$) to form an equation of the line through $\left.(4,5)\right)$. Allow this mark for an attempt at a normal or tangent. Their m must be numerical. Use of $y=m x+c$ scores this mark when c is found. $1^{\text {st }} \mathrm{A} 1$ for any correct expression for the equation of the line $2^{\text {nd }} \mathrm{A} 1$ for any correct equation with integer coefficients. An " $=$ " is required. e.g. $2 y=15 x-50$ etc as long as the equation is correct and has integer coefficients. Attempt at normal can score both M marks in (b) but A0A0

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA023696 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) J anuary 2011

GCE

GCE Core Mathematics C1 (6663) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www. edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code US026232
All the material in this publication is copyright © Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- Mmarks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

Question Number	Scheme	Marks
1. (a)	$16^{\frac{1}{4}}=2$ or $\frac{1}{16^{\frac{1}{4}}}$ or better $\left(16^{-\frac{1}{4}}=\right) \frac{1}{2} \text { or } 0.5 \quad \text { (ignore } \pm \text {) }$	M1 A1 (2)
(b)	$\left(2 x^{-\frac{1}{4}}\right)^{4}=2^{4} x^{-\frac{4}{4}} \quad$ or $\frac{2^{4}}{x^{\frac{4}{4}}}$ or equivalent $x\left(2 x^{-\frac{1}{4}}\right)^{4}=2^{4}$ or 16	M1 A1 cao (2)
	Notes	
(a) (b)	M1 for a correct statement dealing with the $\frac{1}{4}$ or the - power This may be awarded if 2 is seen or for reciprocal of their $16^{\frac{1}{4}}$ s.c $\quad 1 / 4$ is M1 A0, also 2^{-1} is M1 A0 $\pm \frac{1}{2}$ is not penalised so M1 A1 M1 for correct use of the power 4 on both the 2 and the x terms A1 for cancelling the x and simplifying to one of these two forms. Correct answers with no working get full marks	

Question Number	Scheme Marks
2.	$\begin{aligned} & \left(\int=\right) \frac{12 x^{6}}{6},-\frac{3 x^{3}}{3},+\frac{4 x^{\frac{4}{3}}}{\frac{4}{3}},(+c) \\ & =2 x^{6}-x^{3}+3 x^{\frac{4}{3}}+c \end{aligned}$ M1A1,A1,A1
	Notes
	M1 for some attempt to integrate: $x^{n} \rightarrow x^{n+1}$ i.e $a x^{6}$ or $a x^{3}$ or $a x^{\frac{4}{3}}$ or $a x^{\frac{11}{3}}$, where a is a non zero constant $1^{\text {st }} \mathrm{A} 1$ for $\frac{12 x^{6}}{6}$ or better $2^{\text {nd }}$ A1 for $-\frac{3 x^{3}}{3}$ or better $3^{\text {rd }}$ A1 for $\frac{4 x^{\frac{4}{3}}}{\frac{4}{3}}$ or better $4^{\text {th }}$ A1 for each term correct and simplified and the $+c$ occurring in the final answer

Question Number	Scheme	Marks
3.	$\begin{aligned} & \frac{5-2 \sqrt{3}}{\sqrt{3}-1} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \\ & =\frac{\cdots}{2} \\ & \text { Numerator }=5 \sqrt{3}+5-2 \sqrt{3} \sqrt{3}-2 \sqrt{3} \\ & \text { So } \frac{5-2 \sqrt{3}}{\sqrt{3}-1}=-\frac{1}{2}+\frac{3}{2} \sqrt{3} \end{aligned} \quad \text { denominator of } 22$	M1 A1 M1 A1 4
	Alternative: $(p+q \sqrt{3})(\sqrt{3}-1)=5-2 \sqrt{3}$, and form simultaneous equations in p and q $-p+3 q=5 \text { and } p-q=-2$ Solve simultaneous equations to give $p=-\frac{1}{2}$ and $q=\frac{3}{2}$.	M1 A1 M1 A1
	Notes	
	$1^{\text {st }}$ M1 for multiplying numerator and denominator by same correct expression $1^{\text {st }}$ A1 for a correct denominator as a single number (NB depends on M mark) $2^{\text {nd }} \mathrm{M} 1$ for an attempt to multiply the numerator by $(\sqrt{3} \pm 1)$ and get 4 terms with at least 2 correct. $2^{\text {nd }} \mathrm{A} 1$ for the answer as written or $p=-\frac{1}{2}$ and $q=\frac{3}{2}$. Allow -0.5 and 1.5. (Apply isw if correct answer seen, then slip writing $p=, q=$)	
	Answer only (very unlikely) is full marks if correct - no part marks	

Question Number	Scheme	Marks
4 (a)	$\left(a_{2}=\right) 6-c$	B1 (1)
(b)	$\begin{gathered} a_{3}=3\left(\text { their } a_{2}\right)-c \quad(=18-4 c) \\ a_{1}+a_{2}+a_{3}=2+"(6-c) "+"(18-4 c) " \\ \text { " } 26-5 c \text { " }=0 \end{gathered}$ So $\quad c=5.2$	M1 M1 Alft Al o.a.e (4)
	Notes	
(b)	$1^{\text {st }}$ M1 for attempting a_{3}. Can follow through their answer to (a) but it must be an expression in c. $2^{\text {nd }} \mathrm{M} 1$ for an attempt to find the sum $a_{1}+a_{2}+a_{3}$ must see evidence of sum $1^{\text {st }}$ A1ft for their sum put equal to 0 . Follow through their values but answer must be in the form $p+q c=0$ A1 - accept any correct equivalent answer	

Question Number	Scheme	Marks
5. (a)		B1 B1 B1 (3)
(b)	Horizontal translation so crosses the x-axis at $(1,0)$ New equation is $(y=) \frac{x \pm 1}{(x \pm 1)-2}$ When $x=0 \quad y=$ $=\frac{1}{3}$	B1 M1 A1 (4) 7
	Notes	
(b)	B1 for point $(1,0)$ identified - this may be marked on the sketch as 1 on x axis. Accept $x=1$. $1^{\text {st }}$ M1 for attempt at new equation and either numerator or denominator correct $2^{\text {nd }}$ M1 for setting $x=0$ in their new equation and solving as far as $y=\ldots$ A1 for $\frac{1}{3}$ or exact equivalent. Must see $y=\frac{1}{3}$ or ($0, \frac{1}{3}$) or point marked on y-axis. Alternative $f(-1)=\frac{-1}{-1-2}=\frac{1}{3}$ scores M1M1A0 unless $x=0$ is seen or they write the point as $\left(0, \frac{1}{3}\right)$ or give $y=1 / 3$ Answers only: $x=1, y=1 / 3$ is full marks as is $(1,0)(0,1 / 3)$ Just 1 and $1 / 3$ is B0 M1 M1 A0 Special case : Translates 1 unit to left (a) B0, B1, B0 (b) Mark (b) as before May score B0 M1 M1 A0 so 3/7 or may ignore sketch and start again scoring full marks for this part.	

Question Number	Scheme	Marks
(a)	$\begin{aligned} & S_{10}=\frac{10}{2}[2 a+9 d] \text { or } \\ & S_{10}=a+a+d+a+2 d+a+3 d+a+4 d+a+5 d a+6 d+a+7 d+a+8 d+a+9 d \\ & 162=10 a+45 d \quad * \end{aligned}$	M1 Alcso (2)
(b)	$\left(u_{n}=a+(n-1) d \Rightarrow\right) 17=a+5 d$ $10 \times(b)$ gives $10 a+50 d=170$ (a) is $10 a+45 d=162$ Subtract $5 d=8$ so $d=\underline{1.6} \quad$ o.e. Solving for a $a=17-5 d$ $\text { so } a=\underline{9}$	M1 A1 M1 A1 (4)
	Notes	
(a) (b)	M1 for use of S_{n} with $n=10$ $1^{\text {st }}$ M1 for an attempt to eliminate a or d from their two linear equations $2^{\text {nd }} \mathrm{M} 1$ for using their value of a or d to find the other value.	

Question Number	Scheme	Marks
9. (a)	$(8-3-k=0)$ so $\underline{k=5}$	B1 (1)
(b)	$\begin{aligned} 2 y & =3 x+k \\ y & =\frac{3}{2} x+\ldots \text { and so } m=\frac{3}{2} \text { o.e. } \end{aligned}$	M1 A1 (2)
(c)	$\begin{aligned} & \text { Perpendicular gradient }=-\frac{2}{3} \\ & \text { Equation of line is: } \quad y-4=-\frac{2}{3}(x-1) \end{aligned}$ $3 y+2 x-14=0 \quad \text { о.e. }$	B1ft M1A1ft A1 (4)
(d)	$y=0, \quad$ or $\quad \underline{x}=7(7,0) \quad x=7$ or $-\frac{c}{a}$	M1A1ft (2)
(e)	$\begin{aligned} & A B^{2}=(7-1)^{2}+(4-0)^{2} \\ & A B=\sqrt{52} \text { or } 2 \sqrt{13} \end{aligned}$	M1 A1 (2) 11
	Notes	
(b)	M1 for an attempt to rearrange to $y=\ldots$ A1 for clear statement that gradient is 1.5 , can be $m=1.5$ o.e.	
(c)	B1ft for using the perpendicular gradient rule correctly on their "1.5" M1 for an attempt at finding the equation of the line through A using their gradient. Allow a sign slip $1^{\text {st }}$ A1ft for a correct equation of the line follow through their changed gradient $2^{\text {nd }}$ A1 as printed or equivalent with integer coefficients - allow $3 y+2 x=14 \text { or } 3 y=14-2 x$	
(d)	M1 for use of $y=0$ to find $x=\ldots$ in their equation A1ft for $x=7$ or $-\frac{c}{a}$	
(e)	M1 for an attempt to find $A B$ or $A B^{2}$ A1 for any correct surd form- need not be simplified	

Question Number	Scheme	Marks
$10 .$ (a)	(i) correct shape (-ve cubic)Crossing at (-2, 0) Through the origin Crossing at (3,0)\times(ii) 2 branches in correct quadrants not crossing axes One intersection with cubic on each branch	B1 B1 B1 B1 B1 B1 (6)
(b)	"2" solutions Since only "2" intersections	B1ft dB1ft (2) 8
	Notes	
(b)	B1ft for a value that is compatible with their sketch dB 1 ft This mark is dependent on the value being compatible with their sketch. For a comment relating the number of solutions to the number of intersections. [Only allow 0,2 or 4]	
11. (a)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{3}{2} x^{2}-\frac{27}{2} x^{\frac{1}{2}}-8 x^{-2}$	M1A1A1A1
(b)	$\begin{aligned} x=4 \Rightarrow y & =\frac{1}{2} \times 64-9 \times 2^{3}+\frac{8}{4}+30 \\ & =32-72+2+30 \quad=\underline{-8} * \end{aligned}$	M1 Alcso
(c)	$\begin{aligned} & \begin{aligned} & x=4 \Rightarrow y^{\prime}=\frac{3}{2} \times 4^{2}-\frac{27}{2} \times 2-\frac{8}{16} \\ &=24-27-\frac{1}{2}= \\ & \text { Gradient of the normal }=-1 \div \frac{7}{2}{ }^{\prime \prime} \end{aligned} \\ & \text { Equation of normal: } y--8=\frac{2}{7}(x-4) \end{aligned}$ $7 y-2 x+64=0$	M1 A1 M1 M1A1ft A1 (6) 12

Question Number	Scheme	Marks
	Notes	
(a)	$1^{\text {st }}$ M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ $1^{\text {st }}$ A1 for one correct term in x $2^{\text {nd }}$ A1 for 2 terms in x correct $3^{\text {rd }}$ A1 for all correct x terms. No 30 term and no $+c$.	
(b)	M1 for substituting $x=4$ into $y=$ and attempting $4^{\frac{3}{2}}$ A1 note this is a printed answer	
(c)	$1^{\text {st }}$ M1 Substitute $\mathrm{x}=4$ into y^{\prime} (allow slips) A1 $2^{\text {nd }}$ M1 Obtains -3.5 or equivalent for correct use of the perpendicular gradient rule using their gradient. (May be slip doing the division) Their gradient must have come from y^{\prime} $3^{\text {3rd }}$ M1 for an attempt at equation of tangent or normal at P $2^{\text {nd }}$ A1ft for correct use of their changed gradient to find normal at P. $3^{\text {rd }}$ A1Depends on $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }} \mathrm{Ms}$ for any equivalent form with integer coefficients l	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code US026232 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

edexcel ะ\#

Mark Scheme (Results)
June 2011

GCE Core Mathematics C1 (6663) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027654
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS
 General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol fill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

J une 2011
 Core Mathematics C1 6663
 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$5 \quad$ (or $\pm 5)$	B1 (1)
(b)	$25^{-\frac{3}{2}}=\frac{1}{25^{\frac{3}{2}}}$ or $25^{\frac{3}{2}}=125$ or better $\frac{1}{125} \text { or } 0.008 \quad \text { (or } \pm \frac{1}{125} \text {) }$	M1 A1 (2)
	Notes (a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5) (b) M: Requires reciprocal OR $25^{\frac{3}{2}}=125$ Accept $\frac{1}{5^{3}}, \frac{1}{\sqrt{15625}}, \frac{1}{25 \times 5}, \frac{1}{25 \sqrt{25}}, \frac{1}{\sqrt{25}^{3}}$ for M1 Correct answer with no working (or notation errors in working) scores both marks M1A0 for $-\frac{1}{125}$ without $+\frac{1}{125}$	i.e. M1 A1

Question Number	Scheme ${ }^{\text {a }}$
2. (a)	$\begin{array}{ll\|l} \frac{\mathrm{d} y}{\mathrm{~d} x}=10 x^{4}-3 x^{-4} \quad \text { or } \quad 10 x^{4}-\frac{3}{x^{4}} & \text { M1 A1 A1 } \\ \hline \end{array}$
(b)	$\left(\int=\right) \frac{2 x^{6}}{6}+7 x+\frac{x^{-2}}{-2}=\frac{x^{6}}{3}+7 x-\frac{x^{-2}}{2}+C$ M1 A1 A1
	Notes (a) M1: Attempt to differentiate $x^{n} \rightarrow x^{n-1}$ (for any of the 3 terms) i.e. $a x^{4}$ or $a x^{-4}$, where a is any non-zero constant or the 7 differentiated to give 0 is sufficient evidence for M1 $1^{\text {st }} \mathrm{A} 1$: One correct (non-zero) term, possibly unsimplified. $2^{\text {nd }}$ A1: Fully correct simplified answer. (b) M1: Attempt to integrate $x^{n} \rightarrow x^{n+1}$ (i.e. $a x^{6}$ or $a x$ or $a x^{-2}$, where a is any non-zero constant). $1^{\text {st }}$ A1: Two correct terms, possibly unsimplified. $2^{\text {nd }}$ A1: All three terms correct and simplified. Allow correct equivalents to printed answer , e.g. $\frac{x^{6}}{3}+7 x-\frac{1}{2 x^{2}}$ or $\frac{1}{3} x^{6}+7 x-\frac{1}{2} x^{-2}$ Allow $\frac{1 x^{6}}{3}$ or $7 x^{1}$ B1: $+C$ appearing at any stage in part (b) (independent of previous work)

advancing learning, changing lives

Question Number	Scheme ${ }^{\text {a }}$
3.	Mid-point of $P Q$ is $(4,3)$ $P Q . m=\frac{0-6}{9-(-1)},\left(=-\frac{3}{5}\right)$ B1 Gradient perpendicular to $P Q=-\frac{1}{m} \quad\left(=\frac{5}{3}\right)$ B1 $y-3=\frac{5}{3}(x-4)$ M1 $5 x-3 y-11=0$ or $3 y-5 x+11=0$ or multiples e.g. $10 x-6 y-22=0$ A1
	Notes B1: correct midpoint. B1: correct numerical expression for gradient - need not be simplified $1^{\text {st }} \mathrm{M}$: Negative reciprocal of their numerical value for m $2^{\text {nd }} \mathrm{M}$: Equation of a line through their $(4,3)$ with any gradient except 0 or ∞. If the 4 and 3 are the wrong way round the $2^{\text {nd }} \mathrm{M}$ mark can still be given if a correct formula (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) is seen, otherwise M0. If $(4,3)$ is substituted into $y=m x+c$ to find c, the $2^{\text {nd }} M$ mark is for attempting this. A1: Requires integer form with an = zero (see examples above)

Question Number	Scheme	Marks
4.		M1 M1 A1 M1 A1 M1 A1
	Notes $1^{\text {st }} \mathrm{M}$: Squaring to give 3 or 4 terms (need a middle term) $2^{\text {nd }} \mathrm{M}$: Substitute to give quadratic in one variable (may have just two terms) $3^{\text {rd }} \mathrm{M}$: Attempt to solve a $\mathbf{3}$ term quadratic. $4^{\text {th }} \mathrm{M}$: Attempt to find at least one y value (or x value). (The second variable) This will be by substitution or by starting again. If y solutions are given as x values, or vice-versa, penalise accuracy, so that it to score M1 M1A1 M1 A0 M1 A0. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x=5, y=-3$): M0 M0 A0 M1 A0 M1 A No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A Both correct solution pairs found, and demonstrated: Full marks are possible review)	is possible A0 A1 (send to

Question Number	Scheme	Marks
5. (a)	$\left(a_{2}=\right) 5 k+3$	B1 (1)
(b)	$\begin{align*} \left(a_{3}\right. & =) 5(5 k+3)+3 \\ & =25 k+18 \tag{*} \end{align*}$	M1 A1 cso (2)
(c) (i) (ii)	$\begin{aligned} & a_{4}=5(25 k+18)+3 \quad(=125 k+93) \\ & \begin{aligned} \sum_{r=1}^{4} a_{r} & =k+(5 k+3)+(25 k+18)+(125 k+93) \\ & =156 k+114 \\ & =6(26 k+19) \quad \text { (or explain each term is divisible by } 6) \end{aligned} \end{aligned}$	M1 $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$ (4) 7
	Notes (a) $5 k+3$ must be seen in (a) to gain the mark (b) $1^{\text {st }} \mathrm{M}$: Substitutes their a_{2} into $5 a_{2}+3$ - note the answer is given be seen. (c) $1^{\text {st }}$ M1: Substitutes their a_{3} into $5 a_{3}+3$ or uses $125 k+93$ $2^{\text {nd }} \mathrm{M} 1$: for their sum $k+a_{2}+a_{3}+a_{4}$ - must see evidence of four signs and must not be sum of AP $1^{\text {st }}$ A1: All correct so far $2^{\text {nd }}$ A1 ft: Limited ft - previous answer must be divisible by 6 (eg $156 k+42$). This is dependent on second M mark in (c) Allow $\frac{156 k+114}{6}=26 k+19$ without explanation. No conclusi	orking must ms with plus

Question Number	Scheme	Marks
(a)	$p=\frac{1}{2}, q=2 \quad$ or $\quad 6 x^{\frac{1}{2}}, 3 x^{2}$	B1, B1
(b)	$\begin{align*} & \frac{6 x^{\frac{3}{2}}}{(3 / 2)}+\frac{3 x^{3}}{3} \quad\left(=4 x^{\frac{3}{2}}+x^{3}\right) \\ & x=4, y=90: 32+64+C=90 \Rightarrow C=-6 \\ & y=4 x^{\frac{3}{2}}+x^{3}+\text { "their }-6 \text { " } \tag{5} \end{align*}$	M1 A1ft M1 A1 A1
	Notes	
	(a) Accept any equivalent answers, e.g. $p=0.5, q=4 / 2$ (b) $1^{\text {st }} \mathrm{M}$: Attempt to integrate $x^{n} \rightarrow x^{n+1}$ (for either term) $1^{\text {st }} \mathrm{A}$: ft their p and q, but terms need not be simplified $(+C$ not required for this mark) $2^{\text {nd }} \mathrm{M}$: Using $x=4 \underline{\text { and }} y=90$ to form an equation in C. $2^{\text {nd }}$ A: cao $3^{\text {rd }} \mathrm{A}$: answer as shown with simplified correct coefficients and powers - but follow through their value for C If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Numerator and denominator integrated separately: First M mark cannot be awarded so only mark available is second M mark. So 1 out of 5 marks.	

Question Number	Scheme	Marks
7. (a)	Discriminant: $b^{2}-4 a c=(k+3)^{2}-4 k$ or equivalent	M1 A1 (2)
(b)	$(k+3)^{2}-4 k=k^{2}+2 k+9=(k+1)^{2}+8$	M1 A1
(c)	For real roots, $b^{2}-4 a c \geq 0$ or $b^{2}-4 a c>0$ or $(k+1)^{2}+8>0$ $(k+1)^{2} \geq 0$ for all k, so $b^{2}-4 a c>0$, so roots are real for all k (or equiv.)	M1 A1 cso (2) 6
	Notes (a) M1: attempt to find discriminant - substitution is required If formula $b^{2}-4 a c$ is seen at least 2 of a, b and c must be correct If formula $b^{2}-4 a c$ is not seen all 3 of a, b and c must be correct Use of $b^{2}+4 a c$ is M0 A1: correct unsimplified (b) M1: Attempt at completion of square (see earlier notes) A1: both correct (no ft for this mark) (c) M1: States condition as on scheme or attempts to explain that their $(k+1)^{2}+8$ is greater than 0 A1: The final mark (A1cso) requires $(k+1)^{2} \geq 0$ and conclusion. We will allow $(k+1)^{2}>0$ (or word positive) also allow $b^{2}-4 a c \geq 0$ an	d conclusion.

| Question
 Number | Scheme | Marks |
| :--- | :--- | :--- | :--- |
| (a) | | |

Question Number	Scheme	Marks
10. (a)	 Shape (cubic in this orientation) Touching x-axis at $\mathbf{- 3}$ Crossing at $\mathbf{- 1}$ on x-axis Intersection at $\mathbf{9}$ on y-axis	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ (4)
(b)	$y=(x+1)\left(x^{2}+6 x+9\right)=x^{3}+7 x^{2}+15 x+9$ or equiv. (possibly unsimplified) Differentiates their polynomial correctly - may be unsimplified $\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15 \tag{*} \end{equation*}$	B1 M1 A1 cso
(c)	$\begin{aligned} & \text { At } x=-5: \frac{\mathrm{d} y}{\mathrm{~d} x}=75-70+15=20 \\ & \text { At } x=-5: y=-16 \\ & \quad y-("-16 ")=" 20 "(x-(-5)) \quad \text { or } y=\text { " } 20 x \text { " }+c \text { with }(-5,- \text { " } 16 \text { " }) \\ & \text { used to find } c \\ & \quad y=20 x+84 \end{aligned}$	B1 B1 M1 A1 (4)
(d)	$\begin{aligned} & \text { Parallel: } 3 x^{2}+14 x+15=" 20 " \\ & (3 x-1)(x+5)=0 \quad x=\ldots \\ & x=\frac{1}{3} \end{aligned}$	M1 M1 A1 (3) 14
	Notes (a) Crossing at -3 is B 0 . Touching at -1 is B 0 (b) M: This needs to be correct differentiation here A1: Fully correct simplified answer. (c) M: If the -5 and " -16 " are the wrong way round or - omitted the M mark can still be given if a correct formula is seen, (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) otherwise M0. m should be numerical and not 0 or infinity and should not have involved negative reciprocal. (d) $1^{\text {st }} \mathrm{M}$: Putting the derivative expression equal to their value for gradient $2^{\text {nd }} \mathrm{M}$: Attempt to solve quadratic (see notes) This may be implied by correct answer.	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027654 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Mark Scheme (Results)

January 2012

GCE Core Mathematics C1 (6663) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code US030304
All the material in this publication is copyright
(c) Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol \uparrow will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving $\mathbf{3}$ term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Question	Scheme ${ }^{\text {a }}$ Marks
1. (a)	$4 x^{3}+3 x^{-\frac{1}{2}} \quad$ M1A1A1
(b)	$\begin{equation*} \frac{x^{5}}{5}+4 x^{\frac{3}{2}}+C \tag{3} \end{equation*}$ M1A1A1
	Notes
(a)	M1 for $x^{n} \rightarrow x^{n-1}$ i.e. x^{3} or $x^{-\frac{1}{2}}$ seen $1^{\text {st }}$ A1 for $4 x^{3}$ or $6 \times \frac{1}{2} \times x^{-\frac{1}{2}}$ (o.e.) (ignore any $+c$ for this mark) $2^{\text {nd }} \mathrm{A} 1$ for simplified terms i.e. both $4 x^{3}$ and $3 x^{-\frac{1}{2}}$ or $\frac{3}{\sqrt{x}}$ and no $+c\left[\frac{3}{1} x^{-\frac{1}{2}}\right.$ is A0 $]$ Apply ISW here and award marks when first seen M1 for $x^{n} \rightarrow x^{n+1}$ applied to y only so x^{5} or $x^{\frac{3}{2}}$ seen. Do not award for integrating their answer to part (a) $1^{\text {st }} \mathrm{A} 1$ for $\frac{x^{5}}{5}$ or $\frac{6 x^{\frac{3}{2}}}{\frac{3}{2}}$ (or better). Allow $1 / 5 x^{5}$ here but not for $2^{\text {nd }} \mathrm{A} 1$ $2^{\text {nd }}$ A1 for fully correct and simplified answer with $+C$. Allow $(1 / 5) x^{5}$ If $+C$ appears earlier but not on a line where $2^{\text {nd }} \mathrm{A} 1$ could be scored then A 0

\begin{tabular}{|c|c|}
\hline Question \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
5. (a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& x(5-x)=\frac{1}{2}(5 x+4) \quad(\text { o.e. }) \\
\&\left.2 x^{2}-5 x+4(=0) \quad \text { (o.e. }\right) \text { e.g. } x^{2}-2.5 x+2(=0) \\
\& b^{2}-4 a c=(-5)^{2}-4 \times 2 \times 4 \\
\&=25-32 \quad<0, \text { so no roots } \underline{\text { or no intersections or no solutions }}
\end{aligned}
\]
 \\
\hline \& Notes \\
\hline (a)
ALT

(b)

SC \& | $1^{\text {st }} \mathrm{M} 1$ for forming a suitable equation in one variable |
| :--- |
| $1^{\text {st }}$ A1 for a correct 3 TQ equation. Allow missing " $=0$ " Accept $2 x^{2}+4=5 x$ etc |
| $2^{\text {nd }} \mathrm{M} 1$ for an attempt to evaluate discriminant for their 3TQ. Allow for $b^{2}>4 a c$ or $b^{2}<4 a c$ |
| Allow if it is part of a solution using the formula e.g. $(x=) \frac{5 \pm \sqrt{25-32}}{4}$ |
| Correct formula quoted and some correct substitution or a correct expression |
| False factorising is M0 |
| $2^{\text {nd }} \mathrm{A} 1$ for correct evaluation of discriminant for a correct 3 TQ e.g. $25-32$ (or better) and a comment indicating no roots or equivalent. For contradictory statements score A0 |
| $2^{\text {nd }}$ M1 for attempt at completing the square $a\left[\left(x \pm \frac{b}{2 a}\right)^{2}-q\right]+c$ |
| $2^{\text {nd }}$ A1 for $\left(x-\frac{5}{4}\right)^{2}=-\frac{7}{16}$ and a suitable comment |
| Coordinates must be seen on the diagram. Do not award if only in the body of the script. "Passing through" means not stopping at and not touching. Allow $(0, x)$ and $(y, 0)$ if marked on the correct places on the correct axis. |
| $1^{\text {st }}$ B1 for correct shape and passing through origin. Can be assumed if it passes through the intersection of axes |
| $2^{\text {nd }} \mathrm{B} 1$ for correct shape and 5 marked on x-axis for \cap shape stopping at both $(5,0)$ and $(0,0)$ award B0B1 |
| $3^{\text {rd }} \mathrm{B} 1$ for a line of positive gradient that (if extended) has no intersection with their C (possibly extended). Must have both graphs on same axes for this mark. If no C given score B0 |
| $4^{\text {th }} \mathrm{B} 1$ for straight line passing through -0.8 on x-axis and 2 on y-axis Accept exact fraction equivalents to -0.8 or 2(e.g. $\frac{4}{2}$) |

\hline
\end{tabular}

Question	Scheme ${ }^{\text {a }}$ Marks
10. $\begin{array}{cc}\text { (a) } \\ & \text { (b) } \\ & \\ & \\ & \text { (c) }\end{array}$	$\begin{align*} & \left(\frac{1}{2}, 0\right) \tag{1}\\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{-2} \end{align*}$ At $x=\frac{1}{2}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\frac{1}{2}\right)^{-2}=4 \quad(=m)$ $\text { Gradient of normal }=-\frac{1}{m} \quad\left(=-\frac{1}{4}\right)$ Equation of normal: $y-0=-\frac{1}{4}\left(x-\frac{1}{2}\right)$ $\begin{equation*} 2 x+8 y-1=0 \tag{*} \end{equation*}$
	Notes
(a) (b) (c)	B1 accept $x=\frac{1}{2}$ if evidence that $y=0$ has been used. Can be written on graph. Use ISW $1^{\text {st }}$ M1 for $k x^{-2}$ even if the ' 2 ' is not differentiated to zero. If no evidence of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ $1^{\text {st }} \mathrm{A} 1$ for x^{-2} (o.e.) only $2^{\text {nd }} \mathrm{A} 1 \quad$ for using $x=0.5$ to get $m=4$ (correctly) (or $m=1 / 0.25$) To score final A1cso must see at least one intermediate equation for the line after $m=4$ $2^{\text {nd }}$ M1 for using the perpendicular gradient rule on their m coming from their $\frac{d y}{d x}$ Their m must be a value not a letter. $3^{\text {rd }}$ M1 for using a changed gradient (based on y^{\prime}) and their A to find equation of line $3^{\text {rd }} \mathrm{A} 1$ cso for reaching printed answer with no incorrect working seen. Accept $2 x+8 y=1$ or equivalent equations with $\pm 2 x$ and $\pm 8 y$ Trial and improvement requires sight of first equation. $1^{\text {st }}$ M1 for attempt to form a suitable equation in one variable. Do not penalise poor use of brackets etc. $2^{\text {nd }}$ M1 for simplifying their equation to a 3TQ and attempting to solve. May be $\Rightarrow \text { by } x=-8$ $1^{\text {st }} \mathrm{A} 1 \quad$ for $x=-8$ (ignore a second value). If found y first allow ft for x if $x<0$ $2^{\text {nd }} \mathrm{A} 1 \mathrm{ft}$ for $y=\frac{17}{8}$ Follow through their x value in line or curve provided answer is >0 This second A1 is dependent on both M marks

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Ofqual

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US030304 January 2012

Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Mark Scheme (Results)
Summer 2012

GCE Core Mathematics C1 (6663) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA031950
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012
 6663 Core Mathematics

 C1 Mark Scheme

 C1 Mark Scheme}

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol ${ }_{\downarrow}$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q) \text {, where }|p q|=|c|, \text { leading to } \mathrm{x}=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q) \text {, where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } \mathrm{x}=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $\mathrm{x}=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Summer 2012

6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme Marks
1.	$\begin{aligned} \left\{\int\left(6 x^{2}+\frac{2}{x^{2}}+5\right) \mathrm{d} x\right\} & =\frac{6 x^{3}}{3}+\frac{2 x^{-1}}{-1}+5 x(+c) \\ & =2 x^{3}-2 x^{-1} ;+5 x+c \end{aligned}$ M1 A1 A1; A1
	Notes
	M1: for some attempt to integrate a term in $x: x^{n} \rightarrow x^{n+1}$ So seeing either $6 x^{2} \rightarrow \pm \lambda x^{3}$ or $\frac{2}{x^{2}} \rightarrow \pm \mu x^{-1}$ or $5 \rightarrow 5 x$ is M1. $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct un-simplified x^{3} or $x^{-1}\left(\right.$ or $\left.\frac{1}{x}\right)$ term. $2^{\text {nd }} \mathbf{A 1}$: for both x^{3} and x^{-1} terms correct and simplified on the same line. Ie. $2 x^{3}-2 x^{-1}$ or $2 x^{3}-\frac{2}{x}$. $3^{\text {rd }} \mathbf{A 1}$: for $+5 x+c$. Also allow $+5 x^{1}+c$. This needs to be written on the same line. Ignore the incorrect use of the integral sign in candidates' responses. Note: If a candidate scores M1A1A1A1 and their answer is NOT ON THE SAME LINE then withhold the final accuracy mark.

Question Number	Scheme ${ }^{\text {a }}$
3.	$\begin{aligned} \left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} & =\frac{2}{(\sqrt{12}-\sqrt{8})} \times \frac{(\sqrt{12}+\sqrt{8})}{(\sqrt{12}+\sqrt{8})} \\ & =\frac{\{2(\sqrt{12}+\sqrt{8})\}}{12-8} \\ & =\frac{2(2 \sqrt{3}+2 \sqrt{2})}{12-8} \\ & =\sqrt{3}+\sqrt{2} \end{aligned}$ Writing this is sufficient for M1. For 12-8. This mark can be implied.
	Notes
	M1: for a correct method to rationalise the denominator. 1 $^{\text {st }} \mathbf{A 1 :} \quad(\sqrt{12}-\sqrt{8})(\sqrt{12}+\sqrt{8}) \rightarrow 12-8$ or $(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2}) \rightarrow 3-2$ $\mathbf{1}^{\text {st }} \mathbf{B 1}$: for $\sqrt{12}=2 \sqrt{3}$ or $\sqrt{48}=4 \sqrt{3}$ seen or implied in candidate's working. $2^{\text {nd }} \mathbf{B 1}$: for $\sqrt{8}=2 \sqrt{2}$ or $\sqrt{32}=4 \sqrt{2}$ seen or implied in candidate's working. $2^{\text {nd }} \mathbf{A 1}$: for $\sqrt{3}+\sqrt{2}$. Note: $\frac{\sqrt{3}+\sqrt{2}}{1}$ as a final answer is A0. Note: The first accuracy mark is dependent on the first method mark being awarded. Note: $\frac{1}{2} \sqrt{12}+\frac{1}{2} \sqrt{8}=\sqrt{3}+\sqrt{2}$ with no intermediate working implies the B1B1 marks. Note: $\sqrt{12}=\sqrt{4} \sqrt{3}$ or $\sqrt{8}=\sqrt{4} \sqrt{2}$ are not sufficient for the B1 marks. Note: A candidate who writes down (by misread) $\sqrt{18}$ for $\sqrt{8}$ can potentially obtain M1A0B1B1A0, where the $2^{\text {nd }} B 1$ will be awarded for $\sqrt{18}=3 \sqrt{2}$ or $\sqrt{72}=6 \sqrt{2}$ Note: The final accuracy mark is for a correct solution only. Alternative 1 solution $\begin{aligned} \left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} & =\frac{2}{(2 \sqrt{3}-2 \sqrt{2})} & & \text { B1 B1 } \\ & =\frac{1}{(\sqrt{3}-\sqrt{2})} \times \frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})} & & \text { M1 } \\ & =\frac{\{(\sqrt{3}+\sqrt{2})\}}{3-2} & & \text { A1 for } 3-2 \\ & =\sqrt{3}+\sqrt{2} & & \text { A1 } \end{aligned}$ Please record the marks in the relevant places on the mark grid. Alternative 2 solution $\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\}=\frac{2}{(2 \sqrt{3}-2 \sqrt{2})}=\frac{1}{(\sqrt{3}-\sqrt{2})}=\sqrt{3}+\sqrt{2}, \quad \text { or } \quad \frac{2}{(2 \sqrt{3}-2 \sqrt{2})}=\sqrt{3}+\sqrt{2}$ with no incorrect working seen is awarded M1A1B1B1A1.

Question Number	Scheme ${ }^{\text {arks }}$
4. (a)	$\left.\left.\begin{array}{rl} & y=5 x^{3}-6 x^{\frac{4}{3}}+2 x-3 \\ \left\{\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right\} & 5(3) x^{2}-6\left(\frac{4}{3}\right) x^{\frac{1}{3}}+2 \end{array}\right\} \begin{array}{rl} & =15 x^{2}-8 x^{\frac{1}{3}}+2 \end{array}\right\}$
	Notes
(a)	M1: for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ to one of the first three terms of $y=5 x^{3}-6 x^{\frac{4}{3}}+2 x-3$. So seeing either $5 x^{3} \rightarrow \pm \lambda x^{2}$ or $-6 x^{\frac{4}{3}} \rightarrow \pm \mu x^{\frac{1}{3}}$ or $2 x \rightarrow 2$ is M1. $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for $15 x^{2}$ only. $2^{\text {nd }}$ A1: for $-8 x^{\frac{1}{3}}$ or $-8 \sqrt[3]{x}$ only. $\mathbf{3}^{\text {rd }} \mathbf{A 1}$: for $+2\left(+c\right.$ included in part (a) loses this mark). Note: $2 x^{0}$ is A0 unless simplified to 2.
(b)	M1: For differentiating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ again to give either - a correct follow through differentiation of their x^{2} term - or for $\pm \alpha x^{\frac{1}{3}} \rightarrow \pm \beta x^{-\frac{2}{3}}$.

A1: for any correct expression on the same line (accept un-simplified coefficients).
For powers: $30 x^{2-1}-\frac{8}{3} x^{\frac{1}{3}-1}$ is A0, but writing powers as one term eg: $(15 \times 2 x)-\frac{8}{3} x^{-\frac{4}{6}}$ is ok for A1.
Note: Candidates leaving their answers as $\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\right\} 15 x^{2}-\frac{24}{3} x^{\frac{1}{3}}+2$ and $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right) 30 x-\frac{24}{9} x^{-\frac{2}{3}}$ are awarded M1A1A0A1 in part (a) and M1A1 in part (b).
Be careful: $30 x-\frac{8}{3} x^{-\frac{1}{3}}$ will be A0.
Note: For an extra term appearing in part (b) on the same line, ie $30 x-\frac{8}{3} x^{-\frac{2}{3}}+2$ is M1A0
Note: If a candidate writes in part (a) $15 x^{2}-8 x^{\frac{1}{3}}+2+c$ and in part (b) $30 x-\frac{8}{3} x^{-\frac{2}{3}}+c$ then award (a) M1A1A1A0 (b) M1A1

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & a_{1}=3, a_{n+1}=2 a_{n}-c, n \geq 1, c \text { is a constant } \\ & \left\{a_{2}=\right\} 2 \times 3-c \text { or } 2(3)-c \text { or } 6-c \end{aligned}$	
(b)	$\begin{gathered} \left\{a_{3}=\right\} 2 \times\left(" 6-c^{\prime}\right)-c \\ =12-3 c \quad(*) \end{gathered}$	M1 A1 cso
(c)	$a_{4}=2 \times(" 12-3 c ")-c \quad\{=24-7 c\}$	[2] M1
	$\begin{aligned} & \left\{\sum_{i=1}^{4} a_{i}=\right\} 3+(6-c)+(12-3 c)+(24-7 c) \\ & " 45-11 c " \geq 23 \text { or } 445-11 c \text { " }=23 \\ & c \leq 2 \text { or } 2 \geq c \end{aligned}$	M1 M1 A1 cso
		$[4]$
	Note	
(a)	The answer to part (a) cannot be recovered from candidate's working in part (b) or part (c). Once the candidate has achieved the correct result you can ignore subsequent working in this part.	
(b)	M1: For a correct substitution of their a_{2} which must include term(s) in \boldsymbol{c} into $2 a_{2}-c$ giving a result for a_{3} in terms of only c. Candidates must use correct bracketing for this mark.	

A1: for correct solution only. No incorrect working/statements seen. (Note: the answer is given!)
(c)
$\mathbf{1}^{\text {st }} \mathbf{M 1}$: For a correct substitution of a_{3} which must include term(s) in \boldsymbol{c} into $2 a_{3}-c$ giving a result for a_{4} in terms of only c. Candidates must use correct bracketing (can be implied) for this mark.
$2^{\text {nd }} \mathbf{M} 1$: for an attempt to sum their a_{1}, a_{2}, a_{3} and a_{4} only.
$3^{\text {rd }}$ M1: for their sum (of 3 or 4 or 5 consecutive terms) $=$ or \geq or >23 to form a linear inequality or equation in c.
A1: for $c \leq 2$ or $2 \geq c$ from a correct solution only.
Beware: $-11 c \geq-22 \Rightarrow c \geq 2$ is A 0 .
Note: $45-11 c \geq 23 \Rightarrow-11 c \leq-22 \Rightarrow c \leq 2$ would be A 0 cso.
Note: Applying either $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ or $S_{n}=\frac{n}{2}(a+l)$ is $2^{\text {nd }} \mathrm{M} 0$, $3^{\text {rd }} \mathrm{M} 0$.
Note: If a candidate gives a numerical answer in part (a); they will then get M0A0 in part (b); but if they use the printed result of $a_{3}=12-3 c$ they could potentially get M0M1M1A0 in part (c)
Note: If a candidate only adds numerical values (not in terms of c) in part (c) then they could potentially get only M0M0M1A0.
Note: For the $3^{\text {rd }} \mathrm{M} 1$ candidates will usually sum a_{1}, a_{2}, a_{3} and a_{4} or a_{2}, a_{3} and a_{4} or a_{2}, a_{3}, a_{4} and a_{5} or $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5}

(c) $\quad \mathbf{1}^{\text {st }} \mathbf{M 1}:$ for correct use of S_{m} formula with one of a or d correct.
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct expression for S_{m}. Eg: $\frac{m}{2}(2(10)+(m-1)(10))$ or $\frac{m}{2} \times 10(m+1)$ or $5 m(m+1)$
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for forming a suitable equation using 63 or 6300 and their S_{m}. Dependent on $\mathbf{1}^{\text {st }} \mathbf{M 1}$.
$2^{\text {nd }}$ A1cso: for reaching the printed result with no incorrect working seen.
Long multiplication is not necessary for the final accuracy mark.
Note: $\frac{m}{2}(2(10)+(m-1)(10))=630$ and not either 6300 or 63 is dM 0 .

Beware: Some candidates will try and fudge the result given on the question paper.

Notes for awarding $2^{\text {nd }} \mathbf{A 1}$

Going from $m(m+1)=1260$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 1$.
Going from $m(m+1)=$ some factor decomposition of 6300 straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 1$.
Going from $10 m(m+1)=12600$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 0$.
Going from $m(m+1)=\frac{6300}{5}$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} A 0$.

Alternative: working in an different letter, say n or p.

M1A1: for $\frac{n}{2}(2(10)+(n-1)(10))$ (although mixing letters eg. $\frac{n}{2}(2(10)+(m-1)(10))$ is M0A0).
dM1: for 63 or $6300=\frac{n}{2}(2(10)+(n-1)(10))$
Leading to $6300=\frac{n}{2}(10)(n+1) \Rightarrow 1260=n(n+1) \Rightarrow 35 \times 36=n(n+1)$
The candidate then needs to write either $35 \times 36=m(m+1)$ or $m \equiv n$ or $m=n$ to gain the final A1.
(d)

B1: for 35 only.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {a }}\) Marks \\
\hline 7. (a) \& \begin{tabular}{l}
\(P(4,-1)\) lies on \(C\) where \(\mathrm{f}^{\prime}(x)=\frac{1}{2} x-\frac{6}{\sqrt{x}}+3, x>0\)
\[
\mathrm{f}^{\prime}(4)=\frac{1}{2}(4)-\frac{6}{\sqrt{4}}+3 ;=2
\] \\
T: \(y--1=2(x-4)\) \\
T: \(y=2 x-9\)
\end{tabular} \\
\hline (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{f}(x)=\frac{x^{1+1}}{2(2)}-\frac{6 x^{-\frac{1}{2}+1}}{\left(\frac{1}{2}\right)}+3 x(+c) \\
\& \{\mathrm{f}(4)=-1 \Rightarrow\} \frac{16}{4}-12(2)+3(4)+c=-1 \\
\& \{4-24+12+c=-1 \quad \Rightarrow c=7\}
\end{aligned}
\] \\
or equivalent. \\
So, \(\{\mathrm{f}(x)=\} \frac{x^{2}}{2(2)}-\frac{6 x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+3 x+7\)
\[
\left\{\mathrm{NB}: \mathrm{f}(x)=\frac{x^{2}}{4}-12 \sqrt{x}+3 x+7\right\}
\]
\end{tabular} \\
\hline \& Notes \\
\hline (a)

(b) \& | $\mathbf{1}^{\text {st }}$ M1: for clear attempt at $f^{\prime}(4)$. |
| :--- |
| $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for obtaining 2 from $f^{\prime}(4)$. |
| $\mathbf{2}^{\text {nd }} \mathbf{d M 1}$: for $y--1=\left(\right.$ their $\left.\mathrm{f}^{\prime}(4)\right)(x-4)$ or $\frac{y--1}{x-4}=\left(\right.$ their $\left.\mathrm{f}^{\prime}(4)\right)$ |
| or full method of $y=m x+c$, with $x=4, y=-1$ and their $\mathrm{f}^{\prime}(4)$ to find a value for c. |
| Note: this method mark is dependent on the first method mark being awarded. |
| $2^{\text {nd }}$ A1: for $y=2 x-9$ or $y=-9+2 x$ |
| Note: This work needs to be contained in part (a) only. |
| $\mathbf{1}^{\text {st }}$ M1: for a clear attempt to integrate $\mathrm{f}^{\prime}(x)$ with at least one correct application of $x^{n} \rightarrow x^{n+1} \text { on } \mathrm{f}^{\prime}(x)=\frac{1}{2} x-\frac{6}{\sqrt{x}}+3$ |
| So seeing either $\frac{1}{2} x \rightarrow \pm \lambda x^{1+1}$ or $-\frac{6}{\sqrt{x}} \rightarrow \pm \mu x^{-\frac{1}{2}+1}$ or $3 \rightarrow 3 x^{0+1}$ is M1. |
| $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for correct un-simplified coefficients and powers (or equivalent) with or without $+c$. |
| $2^{\text {nd }} \mathbf{d M 1}$: for use of $x=4$ and $y=-1$ in an integrated equation to form a linear equation in c equal to -1 . ie: applying $f(4)=-1$. This mark is dependent on the first method mark being awarded. |
| A1: |
| For $\{\mathrm{f}(x)=\} \frac{x^{2}}{2(2)}-\frac{6 x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+3 x+7$ stated on one line where coefficients can be un-simplified or simplified, but must contain one term powers. Note this mark is for correct solution only. |
| Note: For a candidate attempting to find $\mathrm{f}(\mathrm{x})$ in part (a) |
| If it is clear that they understand that they are finding $\mathrm{f}(x)$ in part (a); ie. by writing $\mathrm{f}(x)=\ldots$ or $y=\ldots$ then you can give credit for this working in part (b). |

\hline
\end{tabular}

Alternative 3 to (a)

Negating $4 x-5-x^{2}$ gives $x^{2}-4 x+5$
So, $x^{2}-4 x+5=(x-2)^{2}-4+5 \quad\left\{=(x-2)^{2}+1\right\} \quad$ M1 for $\pm(\pm x \pm 2)^{2} \pm k+5$
then stating $p=-2$ is $\mathbf{1}^{\text {st }} \mathbf{A 1}$ and/or $q=-1$ is $\mathbf{2}^{\text {nd }} \mathbf{A 1}$.
or writing $-1-(x-2)^{2}$ is A1A1.
Special Case for part (a):
$q-(x+p)^{2}=q-\left(x^{2}+2 p x+p^{2}\right)=-x^{2}-2 p x+q-p^{2}=4 x-5-x^{2}$
$\Rightarrow-2 p x+q-p^{2}=4 x-5 \Rightarrow q-p^{2}+5=4 x+2 p x \Rightarrow q-p^{2}+5=x(4+2 p)$
$\Rightarrow x=\frac{q-p^{2}+5}{4+2 p} \Rightarrow p \neq-2$ scores Special Case M1A1A1 only once $p \neq-2$ achieved.
(b) M1: for correctly substituting any two of $a=-1, b=4, c=-5$ into $b^{2}-4 a c$ if this is quoted.

If $b^{2}-4 a c$ is not quoted then the substitution must be correct.
Substitution into $b^{2}<4 a c$ or $b^{2}=4 a c$ or $b^{2}>4 a c$ is M0.
A1: for -4 only.
If they write $-4<0$ treat the <0 as ISW and award A1. If they write $-4 \geq 0$ then score A0.
So substituting into $b^{2}-4 a c<0$ leading to $-4<0$ can score M1A1
Note: Only award marks for use of the discriminant in part (b).
Note: Award M0 if the candidate uses the quadratic formula UNLESS they later go on to identify that the discriminant is the result of $b^{2}-4 a c$.
Beware: A number of candidates are writing up their solution to part (b) at the bottom of the second page. So please look!
(c) M1: Correct \cap shape in any quadrant.

A1: The maximum must be within the fourth quadrant to award this mark.
B1: Curve (and not line!) cuts through -5 or $(0,-5)$ marked on the y-axis
Allow $(-5,0)$ rather than $(0,-5)$ if marked in the "correct" place on the y-axis.
If the curve cuts through the negative y-axis and this is not marked, then you can recover $(0,-5)$ from the candidate's working in part (c). You are not allowed to recover this point, though, from a table of values.

Note: Do not recover work for part (a) in part (c).

(c) \quad M1: for an attempt to solve. Must form a linear equation in one variable.
$\mathbf{1}^{\text {st }}$ A1: for $x=3.5$ (correct solution only).
$2^{\text {nd }}$ A1: for $y=1 \quad$ (correct solution only).
Note: If $x=3.5, y=1$ is found from no working, then send to review.
Note: Use of trial and error to find one of x or y and then substitution into one of L_{1} or L_{2} can achieve
(d)

M1A1A1.
M1: for an attempt at $C D^{2}-\mathrm{ft}$ their point D. Eg: $(\text { " } 3.5 "-2)^{2}+(" 1 "-4)^{2}$ or simplified.
This mark can be implied by finding $C D$.
$\mathbf{1}^{\text {st }}$ A1ft: for finding their $C D-\mathrm{ft}$ their point D. Eg: $\sqrt{(" 3.5 "-2)^{2}+(" 1 "-4)^{2}}$ or correctly simplified. $2^{\text {nd }} \mathbf{A 1}$:cso for no incorrect working seen.
Note: A candidate initially writing down $\sqrt{1.5^{2}+3^{2}}$ can be awarded M1A1.

Alternatives part (d): Final accuracy

1. $\left\{\sqrt{1.5^{2}+3^{2}}=\right\} \sqrt{\frac{9}{4}+9}=\sqrt{\frac{9}{4}+\frac{36}{4}}=\sqrt{\frac{45}{4}}=\frac{3 \sqrt{5}}{2}$
2. $\left\{\sqrt{1.5^{2}+3^{2}}=\right\} \sqrt{11.25}=\sqrt{2.25} \sqrt{5}=1.5 \sqrt{5}$
(e) M1: for an attempt at finding the area of either triangle $A B C$ or triangle $A B E$.

B1: Correct method for removing a square root. Eg: $\sqrt{80} \sqrt{5}=\sqrt{400}=20$ or $\sqrt{5} \times 4 \sqrt{5}=20$
Note: This mark can be implied.
A1: for 45 only.
Alternative 1 to part (e): \quad Area $=\frac{1}{2}\left(\frac{3}{2} \sqrt{5}+3 \sqrt{5}\right)(\sqrt{80})=\frac{1}{2}(30+60)=45$
M1: $\frac{1}{2}(A B)(C E)$. B1: Evidence of correct surd removal. A1: for 45 .
Note: Multiplying the diagonals (usually to find 90) is M0, B1 if surds are removed correctly, A0.

Alternative 2 to part (e):

Area $=$ triangle $D A C+$ triangle $D C B+$ triangle $D E A+$ triangle $D B E$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times \frac{3}{2} \sqrt{5} \times \sqrt{45}\right)+\left(\frac{1}{2} \times \frac{3}{2} \sqrt{5} \times(\sqrt{80}-\sqrt{45})\right)+\left(\frac{1}{2} \times 3 \sqrt{5} \times \sqrt{45}\right)+\left(\frac{1}{2} \times 3 \sqrt{5} \times(\sqrt{80}-\sqrt{45})\right) \\
& =\left(\frac{1}{2} \times \frac{3}{2}(15)\right)+\left(\frac{1}{2} \times \frac{3}{2}(5)\right)+\left(\frac{1}{2} \times 3(15)\right)+\left(\frac{1}{2} \times 3(5)\right) \\
& =\left(\frac{45}{4}\right)+\left(\frac{15}{4}\right)+\left(\frac{45}{2}\right)+\left(\frac{15}{2}\right) \\
& =45
\end{aligned}
$$

M1: For finding the area of one of the four triangles. B1: Evidence of correct surd removal. A1: for 45 .
Alternative 3 to part (e):

$$
\left\{C E=C D+D E=\frac{3}{2} \sqrt{5}+3 \sqrt{5}=\frac{9}{2} \sqrt{5}\right\},\{B D=D A+\underline{A B}=3 \sqrt{5}+\underline{4 \sqrt{5}}=7 \sqrt{5}\}
$$

Area $=$ triangle $B C E-$ triangle $A C E=\frac{1}{2}(C E)(B D)-\frac{1}{2}(C E)(B D)$
$=\frac{1}{2} \times \frac{9}{2} \sqrt{5} \times 7 \sqrt{5}-\frac{1}{2} \times \frac{9}{2} \sqrt{5} \times 3 \sqrt{5} \quad$ M1: for an attempt at the area of triangle $B C E$ or triangle $A C E$.
$=\frac{63(5)}{4}-\frac{27(5)}{4}=\frac{36(5)}{4}=9(5) \quad$ B1: Evidence of correct surd removal.
$=45 \quad$ A1: for 45 only.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA031950 Summer 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

edexcel

Mark Scheme (Results)
J anuary 2013

GCE Core Mathematics C1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.
You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code US034359
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Principles for Core Mathematics Marking

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|, \quad$ leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks
1.	$x\left(1-4 x^{2}\right)$ Accept $x\left(-4 x^{2}+1\right)$ or $-x\left(4 x^{2}-1\right)$ or $-x\left(-1+4 x^{2}\right)$ or even $4 x\left(\frac{1}{4}-x^{2}\right)$ or equivalent quadratic (or initial cubic) into two brackets $x(1-2 x)(1+2 x) \text { or }-x(2 x-1)(2 x+1) \text { or } x(2 x-1)(-2 x-1)$	B1 M1 A1
		3 marks
	Notes	
	B1: Takes out a factor of x or $-x$ or even $4 x$. This line may be implied by correct final answer, but if this stage is shown it must be correct. So $\mathbf{B 0}$ for $x\left(1+4 x^{2}\right)$ M1: Factorises the quadratic resulting from their first factorisation using usual rules (see note 1 in General Principles). e.g. $x(1-4 x)(x-1)$. Also allow attempts to factorise cubic such as $\left(x-2 x^{2}\right)(1+2 x)$ etc N.B. Should not be completing the square here. A1: Accept either $x(1-2 x)(1+2 x)$ or $-x(2 x-1)(2 x+1)$ or $x(2 x-1)(-2 x-1)$. (No fractions for this final answer)	
	Note: $x\left(1-4 x^{2}\right)$ followed by $x(1-2 x)^{2}$ scores B1M1A0 as factors follow quadratic factorisation criteria And $x\left(1-4 x^{2}\right)$ followed by $x(1-4 x)(1+4 x)$ B1M0A0.	
	Answers with no working: Correct answer gets all three marks B1M1A1	
	: $x(2 x-1)(2 x+1)$ gets B0M1A0 if no working as $x\left(4 x^{2}-1\right)$ would earn B0	
	Poor bracketing: e.g. $\left(-1+4 x^{2}\right)-x$ gets B0 unless subsequent work implies bracket round the $-x$ in which case candidate may recover the mark by the following correct work.	

Question Number	Scheme	Marks
2.	$\left(8^{2 x+3}=\left(2^{3}\right)^{2 x+3}\right)=2^{3(2 x+3)}$ or $2^{a x+b}$ with $a=6$ or $b=9$ $=2^{6 x+9}$ or $=2^{3(2 x+3)}$ as final answer with no errors or $(y=) 6 x+9$ or $3(2 x+3)$	M1 A1 [2]
		2 marks
	Notes	
	M1: Uses $8=2^{3}$, and multiplies powers $3(2 x+3)$. Does not add powers. (Just $8=2^{3}$ A1: Either $2^{6 x+9}$ or $=2^{3(2 x+3)}$ or $\quad(y=) 6 x+9$ or $3(2 x+3)$	$=2 \text { is } \mathrm{M} 0)$
	Note: Examples: $2^{6 x+3}$ scores M1A0 $: 8^{2 x+3}=\left(2^{3}\right)^{2 x+3}=2^{3+2 x+3} \text { gets M0A0 }$ Special case: : $=2^{6 x} 2^{9}$ without seeing as single power M1A0 Alternative method using logs: $8^{2 x+3}=2^{y} \Rightarrow(2 x+3) \log 8=y \log 2 \Rightarrow y=\frac{(2 x+3) \log 8}{\log 2}$ So $(y=) 6 x+9$ or $3(2 x+3)$	M1 A1 [2]

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 3. (i) \& $$
\begin{aligned}
& (5-\sqrt{8})(1+\sqrt{2}) \\
= & 5+5 \sqrt{2}-\sqrt{8}-4 \\
= & 5+5 \sqrt{2}-2 \sqrt{2}-4 \\
= & 1+3 \sqrt{2}
\end{aligned} \quad \sqrt{8}=2 \sqrt{2}, \text { seen or implied at any point. }
$$ \& $$
\begin{array}{|lr}
\text { M1 } & \\
\text { B1 } & \\
\text { A1 }
\end{array}
$$

\hline (ii) \& $$
\left.\begin{array}{lll}
\text { Method 1 } & \text { Method 2 } & \text { Method 3 } \\
\text { Either } & \sqrt{80}+\frac{30}{\sqrt{5}}\left(\frac{\sqrt{5}}{\sqrt{5}}\right) & \text { Or }\left(\frac{\sqrt{400}+30}{\sqrt{5}}\right) \frac{\sqrt{5}}{\sqrt{5}}
\end{array}\right) \sqrt{80}+\frac{\sqrt{900}}{\sqrt{5}}=\sqrt{80}+\sqrt{180} .
$$ \& M1
B1

A1

\hline Alternative for (i) \& $$
\begin{aligned}
&(5-2 \sqrt{2})(1+\sqrt{2}) \\
&= \text { This earns the B1 mark. } \\
&=5+5 \sqrt{2}-2 \sqrt{2}-2 \sqrt{2} \sqrt{2} \text { Multiplies out correctly with } 2 \sqrt{2} \text {. This may be seen } \\
& \text { or implied and may be simplified } \\
& \text { e.g. }=5+3 \sqrt{2}-2 \sqrt{4} \text { o.e. } \\
&=1+3 \sqrt{2} \text { For earlier use of } 2 \sqrt{2} \\
& 1+3 \sqrt{2} \text { or } a=1 \text { and } b=3 .
\end{aligned}
$$ \& M1

B1
A1 \quad [3]
$\mathbf{6}$ marks

\hline \& Notes \&

\hline (i)

(ii) \& \multicolumn{2}{|l|}{| M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) - can appear as table |
| :--- |
| B1: $\sqrt{8}=2 \sqrt{2}$, seen or implied at any point |
| A1: Fully and correctly simplified to $1+3 \sqrt{2}$ or $a=1$ and $b=3$. |
| M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses |
| Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right)=\frac{6 \times 5}{\sqrt{5}}=6 \sqrt{5}$ |
| B1: (Independent mark) States $\sqrt{80}=4 \sqrt{5}$ Or either $\sqrt{400}=20$ or $\sqrt{80} \sqrt{5}=20$ at any point if they use Method 2. |
| A1: $10 \sqrt{5}$ or $c=10$. |}

\hline \& \multicolumn{2}{|l|}{N.B There are other methods e.g. $\sqrt{80}=\frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}}+\frac{30}{\sqrt{5}}=\frac{50}{\sqrt{5}}$ then M1 A1as before Those who multiply initial expression by $\sqrt{5}$ to obtain $\sqrt{400}+30=20+30=50$ earn M0 B1 A0}

\hline
\end{tabular}

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} & u_{2}=9, u_{n+1}=2 u_{n}-1, \quad n \geqslant 1 \\ & u_{3}=2 u_{2}-1=2(9)-1 \quad(=17) \\ & u_{4}=2 u_{3}-1=2(17)-1=33 \end{aligned}$ $u_{3}=2(9)-1 .$ Can be implied by $u_{3}=17$ Both $u_{3}=17$ and $u_{4}=33$	M1 A1
(b)	$\begin{aligned} & \sum_{r=1}^{4} u_{r}=u_{1}+u_{2}+u_{3}+u_{4} \\ & \left(u_{1}\right)=5 \\ & \\ & \sum_{r=1}^{4} u_{r}=" 5 "+9+" 17 "+" 33 "=64 \end{aligned} \quad \begin{aligned} & \\ & \end{aligned} \quad \begin{aligned} & \text { Adds their first four terms obtained } \\ & \text { legitimately (see notes below) } \end{aligned}$	B1 M1 A1 [3] 5 marks
	Notes	
	M1: Substitutes 9 into RHS of iteration formula A1: Needs both 17 and 33 (but allow if either or both seen in part (b)) B1: for $u_{1}=5$ (however obtained - may appear in (a)) May be called $a=5$ M1: Uses their u_{1} found from $u_{2}=2 u_{1}-1$ stated explicitly, or uses $u_{1}=4$ or $5 \frac{1}{2}$, and adds it to u_{2}, their u_{3} and their u_{4} only. (See special cases below). There should be no fifth term included. Use of sum of AP is irrelevant and scores M0 A1: 64	

Question Number	Scheme	Marks
5.(a)	Gradient of l_{2} is $\quad \frac{1}{2}$ or 0.5 or $\frac{-1}{-2}$	B1
	Either $y-6=" \frac{1}{2} "(x-5) \quad$ or $y=" \frac{1}{2} " x+c$ and $6=" \frac{1}{2} "(5)+c \Rightarrow c=\left(" \frac{7}{2} "\right)$ $x-2 y+7=0 \quad$ or $-x+2 y-7=0 \quad$ or $k(x-2 y+7)=0$ with \boldsymbol{k} an integer	$\begin{array}{ll}\text { M1 } \\ \text { A1 } \\ \\ & \text { [3] }\end{array}$
	Puts $x=0$, or $y=0$ in their equation and solves to find appropriate co-ordinate	M1
(b)	x-coordinate of A is -7 and y-coordin	A1 cao [2]
(c)	Area $O A B=\frac{1}{2}(7)\left(\frac{7}{2}\right)=\frac{49}{4}(\text { units })^{2} \quad$ Applies $\pm \frac{1}{2}$ (base)(height)	M1 A1cso
		[2]
		7 marks
	Notes	
(a) (b) (c)	B1: Must have $1 / 2$ or 0.5 or $\frac{-1}{-2}$ o.e. stated and stops, or used in their line equation M1: Full method to obtain an equation of the line through $(5,6)$ with their " m ". So $y-6=m(x-5)$ with their gradient or uses $y=m x+c$ with $(5,6)$ and their gradient to find c. Allow any numerical gradient here including -2 or -1 but not zero . (Allow $(6,5)$ as a slip if $y-y_{1}=m\left(x-x_{1}\right)$ is quoted first) A1: Accept any multiple of the correct equation, provided that the coefficients are integers and equation $=0$ e.g. $-x+2 y-7=0$ or $k(x-2 y+7)=0$ or even $2 y-x-7=0$ M1: Either one of the x or y coordinates using their equation A1: Needs both correct values. Accept any correct equivalent.. Need not be written as co-ordinates. Even just -7 and 3.5 with no indication which is which may be awarded the A1. M1: Any correct method for area of triangle $A O B$, with their values for co-ordinates of A and B (may include negatives) Method usually half base times height but determinants could be used. A1: Any exact equivalent to $49 / 4$, e.g. 12.25. (negative final answer is A0 but replacing by positive is A1) Do not need units. c.s.o. implies if A0 is scored in (b) then A0 is scored in (c) as well. However if candidate has correct line equation in (a) of wrong form may score A0 in (a) and A1 in (b) and (c)	
	Note: Special cases: $\frac{1}{2}(-7)\left(+\frac{7}{2}\right)=-\frac{49}{4}\left(\right.$ units 2 is M1 A0 but changing sign to area $=+\frac{49}{4}$ gets M1A1 (recovery) N.B. Candidates making sign errors in (b) and obtaining +7 and $-\frac{7}{2}$. may also get $\frac{49}{4}$ as their answer following previous errors. They should be awarded A0 as this answer is not ft and is for correct solution only Special Case: In (a) and (b): Produces parallel line instead of perpendicular line: So uses $m=-2$ This is not treated as a misread as it simplifies the question. The marks will usually be B0 M1 A0, M1 A0, M1 A0 i.e. maximum of $3 / 7$	

Question Number	Scheme		Marks
6. (a)	${ }^{4} 4$	$y=\frac{2}{x}$ is translated up or down.	M1
		$y=\frac{2}{x}-5$ is in the correct position.	A1
	\longrightarrow -	Intersection with x-axis at $\left(\frac{2}{5},\{0\}\right)$ only Independent mark.	B1
		$y=4 x+2$: attempt at straight line, with positive gradient with positive y intercept.	B1
	Check graph in question for possible answers and space below graph for answers to part (b)	Intersection with x-axis at $\left(-\frac{1}{2},\{0\}\right)$ and y-axis at $(\{0\}, 2)$.	B1 [5]
(b)	Asymptotes : $x=0$ (or y-axis) and $y=-5$.	An asymptote stated correctly. Independent of (a) These two lines only. Not ft their graph	
(c)	(Lose second B mark for extra asymptotes) Method 1: $\frac{2}{x}-5=4 x+2$	These two lines only. Not ft their graph. Method 2: $\quad \frac{y-2}{4}=\frac{2}{y+5}$	
	x	$4 \quad y+5$	M1
	$\begin{aligned} & 4 x^{2}+7 x-2=0 \Rightarrow x= \\ & x=-2, \frac{1}{4} \end{aligned}$ When $x=-2, y=-6$, When $x=\frac{1}{4}, y=3$	$\begin{aligned} & y^{2}+3 y-18=0 \rightarrow y= \\ & y=-6,3 \end{aligned}$	dM1
			A1
	When $x=-2, y=-6$,When $x=\frac{1}{4}, y=3$	When $y=-6, x=-2$ When $y=3, x=\frac{1}{4}$.	M1A1
			12 marks
	Notes		

(a) M1: Curve implies y axis as asymptote and does not change shape significantly. Changed curve needs horizontal asymptote (roughly) Asymptote(s) need not be shown but shape of curve should be implying asymptote(s) parallel to x axis. Curve should not remain where it was in the given figure. Both sections move in the same direction. There should be no reflection
A1: Crosses positive x axis. Hyperbola has moved down. Both sections move by almost same amount. See sheet on page 19 for guidance.
B1: Check diagram and text of answer. Accept $2 / 5$ or 0.4 shown on x-axis or $x=2 / 5$, or $(2 / 5,0)$ stated clearly in text or on graph. This is independent of the graph. Accept ($0,2 / 5$) if clearly on x axis. Ignore any intersection points with y axis. Do not credit work in table of values for this mark.
B1: Must be attempt at a straight line, with positive gradient \& with positive y intercept (need not cross x axis)
B1: Accept $x=-1 / 2$, or -0.5 shown on x-axis or $(-1 / 2,0)$ or $(-0.5,0)$ in text or on graph and similarly accept 2 on y axis or $y=2$ or (0,2) in text or on graph. Need not cross curve and allow on separate axes.
(b) B1: For either correct asymptote equation. Second B1: For both correct (lose this if extras e.g. $x= \pm 1$ are given also). These asymptotes may follow correctly from equation after wrong graph in (a)
Just $y=-5$ is B1 B0 This may be awarded if given on the graph. However for other B mark it must be clear that $x=0$ (or the y-axis) is an asymptote. NB $x \neq 0, y \neq-5$ is B1B0
(c) M1: Either of these equations is enough for the method mark (May appear labelled as part (b))
dM1: Attempt to solve a 3 term quadratic by factorising, formula, completion of square or implied by correct answers. (see note 1) This mark depends on previous mark.
A1: Need both correct x answers (Accept equivalents e.g. 0.25) or both correct y values (Method 2)
M1: At least one attempt to find second variable (usually y) using their first variable (usually x) related to line meeting curve. Should not be substituting x or y values from part (a) or (b). This mark is independent of previous marks. Candidate may substitute in equation of line or equation of curve.
A1: Need both correct second variable answers Need not be written as co-ordinates (allow as in the scheme)
Note: Special case: Answer only with no working in part (c) can have 5 marks if completely correct, with both points found. If coordinates of just one of the points is correct - with no working - this earns M0 M0 A0 M1 A0 (i.e. 1/5)

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 7.
(a)

(b) \& Lewis; arithmetic series, $a=140, d=20$. \& | M1; A1 |
| :--- |
| [2] |
| M1 |
| A1 |
| A1 |

\hline \multirow[t]{2}{*}{(c)} \& | Sian; arithmetic series, $a=300, l=700, S_{n}=8500$ |
| :--- |
| Either: Attempt to use $8500=\frac{n}{2}(a+l)$ $8500=\frac{n}{2}(300+700)$ |
| Or: May use both |
| $8500=\frac{1}{2} n(2 a+(n-1) d)$ and $l=a+(n-1) d$ and eliminate d $8500=\frac{n}{2}(600+400)$ $\Rightarrow n=17$ | \& | M1 |
| :--- |
| A1 |
| A1 |

\hline \& \& 8 marks

\hline \& Notes \&

\hline (a)

(b) \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| M1: Attempt to use formula for $\mathbf{2 0}^{\text {th }}$ term of Arithmetic series with first term $\mathbf{1 4 0}$ and $d=\mathbf{2 0}$. Normal formula rules apply - see General principles at the start of the mark scheme re "Method Marks" Or: uses $120+20 n$ with $n=20$ |
| :--- |
| Or: Listing method : Lists $140,160,180,200,220,240,260,280, \ldots 520$. M1A1 if correct M0A0 if wrong. (So 2 marks or zero) |
| A1: For 520 |
| M1: An attempt to apply $\frac{1}{2} n(2 a+(n-1) d)$ or $\frac{1}{2} n(a+l)$ with their values for a, n, d and l |
| A1: Uses $a=140, d=20, n=20$ in their formula (two alternatives given above) but $\mathbf{f t}$ on their value of \boldsymbol{I} from (a) if they use Method 2. |
| A1: 6600 cao |
| Or: Listing method : Lists 140, 160, 180, 200, 220, 240, 260, 280, ... 520 and adds |
| 6600 gets M1A1A1- any other answer gets M1 A0A0 provided there are 20 numbers, the first is 140 and the last is 520 . |
| M1: Attempt to use $S_{n}=\frac{n}{2}(a+l)$ with their values for a, and l and $S=8500$ |
| A1: Uses formula with correct values |
| A1: Finds exact value 17 |
| M1: If both formulae $8500=\frac{1}{2} n(2 a+(n-1) d)$ and $l=a+(n-1) d$ are used, then d must be eliminated before this mark is awarded by valid work. Should not be using $d=400$. This would be M0. |
| A1: Correct equation in n only |
| then $\mathbf{A 1}$ for 17 exactly |
| Trial and error methods: Finds $d=25$ and $n=17$ and list from 300 to 700 with total checked $-3 / 3$ |}}

\hline (c) First method \& \&

\hline Alternative method \& \&

\hline
\end{tabular}

Question Number	Scheme	Marks
8.	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \quad-x^{3}+" 2 " x^{-2}-"\left(\frac{5}{2}\right)$ " x^{-3}	M1
	$(y=) \quad-\frac{1}{4} x^{4}+\frac{" 2 " x^{-1}}{(-1)}-"\left(\frac{5}{2}\right) " \frac{x^{-2}}{(-2)}(+c) \quad \begin{aligned} & \text { Raises power correctly on any one term. } \\ & \text { Any two follow through terms correct. } \end{aligned}$	M1 A1ft
	$(y=) \quad-\frac{1}{4} x^{4}+\frac{2 x^{-1}}{(-1)}-\frac{5}{2} \frac{x^{-2}}{(-2)}(+c)$ This is not follow through - must be correct	A1
	Given that $y=7$, at $x=1$, then $7=-\frac{1}{4}-2+\frac{5}{4}+c \Rightarrow c=$	M1
	So, $(y=) \quad-\frac{1}{4} x^{4}-2 x^{-1}+\frac{5}{4} x^{-2}+c, \quad c=8 \quad$ or $(y=)-\frac{1}{4} x^{4}-2 x^{-1}+\frac{5}{4} x^{-2}+8$	A1
		[6]
		6 marks
	Notes	
	M1: Expresses as three term polynomial with powers $3,-2$ and -3 . Allow slips in coefficients. This may be implied by later integration having all three powers $4,-1$ and -2 . M1: An attempt to integrate at least one term so $x^{n} \rightarrow x^{n+1}$ (not a term in the numerator or denominator) A1ft: Any two integrations are correct - coefficients may be unsimplified (follow through errors in coefficients only here) so should have two of the powers $4,-1$ and -2 after integration - depends on $2^{\text {nd }}$ method mark only. There should be a maximum of three terms here. A1: Correct three terms - coefficients may be unsimplified- do not need constant for this mark Depends on both Method marks M1: Need constant for this mark. Uses $y=7$ and $x=1$ in their changed expression in order to find c, and attempt to find c. This mark is available even after there is suggestion of differentiation. A1: Need all four correct terms to be simplified and need $c=8$ here.	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 9. (a) \& \& M1
A1
B1

A1

\hline \& \[
$$
\begin{gathered}
\text { Method 2: Considers } b^{2}>4 a c \text { for } a=(k+3), b=6 \text { and their } c . \quad c \neq k \\
6^{2}>4(k+3)(k-5) \\
4 k^{2}-8 k-96<0 \text { or }-4 k^{2}+8 k+96>0 \text { or } 9>(k+3)(k-5) \quad \text { (with no prior algebraic } \\
\text { and so, } k^{2}-2 k-24<0 \text { following correct work }
\end{gathered}
$$

\] \& | M1 |
| :--- |
| A1 |
| B1 |
| A1 * |
| [4] |

\hline (b) \& Attempts to solve $k^{2}-2 k-24=0$ to give $k=\quad(\Rightarrow$ Critical values, $k=6,-4$.) $k^{2}-2 k-24<0$ gives $-4<k<6$ \& | M1 |
| :--- |
| M1 A1 |
| [3] |
| 7 marks |

\hline \& Notes \&

\hline (a) \& \multicolumn{2}{|l|}{| Method 1: M1: Attempts $b^{2}-4 a c$ for $a=(k+3), b=6$ and their $c . c \neq k$ or uses quadratic formula and has this expression under square root. (ignore $>0,<0$ or $=0$ for first 3 marks) |
| :--- |
| A1: Correct expression for $b^{2}-4 a c$ - need not be simplified (may be under root sign) |
| B1: Uses algebra to manipulate result without error into one of these three term quadratics. Again may be under root sign in quadratic formula. If inequality is used early in "proof" may see $4 k^{2}-8 k-96<0$ and B1 would be given for $4 k^{2}-8 k-96$ correctly stated. |
| A1: Applies $b^{2}-4 a c>0$ correctly (or writes $b^{2}-4 a c>0$) to achieve the result given in the question. No errors should be seen. Any incorrect line of argument should be penalised here. There are several ways of reaching the answer; either multiplication of both sides of inequality by -1 , or taking every term to other side of inequality. Need conclusion i.e. printed answer. |
| Method 2: M1: Allow $b^{2}>4 a c, b^{2}<4 a c$ or $b^{2}=4 a c$ for $a=(k+3), b=6$ and their $c . c \neq k$ |
| A1: Correct expressions on either side (ignore >, < or $=$). |
| B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sides by 4 again without error |
| A1: Produces result with no errors seen from initial consideration of $b^{2}>4 a c$. |}

\hline \multirow[t]{5}{*}{(b)} \& \multicolumn{2}{|l|}{| M1: Uses factorisation, formula, completion of square method to find two values for k, or finds two correct answers with no obvious method |
| :--- |
| M1: Their Lower Limit $<k<$ Their Upper Limit Allow the M mark mark for \leq. (Allow $k<$ upper and $k>$ lower) |
| A1: $-4<k<6$ Lose this mark for \leq Allow $(-4,6)$ [not square brackets] or $k>-4$ and $k<6$ (must be and not or) Can also use intersection symbol \cap NOT $k>-4, k<6$ (M1A0) |}

\hline \& \multicolumn{2}{|l|}{Special case : In part (a) uses $c=k$ instead of $k-5$-scores 0 . Allow $k+5$ for method marks}

\hline \& \multicolumn{2}{|l|}{Special Case: In part (b) Obtaining $-6<k<4$ This is a common wrong answer. Give M1 M1 A0 special case.}

\hline \& \multicolumn{2}{|l|}{Special Case: In part (b) Use of x instead of k - M1M1A0}

\hline \& \multicolumn{2}{|l|}{Special Case: $-4<k<6$ and $k<-4, k>6$ both given is M0A0 for last two marks. Do not treat as isw.}

\hline
\end{tabular}

Question Number	Scheme	Marks
10. (a)	This may be done by completion of square or by expansion and comparing coefficients	
	$a=4$	B1
	$b=1$	B1
	All three of $a=4, b=1$ and $c=-1$	B1
		[3]
(b)	$y \uparrow$ U shaped quadratic graph.	M1
	The curve is correctly positioned with the minimum in the third quadrant. . It crosses x axis twice on negative x axis and y axis once on positive y axis.	A1
	\longrightarrow Curve cuts y-axis at $(\{0\}, 3)$.only	B1
	Curve cuts x-axis at $\left(-\frac{3}{2},\{0\}\right)$ and $\left(-\frac{1}{2},\{0\}\right)$.	B1
		[4]
		7 marks
	Notes	
(a)	B1: States $a=4$ or obtains $4(x+b)^{2}+c$,	
	B1: States $b=1$ or obtains $a(x+1)^{2}+c$,	
	B1: States $a=4, b=1$ and $c=-1$ or $4(x+1)^{2}-1 \quad$ (Needs all 3 correct for final mark) Special cases: If answer is left as $(2 x+2)^{2}-1$ treat as misread B1B0B0 or as $2(x+1)^{2}-1$ then the mark is B0B1B0 from scheme	
(b)	M1: Any position provided U shaped (be generous in interpretation of U shape but V shape is M0) A1 : The curve is correctly positioned with the minimum in the third quadrant. It crosses x axis twice on negative x axis and y axis once on positive y axis. B1: Allow 3 on y axis and allow either $y=3$ or $(0,3)$ if given in text Curve does not need to pass through this point and this mark may be given even if there is no curve at all or if it is drawn as a line. B1: Allow $-3 / 2$ and $-1 / 2$ if given on x axis - need co-ordinates if given in text or $x=-3 / 2, x=-1 / 2$. Accept decimal equivalents. Curve does not need to pass through these points and this mark may be given even if there is no curve. Ignore third point of intersection and allow touching instead of cutting. So even a cubic curve might get M0A0 B1 B1. A V shape with two ruled lines for example might get M0A0B1B1	

edexcel :

Mark Scheme (Results)

Summer 2013

GCE Core Mathematics 1 (6663/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:
www.pearson.com/uk

Summer 2013
Publications Code UA035661
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)
2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Notes	Marks
$\mathbf{1 .}$	$y=x^{3}+4 x+1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}+4(+0)$	M1: $x^{n} \rightarrow x^{n-1}$ including $1 \rightarrow 0$	A1: Correct differentiation (Do not allow $4 x^{0}$ unless $x^{0}=1$ is implied by later work)
M1A1			
	substitute $x=3 \Rightarrow$ gradient $=31$	M1: Substitutes $x=3$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}($ not $y)$ Substitutes $x=3$ into a "changed" function. They may even have integrated.	M1A1
	A1: cao		

Question Number	Scheme	Notes	Marks
2.	$\frac{15}{\sqrt{3}}=\frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=5 \sqrt{3}$	M1: Attempts to multiply numerator and denominator by $\sqrt{ } 3$. This may be implied by a correct answer. $\text { A1: } 5 \sqrt{3}$	M1A1
	$\sqrt{27}=3 \sqrt{3}$		B1
	$\frac{15}{\sqrt{3}}-\sqrt{27}=2 \sqrt{3}$		A1
	Correct answer only scores full marks		
			[4]
Way 2	$\frac{15}{\sqrt{3}}-\sqrt{27}=\frac{15-\sqrt{81}}{\sqrt{3}}\left(=\frac{6}{\sqrt{3}}\right)$	Terms combined correctly with a common denominator (Need not be simplified)	B1
	$6 \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{6 \sqrt{3}}{3}$	M1: Attempts to multiply numerator and denominator by $\sqrt{ } 3$. This may be implied by a correct answer.	M1A1
	$\sqrt{3} \times \frac{\sqrt{3}}{}$	$\text { A1: } \frac{6 \sqrt{3}}{3}$	
	$\frac{15}{\sqrt{3}}-\sqrt{27}=2 \sqrt{3}$		A1
			[4]
	Note that $\frac{15}{\sqrt{3}}-\sqrt{27}=\frac{15 \sqrt{3}}{3}-3 \sqrt{3}=15 \sqrt{3}-9 \sqrt{3}=6 \sqrt{3}$ is quite common and scores M1A0B1A0 (i.e. $5 \sqrt{3}$ is never seen)		

Question Number	Scheme	Notes	Marks
3.	$\int 3 x^{2}-\frac{4}{x^{2}} \mathrm{~d} x=3 \frac{x^{3}}{3}-4 \frac{x^{-1}}{-1}$	M1: $x^{n} \rightarrow x^{n+1}$ for either term. If they write $\frac{4}{x^{2}}$ as $4 x^{2}$ allow $x^{2} \rightarrow x^{3}$ here.	M1,A1,A1
		A1: $3 \frac{x^{3}}{3}$ or $-4 \frac{x^{-1}}{-1}$ (one correct term which may be un-simplified)	
		A1: $3 \frac{x^{3}}{3}$ and $-4 \frac{x^{-1}}{-1}$ (both terms correct which may be un-simplified)	
	Note that M1A0A1 is not possible		
	$=x^{3}+\frac{4}{x}+c$ or $x^{3}+4 x^{-1}+c$	Fully correct simplified answer with +c all appearing on the same line.	A1
			[4]

Question Number	Scheme	Notes	Marks
4.(a)	$4 x+2 y-3=0 \Rightarrow y=-2 x+\frac{3}{2}$	Attempt to write in the form $y=$	M1
	\Rightarrow gradient $=-2$	Accept any un-simplified form and allow even with an incorrect value of "c"	A1
(a) Way 2	Alternative: $4+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	Attempt to differentiate Allow $p \pm q \frac{\mathrm{~d} y}{\mathrm{~d} x}=0, p, q \neq 0$	M1
	\Rightarrow gradient $=-2$	Accept any un-simplified form	A1
	Answer only scores M1A1		
			[2]
(b)	Using $m_{N}=-\frac{1}{m_{T}}$	Attempt to use $m_{N}=$ $-\frac{1}{\text { gradient from (a) }}$	M1
	$y-5=\frac{1}{2}(x-2) \text { or }$ Uses $y=m x+c$ in an attempt to find c	Correct straight line method using a 'changed' gradient and the point $(2,5)$	M1
	$y=\frac{1}{2} x+4$	Cao (Isw)	A1
			(3)
			[5]

Question Number	Scheme	Notes	Marks
5.(a)	$2^{y}=8 \Rightarrow y=3$	Cao (Can be implied i.e. by 2^{3})	B1
	(Alternative: Takes logs base 2: $\log _{2} 2^{y}=\log _{2} 8 \Rightarrow y \log _{2} 2=3 \log _{2} 2 \Rightarrow y=3$)		
			(1)
(b)	$8=2^{3}$	Replaces 8 by 2^{3} (May be implied)	M1
	$4^{x+1}=\left(2^{2}\right)^{x+1}$ or $\left(2^{x+1}\right)^{2}$	Replaces 4 by 2^{2} correctly.	M1
	$2^{3 x+2}=2^{3} \Rightarrow 3 x+2=3 \Rightarrow x=\frac{1}{3}$	M1: Adds their powers of 2 on the lhs and puts this equal to 3 leading to a solution for x.	M1A1
		A1: $x=\frac{1}{3}$ or $x=0 . \dot{3}$ or awrt 0.333	
			(4)
(b) Way 2	$4^{x+1}=4 \times 4^{x}$	Obtains 4^{x+1} in terms of 4^{x} correctly	M1
	$2^{x} \times 4^{x}=8^{x}$	Combines their 2^{x} and 4^{x} correctly	M1
	$4 \times 8^{x}=8 \Rightarrow 8^{x}=2 \Rightarrow x=\frac{1}{3}$	M1: Solves $8^{x}=k$ leading to a solution for x.	M1A1
		A1: $x=\frac{1}{3}$ or $x=0.3$ or awrt 0.333	
			[5]

Question Number	Scheme	Notes	Marks
6.(a)	$x_{2}=1-k$	Accept un-simplified e.g. $1^{2}-1 \mathrm{k}$	B1
			(1)
(b)	$x_{3}=(1-k)^{2}-k(1-k)$	Attempt to substitute their X_{2} into $x_{3}=\left(x_{2}\right)^{2}-k x_{2}$ with their x_{2} in terms of k.	M1
	$=1-3 k+2 k^{2} *$	Answer given	A1*
			(2)
(c)	$1-3 k+2 k^{2}=1$	Setting $1-3 k+2 k^{2}=1$	M1
	$\left(2 k^{2}-3 k=0\right)$		
	$k(2 k-3)=0 \Rightarrow k=.$.	Solving their quadratic to obtain a value for k. Dependent on the previous M1.	dM1
	$k=\frac{3}{2}$	Cao and cso (ignore any reference to $k=0)$	A1
			(3)
(d)	$\begin{aligned} & \sum_{n=1}^{100} x_{n}=1+\left(-\frac{1}{2}\right)+1+\ldots . . \\ & \operatorname{Or}=1+\left(1-{ }^{\prime} k^{\prime}\right)+1+\ldots \ldots . . \end{aligned}$		M1
	Writing out at least 3 terms with the third term equal to the first term. Allow in terms of k as well as numerical values. Evidence that the sequence is oscillating between 1 and $1-k$. This may be implied by a correct sum.		
	$50 \times \frac{1}{2}$ or $50 \times 1-50 \times \frac{1}{2}$ or $\frac{1}{2} \times 50 \times\left(1-\frac{1}{2}\right)$	An attempt to combine the terms correctly. Can be in terms of k here e.g $100-50 k$	M1
	$=25$	Allow an equivalent fraction, e.g. 50/2 or 100/4	A1
	Note that the use of $\frac{1}{2} n(a+l)$ is acceptable here but $\frac{1}{2} n(2 a+(n-1) d)$ is not.		
			(3)
	Allow correct answer only		
			[9]

Question Number	Scheme	Notes	Marks
7.(a)	$U_{10}=500+(10-1) \times 200$	Uses $a+(n-1) d$ with $a=500, d=200$ and $n=9,10$ or 11	M1
	$=(£) 2300$		A1
	If the term formula is not quoted and the numerical expression is incorrect score M0. A correct answer with no working scores full marks.		(2)
(b)	Mark parts (b) and (c) together		
	$\frac{n}{2}\{2 \times 500+(n-1) \times 200\}=67200$	M1: Attempt to use $S=\frac{n}{2}\{2 a+(n-1) d\}$ with, $S_{n}=67200, a=500 \text { and } d=200$ A1: Correct equation	M1A1
	If the sum formula is not quoted and the equation is incorrect score M0.		
	$n^{2}+4 n-672=0$	M1: An attempt to remove brackets and collect terms. Dependent on the previous M1 A1: A correct three term equation in any form	dM1A1
	E.g. allow $n^{2}+4 n=672, n^{2}=672-4 n$, $672-4 n-n^{2}=0,200 n^{2}+800 n=134400$ etc.		
	$n^{2}+4 n-24 \times 28=0$ *	Replaces 672 with 24×28 with the equation as printed (including $=0$) with no errors. (= 0 may not appear on the last line but must be seen at some point)	A1
			(5)
(c)	$\begin{gathered} (n-24)(n+28)=0 \Rightarrow n=. . \text { or } \\ n(n+4)=24 \times 28 \Rightarrow n=. . \end{gathered}$	Solves the given quadratic in an attempt to find n. They may use the quadratic formula.	M1
	24	States that $n=24$, or the number of years is 24	A1
	Allow correct answer only in (c)		
			(2)
			[9]

Question Number	Scheme	Notes	Marks
$\begin{gathered} \text { 9.(a) } \\ \text { Way } 3 \end{gathered}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+2 a x+b$	M1: $x^{n} \rightarrow x^{n-1}$ at least once including $\mathrm{c} \rightarrow 0$	M1
	$x=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow b=0$	Correct value for b	A1
	$x=0, y=4 \Rightarrow c=4$	Uses $(0,4)$ to obtain $c=4$ (can be just stated)	B1
	$\begin{gathered} 3(2)^{2}+2 a(2)+b=0 \text { or } \\ (-1)^{3}+a(-1)^{2}+b(-1)+4=0 \end{gathered}$	Obtains an equation in a	M1
	$a=-3$	Correct value for a	A1
			(5)
	Special case: A common incorrect approach is to assume the cubic is of the form e.g. $f(x)=x(x \pm 1)(x \pm 2)+4$ This scores B1 only for $c=4$		
			[8]

Question Number	Scheme	Notes	Marks
10.(a)	$\mathrm{f}^{\prime}(x)=\frac{x+9}{\sqrt{x}}=\frac{x}{\sqrt{x}}+\frac{9}{\sqrt{x}}=x^{\frac{1}{2}}+9 x^{-\frac{1}{2}}$	M1: Correct attempt to split into 2 separate terms or fractions. May be implied by one correct term. Divides by $x^{\frac{1}{2}}$ or multiplies by $x^{-\frac{1}{2}}$. $\text { A1: } x^{\frac{1}{2}}+9 x^{-\frac{1}{2}} \text { or equivalent }$	M1A1
	$\mathrm{f}(x)=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+9 \frac{x^{\frac{1}{2}}}{\frac{1}{2}}(+c)$	M1: Independent method mark for $x^{\mathrm{n}} \rightarrow x^{\mathrm{n}+1}$ on separate terms A1: Allow un-simplified answers. No requirement for +c here	M1A1
	$\frac{(9)^{\frac{3}{2}}}{\frac{3}{2}}+9 \frac{(9)^{\frac{1}{2}}}{\frac{1}{2}}+c=0 \Rightarrow c=\ldots$	Substitutes $x=9$ and $y=0$ into their integrated expression leading to a value for c. If no c at this stage M0A0 follows unless their method implies that they are correctly finding a constant of integration.	M1
	$f(x)=\frac{2}{3} x^{\frac{3}{2}}+18 x^{\frac{1}{2}}-72$	There is no requirement to simplify their $\mathrm{f}(x)$ so accept any correct un-simplified form.	A1
			(6)
(b)	$\mathrm{f}^{\prime}(x)=\frac{x+9}{\sqrt{x}}=10 \Rightarrow x+9=10 \sqrt{x}$	Sets $\mathrm{f}^{\prime}(x)=\frac{x+9}{\sqrt{x}}=10$ and multiplies by \sqrt{x}. The terms in x must be in the numerator. E.g. allow $\frac{x+9}{10}=\sqrt{x}$	M1
	They must be setting either the original $\mathrm{f}^{\prime}(x)=10$ or an equivalent correct expression $=10$		
	$(\sqrt{x}-9)(\sqrt{x}-1)=0 \Rightarrow \sqrt{x}=\ldots$	Correct attempt to solve a relevant 3TQ in $\sqrt{ } x$ leading to solution for $\sqrt{ }$. Dependent on the previous M1.	dM1
	$x=81, x=1$	Note that the $x=1$ solution could be just written down and is B1but must come from a correct equation.	A1, B1
			(4)
			[10]
Alternative to part (b)	$\left(\frac{x+9}{\sqrt{x}}\right)^{2}=10^{2} \Rightarrow x^{2}+18 x+81=100 x$	Sets $\frac{x+9}{\sqrt{x}}=10$, squares and multiplies by x. They must be setting either the original $\mathrm{f}^{\prime}(x)=10$ or an equivalent correct expression $=10$	M1
	$(x-81)(x-1)=0 \Rightarrow x=.$.	Correct attempt to solve a relevant 3TQ leading to solution for x. Dependent on the previous M1.	dM1
	$x=81, x=1$	Note that the $x=1$ solution could be just written down and is B1but must come from a correct equation.	A1, B1

Question Number	Scheme	Notes	Marks
11. (a)	$y=x+2 \Rightarrow x^{2}+4(x+2)^{2}-2 x=35$	Substitute $y= \pm x \pm 2$ into $x^{2}+4 y^{2}-2 x=35$ to obtain an equation in x only.	M1
	Alternative: $\frac{2 x-x^{2}+35}{4}=(x+2)^{2}$ or $\sqrt{\frac{2 x-x^{2}+35}{4}}=(x+2)$		
	$5 x^{2}+14 x-19=0$	Multiply out and collects terms producing 3 term quadratic in any form.	M1
	$(5 x+19)(x-1)=0 \Rightarrow x=.$.	Solves their quadratic, usual rules, as far as $x=\ldots$ Dependent on the first M1 i.e. a correct method for eliminating y (or x - see below)	dM1
	$x=-\frac{19}{5}, x=1$	Both correct	A1 for both
	$y=-\frac{9}{5}, y=3$	M1: Substitutes back into either given equation to find a value for y	M1
	Coordinates are $\left(-\frac{\mathbf{1 9}}{\mathbf{5}},-\frac{\mathbf{9}}{\mathbf{5}}\right)$ and $(1,3)$	Correct matching pairs. Coordinates need not be given explicitly but it must be clear which x goes with which y	A1
			(6)
Alternative to part (a)	$x=y-2 \Rightarrow(y-2)^{2}+4 y^{2}-2(y-2)=$	$\begin{aligned} & \text { Substitutes } x= \pm y \pm 2 \text { into } \\ & x^{2}+4 y^{2}-2 x=35 \end{aligned}$	M1
	$5 y^{2}-6 y-27=0$	Multiply out, collect terms producing 3 term quadratic in any form.	M1
	$(5 y+9)(y-3)=0 \Rightarrow y=.$.	Solves their quadratic, usual rules, as far as $y=\ldots$.. Dependent on the first M1 i.e. a correct method for eliminating x	dM1
	$y=-\frac{9}{5}, y=3$	Both correct	A1 for both
	$x=-\frac{19}{5}, x=1$	M1: Substitutes back into either given equation to find a value for x	M1
	Coordinates are $\left(-\frac{19}{\mathbf{5}},-\frac{\mathbf{9}}{\mathbf{5}}\right)$ and $(1,3)$	Correct matching pairs as above.	A1
(b)	$\begin{aligned} d^{2} & =\left(1--\frac{19}{5}\right)^{2}+\left(3--\frac{9}{5}\right)^{2} \text { or } \\ d & =\sqrt{\left(1--\frac{19}{5}\right)^{2}+\left(3--\frac{9}{5}\right)^{2}} \end{aligned}$	M1: Use of $\begin{aligned} & d^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \text { or } \\ & d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \end{aligned}$ where neither ($x_{1}-x_{2}$) nor $\left(y_{1}-y_{2}\right)$ are zero.	M1A1ft
		A1ft: Correct ft expression for d or d^{2} (may be un-simplified)	
	$d=\frac{24}{5} \sqrt{2}$	Allow 4.8 $\sqrt{2}$	A1cao
			(3)
			[9]

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035661 Summer 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

Mark Scheme (Results)

Summer 2013

GCE Core Mathematics 1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2013
Publications Code UA035658
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme		Marks
1	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(\sqrt{5}+1)}{(\sqrt{5}+1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and bottom by $k(\sqrt{5}+1)$)		
	$=\frac{\cdots}{4}$	Obtains a denominator of 4 or sight of $(\sqrt{5}-1)(\sqrt{5}+1)=4$	A1cso
	Note that M0A1 is not possible. The 4 must come from a correct method.		
	$(7+\sqrt{5})(\sqrt{5}+1)=7 \sqrt{5}+5+7+\sqrt{5}$	An attempt to multiply the numerator by ($\pm \sqrt{5} \pm 1$) and get 4 terms with at least 2 correct for their $(\pm \sqrt{5} \pm 1)$. (May be implied)	M1
	$3+2 \sqrt{5}$	Answer as written or $a=3$ and $b=2$. (Allow $2 \sqrt{5}+3$)	A1cso
	Correct answer with no working scores full marks		
			[4]
Way 2	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(-\sqrt{5}-1)}{(-\sqrt{5}-1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and bottom by $k(-\sqrt{5}-1)$)		
	$=\frac{\cdots}{-4}$	Obtains a denominator of -4	A1cso
	$(7+\sqrt{5})(-\sqrt{5}-1)=-7 \sqrt{5}-5-7-\sqrt{5}$	An attempt to multiply the numerator by ($\pm \sqrt{5} \pm 1$) and get 4 terms with at least 2 correct for their $(\pm \sqrt{5} \pm 1)$. (May be implied)	M1
	$3+2 \sqrt{5}$	Answer as written or $a=3$ and $b=2$	A1cso
	Correct answer with no working scores full marks		
			[4]
	Alternative using Simultaneous Equations: $\frac{(7+\sqrt{5})}{\sqrt{5}-1}=a+b \sqrt{5} \Rightarrow 7+\sqrt{5}=(a-b) \sqrt{5}+5 b-a \mathrm{M} 1$ Multiplies and collects rational and irrational parts $a-b=1, \quad 5 b-a=7 \mathrm{~A} 1$ Correct equations $a=3, b=2$ M1 for attempt to solve simultaneous equations A1 both answers correct		

Question Number	Scheme		Marks
2	$\left(\int=\right) \frac{10 x^{5}}{5}-\frac{4 x^{2}}{2},-\frac{3 x^{\frac{1}{2}}}{\frac{1}{2}}$	M1: Some attempt to integrate: $x^{n} \rightarrow x^{n+1}$ on at least one term. (not for +c) (If they think $\frac{3}{\sqrt{x}}$ is $3 x^{\frac{1}{2}}$ you can still award the method mark for $x^{\frac{1}{2}} \rightarrow x^{\frac{3}{2}}$	M1A1, A1
		A1: $\frac{10 x^{5}}{5}$ and $\frac{-4 x^{2}}{2}$ or better A1: $-\frac{3 x^{\frac{1}{2}}}{\frac{1}{2}}$ or better	
	$=\underline{2 x^{5}-2 x^{2}-6 x^{\frac{1}{2}}+c}$	Each term correct and simplified and the $+c$ all appearing together on the same line. Allow \sqrt{x} for $x^{\frac{1}{2}}$. Ignore any spurious integral or signs and/or dy/dx's.	A1
	Do not apply isw. If they obtain the correct answer and then e.g. divide by 2 they lose the last mark.		

Question Number	Scheme		Marks
3(a)	$8^{\frac{1}{3}}=2$ or $8^{5}=32768$	A correct attempt to deal with the $\frac{1}{3}$ or the 5 . $8^{\frac{1}{3}}=\sqrt[3]{8} \text { or } 8^{5}=8 \times 8 \times 8 \times 8 \times 8$	M1
	$\left(8^{\frac{5}{3}}=\right) 32$	Cao	A1
	A correct answer with no working scores full marks		
	$\begin{gathered} \text { Alternative } \\ \begin{aligned} 8^{\frac{5}{3}}=8 \times 8^{\frac{2}{3}}=8 \times 2^{2} & =\text { M1 (Deals with the } 1 / 3 \text {) } \\ & =32 \mathrm{~A} 1 \end{aligned} \end{gathered}$		
			(2)
(b)	$\left(2 x^{\frac{1}{2}}\right)^{3}=2^{3} x^{\frac{3}{2}}$	One correct power either 2^{3} or $x^{\frac{3}{2}}$. $\left(2 x^{\frac{1}{2}}\right) \times\left(2 x^{\frac{1}{2}}\right) \times\left(2 x^{\frac{1}{2}}\right)$ on its own is not sufficient for this mark.	M1
	$\frac{8 x^{\frac{3}{2}}}{4 x^{2}}=2 x^{-\frac{1}{2}}$ or $\frac{2}{\sqrt{x}}$	M1: Divides coefficients of x and subtracts their powers of x. Dependent on the previous M1	dM1A1
		A1: Correct answer	
	Note that unless the power of x implies that they have subtracted their powers you would need to see evidence of subtraction. E.g. $\frac{8 x^{\frac{3}{2}}}{4 x^{2}}=2 x^{\frac{1}{2}}$ would score dM0 unless you see some evidence that $3 / 2-2$ was intended for the power of x.		
	Note that there is a misconception that $\frac{\left(2 x^{\frac{1}{2}}\right)^{3}}{4 x^{2}}=\left(\frac{2 x^{\frac{1}{2}}}{4 x^{2}}\right)^{3}$ - this scores $0 / 3$		
			(3)
			[5]

Question Number	Scheme		Marks
	For this question, mark (a) and (b) together and ignore labelling.		
4(a)	$\left(a_{2}=\right) k(4+2) \quad(=6 k)$	Any correct (possibly un-simplified) expression	B1
			(1)
(b)	$a_{3}=k\left(\right.$ their $\left.a_{2}+2\right)\left(=6 k^{2}+2 k\right)$	An attempt at a_{3}. Can follow through their answer to (a) but a_{2} must be an expression in k.	M1
	$a_{1}+a_{2}+a_{3}=4+(6 k)+\left(6 k^{2}+2 k\right)$	An attempt to find their $a_{1}+a_{2}+a_{3}$	M1
	$4+(6 k)+\left(6 k^{2}+2 k\right)=2$	A correct equation in any form.	A1
	$\begin{aligned} & \text { Solves } 6 k^{2}+8 k+2=0 \text { to obtain } k= \\ & \quad\left(6 k^{2}+8 k+2=2(3 k+1)(k+1)\right) \end{aligned}$	Solves their 3TQ as far as $k=\ldots$. according to the general principles. (An independent mark for solving their three term quadratic)	M1
	$k=-1 / 3$	Any equivalent fraction	A1
	$k=-1$	Must be from a correct equation. (Do not accept un-simplified)	B1
	Note that it is quite common to think the sequence is an AP. Unless they find a_{3}, this is likely only to score the M1 for solving their quadratic.		
			(6)
			[7]

Question Number	Scheme		Marks
5 (a)	$6 x+x>1-8$	Attempts to expand the bracket and collect x terms on one side and constant terms on the other. Condone sign errors and allow one error in expanding the bracket. Allow $<, \leq, \geq,=$ instead of $>$.	M1
	$x>-1$	Cao	A1
	Do not isw here, mark their final answer.		
			(2)
(b)	$\begin{aligned} & (x+3)(3 x-1)[=0] \\ & \Rightarrow x=-3 \text { and } \frac{1}{3} \end{aligned}$	M1: Attempt to solve the quadratic to obtain two critical values	M1A1
		A1: $x=-3$ and $\frac{1}{3}$ (may be implied by their inequality). Allow all equivalent fractions for -3 and $1 / 3$. (Allow 0.333 for $1 / 3$)	
	$-3<x<\frac{1}{3}$	M1: Chooses "inside" region (The letter x does not need to be used here)	M1A1ft
		A1ft: Allow $x<\frac{1}{3}$ and $x>-3$ or $\left(-3, \frac{1}{3}\right)$ or $x<\frac{1}{3} \cap x>-3$. Follow through their critical values. (must be in terms of x here) Allow all equivalent fractions for -3 and $1 / 3$. Both ($x<\frac{1}{3}$ or $x>-3$) and $\left(x<\frac{1}{3}, x>-3\right)$ as a final answer score A0.	
			(4)
			[6]
	Note that use of \leq or \geq appearing in an otherwise correct answer in (a) or (b) should only be penalised once, the first time it occurs.		

Question Number	Scheme		Marks
6	$(-1,3),(11,12)$		
(a)	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{12-3}{11-(-1)},=\frac{3}{4}$	M1:Correct method for the gradient A1: Any correct fraction or decimal	M1,A1
	$\begin{gathered} y-3=3 / 4(x+1) \text { or } y-12=3 / 4(x-11) \\ \text { or } y=3 / 4 x+c \text { with attempt at } \\ \text { substitution to find } c \end{gathered}$	Correct straight line method using either of the given points and a numerical gradient.	M1
	$4 y-3 x-15=0$	Or equivalent with integer coefficients (= 0 is required)	A1
	This A1 should only be awarded in (a)		
			(4)
(a) Way 2	$\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} \Rightarrow \frac{y-3}{12-3}=\frac{x+1}{11+1}$	M1: Use of a correct formula for the straight line	M1A1
		A1: Correct equation	
	$12(y-3)=9(x+1)$	Eliminates fractions	M1
	$4 y-3 x-15=0$	Or equivalent with integer coefficients (= 0 is required)	A1
			(4)
(b)	Solves their equation from part (a) and L_{2} simultaneously to eliminate one variable	Must reach as far as an equation in x only or in y only. (Allow slips in the algebra)	M1
	$x=3$ or $y=6$	One of $x=3$ or $y=6$	A1
	Both $x=3$ and $y=6$	Values can be un-simplified fractions.	A1
	Fully correct answers with no working can score 3/3 in (b)		
			(3)
(b) Way 2	$\begin{aligned} & (-1,3) \rightarrow-a+3 b+c=0 \\ & (11,12) \rightarrow 11 a+12 b+c=0 \end{aligned}$	Substitutes the coordinates to obtain two equations	M1
	$\therefore a=-\frac{3}{4} b, b=-\frac{4}{15} c$	Obtains sufficient equations to establish values for a, b and c	A1
	e.g. $c=1 \Rightarrow b=-\frac{4}{15}, a=\frac{3}{15}$	Obtains values for a, b and c	M1
	$\frac{3}{15} x-\frac{4}{15} y+1=0 \Rightarrow 4 y-3 x-15=0$	Correct equation	A1
			(4)
			[7]

Question Number	Scheme		Marks
7(a)	$600=200+(N-1) 20 \Rightarrow N=\ldots$	Use of 600 with a correct formula in an attempt to find N. A correct formula could be implied by a correct answer.	M1
	$N=21$	cso	A1
	Accept correct answer only.		
	$\begin{gathered} 600=200+20 \mathrm{~N} \Rightarrow N=20 \text { is M0A0 (wrong formula) } \\ \frac{600-200}{20}=20 \therefore N=21 \text { is M1A1 (correct formula implied) } \end{gathered}$		
	Listing: All terms must be listed up to 600 and 21 correctly identified. A solution that scores 2 if fully correct and 0 otherwise.		
			(2)
(b)	Look for an AP first:		
	$S=\frac{21}{2}(2 \times 200+20 \times 20) \text { or } \frac{21}{2}(200+600)$ or $\begin{gathered} S=\frac{20}{2}(2 \times 200+19 \times 20) \text { or } \frac{20}{2}(200+580) \\ (=8400 \text { or } 7800) \end{gathered}$	M1: Use of correct sum formula with their integer $n=N$ or $N-1$ from part (a) where $3<N<52$ and $a=200$ and $d=20$. A1: Any correct un-simplified numerical expression with $n=20$ or $n=21$ (No follow through here)	M1A1
	Then for the constant terms:		
	$600 \times(52-" N ")(=18600)$	M1: $600 \times k$ where k is an integer and $3<k<52$	
		A1: A correct un-simplified follow through expression with their k consistent with n so that $n+k=52$	M1A1ft
	So total is 27000	Cao	A1
	Note that for the constant terms, they may correctly use an AP sum with $d=0$.		
	There are no marks in (b) for just finding S_{52}		
			(5)
			[7]
	If they obtain $N=20$ in (a) ($0 / 2$) and then in (b) proceed with, $S=\frac{20}{2}(2 \times 200+19 \times 20)+32 \times 600=7800+19200=27000$ allow them to 'recover' and score full marks in (b) Similarly If they obtain $N=22$ in (a) ($0 / 2$) and then in (b) proceed with, $S=\frac{21}{2}(2 \times 200+20 \times 20)+31 \times 600=8400+18600=27000$ allow them to 'recover' and score full marks in (b)		

Question Number	Scheme		Marks
8		Horizontal translation - does not have to cross the y-axis on the right but must at least reach the x-axis.	B1
		Touching at (-5, 0). This could be stated anywhere or -5 could be marked on the x-axis. Or ($0,-5$) marked in the correct place. Be fairly generous with 'touching' if the intention is clear.	B1
(a)		The right hand tail of their cubic shape crossing at $(-1,0)$. This could be stated anywhere or -1 could be marked on the x-axis. Or $(0,-1)$ marked in the correct place. The curve must cross the x-axis and not stop at -1 .	B1
			(3)
(b)	$(x+5)^{2}(x+1)$	Allow $(x+3+2)^{2}(x-1+2)$	B1
			(1)
(c)	When $x=0, y=25$	M1: Substitutes $x=0$ into their expression in part (b) which is not $\mathrm{f}(x)$. This may be implied by their answer. Note that the question asks them to use part (b) but allow independent methods.	M1 A1
		A1: $y=25$ (Coordinates not needed)	
	If they expand incorrectly prior to substituting $x=0$, score M1 A0$\mathbf{N B} \mathbf{f}(x+2)=x^{3}+11 x^{2}+35 x+25$		
			(2)
			[6]

Question Number	Scheme		Marks
9 (a)	$\left(3-x^{2}\right)^{2}=9-6 x^{2}+x^{4}$	An attempt to expand the numerator obtaining an expression of the form $9 \pm p x^{2} \pm q x^{4}, \quad p, q \neq 0$	M1
	$9 x^{-2}+x^{2}$	Must come from $\frac{9+x^{4}}{x^{2}}$	A1
	-6	Must come from $\frac{-6 x^{2}}{x^{2}}$	A1
	Alternative 1: Writes $\frac{\left(3-x^{2}\right)^{2}}{x^{2}}$ as $\left(3 x^{-1}-x\right)^{2}$ and attempts to expand $=$ M1 then A1A1 as in the scheme.		
	Alternative 2: Sets $\left(3-x^{2}\right)^{2}=9+A x^{2}+B x^{4}$, expands $\left(3-x^{2}\right)^{2}$ and compares coefficients $=$ M1 then A1A1 as in the scheme.		
			(3)
	$\left(\mathrm{f}^{\prime}(x)=9 x^{-2}-6+x^{2}\right)$		
(b)	$-18 x^{-3}+2 x$	M1: $x^{n} \rightarrow x^{n-1}$ on separate terms at least once. Do not award for $A \rightarrow 0$ (Integrating is M0)	M1 A1ft
		A1ft: $-18 x^{-3}+2 " B " x$ with a numerical B and no extra terms. (A may have been incorrect or even zero)	
			(2)
(c)	$f(x)=-9 x^{-1}-6 x+\frac{x^{3}}{3}(+c)$	M1: $x^{n} \rightarrow x^{n+1}$ on separate terms at least once. (Differentiating is M0)	M1A1ft
		A1ft: $-9 x^{-1}+A x+\frac{B x^{3}}{3}(+c)$ with numerical A and $B, A, B \neq 0$	
	$\begin{aligned} & 10=\frac{-9}{-3}-6(-3)+\frac{(-3)^{3}}{3}+c \text { so } c \\ & =\ldots \end{aligned}$	Uses $x=-3$ and $y=10$ in what they think is $\mathrm{f}(x)$ (They may have differentiated here) but it must be a changed function i.e. not the original $\mathrm{f}^{\prime}(x)$, to form a linear equation in c and attempts to find c. No $+c$ gets M0 and A0 unless their method implies that they are correctly finding a constant.	M1
	$c=-2$	CSO	A1
	$\begin{gathered} (f(x)=)-9 x^{-1}-6 x+\frac{x^{3}}{3}+\text { their } \\ \text { c } \end{gathered}$	Follow through their c in an otherwise (possibly un-simplified) correct expression. Allow $-\frac{9}{x}$ for $-9 x^{-1}$ or even $\frac{9 x^{-1}}{-1}$.	A1ft
	Note that if they integrate in (b) use their integration in (c),	no marks there but if they then go on to e marks for integration are available.	
			(5)
			[10]

Question Number	Scheme	Marks	
10(a)	$x^{2}-4 k(1-2 x)+5 k(=0)$	Makes y the subject from the first equation and substitutes into the second equation ($=0$ not needed here) or eliminates y by a correct method.	M1
	So $x^{2}+8 k x+k=0$ *	Correct completion to printed answer. There must be no incorrect statements.	A1cso
			(2)
(b)	$(8 k)^{2}-4 k$	M1: Use of $b^{2}-4 a c$ (Could be in the quadratic formula or an inequality, $=0$ not needed yet). There must be some correct substitution but there must be no x 's. No formula quoted followed by e.g. $8 k^{2}-4 k=0 \text { is M0. }$ A1: Correct expression. Do not condone missing brackets unless they are implied by later work but can be implied by $(8 k)^{2}>4 k$ etc.	M1 A1
	$k=\frac{1}{16}(\mathrm{oe})$	Cso (Ignore any reference to $k=0$) but there must be no contradictory earlier statements. A fully correct solution with no errors.	A1
			(3)
(b) Way 2 Equal roots	$\begin{gathered} \Rightarrow x^{2}+8 k x+k=(x+\sqrt{k})^{2} \\ \Rightarrow 8 k=2 \sqrt{k} \end{gathered}$	M1: Correct strategy for equal roots	M1A1
		A1: Correct equation	
	$k=\frac{1}{16}$ (oe)	Cso (Ignore any reference to $k=0$)	A1
(b) Way 3	Completes the Square$\begin{aligned} & x^{2}+8 k x+k=(x+4 k)^{2}-16 k^{2}+k \\ & \Rightarrow 16 k^{2}-k=0 \end{aligned}$	M1: $(x \pm 4 k)^{2} \pm p \pm k, p \neq 0$	M1A1
		A1: Correct equation	
	$k=\frac{1}{16}(\mathrm{oe})$	Cso (Ignore any reference to $k=0$)	A1
(c)	$\begin{aligned} & x^{2}+\frac{1}{2} x+\frac{1}{16}=0 \text { so } \\ & \left(x+\frac{1}{4}\right)^{2}=0 \Rightarrow x= \end{aligned}$		(3)
		Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3 term quadratic as far as $x=$ (may be implied by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.	M1
	$x=-\frac{1}{4}, y=1 \frac{1}{2}$	First A1 one answer correct, second A1 both answers correct.	A1A1
	Special Case: $x^{2}+\frac{1}{2} x+\frac{1}{16}=0 \Rightarrow x=-\frac{1}{4}, \frac{1}{4} \Rightarrow y=1 \frac{1}{2}, \frac{1}{2}$ allow M1A1A0		
			(3)
			[8]

edexcel "

Mark Scheme (Results)
January 2014

Pearson Edexcel International Advanced Level

Core Mathematics 1 (6663A/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

J anuary 2014
Publications Code IA037647
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use the correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners" reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners" reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme Marks
1.	(a) $(2 \sqrt{x})^{2}=4 x$ $\begin{aligned} & \text { (b) } \frac{(5+\sqrt{7})}{(2+\sqrt{7})} \times \frac{(2-\sqrt{7})}{(2-\sqrt{7})} \\ & =\frac{10-7+2 \sqrt{7}-5 \sqrt{7}}{-3} \\ & =-1+\sqrt{7} \end{aligned}$
Notes	
(a)	B1 $4 x$.Accept alternatives such as $x 4,4 \times x, x \times 4$ M1 For multiplying numerator and denominator by $2-\sqrt{7}$ and attempting to expand the brackets. There is no requirement to get the expanded numerator or denominator correctseeing the brackets removed is sufficient. A1 All four terms correct (unsimplified) on the numerator OR the correct denominator of -3 A1 Correct answer $-1+\sqrt{7}$. Accept $\sqrt{7}-1, \quad-1+1 \sqrt{7}$ and other fully correct simplified forms

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline 2. \& \begin{tabular}{l}
(a) \(2 x^{2}-\frac{4}{\sqrt{x}}+1=2 x^{2}-4 x^{-\frac{1}{2}}+1\)
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 2 x-4 \times-\frac{1}{2} x^{-\frac{3}{2}}(+0) \quad\left(x^{n} \rightarrow x^{n-1}\right)
\] \\
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+2 x^{-\frac{3}{2}}\) or \(4 x+\frac{2}{x^{\frac{3}{2}}}\) oe \\
(b) \(x^{n} \rightarrow x^{n-1}\) \\
\(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4-3 x^{-\frac{5}{2}}\) or \(4-\frac{3}{x^{\frac{5}{2}}}\)
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Notes} \\
\hline (a)

(b) \& | M1 $\quad x^{n} \rightarrow x^{n-1}$ for any term. The sight of $2 x^{2} \rightarrow A x$ OR $C x^{-\frac{1}{2} x} \rightarrow D x^{-\frac{3}{2} x}$ OR $1 \rightarrow 0$ is sufficient |
| :--- |
| Do not follow through on an incorrect index of $\frac{4}{\sqrt{x}}$ for this mark. |
| A1 One of the first two terms correct and simplified. Either $4 x$ or $2 x^{-\frac{3}{2}}$ |
| Accept equivalents such as $4 \times x$ and $2 \times x^{-\frac{3}{2}}=\frac{2}{x^{1.5}}$ |
| Ignore +c for this mark. Do not accept unsimplified terms like $2 \times 2 x$ |
| A1 A completely correct solution with no +c . That is $4 x+2 x^{-\frac{3}{2}}$ |
| Accept simplified equivalent expressions such as $4 \times x+2 \times x^{-\frac{3}{2}}$ or $4 x+\frac{2}{x^{\frac{3}{2}}}$ |
| There is no requirement to give the lhs ie $\frac{\mathrm{d} y}{\mathrm{~d} x}=$. |
| However if the lhs is incorrect withhold the last A1 |
| M1 For either $4 x \rightarrow 4$ or $x^{n} \rightarrow x^{n-1}$ for a fractional term. Follow through on incorrect answers in (a). |
| A1 A completely correct solution $4-3 x^{-\frac{5}{2}}$ |
| Award for expressions such as $4-3 \times x^{-\frac{5}{2}}$ or $4-\frac{3}{x^{\frac{5}{2}}}$ or $-3 \times x^{-2.5}+4$ |
| There is no requirement to give the lhs ie $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\ldots$. |
| However if the lhs is incorrect withhold the last A1 |

\hline
\end{tabular}

Question Number	Scheme		Marks
3.	$\begin{gathered} x=2 y+1 \\ (2 y+1)^{2}+4 y^{2}-10(2 y+1)+9=0 \\ 8 y^{2}-16 y=0 \\ 8 y(y-2)=0 \\ \text { Alt } y(8 y-16)=0 \\ y=0, y=2 \\ y=0 \text { in } x=2 y+1 \Rightarrow x=1 \\ y=2 \text { in } x=2 y+1 \Rightarrow x=5 \\ x=1, y=0 \text { and } x=5, y=2 \end{gathered}$	$\begin{gathered} 2 y=x-1 \\ x^{2}+(x-1)^{2}-10 x+9=0 \\ 2 x^{2}-12 x+10=0 \\ 2(x-1)(x-5)=0 \\ \text { Alt }(2 x-2)(x-5)=0 \\ x=1, x=5 \\ x=1 \text { in } y=\frac{x-1}{2}=0 \\ x=5 \text { in } y=\frac{x-1}{2}=2 \\ x=1, y=0 \text { and } x=5, y=2 \end{gathered}$	M1 M1,A1 M1 M1 A1,A1 (7 marks)
Notes			
	M1 Rearrange $x-2 y-1=0$ into $x=.$. , or $y=.$. , or $2 y=.$. and attempt to fully substitute into $2^{\text {nd }}$ equation. It does not need to be correct but a clear attempt must be made. Condone missing brackets $(2 y+1)^{2}+4 y^{2}-10 \times 2 y+1+9=0$		

M1 Collect like terms to produce a quadratic equation in x (or y) $=0$
A1 Correct quadratic equation in $x($ or $y)=0$. Either $A\left(y^{2}-2 y\right)=0$ or $B\left(x^{2}-6 x+5\right)=0$
M1 Attempt to solve, with usual rules. Check the first and last terms only for factorisation. See appendix for completing the square and use of formula. Condone a solution from cancelling in a case like $A\left(y^{2}-2 y\right)=0$. They must proceed to find at least one solution $x=$.. or $y=$..

M1 Substitute at least one value of their x to find y or vice versa. This may be implied by their solution- you will need to check!

A1 Both $x^{\text {"es }}$ or both $y^{\text {"es }}$ sorrect or a correct matching pair. Accept as a coordinate. Do not accept correct answers that are obtained from incorrect equations.
A1 Both ,"pairs" correct. Accept as coordinates $(1,0)(5,2)$
Special Cases where candidates write down answers with little or no working as can be awarded above.
One correct solution - B2.
Two correct solutions - B2, B2
To score all 7 marks candidates must prove that there are only two solutions. This could be justified by a sketch.

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline 5. \& \begin{tabular}{l}
(a) \(\sum_{r=1}^{5} a_{r}=12+4 \times 5^{2}=.\).
\[
=112
\] \\
(b) \(\quad \sum_{r=1}^{6} a_{r}=12+4 \times 6^{2}\)
\[
\begin{aligned}
\& a_{6}=\sum_{r=1}^{r=6} a_{r}-(\operatorname{part} a) \\
\& a_{6}=156-112=44
\end{aligned}
\]
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Notes} \\
\hline (a)

(b) \& | M1 Substitutes $n=5$ into the expression $12+4 n^{2}$ and attempt to find a numerical answer for $\sum_{r=1}^{5} a_{r}$. |
| :--- |
| Accept as evidence expressions such as $12+4 \times 5^{2}=. ., 12+4(5)^{2}=.$. , even $12+20^{2}=412$ |
| Accept for this mark solutions which add $12+4 \times 1^{2}, 12+4 \times 2^{2}, 12+4 \times 3^{2}, 12+4 \times 4^{2}, 12+4 \times 5^{2}$ and as a result 112 appears in a sum. |
| A1 cao 112. Accept this answer with no incorrect working for both marks. If it is consequently summed it will be scored A0 |
| M1 Substitutes $n=6$ into the expression $12+4 n^{2}$ |
| Accept as evidence $12+4 \times 6^{2}=. ., 12+4\left(6^{2}\right)=. .12+24^{2}=.$. or indeed 156. |
| You can accept the appearance of $12+4 \times 6^{2}=.$. in a sum of terms. |
| dM1 Attempts to find their answer to $\sum_{r=1}^{6} a_{r}$ - their answer to part a |
| This is dependent upon the previous M mark. |
| Also accept a restart where they attempt $\sum_{r=1}^{6} a_{r}-\sum_{r=1}^{5} a_{r}$ |
| A1 cao 44 |
| Alternative to 5(b) |
| M1 Writes down an expression for $a_{n}=\left(12+4 n^{2}\right)-\left(12+4(n-1)^{2}\right)=4\left(n^{2}-(n-1)^{2}\right)=4(2 n-1)$ |
| dM1 Subs $n=6$ into the expression for $a_{n}=4(2 n-1)=\ldots$ |
| A1 cao 44 |

\hline
\end{tabular}

Question Number	Scheme	Marks
6.	(a) (i) $\frac{3}{2}$ or equivalents such as 1.5 (ii) $(0,3.5)$ Accept $\mathrm{y}=3 \frac{1}{2}$	B1 B1 (2)
	(b) Perpendicular gradient $l_{2}=-\frac{2}{3}$	B1ft
	Equation of line is: $y-5=-\frac{2}{3}(x-1)$	M1A1
	$3 y+2 x-17=0$	A1
	(c) Point C: $y=0 \Rightarrow 2 x=17 \Rightarrow x=8.5$ oe	M1, A1
	$A B=\sqrt{(1-0)^{2}+(5-3.5)^{2}}=\left(\frac{\sqrt{13}}{2}\right)$	M1 (either)
	$B C=\sqrt{(8.5-1)^{2}+(5-0)^{2}}=\left(\frac{\sqrt{325}}{2}\right)$	
	$\begin{aligned} & \text { Area rectangle }= \\ & \mathrm{AB} \times \mathrm{BC}=\frac{\sqrt{13}}{2} \times \frac{\sqrt{325}}{2}=\frac{\sqrt{13}}{2} \times \frac{\sqrt{13} \sqrt{25}}{2}=\frac{5 \times 13}{4}=16.25 \mathrm{oe} \end{aligned}$	dM1A1
		$\begin{array}{r} (5) \\ (11 \text { marks) } \end{array}$
Notes		
(a)	B1 cao gradient $=1.5$. Accept equivalences such as $\frac{3}{2}$	
	B1 cao intercept $=\left(0,3.5\right.$). Accept $3.5, y=3.5$ and equivalences such as $\frac{7}{2}$	
(b)	B1ft For using the perpendicular gradient rule, $m_{1}=-\frac{1}{m_{2}}$ on their „1.5".	
	M1 For an attempt at finding the equation of l_{2} using $(1,5)$ and their adap Condone for this mark a gradient of $\frac{3}{2}$ going to $\frac{2}{3}$.Eg. Allow for If the form $y=m x+c$ is used it must be a full method to find c with adapted gradient.	ed gradient. $\frac{-5}{-1}=\frac{2}{3}$ $(1,5)$ and an
	An example of B1ftM0A0A0 would be $-\frac{1}{3}=\frac{y-5}{x+1}$ following a gradient of ,,3"in part (a) An example of B1ftM1A0A0 would be $-\frac{1}{3}=\frac{y-5}{x-1}$ following a gradient of ,,3"in part (a) An example of B0ftM1A0A0 would be $\frac{1}{3}=\frac{y-5}{x-1}$ following a gradient of ,, 3 "in part (a)	

Question Number	Scheme Marks
	Notes for Question 6 continued
(c)	M1 An attempt to use their equation found in part b to find the x coordinate of C They must either use the equation of l_{2} and set $y=0 \Rightarrow x=\ldots$ or use its gradient $\frac{17.5}{x}=\frac{3}{2} \Rightarrow x=. .$ A1 $\quad C=(8.5,0)$. Allow equivalents such as $x=8.5$ at C M1 An attempt to use $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for $A B$ or $B C$. There is no need to "calculate "t these. Evidence of an attempt would be $A B^{2}=1^{2}+1.5^{2} \Rightarrow A B=$.. dM1 Multiplying together their values of $A B$ and $B C$ to find area $A B C D$ It is dependent upon both $\mathrm{M}^{\text {" }} \mathrm{s}$ having been scored. A1 cao16.25 or equivalents such as $\frac{65}{4}$.

Question Number	Scheme Marks
	Notes for Question 7 continued
(c)	M1 Use $l=a+(n-1) d$ to find A. It must be a full method with $d=1000, l=26000 a=A$ and $n=9,10$ or 11 leading to a value for A A1 $A=17000$. Accept $A=17000$ written down for 2 marks as long as no incorrect work seen in its calculation. M1 Use $S_{n}=\frac{n}{2}(a+l)$ to find S for Anna. Follow through on their A, but $l=26000$ and $n=9,10$ or 11 Alternatively uses $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ with their numerical value of $A, d=1000$ and $n=9,10$ or 11 Accept a series of terms with their value of A, rising in $£ 1000^{\circ}$ "s up to a maximum of £26000. A1 Anna earns $S_{10}=\frac{10}{2}(17000+26000)$ OR $S_{10}=\frac{10}{2}(2 \times 17000+9 \times 1000)$ in 10 years This is an intermediate answer. There is no requirement to state the value $£ 215000$ B1ft Shelim earns (b)+26000 in 10 years. This may be scored at the start of part c . A1 CAO and CSO Difference $=£ 9000$

Question Number	Scheme Marks
8.	(a) $\begin{aligned} & b^{2}-4 a c=(2 k)^{2}-4 \times 2 \times(k+2) \\ & b^{2}-4 a c>0 \Rightarrow 4 k^{2}-4 \times 2 \times(k+2)>0 \Rightarrow k^{2}-2 k-4>0 \end{aligned}$ (b) $\begin{gathered} k^{2}-2 k-4=0 \Rightarrow(k-1)^{2}=5 \\ k=1 \pm \sqrt{ } 5 \text { oe } \\ k>1+\sqrt{ } 5, \quad k<1-\sqrt{ } 5 \end{gathered}$
	$\begin{gathered} \text { Alt (a) } \begin{array}{c} b^{2}>4 a c \end{array} \Rightarrow(2 k)^{2}>4 \times 2 \times(k+2) \\ \Rightarrow k^{2}-2 k-4>0 \end{gathered}$ M1A1
Notes	
(a)	M1 For attempting to use $b^{2}-4 a c$ with the values of a, b and c from the given equation. Condone invisible brackets. $2 k^{2}-4 \times 2 \times k+2$ could be evidence A1 Fully correct (unsimplified) expression for $b^{2}-4 a c=(2 k)^{2}-4 \times 2 \times(k+2)$ The bracketing must be correct. You can accept with or without any inequality signs. Accept $a=2, b=2 k, c=k+2 \Rightarrow b^{2}-4 a c=(2 k)^{2}-4 \times 2 \times(k+2)$ A1* Full proof, no errors, this is a given answer. It must be stated or implied that $b^{2}-4 a c>0$ Do not accept recovery from poor or incorrect bracketing or incorrect inequalities. Do not accept the answer written down without seeing an intermediate line such as $4 k^{2}-4 \times 2 \times(k+2)>0 \Rightarrow k^{2}-2 k-4>0$ Or $4 k^{2}-8 k-8>0 \Rightarrow k^{2}-2 k-4>0$ The inequality must have been seen at least once before the final line for this mark to have been awarded. Eg accept $D=4 k^{2}-8 k-8 \Rightarrow 4 k^{2}-8 k-8>0 \Rightarrow k^{2}-2 k-2>0$
(b)	M1 Attempt to solve the given 3 term quadratic (=0) by formula or completing the square. Do NOT accept an attempt to factorise in this question. If the formula is given it must be correct. It can be implied by seeing either $\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \times 1 \times-4}}{2 \times 1}$ or $\frac{--2 \pm \sqrt{-2^{2}-4 \times 1 \times-4}}{2 \times 1}$ If completing the square is used it can be implied by $(k-1)^{2} \pm 1-4=0 \Rightarrow k=\ldots$ A1 Obtains critical values of $1 \pm \sqrt{ } 5$. Accept $\frac{2 \pm \sqrt{20}}{2}$ dM1 Outsides of their values chosen. It is dependent upon the previous M mark having been awarded. States $k>$ their largest value, $k<$ their smallest value Do not award simply for a diagram or a table- they must have chosen their 'outside regions' A1 Correct answer only. Accept $k>1+\sqrt{ } 5$ or $k<1-\sqrt{ } 5, k>1+\sqrt{ } 5 k<1-\sqrt{ } 5$, $(-\infty, 1-\sqrt{ } 5) \cup(1+\sqrt{ } 5, \infty)$ but not $k>1+\sqrt{ } 5$ and $k<1-\sqrt{ } 5,1+\sqrt{ } 5<k<1-\sqrt{ } 5$

Question Number	Scheme	Marks
	Notes for Question 8 continued	
	Also accept exact alternatives as a simplified form is not explicitly asked for in the question	
	Accept versions such as $k>\frac{2+\sqrt{20}}{2}$ or $k<\frac{2-\sqrt{20}}{2}$	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline 9. \& \begin{tabular}{l}
(a) \(\mathrm{f}^{\prime}(x)=(x-2)(3 x+4)\)
\[
\begin{gathered}
=3 x^{2}-2 x-8 \\
y=\int 3 x^{2}-2 x-8 \mathrm{~d} x=3 \times \frac{x^{3}}{3}-2 \times \frac{x^{2}}{2}-8 x+c \\
x=3, y=6 \Rightarrow 6=27-9-24+c \\
c=. \\
\mathrm{f}(x)=x^{3}-x^{2}-8 x+12 \text { cso }
\end{gathered}
\] \\
(b)
\[
\mathrm{f}(x)=(x-2)^{2}(x+p) p=3
\]
\[
\begin{aligned}
\& \mathrm{f}(x)=\left(x^{2}-4 x+4\right)(x+3) \\
\& \mathrm{f}(x)=x^{3}-4 x^{2}+3 x^{2}+4 x-12 x+12 \\
\& \mathrm{f}(x)=x^{3}-x^{2}-8 x+12 \text { cso }
\end{aligned}
\] \\
(c) \\
Shape Crosses \(y\) - axis at \((0,12)\)
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Notes} \\
\hline (a)

(b) \& | B1 Writes $(x-2)(3 x+4)$ as $3 x^{2}-2 x-8$ |
| :--- |
| M1 $\quad x^{n} \rightarrow x^{n+1}$ in any one term. |
| For this M to be scored there must have been an attempt to expand the brackets and obtain a quadratic expression |
| A1 Correct (unsimplified) expression for $\mathrm{f}(x)$, no need for +c . Accept $3 \frac{x^{3}}{3}-2 \frac{x^{2}}{2}-8 x$ |
| M1 Substitutes $x=3$ and $y=6$ into their $\mathrm{f}(x)$ containing a constant , $x^{c e}$ and proceed to find its value. |
| A1 \quad Cso $\mathrm{f}(x)=x^{3}-x^{2}-8 x+12$. Allow $y=$.. |
| Do not accept an answer produced from part (b) |
| B1 States $p=3$ |
| This may be obtained from subbing $(3,6)$ into $\mathrm{f}(x)=(x-2)^{2}(x+p)$ |
| M1 Multiplies out a pair of brackets first, usually $(x-2)^{2}$ and then attempts to multiply by the third.The minimum criteria should be the first multiplication is a 3 T quadratic with correct first and last terms and the second is a 4 T cubic with correct first and last terms. |
| Accept an expression involving p for M1 $(x-2)^{2}(x+p)=\left(x^{2}+\ldots x+4\right)(x+p)=x^{3}+. . x^{2}+\ldots x+4 p$ |
| A1 $\operatorname{cso} \mathrm{f}(x)=x^{3}-x^{2}-8 x+12$, which must be the same as their answer for part (a) |

\hline
\end{tabular}

Notes for Question 9 continued

Candidates who have experienced Core 2 could take their answer to (a) and factorise.
The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient

$$
x - 2 \longdiv { x ^ { 2 } } \frac { x ^ { 2 } } { x ^ { 3 } + \ldots \ldots \ldots \ldots }
$$

Alternatively the candidate could divide by $\left(x^{2}-4 x+4\right)$ to obtain $(x+.$.

$$
x ^ { 2 } - 4 x + 4 \longdiv { x ^ { 3 } + \ldots \ldots \ldots . . . }
$$

The A1 is scored for $\mathrm{f}(x)=(x-2)^{2}(x+3)$
The B 1 is awarded for a statement of $p=3$ and not just $(x-2)^{2}(x+3)$
(c)

B1 Shape $+x^{3}$ graph with one maximum and one minimum. Its position is not important for this mark.
It must appear to tend to + infinity at the rhs and - infinity at the lis.
The curve must extend beyond its „maximum" point and minimum points.

Eg. These are NOT acceptable.
B1 There is a turning point at $(2,0)$. Accept 2 marked as a maximum or minimum on the x-axis.
B1 ft Graph crosses the x - axis at $(-3,0)$.
Accept -3 marked at the point where the curve crosses the x-axis.
You may follow through on their values of ' $-p$ ' as long as $p<2$
B1 Graph crosses the y-axis at $(0,12)$. Accept 12 marked on the y-axis.

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline 10. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { (a) } x^{n} \rightarrow x^{n-1} \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-2 \times 2 x-1 \\
\& \operatorname{Sub} x=2 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \times 2^{2}-2 \times 4-1=(3) \\
\& 3=\frac{y-1}{x-2}
\end{aligned}
\]
\[
y=3 x-5 \operatorname{cso}
\] \\
(b) At \(Q \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-4 x-1=3\)
\[
\begin{aligned}
\& 3 x^{2}-4 x-4=0 \\
\& (3 x+2)(x-2)=0 \\
\& \\
\& x=-\frac{2}{3}
\end{aligned}
\] \\
Sub \(x=-\frac{2}{3}\) into \(y=x^{3}-2 x^{2}-x+3\)
\[
y=\frac{67}{27}
\]
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Notes} \\
\hline (a)

(b) \& | M1 $\quad x^{n} \rightarrow x^{n-1}$ for any term including $3 \rightarrow 0$. |
| :--- |
| A1 $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=3 x^{2}-2 \times 2 x-1$ There is no need to see any simplification |
| M1 $\operatorname{Sub} x=2$ into their $\mathrm{f}^{\prime}(x)$ |
| dM1 Uses their numerical gradient with $(2,1)$ to find an equation of a tangent to $y=f(x)$. It is dependent upon both M's. Accept their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right\|_{x=2}=\frac{y-1}{x-2}$. Both signs must be correct |
| If $y=m x+c$ is used then it must be a full attempt to find a numerical,$c^{c e}$ |
| A1* Cso $y=3 x-5$. This is a given answer and all steps must be correct. Look for gradient $=3$ having been achieved by differentiation. |
| M1 Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ and proceeds to a $3 \mathrm{TQ}=0$. Condone errors on $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$ |
| dM1 Factorises their 3TQ (usual rules) leading to a solution $x=\ldots$. It is dependent upon the previous M. |
| Award also for use of formula/ completion of square as long as the previous M has been awarded. |
| A1 $x=-\frac{2}{3}$ |
| d M1 Sub their $x=-\frac{2}{3}$ into $y=x^{3}-2 x^{2}-x+3$. It is dependent only upon the first M in (b) having been scored |
| A1 Correct y coordinate $y=\frac{67}{27}$ or equivalent |

\hline
\end{tabular}

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Core Mathematics 1R (6663_01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038452
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. I gnore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. I ntegration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks
	$25 x-9 x^{3}=x\left(25-9 x^{2}\right)$	
1.	$\left(25-9 x^{2}\right)=(5+3 x)(5-3 x)$ $25 x-9 x^{3}=x(5+3 x)(5-3 x)$	B1
		M1

B1 Take out a common factor, usually x, to produce $x\left(25-9 x^{2}\right)$. Accept $(x \pm 0)\left(25-9 x^{2}\right)$ or $-x\left(9 x^{2}-25\right)$ Must be correct.
Other possible options are $(5+3 x)\left(5 x-3 x^{2}\right)$ or $(5-3 x)\left(5 x+3 x^{2}\right)$
M1 For factorising their quadratic term, usually $\left(25-9 x^{2}\right)=(5+3 x)(5-3 x)$ Accept sign errors If $(5 \pm 3 x)$ has been taken out as a factor first, this is for an attempt to factorise $\left(5 x \mp 3 x^{2}\right)$

A1 cao $x(5+3 x)(5-3 x)$ or any equivalent with three factors e.g. $x(5+3 x)(-3 x+5)$ or $x(3 x-5)(-3 x-5)$ etc including $-x(3 x+5)(3 x-5)$ isw if they go on to show that $x=0, \pm \frac{5}{3}$

Question Number	Scheme	Marks
2.(a)	$\begin{aligned} 81^{\frac{3}{2}}=\left(81^{\frac{1}{2}}\right)^{3}=9^{3} \quad \text { or } \quad 81^{\frac{3}{2}}= & \left(81^{3}\right)^{\frac{1}{2}}=(531441)^{\frac{1}{2}} \\ & =729 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\left(4 x^{-\frac{1}{2}}\right)^{2}=16 x^{-\frac{2}{2}}$ or $\frac{16}{x} \quad$ or equivalent $x^{2}\left(4 x^{-\frac{1}{2}}\right)^{2}=16 x$	M1 A1

(a) M1 Dealing with either the 'cube' or the 'square root' first. A correct answer will imply this mark. Also accept a law of indices approach $81^{\frac{3}{2}}=81^{1} \times 81^{\frac{1}{2}}=81 \times 9$
A1 Cao 729. Accept (\pm) 729
(b) M1 For correct use of power 2 on both 4 and the $x^{-\frac{1}{2}}$ term.

A1 $\quad \mathrm{CaO}=16 x$

Question Number	Scheme	Marks
3.(a)	$\left(a_{2}=\right) \quad 4 k-3$	B1 (1)
(b)	$a_{3}=4(4 k-3)-3$	M1
	$\sum_{r=1}^{3} a_{r}=k+4 k-3+4(4 k-3)-3=. . k \pm \ldots$	M1
	$21 k-18=66 \Rightarrow k=\ldots$	dM1
	$k=4$	A1
		$\begin{array}{r} (4) \\ \text { (5 marks) } \end{array}$

(a) B1 $4 k-3$ cao
(b) M1 An attempt to find a_{3} from iterative formula $a_{3}=4 a_{2}-3$. Condone bracketing errors for the M mark
M1 Attempt to sum their a_{1}, a_{2} and a_{3} to get a linear expression in k (Sum of Arithmetic series is M0)
dM1 Sets their linear expression to 66 and solves to find a value for k. It is dependent upon the previous M mark
A1 cao $k=4$

Question Number	Scheme	Marks	
4.(a)	$y=2 x^{5}+\frac{6}{\sqrt{x}}$	$x^{n} \rightarrow x^{n-1}$	M1
(b)	$\frac{d y}{d x}=10 x^{4}-3 x^{-\frac{3}{2}}$	oe	A1A1
	$\int 2 x^{5}+\frac{6}{\sqrt{x}} \mathrm{~d} x$	$x^{n} \rightarrow x^{n+1}$	M1
	$=\frac{x^{6}}{3}+12 x^{\frac{1}{2}}+c$	A1 A1	

(a) M1 For $x^{n} \rightarrow x^{n-1}$. ie. x^{4} or $x^{-\frac{3}{2}}$ or $\left(\frac{1}{x^{\frac{3}{2}}}\right)$ seen

A1 For $2 \times 5 x^{4}$ or $6 \times-\frac{1}{2} x^{-\frac{3}{2}}$ (oe). (Ignore $+c$ for this mark)
A1 For simplified expression $10 x^{4}-3 x^{-\frac{3}{2}}$ or $10 x^{4}-\frac{3}{x^{\frac{3}{2}}}$ o.e. and no $+c$
Apply ISW here and award marks when first seen.
(b) M1 For $x^{n} \rightarrow x^{n+1}$. ie. x^{6} or $x^{\frac{1}{2}}$ or (\sqrt{x}) seen

Do not award for integrating their answer to part (a)
A1 For either $2 \frac{x^{6}}{6}$ or $6 \times \frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or simplified or unsimplified equivalents

A1 For fully correct and simplified answer with $+c$.

Question Number	Scheme	Marks
$\begin{gathered} 5 \\ \text { Method } \\ 1 \end{gathered}$	$\begin{aligned} & x \sqrt{8}+10=\frac{6 x}{\sqrt{2}} \\ & \times \sqrt{2} \Rightarrow x \sqrt{16}+10 \sqrt{2}=6 x \\ & 4 x+10 \sqrt{2}=6 x \Rightarrow 2 x=10 \sqrt{2} \quad \text { or } a=5 \text { and } b=2 \\ & x=5 \sqrt{2} \end{aligned}$	M1,A1 M1A1 (4)
$\begin{gathered} 5 \\ \text { Method } \\ 2 \end{gathered}$	$\begin{aligned} & x \sqrt{8}+10=\frac{6 x}{\sqrt{2}} \\ & 2 \sqrt{2} x+10=3 \sqrt{2} x \\ & \quad \sqrt{2} x=10 \Rightarrow x=\frac{10}{\sqrt{2}}=\frac{10 \sqrt{2}}{2},=5 \sqrt{2} \quad \text { oe } \end{aligned}$	M1A1 $\mathrm{M} 1, \mathrm{~A} 1$ (4)

Method 1

M1 For multiplying both sides by $\sqrt{ } 2$ - allow a slip e.g. $\sqrt{2} x \sqrt{8}+10=\frac{6 x}{\sqrt{2}} \times \sqrt{2}$ or $\sqrt{2} \times 10+x \sqrt{8}=\frac{6 x}{\sqrt{2}} \times \sqrt{2}$, where one term has an error or the correct $\sqrt{2}(10+x \sqrt{8})=\frac{6 x}{\sqrt{2}} \times \sqrt{2}$

NB $x \sqrt{8}+10=6 x \sqrt{2}$ is M0
A1 A correct equation in x with no fractional terms. $\operatorname{Eg} x \sqrt{16}+10 \sqrt{2}=6 x$ oe.
M1 An attempt to solve their linear equation in x to produce an answer of the form $a \sqrt{2}$ or $a \sqrt{50}$
A1 $\quad 5 \sqrt{2}$ oe (accept $1 \sqrt{50}$)

Method 2

M1 For writing $\sqrt{ } 8$ as $2 \sqrt{ } 2$ or $\frac{6}{\sqrt{2}}$ as $3 \sqrt{ } 2$
A1 A correct equation in x with no fractional terms. Eg $2 \sqrt{2} x+10=3 \sqrt{2} x$ or $x \sqrt{8}+10=3 \sqrt{2} x$ oe.
M1 An attempt to solve their linear equation in x to produce an answer of the form $a \sqrt{2}$ or $a \sqrt{50}$

$$
\begin{aligned}
& \sqrt{2} x=10 \Rightarrow x=\frac{10}{\sqrt{2}}=\frac{10 \sqrt{2}}{2},=5 \sqrt{2} \\
& \text { or } \sqrt{2} x=10 \Rightarrow 2 x^{2}=100 \Rightarrow x^{2}=50 \Rightarrow x=\sqrt{50} \text { or } 5 \sqrt{2}
\end{aligned}
$$

A1 $5 \sqrt{2}$ oe Accept $1 \sqrt{50}$

Question Number	Scheme	Marks
6(a).	$\begin{aligned} & P=20 x+6 \quad \text { o.e } \\ & 20 x+6>40 \Rightarrow x> \\ & x>1.7 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1* } \end{gathered}$
(b)	Mark parts (b) and (c) together $A=2 x(2 x+1)+2 x(6 x+3)=16 x^{2}+8 x$	B1
	$16 x^{2}+8 x-120<0$	M1
	Try to solve their $2 x^{2}+x-15=0 \quad$ e.g. $(2 x-5)(x+3)=0$ so $x=$ Choose inside region $-3<x<\frac{5}{2}$ or $0<x<\frac{5}{2}$ (as x is a length)	M1 M1 A1
(c)	$1.7<x<\frac{5}{2}$	(5) B1cao
		(1)
		(9 marks)

(a) B1 Correct expression for perimeter but may not be simplified so accept
$2 x+1+2 x+4 x+2+2 x+6 x+3+4 x$ or $2(10 x+3)$ or any equivalent
M1: \quad Set $P>40$ with their linear expression for P (this may not be correct but should be a sum of sides) and manipulate to get $x>\ldots$
A1* cao $x>1.7$. This is a given answer, there must not be any errors, but accept $1.7<x$
(b) Marks parts (b) and (c) together

B1 Writes a correct statement in x for the area. It need not be simplified. You may isw
Amongst numerous possibilities are.
$2 x(2 x+1)+2 x(6 x+3), 16 x^{2}+8 x, \quad 4 x(6 x+3)-2 x(4 x+2), 4 x(2 x+1)+2 x(4 x+2)$
M1 Sets their quadratic expression <120 and collects on one side of the inequality
M1 For an attempt to solve a 3 Term quadratic equation producing two solutions by factorising, formula or completion of the square with the usual rules (see notes)
M1 For choosing the 'inside' region. Can follow through from their critical values - must be stated - not just a table or a graph. Can also be implied by $0<x<$ upper value

A1 $\quad-3<x<\frac{5}{2}$. Accept $x>-3$ and $x<2.5$ or $(-3,2.5)$
As x is a width, accept $0<x<\frac{5}{2}$ Also accept $\frac{10}{4}$ or 2.5 instead of $\frac{5}{2}$. \leq would be M1A0 Allow this final answer to part (b) to appear as answer to part (c) This would score final M1A1 in (b) then B0 in (c)
(c) B1 cao $1.7<x<\frac{5}{2}$. Must be correct. [This does not imply final M1 in (b)]

(a) M1 Uses the gradient formula with points L and M i.e. quote gradient $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ and attempt to substitute correct numbers. Formula may be implied by the correct $\frac{2-(-4)}{-1-7}$ or equivalent.
A1 Any correct single fraction gradient i.e $\frac{6}{-8}$ or equivalent
M1 Uses their gradient with either $(-1,2)$ or $(7,-4)$ to form a linear equation
Eg $y-2=$ their ${ }^{\prime}-\frac{3}{4}{ }^{\prime}(x+1)$ or $y+4=$ their ${ }^{\prime}-\frac{3}{4} '(x-7)$ or $y=$ their ${ }^{\prime}-\frac{3}{4} ' x+c$ then find a value for c by substituting $(-1,2)$ or $(7,-4)$ in the correct way (not interchanging x and y)
A1 Accept $\pm k(4 y+3 x-5)=0$ with k an integer (This implies previous M1)
(b) M1 Attempts to use gradient $L M \times$ gradient $M N=-1$. ie. $-\frac{3}{4} \times \frac{p+4}{16-7}=-1$ (allow sign errors)

Or Attempts Pythagoras correct way round (allow sign errors)
M1 An attempt to solve their linear equation in ' p '. A1 cao $p=8$
(c) M1 For using their numerical value of p and adding 6 . This may be done by any complete method (vectors, drawing, perpendicular straight line equations through L and N) or by no method. Assuming $x=7$ is M0
A1 Accept 14 for both marks as long as no incorrect working seen (Ignore left hand side - allow k). If there is wrong working resulting fortuitously in 14 give M0A0. Allow $(8,14)$ as the answer.

Question Number	Scheme	Marks
8.	$\begin{array}{ll} \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{-\frac{1}{2}}+x \sqrt{x} & \\ y=\frac{6}{\frac{1}{2}} x^{\frac{1}{2}}+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}(+c) & \\ x \sqrt{x}=x^{\frac{3}{2}} \\ x^{n} \rightarrow x^{n+1} \end{array}$ Use $x=4, y=37$ to give equation in $c, \quad 37=12 \sqrt{4}+\frac{2}{5}(\sqrt{4})^{5}+c$ $\begin{aligned} & \Rightarrow c=\frac{1}{5} \quad \text { or equivalent eg. } 0.2 \\ & (y)=12 x^{\frac{1}{2}}+\frac{2}{5} x^{\frac{5}{2}}+\frac{1}{5} \end{aligned}$	B1 M1 A1, A1 M1 A1 A1 (7 marks)

B1 $x \sqrt{x}=x^{\frac{3}{2}}$. This may be implied by $+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$ oe in the subsequent work.
M1 $x^{n} \rightarrow x^{n+1}$ in at least one case so see either $x^{\frac{1}{2}}$ or $x^{\frac{5}{2}}$ or both
A1 One term integrated correctly. It does not have to be simplified Eg. $\frac{6}{\frac{1}{2}} x^{\frac{1}{2}}$ or $+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$.
No need for $+c$
A1 Other term integrated correctly. See above. No need to simplify nor for $+c$. Need to see $\frac{6}{\frac{1}{2}} x^{\frac{1}{2}}+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$ or a simplified correct version

M1 Substitute $x=4, y=37$ to produce an equation in c.
A1 Correctly calculates $c=\frac{1}{5}$ or equivalent e.g. 0.2
A1 cso $y=12 x^{\frac{1}{2}}+\frac{2}{5} x^{\frac{5}{2}}+\frac{1}{5}$. Allow $5 y=60 x^{\frac{1}{2}}+2 x^{\frac{5}{2}}+1$ and accept fully simplified equivalents.
e.g. $y=\frac{1}{5}\left(60 x^{\frac{1}{2}}+2 x^{\frac{5}{2}}+1\right), y=12 \sqrt{x}+\frac{2}{5} \sqrt{x^{5}}+\frac{1}{5}$

(a) B1 Shape for C.

B1 Coordinates of $(0,8)$ There must be a graph.
Accept graph crossing positive y axis with only 8 marked. Accept $(8,0)$ if given on y axis.
M1 Shape for L. A straight line with positive gradient and positive intercept
A1 Coordinates of $(0, k)$ and $(-k / 3,0)$ or k marked on y axis, and $-k / 3$ marked on x axis or even Accept $(k, 0)$ on y axis and $(0,-k / 3)$ on x axis
(b) Either

Methods 1
M1 Equate curves $\frac{1}{3} x^{2}+8=3 x+k$ and proceed to collect x terms on one side and ($8-k$) terms together on the same side or on the other side
A1 Achieves an expression that leads to the point of intersection e.g $\frac{1}{3} x^{2}-3 x+(8-k)$
Method 1a
dM1 (depends on previous M mark) Uses the fact that $b^{2}=4 a c$ or ' $b^{2}-4 a c^{\prime}=0$ is true
dM1 (depends on previous M mark) Solves their $b^{2}=4 a c$, leading to $k=$..
A1 cso $\quad k=\frac{5}{4} \quad$ Accept equivalents like 1.25 etc.
Method 1b
dM1 (depends on previous M mark) Uses completion of the square as shown in scheme
dM1 (depends on previous M mark) Uses $k=8-\lambda$
A1 cso $k=\frac{5}{4} \quad$ Accept equivalents like 1.25 etc.
Methods 2
M1 Equate $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ Not given just for derivative
A1 Solves to get $x=4.5$
Method 2a
dM1 Substitutes their 4.5 into equation for C to give y coordinate
dM1 Substitutes both their x and y into $y=3 x+k$ to find k
A1 cso $k=\frac{5}{4} \quad$ Accept equivalents like 1.25 etc.
Method 2b
dM1 Substitutes their 4.5 into $\frac{1}{3} x^{2}+8=3 x+k$
dM1 Finds k
A1 cso $k=\frac{5}{4} \quad$ Accept equivalents like 1.25 etc.

Question Number	Scheme	Marks
10(a).	Attempts to use $a+(n-1)$ " d " with $a=A$ and " d " $=d+1$ and $n=14$ $\begin{equation*} A+13(d+1)=A+13 d+13 * \tag{2} \end{equation*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1* } \end{aligned}$
(b)	Calculates time for Yi on Day $14=(A-13)+13(2 d-1)$ Sets times equal $\begin{gathered} A+13 d+13=(A-13)+13(2 d-1) \Rightarrow d=\ldots \\ d=3 \end{gathered}$	M1 M1 A1 cso (3)
(c)	Uses $\frac{n}{2}\{2 A+(n-1)(D)\}$ with $n=14$, and with $D=d$ or $d+1$ Attempts to solve $\frac{14}{2}\left\{2 A+13 \times^{\prime}(d+1)^{\prime}\right\}=784 \Rightarrow A=\ldots$	M1 dM1
	$A=30$	A1 (8 marks)

(a) M1 Attempts to use $a+(n-1) d$ with $a=A$ and $d=d+1$ AND $n=14$

A1* cao This is a given answer and there is an expectation that the intermediate answer is seen and that all work is correct with correct brackets.
The expressions $A+13(d+1)$ and $A+13 d+13$ should be seen

N.B. If brackets are missing and formula is not stated

e.g. $A+13 d+1 \Rightarrow A+13 d+13$ or $A+(13) d+1 \Rightarrow A+13 d+13$ then this is M0A0

If formula is quoted and $\boldsymbol{a}=\boldsymbol{A}$ and $\boldsymbol{d}=\boldsymbol{d}+\mathbf{1}$ is quoted or implied, then M1 A0 may be given
So $a+(n-1) d$ followed by $A+(13) d+1=A+13 d+13$ achieves M1A0
(b) M1 States a time for Yi on Day $14=(A-13)+13(2 d-1)$

M1 Sets their time for Yi, equal to $A+13 d+13$ and uses this equation to proceed to $d=$ A1 cso $d=3$ Needs both M marks and must be simplified to 3 (not 39/13)
[NB Setting each of the times separately equal to 0 leads to $d=3-$ this will gain M0A0]
(c) M1 Uses the sum formula $\frac{n}{2}\{2 A+(n-1)(D)\}$ with $n=14$ and $D=d+1$ or allow $D=d$ (usually 4 or 3)
NB May use $\frac{n}{2}\{A+(A+13 D)\}$ with $n=14$ and and $D=d+1$ or allow $D=d$ (usually 4 or 3)
dM1 Attempts to solve $\frac{14}{2}\left\{2 A+13 \times^{\prime} 4^{\prime}\right\}=" 784^{\prime \prime} \Rightarrow A=\ldots \quad$ (Must use their $d+1$ this time) Allow miscopy of 784
A1 cao $A=30$

PTO for notes on this question.
(a) B1 Substitutes $x=2$ into expression for y and gets 3 cao (must be in part (a) and must use curve equation - not line equation) This must be seen to be substituted.
M1 For an attempt to differentiate the negative power with $x^{-1} \rightarrow x^{-2}$.
A1 Correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}=-4+\frac{18}{x^{2}}$, accept equivalents
dM1 Dependent on first M1 Substitutes $x=2$ into their derivative to obtain a numerical gradient and find negative reciprocal or states that $-2 \times \frac{1}{2}=-1$
(Method 1)
dM1 Dependent on first M1 Finds equation of line using changed gradient (not their $1 / 2$ but $-1 / 2,2$ or -2)
e.g. $\quad y-" 3 "=-" 2 "(x-2) \quad$ or $y="-2 " x+c$ and use of $(2, " 3 ")$ to find $c=$

A1* CSO. This is a given answer $y=-2 x+7$ obtained with no errors seen and equation should be stated
(Method 2)- checking given answer
dM1 Uses given equation of line and checks that $(2,3)$ lies on the line
A1* CSO. This is a given answer $y=-2 x+7$ so statement that normal and line have the same gradient and pass through the same point must be stated
(b) M1 Equate the two given expressions, collect terms and simplify to a 3TQ. There may be sign errors when collecting terms But putting for example $20 x-4 x^{2}-18=-2 x+7$ is M0 here
A1 Correct $3 \mathrm{TQ}=0$ (need $=0$ for A mark) $2 x^{2}-13 x+18=0$
dM1 Attempt to solve an appropriate quadratic by factorisation, use of formula, or completion of the square (see general instructions).
A1 $x=\frac{9}{2}$ oe or $y=-2 \quad$ (allow second answers for this mark so ignore $x=2$ or $y=3$)
A1 Correct solution only so both $x=\frac{9}{2}, y=-2$ or $\left(\frac{9}{2},-2\right)$
If $x=2, y=3$ is included as an answer and point B is not identified then last mark is A0 Answer only - with no working - send to review. The question stated "use algebra"

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 1 (6663_01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038449
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. I gnore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. I ntegration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks
1.	$\int\left(8 x^{3}+4\right) \mathrm{d} x=\frac{8 x^{4}}{4}+4 x$	M1, A1
$=2 x^{4}+4 x+c$	A 1	
		$(3$ marks)

Notes

M1 $\quad x^{n} \rightarrow x^{n+1}$ so $x^{3} \rightarrow x^{4}$ or $4 \rightarrow 4 x$ or $4 x^{1}$
A1 This is for either term with coefficient unsimplified (power must be simplified)- so $\frac{8}{4} x^{4}$ or $4 x$ (accept $4 x^{1}$)

A1 Fully correct simplified solution with c i.e. $2 x^{4}+4 x+c \quad\left[\right.$ allow $\left.2 x^{4}+4 x+c x^{0}\right]$

If the answer is given as $\int 2 x^{4}+4 x+c$, with an integral sign - having never been seen as the fully correct simplified answer without an integral sign - then give M1A1A0 but allow anything before the $=$ sign e.g. $y=2 x^{4}+4 x+c, f(x)=2 x^{4}+4 x+c, \int=2 x^{4}+4 x+c$, etc \ldots.

If this answer is followed by (for example) $x^{4}+2 x+k$ then treat this as isw (ignore subsequent work) If they follow it by finding a value for c, also isw, provided correct answer with c has been seen and credited

Question Number	Scheme	Marks
2.	(a) $32^{\frac{1}{5}}=2$ (b) For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^{2}$ or 0.25 as coefficient of x^{k}, for any value of k including $k=0$ Correct index for x so $A x^{-2}$ or $\frac{A}{x^{2}}$ o.e. for any value of A $=\frac{1}{4 x^{2}} \text { or } 0.25 x^{-2}$	B1 (1) M1 B1 A1 cao (3) 4 Marks

Notes

(a) B1 Answer 2 must be in part (a) for this mark
(b) Look at their final answer

M1 For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^{2}$ or 0.25 in their answer as coefficient of x^{k} for numerical value of k (including $k=0$) so final answer $\frac{1}{4}$ is M1 B0 A0
B1 $A x^{-2}$ or $\frac{A}{x^{2}}$ or equivalent e.g. $A x^{-\frac{10}{5}}$ or $A x^{-\frac{50}{25}}$ i.e. correct power of x seen in final answer May have a bracket provided it is $(A x)^{-2}$ or $\left(\frac{A}{x}\right)^{2}$
A1 $\frac{1}{4 x^{2}}$ or $\frac{1}{4} x^{-2}$ or $0.25 x^{-2}$ oe but must be correct power and coefficient combined correctly and must not be followed by a different wrong answer.

Poor bracketing: $2 x^{-2}$ earns M0 B1 A0 as correct power of x is seen in this solution (They can recover if they follow this with $\frac{1}{4 x^{2}}$ etc)
Special case $(2 x)^{-2}$ as a final answer and $\left(\frac{1}{2 x}\right)^{2}$ can have M0 B1 A0 if the correct expanded answer is not seen The correct answer $\frac{1}{4 x^{2}}$ etc. followed by $\left(\frac{1}{2 x}\right)^{2}$ or $(2 x)^{-2}$, treat $\frac{1}{4 x^{2}}$ as final answer so M1 B1 A1 isw But the correct answer $\frac{1}{4 x^{2}}$ etc clearly followed by the wrong $2 x^{-2}$ or $4 x^{-2}$, gets M1 B1 A0 do not ignore subsequent wrong work here

Notes

(a) M1 Reaching $p x>q$ with one or both of p or q correct. Also give for $-4 x<-10$

A1 Cao $x>2.5$ o.e. Accept alternatives to 2.5 like $2 \frac{1}{2}$ and $\frac{5}{2}$ even allow $\frac{10}{4}$ and allow $\frac{5}{2}<x \quad$ o.e. This answer must occur and be credited as part (a) A correct answer implies M1A1

Mark parts (b) and (c) together.
(b) M1 Rearrange $3 \mathrm{TQ} \leq 0$ or $3 \mathrm{TQ}=0$ or even $3 \mathrm{TQ}>0$ Do not worry about the inequality at this stage AND attempt to solve by factorising, formula or completion of the square with the usual rules (see notes)
A1 $\quad 12$ and -3 seen as critical values
M1 Inside region for their critical values - must be stated - not just a table or a graph
A1 $-3 \leq x \leq 12$ Accept $x \geq-3$ and $x \leq 12$ or $[-3,12]$
For the A mark: Do not accept $x \geq-3$ or $x \leq 12$ nor $-3<x<12$ nor $(-3,12)$ nor $x \geq-3, x \leq 12$ However allow recovery if they follow these statements by a correct statement, either in (b) or as they start part (c)
N.B. $-3 \leq 0 \leq 12$ and $x \geq-3, x \leq 12$ are poor notation and get M1A0 here.
(c) A1 cso $2.5<x \leq 12$ Accept $x>2.5$ and $x \leq 12$ Allow $\frac{10}{4}$ Do not accept $x>2.5$ or $x \leq 12$

Accept $(2.5,12]$ A graph or table is not sufficient. Must follow correct earlier work - except for special case

Special case (c) $x>2.5, x \leq 12 ; \quad 2.5<0 \leq 12$ are poor notation - but if this poor notation has been penalised in (b) then allow A1 here. Any other errors are penalised in both (b) and (c).

Notes

N.B. Check original diagram as answer may appear there.
(a) B1 The x coordinate of A is -1 . Accept -1 or $(-1,0)$ on the diagram or stated with or without diagram Allow $(0,-1)$ on the diagram if it is on the correct axis.
(b) If no graph is drawn then no marks are available in part (b)

B1 Correct shape. The position is not important for this mark but the curve must have two clear turning points and be a + ve x^{3} curve (with a maximum and minimum)
B1 The graph touches the origin. Accept touching as a maximum or minimum. There must be a sketch for this mark but sketch may be wrong and this mark is independent of previous mark. Origin is where axes cross and may not be labelled. This may be a quadratic or quartic curve for this mark.
B1 The graph crosses the x-axis at the point $(2,0)$ only. If it crosses at $(2,0)$ and $(0,0)$ this is B0. Accept $(0,2)$ or 2 marked on the correct axis. Accept $(2,0)$ in the text of the answer provided that the curve crosses the positive x axis. There must be a sketch for this mark. Do not give credit if $(2,0)$ appears only in a table with no indication that this is the intersection point. (If in doubt send to review) Graph takes precedence over text for third B mark.
(c) B1ft Two (solutions) as there are two intersections (of the curves) N.B. Just states 2 with no reason is B0 If the answer states 2 roots and two intersections - or crosses twice this is enough for B1 BUT B0 If there is any wrong reason given - e.g. crosses x axis twice, or crosses asymptote twice Isw - is not used for this mark so any wrong statement listed to follow a correct statement will result in B0
Allow ft - so if their graph crosses the hyperbola once - allow "one solution as there is one intersection" And if it crosses three times - allow "three solutions as there are three intersections" or four etc.. If it does not cross at all (e.g.negative cubic) - allow "no solutions as there are no intersections" However in (c) if they have sketched a curve (even a fully correct one) but not extended it to intersect the hyperbola and they put "no points of intersection so no solutions" then this scores B0. Accept "lines or curves cross over twice, or touch twice, or meet twice...etc as explanation, but need some form of words)

Notes

(a) M1 Writes $7=5 a_{1}-3$ and attempts to solve leading to an answer for a_{1}. If they rearrange wrongly before any substitution this is M0
A1 Cao $a_{1}=2$
Special case: Substitutes $n=1$ into $5 n-3$ and obtains answer 2 . This is fortuitous and gets M0A0 but full marks are available on (b).
(b) M1 Attempts to find either their a_{3} or their a_{4} using $a_{n+1}=5 a_{n}-3, a_{2}=7$

Needs clear attempt to use formula or is implied by correct answers or correct follow through of their a_{3}
dM1 (Depends on previous M mark) Sum of their four adjacent terms from the given sequence.
n.b May be given for $9+a_{3}+a_{4}$ as they may add $2+7$ to give 9
(dM0 for sum of an Arithmetic series)
A1 cao 198

Special case
(a) $a_{1}=32$ is M0 A0
(b) Adds for example $7+32+157+782=$ or $32+157+782+3907$ is M1 M1 A0

Total mark possible is $2 / 5$
(This is not treated as a misread - as it changes the question)

Question Number	Scheme		Marks
6.	(a)$\begin{aligned} 80 & =5 \times 16 \\ \sqrt{80} & =4 \sqrt{5} \end{aligned}$		B1
	Method 1$\text { (b) } \begin{aligned} & \frac{\sqrt{80}}{\sqrt{5}+1} \text { or } \frac{c \sqrt{5}}{\sqrt{5}+1} \\ &= \frac{\sqrt{80}}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1} \text { or } \\ &=\frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} \\ &= \frac{20-4 \sqrt{5}}{4} \\ &= \text { or } \\ &=-\sqrt{5} \end{aligned}$	Method 2 $(p+q \sqrt{ } 5)(\sqrt{ } 5+1)=\sqrt{ } 80$	B1ft
		$\begin{aligned} & p \sqrt{ } 5+q \sqrt{ } 5+p+5 q=4 \sqrt{ } 5 \\ & p+5 q=0 \\ & p+q=4 \\ & p=5, q=-1 \end{aligned}$	M1 A1 A1cao
			$\begin{array}{r} (4) \\ (5 \text { marks) } \\ \hline \end{array}$

Notes

(a) B1 Accept $4 \sqrt{ } 5$ or $c=4-$ no working necessary
(b)
(Method 1)
B1 ft Only ft on c See $\frac{\sqrt{80}}{\sqrt{5}+1}$ or $\frac{c \sqrt{5}}{\sqrt{5}+1}$
M1 State intention to multiply by $\sqrt{ } 5-1$ or $1-\sqrt{5}$ in the numerator and the denominator
A1 Obtain denominator of 4 (for $\sqrt{5}-1$) or -4 (for $1-\sqrt{5}$) or correct simplified numerator of $20-4 \sqrt{ } 5$ or $4(5-\sqrt{ } 5)$ or $4 \sqrt{ } 5-20$ or $4(\sqrt{ } 5-5)$ So either numerator or denominator must be correct
A1 Correct answer only. Both numerator and denominator must have been correct and division of numerator and denominator by 4 has been performed.
Accept $p=5, q=-1$ or accept $5-\sqrt{5}$ or $-\sqrt{5}+5$ Also accept $5-1 \sqrt{5}$
(Method 2)
B1ft Only ft on $c \quad(p+q \sqrt{ } 5)(\sqrt{ } 5+1)=\sqrt{ } 80$ or $c \sqrt{ } 5$
M1 Multiply out the lhs and replace $\sqrt{ } 80$ by $c \sqrt{ } 5$
A1 Compare rational and irrational parts to give $p+q=4$, and $p+5 q=0$
A1 Solve equations to give $p=5, q=-1$
Common error:
$\frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}=\frac{4 \sqrt{5}-20}{4}=\sqrt{5}-5$ gets B1 M1 A1 (for correct numerator - denominator is wrong for their product) then A0

Correct answer with no working - send to review - have they used a calculator?
Correct answer after trial and improvement with evidence that $(5-\sqrt{ } 5)(\sqrt{ } 5+1)=\sqrt{ } 80$ could earn all four marks

Question Number	Scheme	Marks
7.	(a) $\begin{gather*} (1-2 x)^{2}=1-4 x+4 x^{2} \\ \frac{\mathrm{~d}}{\mathrm{~d} x}(1-2 x)^{2}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(1-4 x+4 x^{2}\right)=-4+8 x \text { o.e. } \tag{3} \end{gather*}$	M1 M1A1
	Alternative method using chain rule: Answer of -4 ($1-2 x$)	M1M1A1 (3)
	(b) $\frac{x^{5}+6 \sqrt{x}}{2 x^{2}}=\frac{x^{5}}{2 x^{2}}+6 \frac{\sqrt{x}}{2 x^{2}},=\frac{1}{2} x^{3}+3 x^{-\frac{3}{2}}$ Attempts to differentiate $x^{-\frac{3}{2}}$ to give $k x^{-\frac{5}{2}}$ $\begin{equation*} =\frac{3}{2} x^{2}-\frac{9}{2} x^{-\frac{5}{2}} \text { o.e. } \tag{4} \end{equation*}$ Quotient Rule (May rarely appear) - See note below	M1,A1 M1 A1 (7 marks)

Notes

(a) M1 Attempt to multiply out bracket. Must be 3 or 4 term quadratic and must have constant term 1

M1 $\quad x^{n} \rightarrow x^{n-1}$. Follow through on any term in an incorrect expression. Accept a constant $\rightarrow 0$
A1 $-4+8 x$ Accept $-4(1-2 x)$ or equivalent. This is not cso and may follow error in the constant term Following correct answer by $-2+4 x$ - apply isw
Correct answer with no working - assume chain rule and give M1M1A1 i.e. $3 / 3$
Common errors: $(1-2 x)^{2}=2-4 x+4 x^{2}$ is M0, then allow M1A1 for $-4+8 x$ $(1-2 x)^{2}=1-4 x^{2}$ is M0 then $-8 x$ earns M1A0 or $(1-2 x)^{2}=1-2 x^{2}$ is M0 then $-4 x$ earns M1A0

Use of Chain Rule:

M1M1: first M1 for complete method so $2 \times(\pm 2)(1-2 x)$ second M1 for $(1-2 x)$ (as power reduced)
Then A1 for $-4(1-2 x)$ or for $-4+8 x$
So (i) $2(1-2 x)$ gets M0 M1A0 for reducing power and (ii) $2 \times 2(1-2 x)$ gets M1 M1A0
(b) M1 An attempt to divide by $2 x^{2}$ first. This can be implied by the sight of the following Some correct working e.g. $\frac{x^{5}}{2 x^{2}}+6 \frac{\sqrt{x}}{2 x^{2}}$ or $\left(x^{5}+6 \sqrt{x}\right)\left(2 x^{2}\right)^{-1}$ leading to $a x^{p}+b x^{q}$ in either case or can be implied by $\frac{1}{2} x^{3}+3 x^{p}$ (after no working) i.e. both coefficients correct and power 3 correct
Common error: $\left(x^{5}+6 \sqrt{x}\right) 2 x^{-2}$ is M0 (may earn next M mark for the differentiation $x^{-\frac{3}{2}} \rightarrow x^{-\frac{5}{2}}$)
A1 Writing the given expression as $\frac{1}{2} x^{3}+3 x^{-\frac{3}{2}}$ or $0.5 x^{3}+\frac{6}{2} x^{-\frac{3}{2}}$ or $0.5 x^{3}+\frac{6}{2} x^{-1 \frac{1}{2}}$ or etc...
M1 $x^{-\frac{3}{2}} \rightarrow x^{-\frac{5}{2}}$ A1 Cao $\frac{3}{2} x^{2}-\frac{9}{2} x^{-\frac{5}{2}}$ o.e. e.g. $\frac{3}{2} x^{2}-\frac{9}{2 x^{2} \sqrt{x}}$ then isw. Allow factorised form. Do not penalise $+-\frac{9}{2} x^{-\frac{5}{2}}$ used instead of $-\frac{9}{2} x^{-\frac{5}{2}}$
Use of Quotient Rule : M1,A1:Reaching $\frac{2 x^{2}\left(5 x^{4}+3 x^{-\frac{1}{2}}\right)-4 x\left(x^{5}+6 x^{\frac{1}{2}}\right)}{4 x^{4}},=\frac{6 x^{6}-18 x^{\frac{3}{2}}}{4 x^{4}}$

Send to review if doubtful
M1A1: Simplifying (e.g.dividing numerator and denominator by 2) to reach $\frac{3 x^{6}-9 x^{\frac{3}{2}}}{2 x^{4}}$ o.e.

Question Number	Scheme	Marks
8.	(a) Use $n^{\text {th }}$ term $=a+(n-1) d$ with $d=10 ; a=150$ and $n=8$, or $a=160$ and $n=7$, or $a=170$ and $n=6:=150+7 \times 10$ or $160+6 \times 10$ or $170+5 \times 10$ $=220^{*}$ (Or gives clear list - see note)	M1 $\mathrm{A} 1^{*}$
Or	If answer 220 is assumed and $150+(n-1) 10=220$ or variation is solved for $n=$ Then $n=8$, so 2007 is the year (must conclude the year)	$\begin{align*} & \text { M1 } \tag{2}\\ & \text { A1* } \tag{2} \end{align*}$
	(b) Use $S_{n}=\frac{n}{2}\{2 a+(n-1) 10\} \quad$ Or $S_{n}=\frac{n}{2}\{a+l\}$ and $l=a+(n-1) 10$ $\begin{aligned} =7(300 & +13 \times 10) \quad \text { or } 7(150+280) \\ = & 7 \times 430 \\ = & 3010 \end{aligned}$ (c) Cost in year $n=900+(n-1) \times-20$ Sales in year $n=150+(n-1) \times 10$ $\begin{aligned} & \text { Cost }=3 \times \text { Sales } \Rightarrow 900+(n-1) \times-20=3 \times(150+(n-1) \times 10) \\ & 900-20 n+20=450+30 n-30 \\ & 500=50 n \\ & n=10 \\ & \text { Year is } 2009 \end{aligned}$ As n is not defined they may work correctly from another base year to get the answer 2009 and their n may not equal 10. If doubtful - send to review.	M1 A1 A1 (3) M1 M1 M1 A1 (4) (9 marks)

Notes

(a) M1 Attempt to use $n^{\text {th }}$ term $=a+(n-1) d$ with $d=10$, and correct combination of a and n i.e. $a=150$ and $n=8$ or $a=160$ and $n=7$, or $a=170$ and $n=6$
A1 * Shows that 220 computers are sold in 2007 with no errors
Note that this is a given solution, so needed $150+7 \times 10$ or $160+6 \times 10$ or $170+5 \times 10$ or equivalent.
Accept a correct list showing all values and years for both marks Just $150,160,170,180,190,200,210,220$ is M1A0 Need some reference to years as well as the list of numbers of computers for A1.
(b) M1 Attempts to use $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$ with $d=10$, and correct combination of a and n i.e. $a=150$ and $n=14$, or $\mathrm{a}=160$ and $n=13$, or $a=170$ and $n=12$
A1 Uses $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$ with $a=150, d=10$ and $n=14$ [N.B. $S_{n}=\frac{n}{2}\{a+l\}$ needs $l=a+(n-1) d$ as well
NB A 0 for $a=160$ and $n=13$ or $a=170$ and $n=12$ unless they then add the first, or first two terms respectively.
A1 Cao 3010 . This answer (with no working) implies correct method M1A1A1.
Special case: If a complete list $150+160+170+180+190+200+210+220+230+240+250+260+270+280$ is seen, then there is an error finding the sum then score M1A1A0, but incomplete or wrong lists score M0A0A0
(c) M1 Writes down an expression for the cost $=900+(n-1) \times-20$ or writes $900+(n-1) d$ and states $d=-20$ Allow $900+n \times-20$. Allow recovery from invisible brackets.
M1 Attempts to write down an equation in n for statement 'cost $=3 \times$ sales' $900+(n-1) \times-20=3 \times(150+(n-1) \times 10)$. Accept the 3 on the wrong side and allow use of 20 instead of -20 and allow n (consistently) instead of $n-1$ for this mark. Ignore $£$ signs in equation.
M1 Solves the correct linear equation in n to achieve $n=10$ (for those using $n-1$) or $n=9$ (for those using n). Ignore $£$ signs.
A1 Cso Year 2009 (A0 for the answer Year 10 if 2009 is not given)
Special case. Just answer or trial and improvement with no equation leading to answer scores SC $0,0,1,1$ Equations satisfying the method mark descriptors followed by trial and improvement could get all four marks

Question Number	Scheme	Marks
9.	(a) $2 x+3 y=26 \Rightarrow 3 y=26 \pm 2 x$ and attempt to find m from $y=m x+c$ $\left(\Rightarrow y=\frac{26}{3}-\frac{2}{3} x\right) \quad \text { so gradient }=-\frac{2}{3}$ Gradient of perpendicular $=\frac{-1}{\text { their gradient }} \quad\left(=\frac{3}{2}\right)$ Line goes through $(0,0)$ so $y=\frac{3}{2} x$ (b) Solves their $y=\frac{3}{2} x$ with their $2 x+3 y=26$ to form equation in x or in y Solves their equation in x or in y to obtain $x=$ or $y=$ $x=4$ or any equivalent e.g. 156/39 or $y=6$ o.a.e $B=\left(0, \frac{26}{3}\right)$ used or stated in (b) $\begin{aligned} & \text { Method } 1 \text { (see other methods in notes below) } \\ &=\frac{52}{3} \text { (oe with integer numerator and denominator) } \end{aligned}$	M1
		A1
		M1
		A1
		M1
		A1
		B1
		dM1
		A1

Notes

(a) M1 Complete method for finding gradient. (This may be implied by later correct answers.)
e.g. Rearranges $2 x+3 y=26 \Rightarrow y=m x+c$ so $m=$

Or finds coordinates of two points on line and finds gradient e.g. $(13,0)$ and $(1,8)$ so $m=\frac{8-0}{1-13}$
A1 States or implies that gradient $=-\frac{2}{3} \quad-$ condone $-\frac{2}{3} x$ if they continue correctly. Ignore errors in constant term in straight line equation

M1 Uses $m_{1} \times m_{2}=-1$ to find the gradient of l_{2}. This can be implied by the use of their gradient
A1 $y=\frac{3}{2} x$ or $2 y-3 x=0$ Allow $y=\frac{3}{2} x+0$ Also accept $2 y=3 x, y=39 / 26 x$ or even $y-0=\frac{3}{2}(x-0)$ and isw

Notes Continued

(b) M1 Eliminates variable between their $y=\frac{3}{2} x$ and their (possibly rearranged) $2 x+3 y=26$ to form an equation in x or y. (They may have made errors in their rearrangement)
dM1 (Depends on previous M mark) Attempts to solve their equation to find the value of x or y
A1 $x=4$ or equivalent or $y=6$ or equivalent
B1 y coordinate of B is $\frac{26}{3}$ (stated or implied) - isw if written as $\left(\frac{26}{3}, 0\right)$. Must be used or stated in (b)
dM1 (Depends on previous M mark) Complete method to find area of triangle OBC (using their values of x and/or y at point C and their 26/3)
A1 Cao $\frac{52}{3}$ or $\frac{104}{6}$ or $\frac{1352}{78}$ o.e

Method 1:

Uses the area of a triangle formula $1 / 2 \times O B \times(x$ coordinate of $C)$
Alternative methods: Several Methods are shown below. The only mark which differs from Method 1 is the last M mark and its use in each case is described below:

Method 2 in 9 (b) using $\frac{1}{2} \times B C \times O C$
dM 1 Uses the area of a triangle formula $1 / 2 \times B C \times O C$ Also finds $\mathrm{OC}(=\sqrt{52})$ and $\mathrm{BC}=\left(\frac{4}{3} \sqrt{13}\right)$
Method 3 in 9 (b) using $\frac{1}{2}\left|\begin{array}{lll}0 & 4 & 0 \\ 0 & 6 & \frac{26}{3}\end{array}\right|$
dM1 States the area of a triangle formula $\frac{1}{2} \left\lvert\, \begin{array}{lll}0 & 4 & 0\end{array} 0\right.$
Method 4 in $9(\mathrm{~b})$ using area of triangle $O B X$ - area of triangle $O C X$ where X is point $(13,0)$
dM1 Uses the correct subtraction $\frac{1}{2} \times 13 \times " \frac{26}{3} "-\frac{1}{2} \times 13 \times " 6$ "
Method 5 in $9(b)$ using area $=1 / 2(6 \times 4)+1 / 2(4 \times 8 / 3)$ drawing a line from C parallel to the x axis and dividing triangle into two right angled triangles
dM1 for correct method area $=1 / 2(" 6 " \times " 4 ")+1 / 2(" 4 " \times[" 26 / 3 "-" 6 "])$

Method 6 Uses calculus

dM1 $\int_{0}^{4} " \frac{26}{3} "-\frac{2 x}{3}-\frac{3 x}{2} \mathrm{~d} x=\left[\frac{26}{3} x-\frac{x^{2}}{3}-\frac{3 x^{2}}{4}\right]_{0}^{4}$

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \multirow[t]{6}{*}{10.} \& \multirow[t]{6}{*}{\begin{tabular}{l}
(a)
\[
\begin{array}{r}
f(x)=\int\left(\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1\right) \mathrm{d} x \\
x^{n} \rightarrow x^{n+1} \Rightarrow \mathrm{f}(x)=\frac{3}{8} \times \frac{x^{3}}{3}-10 \frac{x^{\frac{1}{2}}}{\frac{1}{2}}+x(+c)
\end{array}
\] \\
Substitute \(x=4, y=25 \Rightarrow 25=8-40+4+c \Rightarrow c=\)
\[
(\mathrm{f}(x))=\frac{x^{3}}{8}-20 x^{\frac{1}{2}}+x+53
\] \\
(b) Sub \(x=4\) into \(\mathrm{f}^{\prime}(x)=\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1\)
\[
\begin{aligned}
\& \Rightarrow \mathrm{f}^{\prime}(4)=\frac{3}{8} \times 4^{2}-10 \times 4^{-\frac{1}{2}}+1 \\
\& \Rightarrow \mathrm{f}^{\prime}(4)=2
\end{aligned}
\] \\
Gradient of tangent \(=2 \Rightarrow\) Gradient of normal is \(-1 / 2\) \\
Substitute \(x=4, y=25\) into line equation with their changed gradient e.g. \(y-25=-\frac{1}{2}(x-4)\) \\
\(\pm k(2 y+x-54)=0 \quad\) o.e. (but must have integer coefficients)
\end{tabular}} \& M1, A1, A1
M1 \\
\hline \& \& A1 \\
\hline \& \& M1

A1
dM1

\hline \& \& dM1

\hline \& \& Alcso

\hline \& \& $$
\begin{array}{r}
(5) \\
\text { (10 Marks) }
\end{array}
$$

\hline
\end{tabular}

Notes

(a) M1 Attempt to integrate $x^{n} \rightarrow x^{n+1}$

A1 Term in x^{3} or term in $x^{\frac{1}{2}}$ correct, coefficient need not be simplified, no need for $+x$ nor +c
A1 ALL three terms correct, coefficients need not be simplified, no need for +c
M1 For using $x=4, y=25$ in their $\mathrm{f}(x)$ to form a linear equation in c and attempt to find c
A1 $=\frac{x^{3}}{8}-20 x^{\frac{1}{2}}+x+53$ cao (all coefficients and powers must be simplified to give this answer- do not need a left hand side and if there is one it may be $\mathrm{f}(x)$ or y). Need full expression with 53 These marks need to be scored in part (a)
(b) M1 Attempt to substitute $x=4$ into $\mathrm{f}^{\prime}(x)$ must be in part (b)

A1 $\quad \mathrm{f}^{\prime}(x)=2$ at $x=4$
dM1 (Dependent on first method mark in part (b)) Using $m_{1} \times m_{2}=-1$ to find the gradient of the normal from their tangent gradient (Give mark if gradient of 1 becomes -1 as they will lose accuracy)
dM1 (Dependent on first method mark in part (b)) Attempt to find the equation of the normal (not tangent). Eg use $x=4, y=25$ in $y={ }^{\prime}-1 / 2^{\prime} x+c$ to find a value of c or use ' $-\frac{1}{2}$ ' $=\frac{y-25}{x-4}$ with their adapted gradient.
A1 cso $\pm k(2 y+x-54)=0$ (where k is any integer)

Question Number	Scheme	Marks
11.	(a) Discriminant $=b^{2}-4 a c=8^{2}-4 \times 2 \times 3,=40$	M1, A1 (2)
	(b) $2 x^{2}+8 x+3=2\left(x^{2}+\ldots \ldots . \ldots \ldots\right)$ or ${ }^{\text {a }}$	B1
	$=2\left((x+2)^{2} \pm \ldots\right) \quad$ or $q=2$	M1
	$=2(x+2)^{2}-5$	A1
	(c) Method 1A: Sets derivative $4 x+8 "=4 \Rightarrow x=, \quad x=-1$ Substitute $x=-1$ in $y=2 x^{2}+8 x+3 \quad(\Rightarrow y=-3)$ Substitute $x=-1$ and $y=-3$ in $y=4 x+c$ or into $(y+3)=4(x+1)$ and expand $c=1$ or writing $y=4 x+1$	$\Gamma \mathrm{M} 1, \mathrm{~A} 1$
		dM1
		dM1
		A1cso (5)
	Method 1B: \quad Sets derivative" $4 x+8$ " $=4 \Rightarrow x=, \quad x=-1$ Substitute $x=-1$ in $2 x^{2}+8 x+3=4 x+c$ Attempts to find value of c	$\left[\begin{array}{l} \mathrm{M} 1, \mathrm{~A} 1 \\ \mathrm{dM} 1 \end{array}\right.$
		dM1
	$c=1$ or writing $y=4 x+1$	A1cso (5)
	Method 2: Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and collects x terms together	M1
	Obtains $2 x^{2}+4 x+3-c=0$ or equivalent States that $b^{2}-4 a c=0$	dM1
	$4^{2}-4 \times 2 \times(3-c)=0$ and so $c=$	dM1
	$c=1$	Alcso
	Method 3: Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and collects x terms together Obtains $2 x^{2}+4 x+3-c=0$ or equivalent	[M1
		A1
	Uses $2(x+1)^{2}-2+3-c=0$ or equivalent	dM1
	Writes $-2+3-c=0$	dM1
	So $c=1$	A1cso
	Also see special case for using a perpendicular gradient (overleaf)	

Notes

(a) M1 Attempts to calculate $b^{2}-4 a c$ using $8^{2}-4 \times 2 \times 3$ - must be correct - not just part of a quadratic formula A1 Cao 40
(b) B1 See 2(...) or $p=2$

M1 .. $\left((x+2)^{2} \pm \ldots\right)$ is sufficient evidence or obtaining $q=2$
A1 Fully correct values. $2(x+2)^{2}-5$ or $p=2, q=2, r=-5$ cso.
Ignore inclusion of " $=0$ ".
[In many respects these marks are similar to three B marks.
$p=2$ is $\mathrm{B} 1 ; q=2$ is B 1 and $p=2, q=2$ and $r=-5$ is final B 1 but they must be entered on epen as $\mathbf{B} 1$ M1 A1]
Special case: Obtains $2 x^{2}+8 x+3=2(x+2)-1$ This may have first B1, for $p=2$ then M0A0
(c) Method 1 A (Differentiates and puts gradient equal to 4 . Needs both x and y to find c)

M1 Attempts to solve their $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$. They must reach $x=\ldots$ (Just differentiating is M0 A0)
A1 $\quad x=-1$ (If this follows $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+8$, then give M1 A1 by implication)
dM1 (Depends on previous M mark) Substitutes their $x=-1$ into $\mathrm{f}(x)$ or into "their $\mathrm{f}(x)$ from (b)" to find y
dM1 (Depends on both previous M marks) Substitutes their $x=-1$ and their $y=-3$ values into $y=4 x+c$ to find c or uses equation of line is $(y+$ " 3 " $)=4(x+$ " 1 ") and rearranges to $y=m x+c$
A1 $c=1$ or allow for $y=4 x+1$ cso
(c) Method 1B (Differentiates and puts gradient equal to 4. Also equates equations and uses x to find c)

M1A1 Exactly as in Method 1A above
dM1 (Depends on previous M mark) Substitutes their $x=-1$ into $2 x^{2}+8 x+3=4 x+c$
dM1 Attempts to find value of c then A1 as before
(c) Method 2 (uses repeated root to find c by discriminant)

M1 Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and tries to collect x terms together
A1 Collects terms e.g. $2 x^{2}+4 x+3-c=0$ or $-2 x^{2}-4 x-3+c=0$ or $2 x^{2}+4 x+3=c$ or even $2 x^{2}+4 x=c-3$ Allow " $=0$ " to be missing on RHS.
dM1 (If the line is a tangent it meets the curve at just one point so repeated root and $b^{2}-4 a c=0$)
Stating that $b^{2}-4 a c=0$ is enough
dM1 Using $b^{2}-4 a c=0$ to obtain equation in terms of c (Eg. $4^{2}-4 \times 2 \times(3-c)=0$) AND leading to a solution for c
A1 $c=1$ or allow for $y=4 x+1$ cso
(c) Method 3 (Similar to method 2 but uses completion of the square on the quadratic to find repeated root)

M1 Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and tries to collect x terms together. May be implied by $2 x^{2}+8 x+3-4 x \pm \mathrm{c}$ on one side
A1 Collects terms e.g. $2 x^{2}+4 x+3-c=0$ or $-2 x^{2}-4 x-3+c=0$ or $2 x^{2}+4 x+3=c$ or even $2 x^{2}+4 x=c-3 \quad$ Allow " $=0$ " to be missing on RHS.
dM1 Then use completion of square $2(x+1)^{2}-2+3-c=0$ (Allow $2(x+1)^{2}-k+3-c=0$) where k is non zero. It is enough to give the correct or almost correct (with k) completion of the square
dM1 $-2+3-c=0$ AND leading to a solution for c (Allow $-1+3-c=0) \quad(x=-1$ has been used)
A1 $c=1$ cso
In Method 1 they may use part (b) and differentiate their $\mathrm{f}(x)$ and put it equal to 4
They can earn M1, but do not follow through errors.
In Methods 2 and 3 they may use part (b) to write
their $2(x+2)^{2}-5=4 x+c$. They need to expand and collect x terms together for M1
Then expanding gives $2 x^{2}+4 x+3-c=0$ for A1 - do not follow through errors
Then the scheme is as before
If they just state $c=1$ with little or no working - please send to review,

PTO for special case

Special case uses perpendicular gradient (maximum of 2/5)

Sets $\quad 4 x+8=-\frac{1}{4} \Rightarrow x=, \quad x=-\frac{33}{16}$
Substitute $\quad x=-\frac{33}{16}$ in $y=2 x^{2}+8 x+3 \quad\left(\Rightarrow y=-\frac{639}{128}\right)$ M0

Substitute $x=-\frac{33}{16}$ and $y=-\frac{639}{128}$ into $y=4 x+c$ or into $\left(y+\frac{639}{128}\right)=4\left(x+\frac{33}{16}\right)$ and expand M1 A0

