Mark Scheme 4751
 June 2005

Section A

1	40	2	M1 subst of 3 for x or attempt at long divn with $x^{3}-3 x^{2}$ seen in working; 0 for attempt at factors by inspection	2
2	$[x=] \frac{6 y}{3+m}$ as final answer	3	M1 for $3 x+m x=y+5 y$ o.e. and M1 for $x(3+m)$ or ft sign error	3
3	$n+1$ and $n+2$ both seen $3 n+3$ $=3(n+1) \text { о.е. }$	1 M1 A1	condone e.g. a instead of n for last 2 marks or starting again with full method for middle number $=y$ etc or 3 a factor of both terms so divisible by 3	3
4	$\begin{aligned} & \hline-0.6 \text { о.е. } \\ & (4,0) \\ & (0,12 / 5) \text { о.е. } \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	M1 for 0.6 or $-0.6 x$ o.e. or rearrangement to ' $y=$ ' form [need not be correct] condone values of x and y given	4
5	$8-12 x+6 x^{2}-x^{3}$ isw	4	B3 for 3 terms correct or all correct except for signs; B2 for two terms correct including at least one of $-12 x$ and $6 x^{2}$; B1 for 1331 soi or for 8 and $-x^{3}$	4
6	(i) 1 (ii) a^{8} cao (iii) $\frac{1}{3 a^{3} b}$ or $\frac{1}{3} a^{-3} b^{-1}$ isw	1 1 3	M2 for two 'terms' correct or M1 for $3 a^{3} b$ or $\frac{1}{\left(9 a^{6} b^{2}\right)^{\frac{1}{2}}}$ or $\frac{1}{\sqrt{9 a^{6} b^{2}}}$; ignore \pm	5
7	(i) $3 \sqrt{ } 6$ or $\sqrt{54}$ isw (ii) $10+2 \sqrt{ } 7$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	M1 for $\sqrt{ }(4 \times 6)$ or $2 \sqrt{ } 6$ or $3 \sqrt{ } 2 \sqrt{ } 3$ seen M1 for attempt to multiply num. and denom. by $5+\sqrt{ } 7$ and M 1 for 18 or $25-$ 7 seen	5
8	$\begin{aligned} & x(30-2 x)=112 \\ & x(15-x)=56 \text { or } 30 x-2 x^{2}=112 \\ & \\ & (x-7)(x-8) \\ & x=7 \text { or } 8 \end{aligned}$ 7 by 16 or 8 by 14	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	allow M1 for length $=30-2 x$ soi NB answer given 0 for formula or completing sq etc must be explicit; both values required allow for 16 and 14 found following 7 and 8 ; both required	5
9	$\begin{aligned} & {[y=] 3 x+2=3 x^{2}-7 x+1} \\ & {[0=] 3 x^{2}-10 x-1 \text { or }-3 x^{2}+10 x+1} \\ & x=\frac{10 \pm \sqrt{100+12}}{6} \\ & \quad=\frac{10 \pm \sqrt{112}}{6} \text { or } \frac{5 \pm \sqrt{28}}{3} \text { o.e. isw } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \end{aligned}$	or rearrangement of linear and subst for x in quadratic attempted condone one error; dep on first M1 attempt at formula [dep. on first M1 and quadratic = 0]; M2 for whole method for completing square or M1 to stage before taking roots A1 for two of three 'terms' correct [with correct fraction line] or for one root	5

Section B

Mark Scheme 4751
January 2006

Section A

1	$\begin{aligned} & n(n+1) \text { seen } \\ & =\text { odd } \times \text { even and/or even } \times \text { odd } \\ & =\text { even } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	or B1 for n odd $\Rightarrow n^{2}$ odd, and comment eg odd + odd $=$ even B1 for n even $\Rightarrow n^{2}$ even, and comment eg even + even $=$ even allow A1 for 'any number multiplied by the consecutive number is even'	2
2	(i) translation of $\binom{2}{0}$ (ii) $y=\mathrm{f}(x-2)$	1 1 2	or '2 to the right' or ' $x \rightarrow x+2$ ' or 'all x values are increased by 2' 1 for $y=\mathrm{f}(x+2)$	4
3	$16+32 x+24 x^{2}+8 x^{3}+x^{4}$ isw	4	3 for 4 terms correct, 2 for 3 terms correct, or M1 for 14641 s.o.i. and M1 for expansion with correct powers of 2	4
4	$\begin{aligned} & x>-4.5 \text { o.e. isw www } \\ & {[\text { M1 for } \times 4} \\ & \text { M1 expand brackets or divide by } \\ & 3 \\ & \text { M1 subtract constant from LHS } \\ & \text { M1 divide to find } x \text {] } \end{aligned}$	4	accept $-27 / 6$ or better; 3 for $x=$ -4.5 etc or Ms for each of the four steps carried out correctly with inequality [-1 if working with equation] (ft from earlier errors if of comparable difficulty)	4
5	$[C=] \frac{4 P}{1-P} \text { or } \frac{-4 P}{P-1} \text { o.e. }$	4	M1 for $P C+4 P=C$ M1 for $4 P=C-P C$ or ft M1 for $4 P=C(1-P)$ or ft B3 for $[C=] \frac{4}{\frac{1}{P}-1}$ o.e. unsimplified	4
6	$\begin{aligned} & \mathrm{f}(1) \text { used } \\ & 1^{3}+3 \times 1+k=6 \\ & k=2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	$\begin{aligned} & \text { or division by } x-1 \text { as far as } x^{2}+ \\ & x \\ & \text { or remainder }=4+k \\ & \text { B3 for } k=2 \text { www } \\ & \hline \end{aligned}$	3
7	$\operatorname{grad} B C=-1 / 4$ soi $y-3=-1 / 4(x-2)$ o.e. cao 14 or ft from their BC	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	M1 for $m_{1} m_{2}=-1$ soi or for grad $\mathrm{AB}=4$ or $\operatorname{grad} \mathrm{BC}=1 / 4$ e.g. $y=-0.25 x+3.5$ M1 for subst $y=0$ in their BC	5
8	(i) $30 \sqrt{ } 2$ (ii) $\frac{1}{11}+\frac{2}{11} \sqrt{3}$ or $\frac{3}{33}+\frac{6}{33} \sqrt{3}$ or mixture of these	2 3	M1 for $\sqrt{ } 8=2 \sqrt{ } 2$ or $\sqrt{ } 50=5 \sqrt{ } 2$ soi B1 for $6 \sqrt{ } 50$ or other correct $a \sqrt{ } b$ M1 for mult num and denom by $6+\sqrt{ } 3$ and M1 for denom $=11$ or 33	5

			B2 for $\frac{3+6 \sqrt{3}}{33}$ or $\frac{1+2 \sqrt{3}}{11}$	
$\mathbf{9}$	(i) $k \leq 25 / 4$	3	M2 for $5^{2}-4 k \geq 0$ or B2 for 25/4 obtained isw or M1 for $b^{2}-4 a c$ soi or completing square accept $-20 / 8$ or better, isw; M1 for attempt to express quadratic as (2x+a) 2 or for attempt at quadratic formula	5
(ii) -2.5	2	5		

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 \& \& \[
\begin{aligned}
\& (0,0), \quad \sqrt{45} \text { isw or } 3 \sqrt{ } 5 \\
\& x=3-y \text { or } y=3-x \text { seen or } \\
\& \text { used } \\
\& \text { subst in eqn of circle to } \\
\& \text { eliminate variable } \\
\& 9-6 y+y^{2}+y^{2}=45 \\
\& 2 y^{2}-6 y-36=0 \text { or } y^{2}-3 y-18 \\
\& =0 \\
\& (y-6)(y+3)=0 \\
\& y=6 \text { or }-3 \\
\& x=-3 \text { or } 6 \\
\& \sqrt{(6--3)^{2}+(3--6)^{2}}
\end{aligned}
\] \& \begin{tabular}{l}
\(1+1\) \\
M1 \\
M1 \\
M1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1
\end{tabular} \& \begin{tabular}{l}
for correct expn of \((3-y)^{2}\) seen oe condone one error if quadratic or quad. formula attempted [complete sq attempt earns last 2 Ms\(]\) or A1 for \((6,-3)\) and A1 for \((-3,6)\) \\
no ft from wrong points (A.G.)
\end{tabular} \& \begin{tabular}{|c}
2 \\
\\
\\
8
\end{tabular} \\
\hline 11 \& ii
iii

iv \& \begin{tabular}{l}
$$
(x-3.5)^{2}-6.25
$$

(3.5, -6.25) o.e. or ft from their (i)
$$
(0,6)(1,0)(6,0)
$$

curve of correct shape fully correct intns and min in 4th quadrant
$$
\begin{aligned}
& x^{2}-7 x+6=x^{2}-3 x+4 \\
& 2=4 x \\
& x=1 / 2 \text { or } 0.5 \text { or } 2 / 4 \text { cao }
\end{aligned}
$$

 \&

3

1+1

3

G1

G1

M1

M1

A1

 \&

B1 for $a=7 / 2$ o.e,

B2 for $b=-25 / 4$ o.e. or M1 for $6-(7 / 2)^{2}$ or $6-(\text { their } a)^{2}$

allow $x=3.5$ and $y=-6.25$ or ft; allow shown on graph 1 each [stated or numbers shown on graph]

or $4 x-2=0$ (simple linear form; condone one error) condone no comment re only one intn
\end{tabular} \& 3

2

5
5

\hline 12 \& ii

iii \& \begin{tabular}{l}
sketch of cubic the correct way up

curve passing through $(0,0)$ curve touching x axis at $(3,0)$ $x\left(x^{2}-6 x+9\right)=2$
$$
x^{3}-6 x^{2}+9 x=2
$$

subst $x=2$ in LHS of their eqn or in $x(x-3)^{2}=2$ o.e. working to show consistent

division of their eqn by $(x-2)$ attempted
$$
x^{2}-4 x+1
$$

 \&

G1

G1

G1

M1

M1

1

1

M1

A1

 \&

or $\left(x^{2}-3 x\right)(x-3)=2$ [for one step in expanding brackets] for 2nd step, dep on first M1 or 2 for division of their eqn by $(x-2)$ and showing no remainder

or inspection attempted with $\left(x^{2}+k x+c\right)$ seen
\end{tabular} \& 3

2

\hline
\end{tabular}

Mark Scheme 4751 June 2006

Section A

1	$[r]=[\pm] \sqrt{\frac{3 V}{\pi h}}$ o.e. 'double-decker'	3	2 for $r^{2}=\frac{3 V}{\pi h}$ or $r=\sqrt{\frac{V}{\frac{1}{3} \pi h}}$ o.e. or M1 for correct constructive first step or for $r=\sqrt{k} \mathrm{ft}$ their $r^{2}=k$	3
2	$a=1 / 4$	2	M1 for subst of -2 or for $-8+4 a+7=0$ o.e. obtained eg by division by $(x+2)$	2
3	$3 x+2 y=26$ or $y=-1.5 x+13$ isw	3	M1 for $3 x+2 y=c$ or $y=-1.5 x+c$ M1 for subst $(2,10)$ to find c or for or for $y-10=$ their gradient $\times(x-2)$	3
4	(i) $\mathrm{P} \Leftarrow \mathrm{Q}$ (ii) $\mathrm{P} \Leftrightarrow \mathrm{Q}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$	condone omission of P and Q	2
5	$x+3(3 x+1)=6 \text { o.e. }$ $\begin{aligned} & 10 x=3 \text { or } 10 y=19 \text { o.e. } \\ & (0.3,1.9) \text { or } x=0.3 \text { and } y=1.9 \text { o.e. } \end{aligned}$	M1 A1 A1	for subst of for rearrangement and multn to make one pair of coefficients the same or for both eqns in form ' $y=$ ' (condone one error) graphical soln: (must be on graph paper) M1 for each line, A1 for $(0.3,1.9)$ o.e cao; allow B3 for (0.3, 1.9) o.e.	3
6	$\begin{aligned} & -3<x<1 \\ & \text { [condone } x<1, x>-3 \text {] } \end{aligned}$	4	B3 for -3 and 1 or M1 for $x^{2}+2 x-3[<0]$ or $(x+1)^{2}<1=4$ and M1 for $(x+3)(x-1)$ or $x=(-2 \pm 4) / 2$ or for $(x+1)$ and ± 2 on opp. sides of eqn or inequality; if 0 , then SC1 for one of $x<1, x>-3$	4
7	(i) $28 \sqrt{ } 6$ (ii) $49-12 \sqrt{5}$ isw	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	1 for $30 \sqrt{6}$ or $2 \sqrt{6}$ or $2 \sqrt{2} \sqrt{ } 3$ or $28 \sqrt{ } 2 \sqrt{ } 3$ 2 for 49 and 1 for $-12 \sqrt{ } 5$ or M1 for 3 correct terms from $4-6 \sqrt{5}-6 \sqrt{ } 5+45$	5
8	$\begin{aligned} & \hline 20 \\ & -160 \text { or } \mathrm{ft} \text { for }-8 \times \text { their } 20 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	0 for just 20 seen in second part; M1 for $6!/(3!3!)$ or better condone $-160 x^{3}$; M1 for $[-] 2^{3} \times[$ their $] 20$ seen or for [their] $20 \times(-2 x)^{3}$; allow B1 for 160	4
9	(i) $4 / 27$ (ii) $3 a^{10} b^{8} c^{-2}$ or $\frac{3 a^{10} b^{8}}{c^{2}}$	2 3	$1 \text { for } 4 \text { or } 27$ 2 for 3 'elements' correct, 1 for 2 elements correct, -1 for any adding of elements; mark final answer; condone correct but unnecessary brackets	5
10	$\begin{aligned} & x^{2}+9 x^{2}=25 \\ & 10 x^{2}=25 \\ & \\ & x= \pm(\sqrt{ } 10) / 2 \text { or. } \pm \sqrt{ }(5 / 2) \text { or } \pm 5 / \sqrt{ } 10 \text { oe } \\ & y=[\pm] 3 \sqrt{ }(5 / 2) \text { o.e. eg } y=[\pm] \sqrt{ } 22.5 \end{aligned}$	M1 M1 A2 B1	for subst for x or y attempted or $x^{2}=2.5$ o.e.; condone one error from start [allow $10 x^{2}-25=0+$ correct substn in correct formula] allow $\pm \sqrt{ } 2.5$; A1 for one value ft $3 \times$ their x value(s) if irrational; condone not written as coords.	5

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { grad } \mathrm{AB}=8 / 4 \text { or } 2 \text { or } y=2 x-10 \\
\& \text { grad } \mathrm{BC}=1 /-2 \text { or }-1 / 2 \text { or } \\
\& y=-1 / 2 x+2.5 \\
\& \text { product of grads }=-1 \text { [so perp] } \\
\& \text { (allow seen or used) } \\
\& \text { midpt } \mathrm{E} \text { of } \mathrm{AC}=(6,4.5) \\
\& \mathrm{AC}^{2}=(9-3)^{2}+(8-1)^{2} \text { or } 85 \\
\& \mathrm{rad}=1 / 2 \sqrt{ } 85 \text { o.e. } \\
\& (x-6)^{2}+(y-4.5)^{2}=85 / 4 \text { o.e. } \\
\& (5-6)^{2}+(0-4.5)^{2}=1+81 / 4[= \\
\& 85 / 4] \\
\& \overrightarrow{B E}=\overrightarrow{E D}=\binom{1}{4.5}
\end{aligned}
\] \\
D has coords \((6+1,4.5+4.5) \mathrm{ft}\) or
\[
\begin{aligned}
\& (5+2,0+9) \\
\& =(7,9)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
1
M1 \\
A1 \\
B2 \\
1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or M1 for \(\mathrm{AB}^{2}=4^{2}+8^{2}\) or 80 and \(\mathrm{BC}^{2}=2^{2}+1^{2}\) or 5 and \(\mathrm{AC}^{2}=6^{2}+7^{2}\) or 85; M1 for \(A C^{2}=A B^{2}+B C^{2}\) and 1 for [Pythag.] true so \(A B\) perp to \(B C\); if 0 , allow \(G 1\) for graph of \(A, B, C\) \\
allow seen in (i) only if used in (ii); or \(\mathrm{AE}^{2}=(9-\text { their } 6)^{2}+(8-\text { their } 4.5)^{2}\) or rad. \({ }^{2}=85 / 4\) o.e. e.g. in circle eqn M1 for \((x-a)^{2}+(y-b)^{2}=r^{2}\) soi or for lhs correct some working shown; or 'angle in semicircle [\(=90^{\circ}{ }^{\prime}\) ' \\
o.e. ft their centre; or for \(\overrightarrow{B C}=\binom{-2}{1}\) \\
or (\(9-2,8+1\)); condone mixtures of vectors and coords. throughout part iii allow B3 for \((7,9)\)
\end{tabular} \& 3

6
6
3

\hline 12 \& ii
iii
iv

v \& | $\begin{aligned} & \mathrm{f}(-2) \text { used } \\ & -8+36-40+12=0 \end{aligned}$ |
| :--- |
| divn attempted as far as $x^{2}+3 x$ $\begin{aligned} & x^{2}+3 x+2 \text { or }(x+2)(x+1) \\ & (x+2)(x+6)(x+1) \end{aligned}$ |
| sketch of cubic the right way up through 12 marked on y axis intercepts $-6,-2,-1$ on x axis $[x]\left(x^{2}+9 x+20\right)$ $[x](x+4)(x+5)$ $x=0,-4,-5$ | \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \\
& \text { M1 } \\
& \text { A1 } \\
& 2 \\
& \\
& \text { G1 } \\
& \text { G1 } \\
& \text { G1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | or M1 for division by ($x+2$) attempted as far as $x^{3}+2 x^{2}$ then A1 for $x^{2}+7 x+$ 6 with no remainder or inspection with $b=3$ or $c=2$ found; B2 for correct answer allow seen earlier; M1 for $(x+2)(x+1)$ with 2 turning pts; no 3rd tp curve must extend to $x>0$ condone no graph for $x<-6$ or other partial factorisation |
| :--- |
| or B1 for each root found e.g. using factor theorem | \& 2

2
2
3
3

\hline 13 \& ii

iii

iv \& | $\begin{aligned} & y=2 x+3 \text { drawn on graph } \\ & x=0.2 \text { to } 0.4 \text { and }-1.7 \text { to }-1.9 \\ & 1=2 x^{2}+3 x \\ & 2 x^{2}+3 x-1[=0] \end{aligned}$ |
| :--- |
| attempt at formula or completing square $x=\frac{-3 \pm \sqrt{17}}{4}$ |
| branch through (1,3), branch through ($-1,1$), approaching $y=2$ from below -1 and $1 / 2$ or ft intersection of their curve and line [tolerance 1 mm] | \& M1

A2
M1
M1

M1

A2
1
1

1 \& | 1 each; condone coords; must have line drawn for multiplying by x correctly for correctly rearranging to zero (may be earned first) or suitable step re completing square if they go on ft , but no ft for factorising |
| :--- |
| A1 for one soln and approaching $y=2$ from above and extending below x axis 1 each; may be found algebraically; ignore y coords. | \& 3

5

2
2

\hline
\end{tabular}

Mark Scheme 4751 January 2007

Section A

1	$y=2 x+4$	3	M1 for $m=2$ stated [M0 if go on to use $m=-1 / 2] \quad$ or M 1 for $y=2 x+k, k \neq 7$ and M1indep for $y-10=m(x-3)$ or $(3$, 10) subst in $y=m x+c$; allow 3 for $y=2 x$ $+k$ and $k=4$	3
2	neg quadratic curve intercept $(0,9)$ through $(3,0)$ and $(-3,0)$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	condone (0,9) seen eg in table	3
3	$[a=] \frac{2 c}{2-f}$ or $\frac{-2 c}{f-2}$ as final answer	3	M1 for attempt to collect as and cs on different sides and M1 ft for a $(2-f)$ or dividing by $2-f$; allow M 2 for $\frac{7 c-5 c}{2-f}$ etc	3
4	$f(2)=3$ seen or used $\begin{aligned} & 2^{3}+2 k+5=3 \text { о.е. } \\ & k=-5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \\ & \mathrm{M} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	allow M1 for divn by $(x-2)$ with $x^{2}+2 x+$ $(k+4)$ or $x^{2}+2 x-1$ obtained alt: M1 for $(x-2)\left(x^{2}+2 x-1\right)+3$ (may be seen in division) then M1dep (and B1) for $x^{3}-5 x+5$ alt divn of $x^{3}+k x+2$ by $x-2$ with no rem.	3
5	375	3	allow $375 x^{4}$; M1 for 5^{2} or 25 used or seen with x^{4} and M1 for 15 or $\frac{6 \times 5}{2}$ oe eg $\frac{6!}{4!2!}$ or 1615 ... seen $\left[{ }^{6} \mathrm{C}_{4}\right.$ not sufft]	3
6	(i) 125 (ii) $\frac{9}{49}$ as final answer	2 2	M1 for $25^{\frac{1}{2}}=\sqrt{25}$ soi or for $\sqrt{25^{3}}$ M1 for $a^{-1}=\frac{1}{a}$ soi eg by $3 / 7$ or $3 / 49$	4
7	showing $a+b+c=6$ o.e $b c=\frac{9^{2}-17}{16}$ $=64 / 16$ o.e. correctly obtained completion showing $a b c=6$ o.e.	1 M1 A1 A1	simple equiv fraction eg 192/32 or 24/4 correct expansion of numerator; may be unsimplified 4 term expansion; MO if get no further than $(\sqrt{17})^{2}$; M0 if no evidence before 64/16 o.e. may be implicit in use of factors in completion	4

$\mathbf{8}$	$b^{2}-4 a c$ soi use of $b^{2}-4 a c<0$ $k^{2}<16[$ may be implied by $k<4]$ $-4<k<4$ or $k>-4$ and $k<4$ isw	M1 M1 A1 A1	may be implied by $k^{2}<16$ deduct one mark in qn for \leq instead of <; allow equalities earlier if final inequalities correct; condone b instead of $k ;$ if M2 not earned, give SC2 for qn [or M1 SC1] for $k[=] 4$ and -4 as answer]	4
$\mathbf{9}$	(i) $12 a^{5} b^{3}$ as final answer (ii) $\frac{(x+2)(x-2)}{(x-2)(x-3)}$ $\frac{x+2}{x-3}$ as final answer $\mathbf{1 0}$ correct expansion of both brackets seen (may be unsimplified), or difference of squares used $4 m^{2}$ correctly obtained $[p=][\pm] 2 m$ cao M2	M2 for 2 'terms' correct in final answer M1 for each of numerator or denom. correct or M1, M1 for correct factors seen separately	M1 for one bracket expanded correctly; for M2, condone done together and lack of brackets round second expression if correct when we insert the pair of brackets	5

Section B

11	iA	0.2 to 0.3 and 3.7 to 3.8 $x+\frac{1}{x}=4-x$ their $y=4-x$ drawn	$1+1$ M1 M1	[tol. 1 mm or 0.05 throughout qn]; if 0 , allow M1 for drawing down lines at both values condone one error allow M2 for plotting positive branch of $y=2 x+1 / x$ [plots at $(1,3)$ and $(2,4.5)$ and above other graph] or for plot of y $=2 x^{2}-4 x+1$	2
		0.2 to 0.35 and 1.65 to 1.8	B2	1 each	4
	ii	$(0, \pm \sqrt{ } 3)$	2	condone $y= \pm \sqrt{ } 3$ isw; 1 each or M1 for $1+y^{2}=4$ or $y^{2}=3$ o.e.	2
	iii	centre $(1,0)$ radius 2 touches at $(1,2)$ [which is distance 2 from centre] all points on other branch >2 from centre	$\begin{aligned} & 1+1 \\ & 1 \\ & 1 \end{aligned}$	allow seen in (ii) allow ft for both these marks for centre at $(-1,0)$, rad 2 ; allow 2 for good sketch or compassdrawn circle of rad 2 centre $(\pm 1,0)$	4

ii	$f(x-3)=(x-3)^{3}-5(x-3)+2$ $(x-3)\left(x^{2}-6 x+9\right)$ or other constructive attempt at expanding $(x-3)^{3}$ eg 1331 soi $\begin{aligned} & x^{3}-9 x^{2}+27 x-27 \\ & -5 x+15[+2] \end{aligned}$ 5 $2 \pm \sqrt{2}$ or ft	B1 M1 A1 B1 B1 B1	or $(x-5)(x-2+\sqrt{2})(x-2-\sqrt{2})$ soi or ft from their (i) for attempt at multiplying out 2 brackets or valid attempt at multiplying all 3 alt: A2 for correct full unsimplified expansion or A1 for correct 2 bracket expansion eg $(x-5)\left(x^{2}-4 x+2\right)$ condone factors here, not roots if BO in this part, allow SC1 for their roots in (i) - 3	2

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS (MEI)

4751/01

Introduction to Advanced Mathematics (C1)

INSERT

$$
\text { TUESDAY } 16 \text { JANUARY } 2007
$$

Centre
Number

Candidate Number \square

INSTRUCTIONS TO CANDIDATES

- This insert should be used in Question 11.
- Write your name, centre number and candidate number in the spaces provided above and attach the page to your answer booklet.

11 (i)

Mark Scheme 4751 January 2007

Section A

1	$y=2 x+4$	3	M1 for $m=2$ stated [M0 if go on to use $m=-1 / 2] \quad$ or M 1 for $y=2 x+k, k \neq 7$ and M1indep for $y-10=m(x-3)$ or $(3$, 10) subst in $y=m x+c$; allow 3 for $y=2 x$ $+k$ and $k=4$	3
2	neg quadratic curve intercept $(0,9)$ through $(3,0)$ and $(-3,0)$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	condone (0,9) seen eg in table	3
3	$[a=] \frac{2 c}{2-f}$ or $\frac{-2 c}{f-2}$ as final answer	3	M1 for attempt to collect as and cs on different sides and M1 ft for a $(2-f)$ or dividing by $2-f$; allow M 2 for $\frac{7 c-5 c}{2-f}$ etc	3
4	$f(2)=3$ seen or used $\begin{aligned} & 2^{3}+2 k+5=3 \text { о.е. } \\ & k=-5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \\ & \mathrm{M} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	allow M1 for divn by $(x-2)$ with $x^{2}+2 x+$ $(k+4)$ or $x^{2}+2 x-1$ obtained alt: M1 for $(x-2)\left(x^{2}+2 x-1\right)+3$ (may be seen in division) then M1dep (and B1) for $x^{3}-5 x+5$ alt divn of $x^{3}+k x+2$ by $x-2$ with no rem.	3
5	375	3	allow $375 x^{4}$; M1 for 5^{2} or 25 used or seen with x^{4} and M1 for 15 or $\frac{6 \times 5}{2}$ oe eg $\frac{6!}{4!2!}$ or 1615 ... seen $\left[{ }^{6} \mathrm{C}_{4}\right.$ not sufft]	3
6	(i) 125 (ii) $\frac{9}{49}$ as final answer	2 2	M1 for $25^{\frac{1}{2}}=\sqrt{25}$ soi or for $\sqrt{25^{3}}$ M1 for $a^{-1}=\frac{1}{a}$ soi eg by $3 / 7$ or $3 / 49$	4
7	showing $a+b+c=6$ o.e $b c=\frac{9^{2}-17}{16}$ $=64 / 16$ o.e. correctly obtained completion showing $a b c=6$ o.e.	1 M1 A1 A1	simple equiv fraction eg 192/32 or 24/4 correct expansion of numerator; may be unsimplified 4 term expansion; MO if get no further than $(\sqrt{17})^{2}$; M0 if no evidence before 64/16 o.e. may be implicit in use of factors in completion	4

4751 (C1) Introduction to Advanced Mathematics

Section A

1	$[v=][\pm] \sqrt{\frac{2 E}{m}} \mathrm{www}$	3	M2 for $v^{2}=\frac{2 E}{m}$ or for $[v=][\pm] \sqrt{\frac{E}{\frac{1}{2} m}}$ or M1 for a correct constructive first step and M 1 for $v=[\pm] \sqrt{k} \mathrm{ft}$ their $v^{2}=k$; if MO then SC1 for $\sqrt{ } E / 1 / 2 m$ or $\sqrt{ } 2 E / m$ etc	3
2	$\frac{3 x-4}{x+1}$ or $3-\frac{7}{x+1}$ www as final answer	3	$\begin{aligned} & \text { M1 for }(3 x-4)(x-1) \\ & \text { and M1 for }(x+1)(x-1) \end{aligned}$	3
3	(i) 1 (ii) $1 / 64 \mathrm{www}$	$\begin{array}{\|l\|} \hline 1 \\ 3 \end{array}$	M1 for dealing correctly with each of reciprocal, square root and cubing (allow 3 only for 1/64) eg M2 for 64 or -64 or $1 / \sqrt{ } 4096$ or $1 / 4^{3}$ or M1 for $1 / 16^{3 / 2}$ or 4^{3} or -4^{3} or 4^{-3} etc	4
4	$\begin{aligned} & 6 x+2(2 x-5)=7 \\ & 10 x=17 \\ & x=1.7 \text { o.e. isw } \\ & y=-1.6 \text { o.e .isw } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	for subst or multn of eqns so one pair of coeffts equal (condone one error) simplification (condone one error) or appropriate addn/subtn to eliminate variable allow as separate or coordinates as requested graphical soln: MO	4
5	(i) $-4 / 5$ or -0.8 o.e. (ii) $(15,0)$ or 15 found www	2 3	M1 for 4/5 or 4/-5 or 0.8 or $-4.8 / 6$ or correct method using two points on the line (at least one correct) (may be graphical) or for $-0.8 \times$ o.e. M1 for $y=$ their (i) $x+12$ o.e. or $4 x+5 y$ $=k$ and $(0,12)$ subst and M1 for using y $=0$ eg $-12=-0.8 x$ or $f t$ their eqn or M1 for given line goes through (0 , 4.8) and $(6,0)$ and M1 for $6 \times 12 / 4.8$ graphical soln: allow M1 for correct required line drawn and M1 for answer within 2 mm of $(15,0)$	5

6	$f(2)$ used $\begin{aligned} & 2^{3}+2 k+7=3 \\ & k=-6 \end{aligned}$	M1 M1 A1	or division by $x-2$ as far as $x^{2}+2 x$ obtained correctly or remainder $3=2(4+k)+7$ o.e. 2 nd M1 dep on first	3
7	(i) 56 (ii) -7 or ft from -their (i)/8	2 2	M1 for $\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ or more simplified M1 for 7 or ft their (i)/8 or for $56 \times(-1 / 2)^{3}$ o.e. or ft; condone x^{3} in answer or in M1 expression; 0 in qn for just Pascal's triangle seen	4
8	(i) $5 \sqrt{3}$ (ii) common denominator $=$ $\begin{aligned} & (5-\sqrt{ } 2)(5+\sqrt{ } 2) \\ & =23 \\ & \text { numerator }=10 \end{aligned}$	2 M1 A1 B1	M1 for $\sqrt{48}=4 \sqrt{ } 3$ allow M1A1 for $\frac{5-\sqrt{2}}{23}+\frac{5+\sqrt{2}}{23}$ allow 3 only for 10/23	5
9	(i) $n=2 m$ $\begin{aligned} & 3 n^{2}+6 n=12 m^{2}+12 m \text { or } \\ & =12 m(m+1) \end{aligned}$ (ii) showing false when n is odd e.g. $3 n^{2}+6 n=\text { odd }+ \text { even }=\text { odd }$	M1 M2 B2	or any attempt at generalising; M0 for just trying numbers or M1 for $3 n^{2}+6 n=3 n(n+2)=3 \times$ even \times even and M1 for explaining that 4 is a factor of even \times even or M1 for 12 is a factor of $6 n$ when n is even and M1 for 4 is a factor of n^{2} so 12 is a factor of $3 n^{2}$ or $3 n(n+2)=3 \times$ odd \times odd $=$ odd or counterexample showing not always true; M1 for false with partial explanation or incorrect calculation	5

Section B

4751 (C1) Introduction to Advanced Mathematics

Section A

1	$x>6 / 4$ o.e. isw	2	M1 for $4 x>6$ or for $6 / 4$ o.e. found or for their final ans ft their $4 x>k$ or $k x>6$	2
2	(i) $(0,4)$ and $(6,0)$ (ii) $-4 / 6$ o.e. or ft their (i) isw	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	1 each; allow $x=0, y=4$ etc; condone $x=6, y=4$ isw but 0 for $(6,4)$ with no working 1 for $-\frac{4}{6} x$ or 4/-6 or $4 / 6$ o.e. or ft (accept 0.67 or better) 0 for just rearranging to $y=-\frac{2}{3} x+4$	4
3	(i) 0 or $-3 / 2$ o.e. (ii) $k<-9 / 8$ o.e. www	2 3	1 each M2 for $3^{2}(-)(-8 k)<0$ o.e. or $-9 / 8$ found or M1 for attempted use of $b^{2}-4 a c$ (may be in quadratic formula); SC: allow M1 for $9-8 k<0$ and M1 ft for $k>9 / 8$	5
4	(i) T (ii) E (iii) \top (iv) F	3	3 for all correct, 2 for 3 correct. 1 for 2 correct	3
5	$y(x-2)=(x+3)$ $x y-2 y=x+3$ or $\mathrm{ft}[\mathrm{ft}$ from earlier errors if of comparable difficulty - no ft if there are no $x y$ terms] $\begin{aligned} & x y-x=2 y+3 \text { or } \mathrm{ft} \\ & {[x=] \frac{2 y+3}{y-1} \text { o.e. or } \mathrm{ft}} \end{aligned}$ alt method: $\begin{aligned} y & =1+\frac{5}{x-2} \\ y-1 & =\frac{5}{x-2} \\ x-2 & =\frac{5}{y-1} \\ x & =2+\frac{5}{y-1} \end{aligned}$	M1 M1	for multiplying by $x-2$; condone missing brackets for expanding bracket and being at stage ready to collect x terms for collecting x and 'other' terms on opposite sides of eqn for factorising and division for either method: award 4 marks only if fully correct	4

6	(i) 5 www (ii) $8 x^{10} y^{13} z^{4}$ or $2^{3} x^{10} y^{13} z^{4}$	2 3	allow 2 for ± 5; M1 for $25^{1 / 2}$ seen or for $1 / 5$ seen or for using $25^{1 / 2}=5$ with another error (ie M1 for coping correctly with fraction and negative index or with square root) mark final answer; B2 for 3 elements correct, B1 for 2 elements correct; condone multn signs included, but -1 from total earned if addn signs	5
7	(i) $\frac{5-\sqrt{3}}{22}$ or $\frac{5+(-1) \sqrt{3}}{22}$ or $\frac{5-1 \sqrt{3}}{22}$ (ii) $37-12 \sqrt{ } 7$ isw www	2 3	or $a=5, b=-1, c=22$; M1 for attempt to multiply numerator and denominator by $5-\sqrt{3}$ 2 for 37 and 1 for $-12 \sqrt{ } 7$ or M1 for 3 correct terms from $9-6 \sqrt{ } 7-6 \sqrt{ } 7+28$ or $9-3 \sqrt{ } 28-3 \sqrt{ } 28+28$ or $9-\sqrt{ } 252-$ $\sqrt{ } 252+28$ o.e. eg using $2 \sqrt{ } 63$ or M2 for $9-12 \sqrt{ } 7+28$ or $9-6 \sqrt{ } 28+$ 28 or $9-2 \sqrt{ } 252+28$ or $9-\sqrt{ } 1008+$ 28 o.e.; 3 for $37-\sqrt{ } 1008$ but not other equivs	5
8	-2000 www	4	M3 for $10 \times 5^{2} \times(-2[x])^{3}$ o.e. or M2 for two of these elements or M1 for 10 or $(5 \times 4 \times 3) /(3 \times 2 \times 1)$ o.e. used $\left[{ }^{5} \mathrm{C}_{3}\right.$ is not sufficient] or for 15101051 seen; or B3 for 2000; condone x^{3} in ans; equivs: M3 for e.g $5^{5} \times 10 \times\left(-\frac{2}{5}[x]\right)^{3}$ o.e. [5^{5} may be outside a bracket for whole expansion of all terms], M2 for two of these elements etc similarly for factor of 2 taken out at start	4
9	$\begin{aligned} & (y-3)(y-4)[=0] \\ & y=3 \text { or } 4 \text { cao } \\ & x= \pm \sqrt{3} \text { or } \pm 2 \text { cao } \end{aligned}$	M1 A1 B2	for factors giving two terms correct or attempt at quadratic formula or completing square or B2 (both roots needed) B1 for 2 roots correct or ft their y (condone $\sqrt{ } 3$ and $\sqrt{ } 4$ for B1)	4

Section B

4751 (C1) Introduction to Advanced Mathematics

Section A

1	(i) 0.125 or $1 / 8$ (ii) 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	as final answer	2
2	$y=5 x-4 \mathrm{www}$	3	M2 for $\frac{y-11}{-9-11}=\frac{x-3}{-1-3}$ o.e. or M1 for grad $=\frac{11-(-9)}{3-(-1)}$ or 5 eg in y $=5 x+k$ and M 1 for $y-11=$ their $m(x-$ $3)$ o.e. or subst $(3,11)$ or $(-1,-9)$ in $y=$ their $m x+c$ or M1 for $y=k x-4(\mathrm{eg}$ may be found by drawing)	3
3	$x>9 / 6$ o.e. or 9/6 < x o.e. Www isw	3	M2 for $9<6 x$ or M1 for $-6 x<-9$ or $k<$ $6 x$ or $9<k x$ or $7+2<5 x+x$ [condone \leq for Ms]; if 0, allow SC1 for 9/6 o.e found	3
4	$a=-5 \mathrm{www}$	3	M1 for $\mathrm{f}(2)=0$ used and M1 for $10+$ $2 a=0$ or better long division used: M1 for reaching $(8+a) x-6$ in working and M1 for $8+a=3$ equating coeffts method: M2 for obtaining $x^{3}+2 x^{2}+4 x+3$ as other factor	3
5	(i) $4\left[x^{3}\right]$ (ii) $84\left[x^{2}\right] \mathrm{Www}$	2 3	ignore any other terms in expansion M1 for $-3\left[x^{3}\right]$ and $7\left[x^{3}\right]$ soi; M1 for $\frac{7 \times 6}{2}$ or 21 or for Pascal's triangle seen with $1721 \ldots$ row and M1 for 2^{2} or 4 or $\{2 x\}^{2}$	5

6	1/5 or 0.2 o.e. Www	3	M1 for $3 x+1=2 x \times 4$ and M1 for $5 x=1$ o.e. or M1 for $1.5+\frac{1}{2 x}=4$ and M1 for $\frac{1}{2 x}=2.5$ o.e.	3
7	(i) $5^{3.5}$ or $k=3.5$ or $7 / 2$ o.e. (ii) $16 a^{6} b^{10}$	2 2	M1 for $125=5^{3}$ or $\sqrt{5}=5^{\frac{1}{2}}$ SC1 for $5^{\frac{3}{2}}$ o.e. as answer without working M1 for two 'terms' correct and multiplied; mark final answer only	4
8	$\begin{aligned} & b^{2}-4 a c \text { soi } \\ & k^{2}-4 \times 2 \times 18<0 \text { o.e. } \\ & -12<k<12 \end{aligned}$	M1 M1 A2	allow in quadratic formula or clearly looking for perfect square condone \leq; or M1 for 12 identified as boundary may be two separate inequalities; A1 for \leq used or for one 'end' correct if two separate correct inequalities seen, isw for then wrongly combining them into one statement; condone b instead of k; if no working, SC2 for $k<12$ and SC2 for $k>-12$ (ie SC2 for each 'end' correct)	4
9	$\begin{aligned} & y+5=x y+2 x \\ & y-x y=2 x-5 \text { oe or } \mathrm{ft} \\ & y(1-x)=2 x-5 \text { oe or } \mathrm{ft} \\ & {[y=] \frac{2 x-5}{1-x} \text { oe or } \mathrm{ft} \text { as final answer }} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \end{array}$	for expansion for collecting terms for taking out y factor; dep on $x y$ term for division and no wrong work after ft earlier errors for equivalent steps if error does not simplify problem	4
10	(i) $9 \sqrt{3}$ (ii) $6+2 \sqrt{ } 2 \mathrm{www}$	2 3	M1 for $5 \sqrt{ } 3$ or $4 \sqrt{ } 3$ seen M1 for attempt to multiply num. and denom. by $3+\sqrt{ } 2$ and M 1 for denom. 7 or $9-2$ soi from denom. mult by $3+\sqrt{ } 2$	5

Section B

11	i	C, mid pt of $\mathrm{AB}=\left(\frac{11+(-1)}{2}, \frac{4}{2}\right)$ $=(5,2)$ $\left[\mathrm{AB}^{2}=\right] 12^{2}+4^{2}[=160]$ oe or $\left[\mathrm{CB}^{2}=\right] 6^{2}+2^{2}[=40]$ oe with AC quote of $(x-a)^{2}+(y-b)^{2}=r^{2}$ o.e with different letters completion (ans given)	B1 B1 B1 B1	evidence of method required - may be on diagram, showing equal steps, or start at A or B and go half the difference towards the other or square root of these; accept unsimplified or $(5,2)$ clearly identified as centre and $\sqrt{40}$ as r (or 40 as r^{2}) www or quote of $g f c$ formula and finding c $=-11$ dependent on centre (or midpt) and radius (or radius ${ }^{2}$) found independently and correctly	4
	ii	correct subst of $x=0$ in circle eqn soi $(y-2)^{2}=15$ or $y^{2}-4 y-11[=0]$ $y-2= \pm \sqrt{15}$ or ft $[y=] 2 \pm \sqrt{15} \text { cao }$	M1 M1 M1 A1	condone one error or use of quad formula (condone one error in formula); ft only for 3 term quadratic in y if $y=0$ subst, allow SC1 for $(11,0)$ found alt method: M1 for y values are $2 \pm a$ M1 for $a^{2}+5^{2}=40$ soi M1 for $a^{2}=40-5^{2}$ soi A1 for $[y=] 2 \pm \sqrt{15}$ cao	4
	iii	$\operatorname{grad} \mathrm{AB}=\frac{4}{11-(-1)}$ or $1 / 3$ o.e. so grad $\operatorname{tgt}=-3$ eqn of tgt is $y-4=-3(x-11)$ $y=-3 x+37 \text { or } 3 x+y=37$ $(0,37)$ and $(37 / 3,0)$ o.e. ft isw	M1 M1 M1 A1 B2	or grad AC (or BC) or $\mathrm{ft}-1$ /their gradient of AB or subst $(11,4)$ in $y=-3 x+c$ or ft (no ft for their grad AB used) accept other simplified versions B1 each, ft their tgt for $\operatorname{grad} \neq 1$ or $1 / 3$; accept $x=0, y=37$ etc NB alt method: intercepts may be found first by proportion then used to find eqn	6

\begin{tabular}{|c|c|c|c|c|c|}
\hline 12 \& i

ii

iii \& \begin{tabular}{l}
$$
\begin{aligned}
& 3 x^{2}+6 x+10=2-4 x \\
& 3 x^{2}+10 x+8[=0] \\
& (3 x+4)(x+2)[=0] \\
& x=-2 \text { or }-4 / 3 \text { o.e. } \\
& y=10 \text { or } 22 / 3 \text { o.e. } \\
& 3(x+1)^{2}+7
\end{aligned}
$$

min at $y=7$ or ft from (ii) for positive c (ft for (ii) only if in correct form)

 \&

M1

M1

M1

A1

A1

4

B2

 \&

for subst for x or y or subtraction attempted

$$
\text { or } 3 y^{2}-52 y+220[=0] \text {; for }
$$

rearranging to zero (condone one error)

or $(3 y-22)(y-10)$; for sensible attempt at factorising or formula or completing square or A1 for each of $(-2,10)$ and (-4/3, 22/3) o.e.

1 for $a=3,1$ for $b=1,2$ for $c=7$ or M1 for $10-3 \times$ their b^{2} soi or for $7 / 3$ or for $10 / 3$ - their b^{2} soi

may be obtained from (ii) or from good symmetrical graph or identified from table of values showing symmetry

condone error in x value in stated min ft from (iii) [getting confused with 3 factor]

B1 if say turning pt at $y=7$ or ft without identifying min or M1 for min at $x=-1$ [e.g. may start again and use calculus to obtain $x=-1]$ or min when $(x+1)^{[2]}=0$; and A1 for showing y positive at min or M1 for showing discriminant neg. so no real roots and A1 for showing above axis not below eg positive x^{2} term or goes though $(0,10)$ or M1 for stating bracket squared must be positive [or zero] and A1 for saying other term is positive

 \&

5

4

4

2
\end{tabular}

\hline
\end{tabular}

4751 (C1) Introduction to Advanced Mathematics

Section A

1	$(0,14)$ and $(14 / 4,0)$ o.e. isw	4	M2 for evidence of correct use of gradient with $(2,6)$ eg sketch with 'stepping' or $y-6=-4(x-2)$ seen or y $=-4 x+14$ o.e. or M1 for $y=-4 x+c$ [accept any letter or number] and M 1 for $6=-4 \times 2+c$; A1 for $(0,14)$ [$c=14$ is not sufficient for A1] and A1 for (14/4, 0) o.e.; allow when $x=0, y=14$ etc isw	4
2	$[a=] \frac{2(s-u t)}{t^{2}}$ o.e. as final answer [condone $[a=] \frac{(s-u t)}{0.5 t^{2}}$]	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty [eg dividing by t does not count as step - needs to be by t^{2}] [$a=] \frac{(s-u t)}{\frac{1}{2} t^{2}}$ gets M2 only (similarly other triple-deckers)	3
3	10 www	3	M1 for $\mathrm{f}(3)=1$ soi and A1 for $31-3 k=1$ or $27-3 k=-3$ o.e. [a correct 3-term or 2-term equation] long division used: M1 for reaching $(9-k) x+4$ in working and A1 for $4+3(9-k)=1$ o.e. equating coeffts method: M2 for $(x-3)\left(x^{2}+3 x-1\right)[+1]$ o.e. (from inspection or division)	3
4	$x<0$ or $x>6$ (both required)	2	B1 each; if B 0 then M 1 for 0 and 6 identified;	2
5	(i) 10 www (ii) 80 www or $\mathrm{ft} 8 \times$ their (i)	2 2	M1 for $\frac{5 \times 4 \times 3}{3 \times 2(\times 1)}$ or $\frac{5 \times 4}{2(\times 1)}$ or for $\begin{array}{lllllll}1 & 5 & 10 & 10 & 5 & 1 & \text { seen }\end{array}$ B2 for $80 x^{3}$; M1 for 2^{3} or $(2 x)^{3}$ seen	4
				16

6	any general attempt at n being odd and n being even even	M1	M0 for just trying numbers, even if some odd, some even odd implies n^{3} odd and odd - odd even n even implies n^{3} even and even - even $=$ even	A1

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 12 \& iA \& expansion of one pair of brackets correct 6 term expansion \& M1
M1 \& \begin{tabular}{l}
eg \([(x+1)]\left(x^{2}-6 x+8\right)\); need not be simplified eg \(x^{3}-6 x^{2}+8 x+x^{2}-6 x+8 ;\) \\
or M2 for correct 8 term expansion: \(x^{3}-4 x^{2}+x^{2}-2 x^{2}+8 x-4 x-2 x+\) \\
8, M1 if one error \\
allow equivalent marks working backwards to factorisation, by long division or factor theorem etc or M1 for all three roots checked by factor theorem and M1 for comparing coeffts of \(x^{3}\)
\end{tabular} \& 2 \\
\hline \& iB \& cubic the correct way up \(x\)-axis: -1, 2, 4 shown \(y\)-axis 8 shown \& \[
\begin{aligned}
\& \text { G1 } \\
\& \text { G1 } \\
\& \text { G1 }
\end{aligned}
\] \& \begin{tabular}{l}
with two tps and extending beyond the axes at 'ends' \\
ignore a second graph which is a translation of the correct graph
\end{tabular} \& 3 \\
\hline \& ic \& \[
\begin{aligned}
\& {[y=](x-2)(x-5)(x-7) \text { isw or }} \\
\& (x-3)^{3}-5(x-3)^{2}+2(x-3)+8 \\
\& \text { isw or } x^{3}-14 x^{2}+59 x-70
\end{aligned}
\]
\[
(0,-70) \text { or } y=-70
\] \& 2

1 \& | M1 if one slip or for $[y=] f(x-3)$ or for roots identified at $2,5,7$ or for translation 3 to the left allow M1 for complete attempt: $(x+4)(x+$ 1) $(x-1)$ isw or $(x+3)^{3}-5(x+3)^{2}+2(x+3)+8$ isw |
| :--- |
| allow 1 for $(0,-4)$ or $y=-4$ after $\mathrm{f}(x$ +3) used | \& 3

\hline \& \multirow[t]{4}{*}{ii} \& $$
\begin{aligned}
& 27-45+6+8=-4 \text { or } 27-45+ \\
& 6+12=0
\end{aligned}
$$ \& B1 \& or correct long division of $x^{3}-5 x^{2}+$ $2 x+12$ by $(x-3)$ with no remainder or of $x^{3}-5 x^{2}+2 x+8$ with rem -4 \&

\hline \& \& long division of $f(x)$ or their $f(x)+4$ by $(x-3)$ attempted as far as $x^{3}-$ $3 x^{2}$ in working

$$
x^{2}-2 x-4 \text { obtained }
$$ \& M1

A1 \& or inspection with two terms correct eg $(x-3)\left(x^{2} \ldots \ldots \ldots-4\right)$ \&

\hline \& \& $$
\begin{aligned}
& {[x=] \frac{2 \pm \sqrt{(-2)^{2}-4 \times(-4)}}{2} \text { or }} \\
& (x-1)^{2}=5
\end{aligned}
$$ \& M1 \& dep on previous M1 earned; for attempt at formula or comp square on their other 'factor' \&

\hline \& \& $\frac{2 \pm \sqrt{20}}{2}$ o.e. isw or $1 \pm \sqrt{5}$ \& A1 \& \& 5
13

\hline
\end{tabular}

4751 (C1) Introduction to Advanced Mathematics

1	[$a=] 2 c^{2}-b$ www o.e.	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty
2	$\begin{aligned} 5 x-3 & <2 x+10 \\ 3 x & <13 \\ x & <\frac{13}{3} \text { o.e. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	condone ' $=$ ' used for first two Ms M0 for just $5 x-3<2(x+5)$ or $-13<-3 x$ or ft or ft; isw further simplification of 13/3; M0 for just $x<4.3$
3 (i)	$(4,0)$	1	allow $y=0, x=4$ bod $\mathbf{B 1}$ for $x=4$ but do not isw: $\mathbf{0}$ for $(0,4)$ seen 0 for $(4,0)$ and $(0,10)$ both given (choice) unless $(4,0)$ clearly identified as the x-axis intercept
3 (ii)	$5 x+2(5-x)=20 \text { o.e. }$ (10/3, 5/3) www isw	M1 A2	for subst or for multn to make coeffts same and appropriate addn/subtn; condone one error or $\mathbf{A 1}$ for $x=10 / 3$ and $\mathbf{A 1}$ for $y=5 / 3$ o.e. isw; condone 3.33 or better and 1.67 or better A1 for (3.3, 1.7)
4 (i)	translation by $\binom{-4}{0}$ or 4 [units] to left	$\begin{gathered} \text { B1 } \\ \text { B1 } \end{gathered}$	0 for shift/move or 4 units in negative x direction o.e.
4 (ii)	sketch of parabola right way up and with minimum on negative y-axis min at $(0,-4)$ and graph through -2 and 2 on x-axis	B1 B1	mark intent for both marks must be labelled or shown nearby
5 (i)	$\frac{1}{12} \text { or } \pm \frac{1}{12}$	2	M1 for $\frac{1}{144^{\frac{1}{2}}}$ o.e. or for $\sqrt{144}=12$ soi
5 (ii)	$\text { denominator }=18$ $\text { numerator }=5-\sqrt{7}+4(5+\sqrt{7})$ $=25+3 \sqrt{7}$ as final answer	B1 M1 A1	B0 if 36 after addition for M1, allow in separate fractions allow $\mathbf{B 3}$ for $\frac{25+3 \sqrt{7}}{18}$ as final answer www

6 (i)	cubic correct way up and with two turning pts touching x-axis at -1 , and through it at 2.5 and no other intersections y - axis intersection at -5	B1 B1 B1	intns must be shown labelled or worked out nearby
6 (ii)	$2 x^{3}-x^{2}-8 x-5$	2	B1 for 3 terms correct or M1 for correct expansion of product of two of the given factors
7	$\begin{aligned} & \text { attempt at } \mathrm{f}(-3) \\ & -27+18-15+k=6 \\ & k=30 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	or M1 for long division by $(x+3)$ as far as obtaining $x^{2}-x$ and $\mathbf{A 1}$ for obtaining remainder as $k-24$ (but see below) equating coefficients method: M2 for $(x+3)\left(x^{2}-x+8\right)[+6]$ o.e. (from inspection or division) eg M2 for obtaining $x^{2}-x+8$ as quotient in division
8	$x^{3}+15 x+\frac{75}{x}+\frac{125}{x^{3}}$ www isw or $x^{3}+15 x+75 x^{-1}+125 x^{-3}$ WWW isw	4	B1 for both of x^{3} and $\frac{125}{x^{3}}$ or $125 x^{-3}$ isw and M1 for 1331 soi; A1 for each of $15 x$ and $\frac{75}{x}$ or $75 x^{-1}$ isw or SC2 for completely correct unsimplified answer

9	$\begin{aligned} & x^{2}-5 x+7=3 x-10 \\ & x^{2}-8 x+17[=0] \text { o.e or } \\ & y^{2}-4 y+13[=0] \text { o.e } \end{aligned}$ use of $b^{2}-4 a c$ with numbers subst (condone one error in substitution) (may be in quadratic formula) $b^{2}-4 a c=64-68 \text { or }-4 \text { cao }$ [or $16-52$ or -36 if y used] [<0] so no [real] roots [so line and curve do not intersect]	M1 M1 M1 A1 A1	or attempt to subst $(y+10) / 3$ for x condone one error; allow M1 for $x^{2}-8 x=-17$ [oe for y] only if they go on to completing square method or $(x-4)^{2}=16-17$ or $(x-4)^{2}+1=0$ (condone one error) or $(x-4)^{2}=-1$ or $x=4 \pm \sqrt{-1}$ $\left[\right.$ or $(y-2)^{2}=-9$ or $y=2 \pm \sqrt{-9}$] or conclusion from comp. square; needs to be explicit correct conclusion and correct ft; allow '<0 so no intersection' o.e.; allow ' -4 so no roots' etc allow A2 for full argument from sum of two squares $=0$; A1 for weaker correct conclusion some may use the condition $b^{2}<4 a c$ for no real roots; allow equivalent marks, with first A 1 for $64<68$ o.e.
10 (i)	$\operatorname{grad} C D=\frac{5-3}{3-(-1)}\left[=\frac{2}{4}\right.$ o.e. $]$ isw $\operatorname{grad} \mathrm{AB}=\frac{3-(-1)}{6-(-2)}$ or $\frac{4}{8}$ isw same gradient so parallel www	M1 M1 A1	NB needs to be obtained independently of grad AB must be explicit conclusion mentioning 'same gradient' or 'parallel' if M0, allow B1 for 'parallel lines have same gradient' o.e.
10 (ii)	$\begin{aligned} & {\left[\mathrm{BC}^{2}=\right] 3^{2}+2^{2}} \\ & {\left[\mathrm{BC}^{2}=\right] 13} \\ & \text { showing } \mathrm{AD}^{2}=1^{2}+4^{2}[=17]\left[\neq \mathrm{BC}^{2}\right] \\ & \text { isw } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	accept $(6-3)^{2}+(3-5)^{2}$ o.e. or $[\mathrm{BC}=] \sqrt{13}$ or $[\mathrm{AD}=] \sqrt{17}$ or equivalent marks for finding AD or $A D^{2}$ first alt method: showing $\mathrm{AC} \neq \mathrm{BD}$ - mark equivalently

10 (iii)	[BD eqn is] $y=3$ eqn of AC is $y-5=6 / 5 \times(x-3)$ o.e [$y=1.2 x+1.4$ o.e.] M is $(4 / 3,3)$ o.e. isw	M1 M2 A1	eg allow for 'at M, $y=3$ ' or for 3 subst in eqn of AC or M1 for grad AC $=6 / 5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of $\mathrm{A}(-2,-1)$ or C $(3,5)$ in eqn of line or $\mathbf{M 1}$ for 'stepping' method to reach M allow : at $M, x=16 / 12$ o.e. $[\mathrm{eg}=4 / 3]$ isw A0 for 1.3 without a fraction answer seen
10 (iv)	midpt of $\mathrm{BD}=(5 / 2,3)$ or equivalent simplified form cao midpt $\mathrm{AC}=(1 / 2,2)$ or equivalent simplified form cao or ' M is $2 / 3$ of way from A to C ' conclusion 'neither diagonal bisects the other'	M1 M1 A1	or showing $\mathrm{BM} \neq \mathrm{MD}$ oe $[B M=14 / 3, M D=7 / 3]$ or showing $\mathrm{AM} \neq \mathrm{MC}$ or $\mathrm{AM}^{2} \neq \mathrm{MC}^{2}$ in these methods A 1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion

11 (i)	$\begin{aligned} & \text { centre } \mathrm{C}^{\prime}=(3,-2) \\ & \text { radius } 5 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	0 for ± 5 or -5
11 (ii)	showing $(6-3)^{2}+(-6+2)^{2}=25$ showing that $\overrightarrow{A C^{\prime}}=\overrightarrow{C^{\prime} B}=\binom{-3}{4}$ o.e.	B1	interim step needed or B1 each for two of: showing midpoint of $\mathrm{AB}=(3,-2)$; showing $B(0,2)$ is on circle; showing $A B=10$ or B2 for showing midpoint of $A B=(3,-2)$ and saying this is centre of circle or $\mathbf{B 1}$ for finding eqn of AB as $y=-4 / 3 x+2$ o.e. and $\mathbf{B 1}$ for finding one of its intersections with the circle is $(0,2)$ or $\mathbf{B 1}$ for showing $\mathrm{C}^{\prime} \mathrm{B}=5$ and $\mathbf{B 1}$ for showing $\mathrm{AB}=10$ or that AC^{\prime} and BC^{\prime} have the same gradient or B1 for showing that AC^{\prime} and BC^{\prime} have the same gradient and B 1 for showing that $B(0,2)$ is on the circle
11 (iii)	grad $A C^{\prime}$ or $A B=-4 / 3$ o.e. grad tgt $=-1 /$ their $A C^{\prime}$ grad $y-(-6)=$ their $m(x-6)$ o.e. $y=0.75 x-10.5 \text { o.e. isw }$	M1 M1 M1 A1	or ft from their C^{\prime}, must be evaluated may be seen in eqn for tgt; allow M2 for grad $\operatorname{tgt}=3 / 4$ oe soi as first step or M1 for $y=$ their $m \times x+c$ then subst (6, -6) eg A1 for $4 y=3 x-42$ allow $\mathbf{B 4}$ for correct equation www isw
11 (iv)	centre C is at $(12,-14)$ cao circle is $(x-12)^{2}+(y+14)^{2}=100$	B2	B1 for each coord ft their C if at least one coord correct

12 (i)	10	1	
12 (ii)	$[x=] 5 \text { or ft their (i) } \div 2$ $\mathrm{ht}=5[\mathrm{~m}] \text { cao }$		not necessarily ft from (i) eg they may start again with calculus to get $x=5$
12 (iii)	$d=7 / 2 \text { o.e. }$ $[y=] 1 / 5 \times 3.5 \times(10-3.5)$ o.e. or ft = 91/20 o.e. cao isw	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	or ft their (ii) -1.5 or their (i) $\div 2-1.5$ o.e. or $7-1 / 5 \times 3.5^{2}$ or ft or showing $y-4=11 / 20$ o.e. cao
12 (iv)	$\begin{aligned} & 4.5=1 / 5 \times x(10-x) \text { o.e. } \\ & 22.5=x(10-x) \text { o.e. } \\ & 2 x^{2}-20 x+45[=0] \text { o.e. eg } \\ & x^{2}-10 x+22.5[=0] \text { or }(x-5)^{2}=2.5 \\ & {[x=] \frac{20 \pm \sqrt{40}}{4} \text { or } 5 \pm \frac{1}{2} \sqrt{10} \text { o.e. }} \end{aligned}$ width $=\sqrt{10}$ o.e. eg $2 \sqrt{2.5}$ cao	M1 M1 A1 M1 A1	eg $4.5=x(2-0.2 x)$ etc cao; accept versions with fractional coefficients of x^{2}, isw or $x-5=[\pm] \sqrt{2.5}$ o.e.; ft their quadratic eqn provided at least M1 gained already; condone one error in formula or substitution; need not be simplified or be real accept simple equivalents only

GCE

Mathematics (MEI)

Advanced Subsidiary GCE 4751

Mark Scheme for June 2010

SECTION A

1	$y=3 x+c \text { or } y-y_{1}=3\left(x-x_{1}\right)$ $y-5=$ their $m(x-4)$ o.e. $y=3 x-7$ or simplified equiv.	M1 M1 A1	allow M1 for 3 clearly stated/ used as gradient of required line or $(4,5)$ subst in their $y=m x+c$; allow M1 for $y-5=m(x-4)$ o.e. condone $y=3 x+c$ and $c=-7$ or B3 www
2	(i) $250 a^{6} b^{7}$ (ii) 16 cao (iii) 64	2 1 2	B1 for two elements correct; condone multiplication signs left in SC1 for eg $250+a^{6}+b^{7}$ condone ± 64 M1 for $[\pm] 4^{3}$ or for $\sqrt{4096}$ or for only -64
3	$\begin{aligned} a c & =\sqrt{y}-5 & \text { o.e. } \\ a c+5 & =\sqrt{y} & \text { o.e. } \\ {[y} & =](a c+5)^{2} & \text { o.e. isw } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	M1 for each of 3 correct or ft correct steps s.o.i. leading to y as subject or some/all steps may be combined; allow B3 for $[y=](a c+5)^{2}$ o.e. isw or $\mathbf{B 2}$ if one error
4 (i)	$2-2 x>6 x+5$ $-3>8 x$ o.e. or ft $x<-3 / 8$ o.e. or ft isw	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	or $1-x>3 x+2.5$ for collecting terms of their inequality correctly on opposite sides eg $-8 x>3$ allow $\mathbf{B} 3$ for correct inequality found after working with equation allow SC2 for $-3 / 8$ o.e. found with equation or wrong inequality
4 (ii)	$-4<x<1 / 2$ o.e.	2	accept as two inequalities M1 for one 'end' correct or for -4 and $1 / 2$
5 (i)	$7 \sqrt{3}$	2	M1 for $\sqrt{48}=4 \sqrt{3}$ or $\sqrt{27}=3 \sqrt{3}$

5 (ii)	$\frac{10+15 \sqrt{2}}{7}$ www isw	3	B1 for 7 [B0 for 7 wrongly obtained] and $\mathbf{B} 2$ for $10+15 \sqrt{2}$ or $\mathbf{B} 1$ for one term of numerator correct; if B0, then M1 for attempt to multiply num and denom by $3+\sqrt{2}$
6	$\begin{aligned} & 5+2 k \text { soi } \\ & k=12 \\ & \text { attempt at } \mathrm{f}(3) \\ & 27+36+m=59 \text { o.e. } \\ & m=-4 \text { cao } \end{aligned}$	M1 A1 M1 A1 A1	allow M1 for expansion with $5 x^{3}+$ $2 k x^{3}$ and no other x^{3} terms or M1 for (29-5) / 2 soi must substitute 3 for x in cubic not product or long division as far as obtaining x^{2} $+3 x$ in quotient or from division $m-(-63)=59$ o.e. or for $27+3 k+m=59$ or ft their k
7	$1+2 x+\frac{3}{2} x^{2}+\frac{1}{2} x^{3}+\frac{1}{16} x^{4}$ oe (must be simplified) isw	4	B3 for 4 terms correct, or $\mathbf{B} 2$ for 3 terms correct or for all correct but unsimplified (may be at an earlier stage, but factorial or ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ notation must be expanded/worked out) or $\mathbf{B 1}$ for $1,4,6,4,1$ soi or for $1+\ldots+\frac{1}{16} x^{4}$ [must have at least one other term]
8	$5(x+2)^{2}-14$	4	$\begin{aligned} & \text { B1 for } a=5 \text {, and } \mathbf{B 1} \text { for } b=2 \\ & \text { and } \mathbf{B 2} \text { for } c=-14 \text { or } \mathbf{M 1} \text { for } c=6- \\ & \text { their } a b^{2} \text { or } \\ & \text { M1 for }[\text { their } a]\left(6 / \text { their } a-\text { their } b^{2}\right) \\ & {[\text { no ft for } a=1]} \end{aligned}$
9	mention of -5 as a square root of 25 or $(-5)^{2}=25$ $\begin{array}{\|l} -5-5 \neq 0 \text { o.e. } \\ \text { or } x+5=0 \end{array}$	M1 M1	condone $-5^{2}=25$ or, dep on first M1 being obtained, allow M1 for showing that 5 is the only soln of $x-5=0$ allow M2 for $\begin{aligned} & x^{2}-25=0 \\ & (x+5)(x-5)[=0] \\ & \text { so } x-5=0 \text { or } x+5=0 \end{aligned}$

SECTION B

$\left.\begin{array}{|ll|l|l|l|}\hline \text { 10 } & \text { (i) } & \begin{array}{l}(2 x-3)(x+1) \\ x=3 / 2 \text { and }-1 \text { obtained }\end{array} & \text { M2 } & \begin{array}{l}\text { M1 for factors with one sign error } \\ \text { or giving two terms correct } \\ \text { allow M1 for 2 }(x-1.5)(x+1) \text { with } \\ \text { no better factors seen }\end{array} \\ \text { or ft their factors }\end{array}\right\}$

\begin{tabular}{|c|c|c|c|}
\hline 11 (i) \& \[
\begin{aligned}
\& \operatorname{grad} \mathrm{AB}=\frac{1-3}{5-(-1)}[=-1 / 3] \\
\& y-3=\text { their } \operatorname{grad}(x-(-1)) \text { or } \\
\& y-1=\text { their } \operatorname{grad}(x-5)
\end{aligned}
\]
\[
y=-1 / 3 x+8 / 3 \text { or } 3 y=-x+8 \text { o.e }
\] isw \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or use of \(y=\) their gradient \(x+c\) with coords of A or B or M2 for \(\frac{y-3}{1-3}=\frac{x-(-1)}{5-(-1)}\) o.e.
\[
\text { o.e. eg } x+3 y-8=0 \text { or } 6 y=16-
\] \(2 x\) \\
allow B3 for correct eqn www
\end{tabular} \\
\hline 11 (ii) \& \begin{tabular}{l}
when \(y=0, x=8\); when \(x=0\), \(y=8 / 3\) or ft their (i) \\
[Area \(=] 1 / 2 \times 8 / 3 \times 8\) o.e. cao isw
\end{tabular} \& M1 \& \begin{tabular}{l}
allow \(y=8 / 3\) used without explanation if already seen in eqn in (i) \\
NB answer 32/3 given; allow \(4 \times 8 / 3\) if first M1 earned; or M1 for
\[
\int_{0}^{8}\left[\frac{1}{3}(8-x)\right] \mathrm{d} x=\left[\frac{1}{3}\left(8 x-\frac{1}{2} x^{2}\right)\right]_{0}^{8}
\] \\
and M1 dep for \(\frac{1}{3}(64-32[-0])\)
\end{tabular} \\
\hline 11 (iii) \& \begin{tabular}{l}
grad perp \(=-1 /\) grad \(A B\) stated, or used after their grad AB stated in this part \\
midpoint \([\) of AB\(]=(2,2)\) \\
\(y-2=\) their grad perp \((x-2)\) or ft their midpoint \\
alt method working back from ans: \\
grad perp \(=-1 /\) grad \(A B\) and showing/stating same as given line \\
finding intn of their
\[
y=-1 / 3 x-8 / 3 \text { and } y=3 x-4 \text { is }
\] \((2,2)\) \\
showing midpt of \(A B\) is \((2,2)\)
\end{tabular} \& M1
M1
M1

or
M1
M1

M1 \& | or showing $3 \times-1 / 3=-1$ if (i) is wrong, allow the first M1 here ft , provided the answer is correct ft |
| :--- |
| must state 'midpoint' or show working |
| for M3 this must be correct, starting from grad $\mathrm{AB}=-1 / 3$, and also needs correct completion to given ans $y=3 x-4$ |
| mark one method or the other, to benefit of candidate, not a mixture |
| eg stating $-1 / 3 \times 3=-1$ |
| or showing that $(2,2)$ is on $y=3 x-$ 4 , having found $(2,2)$ first |
| [for both methods: for M3 must be fully correct] |

\hline
\end{tabular}

11 (iv)	eqn is $(x-3)^{2}+(y-5)^{2}=20$ or ft their r and y-coord of centre	M1 M1 A1 B1	or using $(-1-3)^{2}+(3-b)^{2}=(5-$ $3)^{2}+(1-b)^{2}$ and finding $(3,5)$ or $(-1-3)^{2}+(3-5)^{2}$ or ft their centre using A or B condone $(x-3)^{2}+(y-b)^{2}=r^{2}$ o.e. or $(x-3)^{2}+(y \text { - their } 5)^{2}=r^{2}$ o.e. (may be seen earlier)
12 (i)	trials of at calculating $\mathrm{f}(x)$ for at least one factor of 30 details of calculation for $f(2)$ or $f(-3)$ or $f(-5)$ attempt at division by $(x-2)$ as far as $x^{3}-2 x^{2}$ in working correctly obtaining $x^{2}+8 x+15$ factorising a correct quadratic factor $(x-2)(x+3)(x+5)$	M1 A1 M1 A1 M1 A1	M0 for division or inspection used or equiv for $(x+3)$ or $(x+5)$; or inspection with at least two terms of quadratic factor correct or B2 for another factor found by factor theorem for factors giving two terms of quadratic correct; M0 for formula without factors found condone omission of first factor found; ignore ' $=0$ ' seen allow last four marks for $(x-2)(x+3)(x+5)$ obtained; for all 6 marks must see factor theorem use first
12 (ii)	sketch of cubic right way up, with two turning points values of intns on x axis shown, correct ($-5,-3$, and 2) or ft from their factors/ roots in (i) y-axis intersection at -30	B1 B1 B1	0 if stops at x-axis on graph or nearby in this part mark intent for intersections with both axes or $x=0, y=-30$ seen in this part if consistent with graph drawn

[^0]
GCE

Mathematics (MEI)

Advanced Subsidiary GCE

Mark Scheme for January 2011

Marking instructions for GCE Mathematics (MEI): Pure strand

1. You are advised to work through the paper yourself first. Ensure you familiarise yourself with the mark scheme before you tackle the practice scripts.
2. You will be required to mark ten practice scripts. This will help you to understand the mark scheme and will not be used to assess the quality of your marking. Mark the scripts yourself first, using the annotations. Turn on the comments box and make sure you understand the comments. You must also look at the definitive marks to check your marking. If you are unsure why the marks for the practice scripts have been awarded in the way they have, please contact your Team Leader.
3. When you are confident with the mark scheme, mark the ten standardisation scripts. Your Team Leader will give you feedback on these scripts and approve you for marking. (If your marking is not of an acceptable standard your Team Leader will give you advice and you will be required to do further work. You will only be approved for marking if your Team Leader is confident that you will be able to mark candidate scripts to an acceptable standard.)
4. Mark strictly to the mark scheme. If in doubt, consult your Team Leader using the messaging system within scoris, by email or by telephone. Your Team Leader will be monitoring your marking and giving you feedback throughout the marking period.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
5. The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.
Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
6. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
7. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
8. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (eg 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
9. Rules for crossed out and/or replaced work

If work is crossed out and not replaced, examiners should mark the crossed out work if it is legible.

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If two or more attempts are made at a question, and just one is not crossed out, examiners should ignore the crossed out work and mark the work that is not crossed out.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
10. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
11. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
12. For answers scoring no marks, you must either award NR (no response) or 0 , as follows:

Award NR (no response) if:

- Nothing is written at all in the answer space
- There is a comment which does not in any way relate to the question being asked ("can't do", "don't know", etc.)
- There is any sort of mark that is not an attempt at the question (a dash, a question mark, etc.)

The hash key [\#] on your keyboard will enter NR.
Award 0 if:

- There is an attempt that earns no credit. This could, for example, include the candidate copying all or some of the question, or any working that does not earn any marks, whether crossed out or not.

13. The following abbreviations may be used in this mark scheme.

M1	method mark (M2, etc, is also used)
A1	accuracy mark
B1	independent mark
E1	mark for explaining
U1	mark for correct units
G1	mark for a correct feature on a graph
M1 dep*	method mark dependent on a previous mark, indicated by *
cao	correct answer only
ft	follow through
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
sc	special case
soi	seen or implied
www	without wrong working

14. Annotating scripts. The following annotations are available:
\checkmark and x
BOD Benefit of doubt
FT Follow through
ISW Ignore subsequent working (after correct answer obtained)
M0, M1 Method mark awarded 0, 1
A0, A1 Accuracy mark awarded 0, 1
B0, B1 Independent mark awarded 0,1
SC Special case
$\wedge \quad$ Omission sign
MR Misread
Highlighting is also available to highlight any particular points on a script.
15. The comments box will be used by the Principal Examiner to explain his or her marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts.

Please do not type in the comments box yourself. Any questions or comments you have for your Team Leader should be communicated by the scoris messaging system, email or by telephone.
16. Write a brief report on the performance of the candidates. Your Team Leader will tell you when this is required. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.
17. Link Additional Objects with work relating to a question to those questions (a chain link appears by the relevant question number) - see scoris assessor Quick Reference Guide page 19-20 for instructions as to how to do this - this guide is on the Cambridge Assessment Support Portal and new users may like to download it with a shortcut on your desktop so you can open it easily! For AOs containing just formulae or rough working not attributed to a question, tick at the top to indicate seen but not linked. When you submit the script, scoris asks you to confirm that you have looked at all the additional objects. Please ensure that you have checked all Additional Objects thoroughly.
18. The schedule of dates for the marking of this paper is displayed under 'OCR Subject Specific Details' on the Cambridge Assessment Support Portal. It is vitally important that you meet these requirements. If you experience problems that mean you may not be able to meet the deadline then you must contact your Team Leader without delay.

SECTION A

1	$y=5 x+3$	3	M2 for $y-13=5(x-2)$ oe or M1 for $y=5 x[+k][k=$ letter or number other than -4] and M1 for $13=$ their $m \times 2+k$	or M1 for $y-b=5(x-a)$ with wrong a, b or for $y-13=$ their $5(x-2)$ oe M0 for first M if $-1 / 5$ used as gradient even if 5 seen first; second M still available if earned
2	(i)(A) 1/16	1	isw attempted conversion of $1 / 16$ to decimals	accept 0.0625
2	(i)(B) 1	1		set image 'fit to height' so that in marking this question you also check that there is no working on the back page attached to the image
2	(ii) 256/625	2	M1 for num or denom correct or for $4 / 5$ or 0.8	accept 0.4096
3	$\frac{9 y^{10}}{2 x^{2}}$ oe as final answer	3	1 for each 'term'; 27/6 gets 0 for first term if $\mathbf{0}$, allow $\mathbf{B 1}$ for $\left(3 x y^{4}\right)^{3}=27 x^{3} y^{12}$	allow eg 4.5x $x^{-2} y^{10}$
4	$x>5 / 2$ oe (-5/-2 oe not sufft)	2	M1 for $5<2 x$ or for $5 / 2$ oe obtained with equation or wrong inequality	M0 for just $-2 x<-5$ (not sufft) ; M1 for $x>-5 /-2$

5	$\begin{aligned} & \frac{3 V}{\pi r^{2}}=\sqrt{l^{2}-r^{2}} \\ & \left(\frac{3 V}{\pi r^{2}}\right)^{2}=l^{2}-r^{2} \\ & l^{2}=\left(\frac{3 V}{\pi r^{2}}\right)^{2}+r^{2} \\ & {[l=] \sqrt{\left(\frac{3 V}{\pi r^{2}}\right)^{2}+r^{2}}} \end{aligned}$	M1 M1 M1 M1	for correctly getting non- ' $l^{2}-r^{2}$ ' terms on other side[M0 for 'triple decker' fraction] oe or ft; for squaring correctly oe or ft ; for getting l term as subject oe. or ft; mark final answer; for finding square root (and dealing correctly with coefficient of l term if needed at this stage); condone $\pm \sqrt{ }$ etc	may be done in several steps, if so, condone omission of brackets in eg $9 V^{2}=\pi^{2} r^{4} l^{2}-r^{2}$ if they recover - if not, do not give $1^{\text {st }} \mathbf{M 1}$ [but can earn the $2^{\text {nd }} \mathbf{M 1}$] for combined steps, allow credit for correct process where possible; eg $\pi^{2} r^{4} l^{2}$ as the term on one side For M4, the final expression must be totally correct, [condoning omission of l and insertion of \pm] $\text { eg M4 for } \frac{\sqrt{9 V^{2}+\pi^{2} r^{6}}}{\pi r^{2}}$
6	$32-240 x+720 x^{2}$ isw	4	B3 for all correct except for sign error(s) B2 for 2 terms correct numerically, ignoring any sign error or for $32,-240$ and 720 found or B2 for all correct, including signs, but unsimplified B1 for binomial coeffts 1, 5, 10 used or 15101051 seen SC3 for $-240 x+720 x^{2}-1080 x^{3}$ isw or for $-243 x^{5}+810 x^{4}-1080 x^{3}$ or SC2 for these terms with sign error(s)	accept terms listed separately; condone $-240 x^{1}$ expressions left in ${ }^{n} C_{r}$ form or with factorials not sufft

7	(i) $3^{7 / 2}$ oe or $k=7 / 2$ oe	2	M1 for $\frac{3^{4}}{\sqrt{3}}$ or $\frac{81}{3^{1 / 2}}$ or $81 \times 3^{-1 / 2}$ or $3^{3} \sqrt{3}$ or $27 \times 3^{1 / 2}$ or better or for $81=3^{4}$ or $\sqrt{ } 3$ $=3^{1 / 2}$ or $\frac{1}{\sqrt{3}}=3^{-1 / 2}$ or (following correct rationalisation of denominator) for $27=3^{3}$ isw conversion of $7 / 2$ oe	M0 for just $81=3 \times 3 \times 3 \times 3$ oe - indices needed allow an M mark for partially correct work still seen in fraction form eg $\frac{3^{4}}{3^{-1 / 2}}$ gets mark for $81=3^{4}$
7	(ii) $\frac{14+5 \sqrt{3}}{11}$ or $\frac{28+10 \sqrt{3}}{22}$ www isw	3	M1 for multiplying num and denom by $5+\sqrt{ } 3$ and M1 for num or denom correct in final answer (M0 if wrongly obtained)	$2^{\text {nd }} \mathbf{M} 1$ is not dependent on $1^{\text {st }} \mathbf{M} 1$
8	(7/11, 24/11) oe www	3	B2 for one coord correct; condone not expressed as coords, isw or M1 for subst or elimination; eg $x+$ $2(5 x-1)=5$ oe; condone one error SC2 for mixed fractions and decimals eg (3.5/5.5, 12/5.5)	
9	(i) $1 / 2 \times 2 x \times(x+2+3 x+6)$ oe $x(4 x+8)=140$ oe and given ans $x^{2}+2 x-35=0$ obtained correctly with at least one further interim step	M1 A1	correct statement of area of trap; may be rectangle \pm triangle, or two triangles	$\text { eg } 2 x(x+2)+1 / 2 \times 2 x \times(2 x+4)$ condone missing brackets for M1; condone also for A1 if expansion is treated as if they were there

	(ii) [AB =] 21 www	3	$\begin{aligned} & \text { or } \mathbf{B 2} \text { for } x=[-7 \text { or }] 5 \text { cao www or for } \\ & \text { AB }=21 \text { or }-15 \\ & \text { or } \mathbf{M 1} \text { for }(x+7)(x-5)[=0] \text { or formula } \\ & \text { or completing square used eg }(x+1)^{2}- \\ & 36[=0] \text {; condone one error eg factors } \\ & \text { with sign wrong or which give two } \\ & \text { terms correct when expanded } \\ & \text { or M1 for showing } \mathrm{f}(5)=0 \text { without } \\ & \text { stating } x=5 \end{aligned}$	may be done in (i) if not here - allow the marks if seen in either part of the image - some candidates are omitting the request in (i) and going straight to solving the equation (in which case give 0 [not NR] for (i), but annotate when the image appears again in (ii)) 5 on its own or $\mathrm{AB}=5$ with no working scores 0 ; we need to see $x=5$
10	(i) $\mathrm{P} \Leftarrow \mathrm{Q}$ (ii) none [of the above] (iii) $P \Rightarrow Q$	1	$\text { or } \Leftarrow \text { or ' } \mathrm{Q} \Rightarrow \mathrm{P} \text { ' }$ $\text { or } \Rightarrow$	Condone single arrows

Section A Total: 36

SECTION B

\begin{tabular}{|c|c|c|c|c|}
\hline 11 \& \begin{tabular}{l}
(i) grad \(\mathrm{AB}=\frac{0-6}{1-(-1)}\) oe \([=-3]\) isw \\
\(\operatorname{grad} B C=\frac{0-4}{1-13}\) oe \([=1 / 3]\) isw \\
product of grads \(=-1\) [so lines perp] stated or shown numerically
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
M1
\end{tabular} \& \begin{tabular}{l}
for full marks, it should be clear that grads are independently obtained \\
or 'one grad is neg. reciprocal of other' or \\
M1 for length of one side (or square of it) \\
M1 for length of other two sides (or their squares) found independently M1 for showing or stating that Pythag holds [so triangle rt angled]
\end{tabular} \& \begin{tabular}{l}
eg grads of -3 and \(1 / 3\) without earlier working earn M1M0 \\
for M3, must be fully correct, with gradients evaluated at least to \(-6 / 2\) and \(-4 /-12\) stage
\[
\begin{aligned}
\& \mathrm{AB}^{2}=6^{2}+2^{2}=40, \mathrm{BC}^{2}=4^{2}+12^{2}=160, \mathrm{AC}^{2}=14^{2} \\
\& +2^{2}=200
\end{aligned}
\]
\end{tabular} \\
\hline 11 \& \begin{tabular}{l}
(ii) \(\mathrm{AB}=\sqrt{ } 40\) or \(\mathrm{BC}=\sqrt{ } 160\) \\
\(1 / 2 \times \sqrt{ } 40 \times \sqrt{ } 160\) oe or ft their \(\mathrm{AB}, \mathrm{BC}\) \\
40
\end{tabular} \& M1
M1

A1 \& or M1 for one of area under AC (=70), under AB (=6) under BC (=24) (accept unsimplified) and M1 for their trap. two triangles \& | allow M1 for $\sqrt{(1-(-1))^{2}+(6-0)^{2}}$ or for $\sqrt{(13-1)^{2}+(4-0)^{2}}$ |
| :--- |
| or for rectangle -3 triangles method, $\begin{aligned} & {\left[6 \times 14-\frac{1}{2}(2)(6)-\frac{1}{2}(4)(12)-\frac{1}{2}(2)(14)\right.} \\ & =84-6-24-14] \end{aligned}$ |
| M1 for two of the 4 areas correct and M1 for the subtraction |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 11 \& \begin{tabular}{l}
(iii) angle subtended by diameter \(=\) \(90^{\circ}\) soi \\
mid point M of \(\mathrm{AC}=(6,5)\) \\
rad of circle \(=\frac{1}{2} \sqrt{14^{2}+2^{2}}[=] \frac{1}{2} \sqrt{200}\) oe or equiv using \(r^{2}\) \\
\((x-a)^{2}+(y-b)^{2}=r^{2}\) seen or \((x-\text { their } 6)^{2}+(y-\text { their } 5)^{2}=k\) used, with \(k>0\)
\[
(x-6)^{2}+(y-5)^{2}=50 \text { cao }
\]
\end{tabular} \& B1
B2
M1
M1
A1 \& \begin{tabular}{l}
or angle at centre \(=\) twice angle at circumf \(=2 \times 90=180\) soi or showing \(\mathrm{BM}=\mathrm{AM}\) or CM , where M is midpt of AC ; or showing that \(\mathrm{BM}=\) \(1 / 2 \mathrm{AC}\) \\
allow if seen in circle equation ; M1 for correct working seen for both coords \\
accept unsimplified; or eg \(r^{2}=7^{2}+1^{2}\) or \(5^{2}+5^{2}\); may be implied by correct equation for circle or by correct method for \(\mathrm{AM}, \mathrm{BM}\) or CM ft their M \\
or \(x^{2}+y^{2}-12 x-10 y+11=0\)
\end{tabular} \& \begin{tabular}{l}
condone ' AB and BC are perpendicular' or ' ABC is right angled triangle’ provided no spurious extra reasoning \\
allow M1 bod intent for \(\mathrm{AC}=\sqrt{200}\) followed by \(r=\) \(\sqrt{100}\) \\
must be simplified (no surds)
\end{tabular} \\
\hline 11 \& (iv) \((11,10)\) cao \& 1 \& \& \\
\hline 12 \& \begin{tabular}{l}
(i)(A) sketch of cubic correct way up and with two tps, crossing \(x\)-axis in 3 distinct points \\
crossing \(x\) axis at 1, 2.5 and 4 \\
crossing \(y\) axis at -20
\end{tabular} \& B1
B1

B1 \& \begin{tabular}{l}
$\mathbf{0}$ if stops at x-axis; condone not crossing y-axis

intersections labelled on graph or shown nearby in this part; mark intent for intersections with both axes (eg condone graphs stopping at axes)

or $x=0, y=-20$ seen in this part if consistent with graph drawn

 \&

No section to be ruled; no curving back; condone slight 'flicking out' at ends; condone some doubling (eg erased curves may continue to show)

allow 2.5 indicated by graph crossing halfway between their marked 2 and 3 on scale; allow if no graph but 0 if graph inconsistent with values

allow if no graph, but eg B0 for graph with intn on +ve y-axis or nowhere near their indicated -20
\end{tabular}

\hline
\end{tabular}

12	(i)(B) correct expansion of two brackets correct interim step(s) multiplying out linear and quadratic factors before given answer or showing that $1,2.5$ and 4 all satisfy $\mathrm{f}(x)=0$ for cubic in $2 x^{3} \ldots$ form comparing coeffts of eg x^{3} in the two forms	M1 M1 or M1 M1	or M2 for all 3 brackets multiplied at once, showing all 8 terms (M1 if error in one term): $2 x^{3}-8 x^{2}-2 x^{2}-5 x^{2}+8 x$ $+5 x+20 x-20$ or M1 for dividing $2 x^{3}$... form by one of the linear factors and $\mathbf{M 1}$ for factorising the resultant quadratic factor	eg M1 for $(2 x-5)\left(x^{2}-5 x+4\right)$ condone missing brackets if intent clear /used correctly
12	(ii)(A) $250-375+165-40$ isw	B1	or showing that $x-5$ is a factor by eg division and then stating that $x=5$ is root or that $g(5)=0$	' $2 \times 125+15 \times 25+33 \times 5-40$ ' is not sufft or $[g(5)=] f(5)-20=5 \times 4 \times 1-20[=0]$
12	(ii) (B) $(x-5)$ seen or used as linear factor division by $(x-5)$ as far as $2 x^{3}-10 x^{2}$ seen in working $2 x^{2}-5 x+8 \text { obtained isw }$	M1 M1 A1	may be in attempt at division or inspection/equating coefficients with two terms correct eg ($2 x^{2} \ldots . .+8$) eg may be seen in grid; condone $\mathrm{g}(x)$ not expressed as product	allow if seen in (ii)(A) for division: condone signs of $2 x^{3}-10 x^{2}$ changed for subtraction, or subtraction sign in front of first term

12	(ii)(C) $b^{2}-4 a c$ used on their quadratic factor $(-5)^{2}-4 \times 2 \times 8$ oe and negative [or -39] so no [real] root [may say only one [real] root, thinking of $x=5$]	M1 A1	may be in formula [or allow 2 marks for complete correct attempt at completing square and conclusion, or using calculus to show min value is above x-axis and comment re curve all above x-axis]	no ft for A mark from wrong quadratic factor condone error in working out -39 if correct unsimplified expression seen and neg result obtained $-5^{2}-4 \times 2 \times 8$ evaluated correctly with comment is eligible for A1, otherwise bod for the M1 only
12	(iii) translation $\binom{0}{-20}$	B1 B1	NB ‘Moves’ not sufficient for this first mark or 20 down;	B0 for second mark if choice of one wrong, one right description
13	(i) $(0,-2)$ or 'crosses y-axis at -2 ' oe isw $\left(\pm 2^{\frac{1}{4}}, 0\right)$ oe isw	B1 B2	or [when $y=0$], $[x=] \pm 2^{\frac{1}{4}}$ or $\pm \sqrt{\sqrt{2}}$ or $\pm \sqrt[4]{2}$ isw B1 for one root correct	condone $y=-2$

13	(ii) $[y=] x^{2}=x^{4}-2$ oe and rearrangement to $x^{4}-x^{2}-2[=0]$ or $y^{2}-y-2[=0]$ $\left(x^{2}-2\right)\left(x^{2}+1\right)=0$ oe in y $x^{2}=2[$ or -1$]$ or $y=2$ or -1 or ft or $x=\sqrt{2}$ or $x=-\sqrt{2}$ or ft $(\sqrt{2}, 2)$ and $(-\sqrt{2}, 2)$; with no other intersections given	M1 M1 M1 B2	or formula or completing square; condone one error; condone replacement of x^{2} by another letter or by x for $2^{\text {nd }}$ M1 (but not the $3^{\text {rd }}$ M1) dep on $2^{\text {nd }} \mathbf{M 1}$; allow inclusion of correct complex roots; M0 if any incorrect roots are included for x^{2} or x or $\mathbf{B 1}$ for one of these two intersections (even if extra intersections given) or for $x= \pm \sqrt{2}$ (and no other roots) or for $y=$ 2 (and no other roots), marking to candidates’ advantage	if completing square, and haven't arranged to zero, can earn first M1 as well for an attempt such as $\left(x^{2}-0.5\right)^{2}=2.25$ NB for second and third M: M0 for $x^{2}-2=0$ or $x^{2}=2$ oe straight from quartic eqn - some candidates probably thinking $x^{4}-x^{2}$ simplifies to x^{2}; last two marks for roots are available as B marks some candidates having several attempts at solving this equation - mark the best in this particular case

13	(iii) from $x^{4}-k x^{2}-2[=0]$: $k^{2}+8>0$ oe $k+\sqrt{k^{2}+8} \geq 0$ for all k [so there is a positive root for x^{2} and hence real root for x and so intersection]	B1 B1	Allow x^{2} replaced by other letters or x or from $y^{2}-k^{2} y-2 k^{2}[=0]$ $k^{4}+8 k^{2}>0$ oe $k^{2}+\sqrt{k^{4}+8 k^{2}}>0$ oe for all k [so there is a positive root for y and hence real root for x and so intersection] if B0B0, allow SC1 for $\frac{k \pm \sqrt{k^{2}+8}}{2}$ or $\frac{k^{2} \pm \sqrt{k^{4}+8 k^{2}}}{2}$ obtained [need not be simplified]	[alt methods: may use completing square to show similarly, or comment that at $x=0$ the quadratic is above the quartic and that as $x \rightarrow \infty, x^{4}-2>k x^{2}$ for all $k]$ condone lack of brackets in $(-k)^{2}$

GCE

Mathematics (MEI)

Advanced Subsidiary GCE
Unit 4751: Introduction to Advanced Mathematics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	$x>-13 / 4$ o.e. isw www	3	condone $x>13 /-4$ or $13 /-4<x$; M2 for $4 x>-13$ or $\mathbf{M 1}$ for one side of this correct with correct inequality, and $\mathbf{B} 1$ for final step ft from their $a x>b$ or $c>d x$ for $a \neq 1$ and $d \neq 1$; if no working shown, allow SC1 for $-13 / 4$ oe with equals sign or wrong inequality	M1 for $13>-4 x$ (may be followed by $13 /-4>x$, which earns no further credit); $6 x+3>2 x+5$ is an error not an MR; can get M1 for $4 x>\ldots$ following this, and then a possible B1
2	7	2	condone $y=7$ or (5, 7); M1 for $\frac{k-(-5)}{5-1}=3$ or other correct use of gradient eg triangle with 4 across, 12 up	condone omission of brackets; or M1 for correct method for eqn of line and $x=5$ subst in their eqn and evaluated to find k; or M1 for both of $y-k=3(x-5)$ oe and $y-(-5)=3(x-1)$ oe
3	(i) $4 / 3$ isw	2	condone $\pm 4 / 3$; M1 for numerator or denominator correct or for $\frac{3}{4}$ or $\frac{1}{\left(\frac{3}{4}\right)}$ oe or for $\left(\frac{16}{9}\right)^{\frac{1}{2}} \text { soi }$	M1 for just -4/3; allow M1 for $\sqrt{16}=4$ and $\sqrt{9}=3$ soi; condone missing brackets

3	(ii) $\frac{2 a}{c^{5}}$ or $2 a c^{-5}$	3	B1 for each 'term' correct; mark final answer; if B0, then SC1 for $\left(2 a c^{2}\right)^{3}=8 a^{3} c^{6}$ or $72 a^{5} c^{7}$ seen	condone a^{1}; condone multiplication signs but $\mathbf{0}$ for addition signs
4	(i) (10, 4)	2	$\mathbf{0}$ for (5, 4); otherwise $\mathbf{1}$ for each coordinate	ignore accompanying working / description of transformation; condone omission of brackets; (Image includes back page for examiners to check that there is no work there)
4	(ii) $(5,11)$	2	$\mathbf{0}$ for (5, 4); otherwise $\mathbf{1}$ for each coordinate	ignore accompanying working / description of transformation; condone omission of brackets
5	6000	4	M3 for $15 \times 5^{2} \times 2^{4}$; or M2 for two of these elements correct with multiplication or all three elements correct but without multiplication (e.g. in list or with addition signs); or M1 for 15 soi or for $1615 \ldots$ seen in Pascal's triangle; SC2 for $20000\left[x^{3}\right]$	condone inclusion of $x^{4} \mathrm{eg}(2 x)^{4}$; condone omission of brackets in $2 x^{4}$ if 16 used; allow M3 for correct term seen (often all terms written down) but then wrong term evaluated or all evaluated and correct term not identified; $15 \times 5^{2} \times(2 x)^{4}$ earns M3 even if followed by $15 \times 25 \times$ 2 calculated; no MR for wrong power evaluated but SC for fourth term evaluated

6	$2 x^{3}+9 x^{2}+4 x-15$	3	as final answer; ignore ' $=0$ '; B2 for 3 correct terms of answer seen or for an 8 -term or 6 term expansion with at most one error: or M1 for correct quadratic expansion of one pair of brackets; or SC1 for a quadratic expansion with one error then a good attempt to multiply by the remaining bracket	correct 8-term expansion: $2 x^{3}+6 x^{2}-2 x^{2}+5 x^{2}-6 x+15 x-5 x-15$ correct 6-term expansions: $\begin{aligned} & 2 x^{3}+4 x^{2}+5 x^{2}-6 x+10 x-15 \\ & 2 x^{3}+6 x^{2}+3 x^{2}+9 x-5 x-15 \\ & 2 x^{3}+11 x^{2}-2 x^{2}+15 x-11 x-15 \end{aligned}$ for M1, need not be simplified; ie SC1 for knowing what to do and making a reasonable attempt, even if an error at an early stage means more marks not available
7	$b^{2}-4 a c \text { soi }$ 1 www 2 [distinct real roots]	M1 A1 B1	or B2 B0 for finding the roots but not saying how many there are	allow seen in formula; need not have numbers substituted but discriminant part must be correct; clearly found as discriminant, or stated as $b^{2}-4 a c$, not just seen in formula eg M1A0 for $\sqrt{b^{2}-4 a c}=\sqrt{1}=1$; condone discriminant not used; ignore incorrect roots found

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{8} \& \(y x+3 y=1-2 x\) oe or ft \& M1 \& for multiplying to eliminate denominator and for expanding brackets, or for correct division by \(y\) and writing as separate fractions: \(x+3=\frac{1}{y}-\frac{2 x}{y}\); \& \multicolumn{2}{|l|}{\begin{tabular}{l}
each mark is for carrying out the operation correctly; ft earlier errors for equivalent steps if error does not simplify problem; \\
some common errors:
\end{tabular}} \\
\hline \& \(y x+2 x=1-3 y\) oe or ft
\(x(y+2)=1-3 y\) oe or ft \& M1

M1 \& | for collecting terms; dep on having an $a x$ term and an $x y$ term, oe after division by y, |
| :--- |
| for taking out x factor; dep on having an ax term and an $x y$ term, oe after division | \& \[

$$
\begin{aligned}
& y(x+3)=1-2 x \\
& y x+3 x=1-2 x \text { M0 } \\
& y x+5 x=1 \quad \text { M1 ft } \\
& x(y+5)=1 \quad \text { M1 } \mathrm{ft} \\
& x=\frac{1}{y+5} \quad \text { M1 } \mathrm{ft}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& y x+3=1-2 x \quad \text { M0 } \\
& y x+2 x=-2 \quad \text { M1 ft } \\
& x(y+2)=-2 \quad \text { M1 ft } \\
& x=\frac{-2}{y+2} \quad \text { M1 } \mathrm{ft}
\end{aligned}
$$
\]

\hline \& $[x=] \frac{1-3 y}{y+2}$ oe or ft as final answer \& M1 \& for division with no wrong work after; dep on dividing by a two-term expression; last M not earned for tripledecker fraction as final answer \& \multicolumn{2}{|l|}{for M4, must be completely correct;}

\hline
\end{tabular}

9	$\begin{array}{l}x+2 y=k(k \neq 6) \text { or } \\ y=-1 / 2 x+c(c \neq 3)\end{array}$

$x+2 y=12$ or $[y=]-1 / 2 x+6$ oe
$(12,0)$ or ft
(0, 6)or ft

36 [sq units] cao
attempt to use gradients of parallel lines the same; M0 if just given line used;
or B2; must be simplified; or evidence of correct 'stepping' using $(10,1)$ eg may be on diagram;
or 'when $y=0, x=12$ ' etc or using 12 or ft as a limit of integration;
intersections must ft from their line or 'stepping’ diagram using their gradient or_integrating to give $-1 / 4 x^{2}+6 x$ or ft their line or B3 www
eg following an error in manipulation, getting original line as $y=1 / 2 x+3$ then using $y=1 / 2 x+c$ earns M1 and can then go on to get A0 for $y=1 / 2 x-4$, M1 for (0 , -4) M1 for $(8,0)$ and $\mathbf{A 0}$ for area of 16 ;
allow bod $\mathbf{B 2}$ for a candidate who goes straight to $y=-1 / 2 x+6$ from $2 y=-x+6$;

NB the equation of the line is not required; correct intercepts obtained will imply this A1;

NB for intersections with axes, if both Ms are not gained, it must be clear which coord is being found eg M0 for intn with x axis $=6$ from correct eqn;; if the intersections are not explicit, they may be implied by the area calculation eg use of $h t=6$ or the correct ft area found;
allow ft from the given line as well as others for both these intersection Ms;

NB A0 if 36 is incorrectly obtained eg after intersection $x=-12$ seen (which earns M0 from correct line);

10	$n(n+1)(n+2)$ argument from general consecutive numbers leading to: at least one must be even [exactly] one must be multiple of 3	M1 A1 A1	condone division by n and then $(n+1)(n+2)$ seen, or separate factors shown after factor theorem used; or divisible by 2 ; if M0: allow SC1 for showing given expression always even	ignore ' = 0'; an induction approach using the factors may also be used eg by those doing paper FP1 as well; A0 for just substituting numbers for n and stating results; allow SC2 for a correct induction approach using the original cubic (SC1 for each of showing even and showing divisible by 3)

SECTION B

11	(i) $x+4 x^{2}+24 x+31=10$ oe $4 x^{2}+25 x+21[=0]$ $(4 x+21)(x+1)$ $x=-1$ or $-21 / 4$ oe isw $y=11$ or $61 / 4$ oe isw	M1 M1 M1 A1 A1	for subst of x or y or subtraction to eliminate variable; condone one error; for collection of terms and rearrangement to zero; condone one error; for factors giving at least two terms of their quadratic correct or for subst into formula with no more than two errors [dependent on attempt to rearrange to zero]; or $\mathbf{A 1}$ for $(-1,11)$ and $\mathbf{A 1}$ for ($-21 / 4$, 61/4) oe	or $4 y^{2}-105 y+671[=0]$; eg condone spurious $y=4 x^{2}+25 x+21$ as one error (and then count as eligible for $3^{\text {rd }} \mathbf{M 1}$); or $(y-11)(4 y-61)$; [for full use of completing square with no more than two errors allow 2nd and 3rd M1s simultaneously]; from formula: accept $x=-1$ or $-42 / 8$ oe isw
11	(ii) $4(x+3)^{2}-5$ isw	4	$\mathbf{B 1}$ for $a=4$, B1 for $b=3$, B2 for $c=-5$ or M1 for $31-4 \times$ their b^{2} soi or for $-5 / 4$ or for $31 / 4$ - their b^{2} soi	eg an answer of $(x+3)^{2}-\frac{5}{4}$ earns B0 B1 M1; $1(2 x+6)^{2}-5$ earns B0 B0 B2; 4(earns first B1; condone omission of square symbol
11	(iii)(A) $x=-3$ or ft (-their b) from (ii)	1		0 for just -3 or ft; 0 for $x=-3, y=-5$ or ft
11	(iii)(B) -5 or ft their c from (ii)	1	allow $y=-5$ or ft	0 for just ($-3,-5$); bod $\mathbf{1}$ for $x=-3$ stated then $y=-5$ or ft

\begin{tabular}{|c|c|c|c|c|}
\hline 12 \& (i) \(y=2 x+5\) drawn
\[
-2,-1.4 \text { to }-1.2,0.7 \text { to } 0.85
\] \& \begin{tabular}{l}
M1 \\
A2
\end{tabular} \& A1 for two of these correct \& \begin{tabular}{l}
condone unruled and some doubling; tolerance: must pass within/touch at least two circles on overlay; the line must be drawn long enough to intersect curve at least twice; \\
condone coordinates or factors
\end{tabular} \\
\hline \multirow[t]{5}{*}{12} \& (ii) \(4=2 x^{3}+5 x^{2}\) or \(2 x+5-\frac{4}{x^{2}}=0\) and completion to given answer
\[
f(-2)=-16+20-4=0
\] \& B1

B1 \& or correct division / inspection showing that $x+2$ is factor; \& condone omission of final ' $=0$ ';

\hline \& use of $x+2$ as factor in long division of given cubic as far as $2 x^{3}+4 x^{2}$ in working \& M1 \& or inspection or equating coefficients, with at least two terms correct; \& may be set out in grid format

\hline \& $2 x^{2}+x-2$ obtained \& A1 \& \& condone omission of + sign (eg in grid format)

\hline \& \[
[x=] \frac{-1 \pm \sqrt{1^{2}-4 \times 2 \times-2}}{2 \times 2} oe

\] \& M1 \& dep on previous M1 earned; for attempt at formula or full attempt at completing square, using their other factor \& | not more than two errors in formula / substitution / completing square; allow even if their 'factor' has a remainder shown in working; |
| :--- |
| M0 for just an attempt to factorise |

\hline \& $\frac{-1 \pm \sqrt{17}}{4}$ oe isw \& A1 \& \&

\hline
\end{tabular}

12	(iii) $\frac{4}{x^{2}}=x+2$ or $y=x+2$ soi $y=x+2$ drawn 1 real root	M1 A1 A1	eg is earned by correct line drawn	condone intent for line; allow slightly out of tolerance; condone unruled; need drawn for $-1.5 \leq x \leq 1.2$; to pass through/touch relevant circle(s) on overlay
13	$\begin{aligned} & \text { (i) [radius =] } 4 \\ & \text { [centre] }(4,2) \end{aligned}$	B1 B1	B0 for ± 4	condone omission of brackets

(iii) subst $(4+2 \sqrt{2}, 2+2 \sqrt{2})$ into circle eqn and showing at least one step in correct completion

Sketch of both tangents
grad $\operatorname{tgt}=-1$ or $-1 /$ their grad CA
$y-(2+2 \sqrt{2})=$ their $m(x-(4+2 \sqrt{2}))$
$y=-x+6+4 \sqrt{2}$ oe isw
parallel tgt goes through
$(4-2 \sqrt{2}, 2-2 \sqrt{2})$
eqn is $y=-x+6-4 \sqrt{2}$ oe isw

B1
or showing sketch of centre C and A and using Pythag:
$(2 \sqrt{2})^{2}+(2 \sqrt{2})^{2}=8+8=16 ;$

M1 $\operatorname{grad} C A=\frac{2+2 \sqrt{2}-2}{4+2 \sqrt{2}-4}$ oe (may be on/ near sketch);
or $y=$ their $m x+c$ and subst of $(4+2 \sqrt{2}, 2+2 \sqrt{2})$;
accept simplified equivs eg
$x+y=6+4 \sqrt{2}$;
M1
or ft wrong centre; may be shown on diagram; may be implied by correct equation for the tangent (allow ft their gradient);

A1
accept simplified equivs eg
$x+y=6-4 \sqrt{2}$
or subst the value for one coord in circle eqn and correctly working out the other as a possible value;
need not be ruled;
must have negative gradients with tangents intended to be parallel and one touching above and to right of centre; mark intent to touch - allow just missing or just crossing circle twice; condone A not labelled
allow ft from wrong centre found in (i);
for intent; condone lack of brackets for $\mathbf{M 1}$;
independent of previous Ms; condone grad of CA used;

A0 if obtained as eqn of other tangent instead of the tangent at A (eg after omission of brackets);
no bod for just $y-2-2 \sqrt{2}=-1(x-4-2 \sqrt{2})$ without first seeing correct coordinates;

A0 if this is given as eqn of the tangent at A instead of other tangent (eg after omission of brackets)

Section B Total: 36

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

Question		Answer $y=-2 x+7$ isw $(0,7)$ and $(3.5,0)$ oe or ft their $y=-2 x+c$	Marks	Guidance	
1			2 1 [3]	M1 for $y-1=-2(x-3)$ or $1=-2 \times 3+c$ oe	condone lack of brackets and eg $y=7$, $x=3.5$ or ft isw but 0 for poor notation such as $(3.5,7)$ and no better answers seen
2		$[b=] \pm \sqrt{\frac{3 a}{2 c}}$ oe wWW	3 [3]	M2 for $\left[b^{2}=\right] \frac{3 a}{2 c}$ soi or M1 for other $\left[b^{2}=\right] \frac{k a}{c}$ or $\left[b^{2}=\right] \frac{a}{k c}$ oe and M1 for correctly taking the square root of their b^{2}, including the \pm sign;	eg M2 for $[b=] \sqrt{\frac{3 a}{2 c}}$ allow M1 for a triple-decker or quadruple-decker fraction or decimals eg $\frac{1.5 a}{c}$, if no recovery later square root must extend below the fraction line
3	(i)	25	2 [2]	M1 for $\frac{1}{\frac{1}{25}}$ or $\left(\frac{1}{25}\right)^{-1}$ or 5^{2} or $\frac{25}{1}$	
3	(ii)	$\frac{4}{9}$	2 [2]	M1 for 4 or 9 or $\frac{1}{9}$ or $\frac{2}{3}$ or $\left(\frac{2}{3}\right)^{2}$ or $\sqrt[3]{\frac{64}{729}}$ seen	0 for just $\left(\frac{64}{729}\right)^{\frac{1}{3}}$
4		$\frac{x-3}{x+2}$ or $1-\frac{5}{x+2}$ as final answer www	3 [3]	B2 for correct answer seen and then spoilt M1 for $(x+3)(x-3)$ and M1 for $(x+2)(x+3)$	

Question		Answer	Marks	Guidance	
5	(i)	30	3 [3]	M1 for $(\sqrt{6})^{3}=6 \sqrt{6}$ soi and M1 for $\sqrt{24}=2 \sqrt{6}$ soi or allow SC2 for final answer of $5(\sqrt{6})^{2}$ or $5 \sqrt{36}$ or $10 \sqrt{9}$ etc	M0 for $6000 \sqrt{6}$ ie cubing 10 as well for those using indices: M1 for both $10 \times 6^{3 / 2}$ and $2 \times 6^{1 / 2}$ oe then M1 for 5×6 oe award SC2 for similar correct answer with no denominator
5	(ii)	$\frac{8}{11}$	2 [2]	M1 for common denominator $(4+\sqrt{5})(4-\sqrt{5})$ soi - may be in separate fractions or for a final answer with denominator 11, even if worked with only one fraction	condone lack of brackets
6	(i)	10 cao	$\begin{gathered} 1 \\ {[1]} \\ \hline \end{gathered}$		
6	(ii)	$-720\left[x^{3}\right]$	4 [4]	B3 for $720\left[x^{3}\right]$ or for $10 \times 9 \times-8\left[x^{3}\right]$ or M2 for $10 \times 3^{2} \times(-2)^{3}$ oe or ft from (i) or M1 for two of these three elements correct or ft ; condone x still included	condone -720 x etc allow equivalent marks for the x^{3} term as part of a longer expansion eg M2 for $3^{5}\left(\ldots 10 \times\left(\frac{-2}{3}\right)^{3} \ldots\right)$ or M1 for $10 \times\left(\frac{-2}{3}\right)^{3}$ etc

Question		Answer	Marks	Guidance	
10	(iii)	midpoint E of AC = $(2,2)$ www	B1	condone missing brackets for both B1s	0 for $((5+-1) / 2,(1+3) / 2)=(2,2)$
		eqn BD is $y=\frac{1}{3} x+\frac{4}{3}$ oe	M1	accept any correct form isw or correct ft their gradients or their midpt F of BD this mark will often be gained on the first line of their working for BD	may be earned using $(2,2)$ but then must independently show that B or D or $(5,3)$ is on this line to be eligible for A1
		eqn $A C$ is $y=-3 x+8$ oe	M1	accept any correct form isw or correct ft their gradients or their midpt E of AC this mark will often be gained on the first line of their working for AC [see appendix for alternative methods instead showing E is on BD for this M1]	if equation(s) of lines are seen in part ii, allow the M1s if seen/used in this part
		using both lines and obtaining intersection E is $(2,2)$ (NB must be independently obtained from midpt of AC)	A1		[see appendix for alternative ways of gaining these last two marks in different methods]
		midpoint F of $\mathrm{BD}=(5,3)$	B1	this mark is often earned earlier	
				see the appendix for some common alternative methods for this question; for all methods, for A1 to be earned, all work for the 5 marks must be correct	for all methods show annotations M1 B1 etc then omission mark or A0 if that mark has not been earned

Question		Answer	Marks	Guidance	
11	(i)	$(2 x+1)(x+2)(x-5)$	M1	or $(x+1 / 2)(x+2)(x-5)$; need not be written as product	throughout, ignore ' $=0$ '
		correct expansion of two linear factors of their product of three linear factors	M1		for all Ms in this part condone missing brackets if used correctly
		expansion of their linear and quadratic factors	M1	dep on first M1; ft one error in previous expansion; condone one error in this expansion	
				or for direct expansion of all three factors, allow M2 for $2 x^{3}-10 x^{2}+4 x^{2}+x^{2}-20 x-5 x+2 x-10[\text { or }$ half all these], or M1 if one or two errors,	dep on first M1
		$\begin{aligned} & {[y=] 2 x^{3}-5 x^{2}-23 x-10 \text { or } a=-5, b=-23} \\ & \text { and } c=-10 \end{aligned}$	A1		condone poor notation when 'doubling' to reach expression with $2 x^{3} .$.
				for an attempt at setting up three simultaneous equations in a, b, and c : M1 for at least two of the three equations	$\begin{aligned} & 250+25 a+5 b+c=0 \\ & -16+4 a-2 b+c=0 \\ & -1 / 4+1 / 4 a-1 / 2 b+c=0 \text { oe } \end{aligned}$
				then M2 for correctly eliminating any two variables or M1 for correctly eliminating one variable to get two equations in two unknowns	
			[4]	and then A1 for values.	

Question		Answer	Marks	Guidance	
11	(ii)	graph of cubic correct way up crossing x axis at $-2,-1 / 2$ and 5 crossing y axis at -10 or ft their cubic in (i)	B1 B1 B1 [3]	B0 if stops at x-axis on graph or nearby in this part mark intent for intersections with both axes or $x=0, y=-10$ or ft in this part if consistent with graph drawn;	must not be ruled; no curving back; condone slight 'flicking out' at ends; allow min on y axis or in 3rd or 4th quadrants; condone some 'doubling' or 'feathering' (deleted work still may show in scans) allow if no graph, but marked on x axis allow if no graph, but eg B0 for graph nowhere near their indicated -10 or ft
11	(iii)	(0, -18); accept -18 or ft their constant - 8	$\begin{gathered} 1 \\ {[1]} \end{gathered}$	or ft their intn on y-axis - 8	
11	(iv)	roots at $2.5,1,8$ $(2 x-5)(x-1)(x-8)$ (0, -40); accept -40	M1 A1 B2 [4]	or attempt to substitute $(x-3)$ in $(2 x+1)(x+2)(x-5)$ or in $(x+1 / 2)(x+2)(x-5)$ or in their unfactorised form of $\mathrm{f}(x)$ - attempt need not be simplified accept $2(x-2.5)$ oe instead of $(2 x-5)$ M1 for $-5 \times-1 \times-8$ or ft or for $\mathrm{f}(-3)$ attempted or $g(0)$ attempted or for their answer ft from their factorised form	M0 for use of $(x+3)$ or roots $-3.5,-5$, 2 but then allow SC1 for $(2 x+7)(x+5)(x-2)$ eg M1 for ($0,-70$) or -70 after $(2 x+7)(x+5)(x-2)$ after M0, allow SC1 for $f(3)=-70$

Question		Answer	Marks	Guidance	
12	(i)	$(-1,6)(0,1)(1,-2)(2,-3)(3,-2)(4,1)(5,6)$ seen plotted smooth curve through all 7 points (0.3 to $0.5,-0.3$ to -0.5) and (2.5 to $2.7,-2.5$ to -2.7) and $(4,1)$	B2 B1 dep B2 [5]	or for a curve within 2 mm of these points; B1 for 3 correct plots or for at least 3 of the pairs of values seen eg in table dep on correct points; tolerance 2 mm ; may be given in form $x=\ldots, y=\ldots$ B1 for two intersections correct or for all the x values given correctly	use overlay; scroll down to spare copy of graph to see if used [or click 'fit height' also allow B 1 for $(2 \pm \sqrt{3}, 0)$ and $(2,-3)$ seen or plotted and curve not through other correct points condone some feathering/ doubling (deleted work still may show in scans); curve should not be flat-bottomed or go to a point at min. or curve back in at top;
12	(ii)	$\begin{aligned} & \frac{1}{x-3}=x^{2}-4 x+1 \\ & 1=(x-3)\left(x^{2}-4 x+1\right) \end{aligned}$ at least one further correct interim step with ' $=1$ ' or ' $=0$ ' , as appropriate, leading to given answer, which must be stated correctly	M1 M1 A1 [3]	condone omission of brackets only if used correctly afterwards, with at most one error; there may also be a previous step of expansion of terms without an equation, eg in grid if M0, allow SC1 for correct division of given cubic by quadratic to gain $(x-3)$ with remainder -1 , or vice-versa	condone omission of ' $=1$ ' for this M1 only if it reappears allow for terms expanded correctly with at most one error NB mark method not answer given answer is $x^{3}-7 x^{2}+13 x-4=0$

Question		Answer	Marks	Guidance	
12	(iii)	quadratic factor is $x^{2}-3 x+1$	B2	found by division or inspection; allow M1 for division by $x-4$ as far as $x^{3}-4 x^{2}$ in the working, or for inspection with two terms correct	
		substitution into quadratic formula or for completing the square used as far as $\left(x-\frac{3}{2}\right)^{2}=\frac{5}{4}$	M1	condone one error	no ft from a wrong 'factor';
		$\frac{3 \pm \sqrt{5}}{2}$ ое	A2	A1 if one error in final numerical expression, but only if roots are real	isw factors
			[5]		

Appendix: alternative methods for 10(iii) [details of equations etc are in main scheme]
for a mixture of methods, look for the method which gives most benefit to candidate, but take care not to award the second M1 twice the final A1 is not earned if there is wrong work leading to the required statements
ignore wrong working which has not been used for the required statements
for full marks to be earned in this part, there must be enough to show both the required statements

find midpt E of AC	B1						
find eqn BD	M1	find eqn BD	M1	find eqn BD	M1	use gradients or vectors to show E is on BD eg $\operatorname{grad} B E=\frac{2-1}{2-1}=\frac{1}{3}$ and grad $\mathrm{ED}=\frac{5-2}{11-2}=\frac{1}{3}$ [condone poor vector notation]	M2
show E on BD	M1	show E on BD	M1	show E on BD	M1		
find midpt F of BD	B1	find midpt F of BD	B1	show $\mathrm{BE}^{2}=10$ and $\mathrm{DE}^{2}=$ 90 oe	B1	find midpt F of BD	B1
state so not E	A1	find eqn of AC and correctly show F not on AC (the correct eqn for AC earns the second M1 as per the main scheme, if not already earned)	A1	showing $\mathrm{BE}^{2}=10$ and DE^{2} = 90 oe earns this A mark as well as the B1 if there are no errors elsewhere	A1	state so not E or show F not on AC	A1
	[5]						5]

Question		Answer	Marks	Guidance	
1	(i)	$\frac{9}{25} \text { or } 0.36 \text { isw }$	2 [2]	M1 for numerator or denominator correct or for squaring correctly or for inverting correctly	M1 for eg $\frac{1}{\left(\frac{25}{9}\right)}$ or $\left(\frac{25}{9}\right)^{-1}$ or $\frac{25}{9}$ or for $\left(\frac{3}{5}\right)^{2}$ or $\frac{3}{5}$ M0 for just $\frac{1}{\left(\frac{5}{3}\right)^{2}}$
1	(ii)	27	2 [2]	M1 for $81^{\frac{1}{4}}=3$ soi	eg M1 for 3^{3} M0 for $81^{3}=531441$ (true but not helpful)
2		$4 x^{4} y^{-3}$ or $\frac{4 x^{4}}{y^{3}}$ as final answer	3 [3]	B1 each 'term'; or M1 for numerator $=64 x^{15} y^{3}$ and M1 for denominator $=16 x^{11} y^{6}$	B0 if obtained fortuitously mark B scheme or M scheme to advantage of candidate, but not a mixture of both schemes

Question		Answer	Marks	Guidance	
6		identifying term as $20(2 x)^{3}\left(\frac{5}{x}\right)^{3}$ oe 20000	M3 A1 [4]	condone lack of brackets; M1 for $[k](2 x)^{3}\left(\frac{5}{x}\right)^{3}$ soi (eg in list or table), condoning lack of brackets and M1 for $k=20$ or eg $\frac{6 \times 5 \times 4}{3 \times 2 \times 1}$ or for 1615201561 seen (eg Pascal's triangle seen, even if no attempt at expansion) and M1 for selecting the appropriate term (eg may be implied by use of only $k=20$, but this M1 is not dependent on the correct k used) or B4 for 20000 obtained from multiplying out $\left(2 x+\frac{5}{x}\right)^{6}$ allow SC3 for 20000 as part of an expansion	x s may be omitted; eg M3 for $20 \times 8 \times 125$ first M1 not earned if elements added not multiplied; otherwise, if in list or table bod intent to multiply M0 for binomial coefficient if it still has factorial notation may be gained even if elements added
7	(i)	$9 \sqrt{3}$ www oe as final answer	2 [2]	M1 for $\sqrt{48}=4 \sqrt{3}$ or $\sqrt{75}=5 \sqrt{3}$ soi	
7	(ii)	$\frac{39+7 \sqrt{5}}{44}$ www as final answer	3 [3]	M1 for attempt to multiply numerator and denominator by $7-\sqrt{5}$ B1 for each of numerator and denominator correct (must be simplified)	condone $\frac{39}{44}+\frac{7 \sqrt{5}}{44}$ for 3 marks eg M0B1 if denominator correctly rationalised to 44 but numerator not multiplied

Question			Answer	Marks	Guidance	
			completion to given answer $3 y+5 x=10$, showing at least one interim step	M1 [6]	condone a slight slip if they recover quickly and general steps are correct (eg sometimes a slip in working with the c in $y=\frac{-5}{3} x+c$ - condone $3 y=-5 x+c$ followed by substitution and consistent working) M0 if clearly 'fudging'	NB answer given; mark process not answer; annotate if full marks not earned eg with a tick for each mark earned scores such as B2M0M0M1M1 are possible after B2, allow full marks for complete method of showing given line has gradient perp to $\mathrm{AB}(\operatorname{grad} \mathrm{AB}$ must be found independently at some stage) and passes through midpt of AB
10	(ii)		$3 y+5(4 y-21)=10$ $(-1,5)$ or $y=5, x=-1$ isw	M1 A2 [3]	or other valid strategy for eliminating one variable attempted eg $\frac{-5}{3} x+\frac{10}{3}=\frac{x}{4}+\frac{21}{4}$; condone one error A1 for each value; if AO allow SC 1 for both values correct but unsimplified fractions, eg $\left(\frac{-23}{23}, \frac{115}{23}\right)$	or eg $20 y=5 x+105$ and subtraction of two eqns attempted no ft from wrong perp bisector eqn, since given allow M1 for candidates who reach $y=115 / 23$ and then make a worse attempt, thinking they have gone wrong NB M0A0 in this part for finding E using info from (iii) that implies E is midpt of CD

Question		Answer	Marks	Guidance	
11	(ii)	$(2,0)$ and $(3,0)$ $(0,6)$ graph of quadratic the correct way up and crossing both axes	B2 B1 B1 [4]	B1 each or B1 for both correct plus an extra or M1 for $(x-2)(x-3)$ or correct use of formula or for their $a \pm \sqrt{\text { their } b} \mathrm{ft}$ from (i) ignore label of their tp ; condone stopping at y-axis	condone not expressed as coordinates, for both x and y values; accept eg in table or marked on graph condone ' U ' shape or slight curving back in/out; condone some doubling / feathering - deleted work sometimes still shows up in scoris; must not be ruled; condone fairly straight with clear attempt at curve at minimum; be reasonably generous on attempt at symmetry
11	(iii)	$x^{2}-5 x+6=2-x$ $x^{2}-4 x+4[=0]$	M1 M1	for attempt to equate or subtract eqns or attempt at rearrangement and elimination of x for rearrangement to zero ft and collection of terms; condone one error; if using completing the square, need to get as far as $(x-k)^{2}=c$, with at most one error $\left[(x-2)^{2}=0\right.$ if correct $]$	accept calculus approach: $y^{\prime}=2 x-5$ use of $y^{\prime}=-1 \mathrm{M} 1$

Question			Answer $x=2,[y=0]$ 'double root at $x=2$ so tangent' oe; www;	Marks A1 A1 [4]	Guidan	
					condone omission of $y=0$ since already found in (ii) if they have eliminated $x, y=0$ is not sufft for A1 - need to get $x=2$ A0 for $x=2$ and another root eg 'only one point of contact, so tangent'; or showing $b^{2}-4 a c=0$, and concluding 'so tangent'; www	$x=2 \mathrm{~A} 1$ tgt is $y[-0]=-(x-2)$ and obtaining given line A1
12	(i)		$\mathrm{f}(1)=1-1+1+9-10[=0]$ attempt at division by $(x-1)$ as far as $x^{4}-x^{3}$ in working correctly obtaining $x^{3}+x+10$	B1 M1 A1 [3]	allow for correct division of $\mathrm{f}(x)$ by $(x-1)$ showing there is no remainder, or for $(x-1)\left(x^{3}+x+10\right)$ found, showing it 'works' by multiplying it out allow equiv for $(x+2)$ as far as $x^{4}+2 x^{3}$ in working or for inspection with at least two terms of cubic factor correct or $x^{3}-3 x^{2}+7 x-5$	condone $1^{4}-1^{3}+1^{2}+9-10$ eg for inspection, M1 for two terms right and two wrong if M0 and this division / factorising is done in part (ii) or (iii), allow SC1 if correct cubic obtained there; attach the relevant part to (i) with a formal chain link if not already seen in the image zone for (i)

Question		Answer	Marks	Guidance	
12	(ii)	$\begin{aligned} & {[\mathrm{g}(-2)=]-8-2+10} \\ & \text { or } \mathrm{f}(-2)=16+8+4-18-10 \end{aligned}$	M1	[in this scheme $\mathrm{g}(x)=x^{3}+x+10$] allow M1 for correct trials with at least two values of x (other than 1) using $\mathrm{g}(x)$ or $\mathrm{f}(x)$ or $x^{3}-3 x^{2}+7 x-5$ (may allow similar correct trials using division or inspection)	$\begin{aligned} & \operatorname{eg} f(2)=16-8+4+18-10 \text { or } 20 \\ & f(3)=81-27+9+27-10 \text { or } 80 \\ & f(0)=-10 \\ & f(-1)=1+1+1-9-10 \text { or }-16 \end{aligned}$ No ft from wrong cubic 'factors' from (i)
		$x=-2$ isw	A1	allow these marks if already earned in (i)	
					NB factorising of $x^{3}+x+10$ or $x^{3}-3 x^{2}+7 x-5$ in (ii) earns credit for (iii) [annotate with a yellow line in both parts to alert you - the image zone for (iii) includes part (ii)]
			[2]		

Question		Answer	Marks	Guidance	
1		$y=-0.5 x+3$ oe www isw	3 [3]	B2 for $2 y=-x+6$ oe or M1 for gradient $=-\frac{1}{2}$ oe seen or used and M1 for $y-1=$ their $m(x-4)$	for 3 marks must be in form $y=a x+b$ or M1 for $y=$ their $m x+c$ and $(4,1)$ substituted
2		substitution to eliminate one variable simplification to $a x=b$ or $a x-b=0$ form, or equivalent for y (0.7, 0.1) oe or $x=0.7, y=0.1$ oe isw	M1 M1 A2 [4]	or multiplication to make one pair of coefficients the same; condone one error in either method or appropriate subtraction / addition; condone one error in either method A1 each	independent of first M1
3	(i)	25	2 [2]	M1 for $\left(\frac{10}{2}\right)^{2}$ or $\left(\frac{1}{0.2}\right)^{2}$ oe soi or for $\frac{1}{0.04}$ oe	ie M1 for one of the two powers used correctly M0 for just $\frac{1}{0.4}$ with no other working
3	(ii)	$8 a^{9}$	3 [3]	B2 for 8 or M1 for $16^{\frac{1}{4}}=2$ soi and B1 for a^{9}	$\begin{aligned} & \text { ignore } \pm \\ & \text { eg M1 for } 2^{3} \text {; M0 for just } 2 \end{aligned}$

7	(ii)	attempting to multiply numerator and denominator of fraction by $1+2 \sqrt{5}$ denominator $=-19$ soi $8+3 \sqrt{5}$	M1 M1 A1 [3]	must be obtained correctly, but independent of first M1	some cands are incorporating the $10+7 \sqrt{5}$ into the fraction. The M1s are available even if this is done wrongly or if $10+7 \sqrt{5}$ is also multiplied by $1+2 \sqrt{5}$ eg M1 for denominator of 19 with a minus sign in front of whole expression or with attempt to change signs in numerator
8		$3(x-2)^{2}-7$ isw or $a=3, b=2 c=7 \mathrm{www}$ -7 or ft	4 B1 [5]	```B1 each for \(a=3, b=2\) oe and B2 for \(c=7\) oe or M1 for \([-] \frac{7}{3}\) or for \(5-\) their \(a(\text { their } b)^{2}\) or for \(\frac{5}{3}-(\text { their } b)^{2}\) soi B0 for \((2,-7)\)```	condone omission of square symbol; ignore ' $=0$ ’ may be implied by their answer may be obtained by starting again eg with calculus
9	(i)	$3 n$ isw	$\begin{gathered} 1 \\ {[1]} \end{gathered}$	accept equivalent general explanation	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 9 \& (ii) \& \& \begin{tabular}{l}
at least one of \((n-1)^{2}\) and \((n+1)^{2}\) correctly expanded
\[
3 n^{2}+2
\] \\
comment eg \(3 n^{2}\) is always a multiple of 3 so remainder after dividing by 3 is always 2
\end{tabular} \& M1
B1
B1

[3] \& \begin{tabular}{l}
must be seen

dep on previous B1

B0 for just saying that 2 is not divisible by 3 - must comment on $3 n^{2}$ term as well allow B1 for $\frac{3 n^{2}+2}{3}=n^{2}+\frac{2}{3}$

 \&

M0 for just $n^{2}+1+n^{2}+n^{2}+1$

accept even if no expansions / wrong expansions seen

SC: $n, n+1, n+2$ used similarly can obtain first M1, and allow final B1 for similar comment on $3 n^{2}+6 n+5$
\end{tabular}

\hline 10 \& (i) \& \& \[
$$
\begin{aligned}
& \text { [radius }=] \sqrt{20} \text { or } 2 \sqrt{5} \text { isw } \\
& \text { [centre }=](3,2)
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| [2] | \& B0 for $\pm \sqrt{20}$ oe \& condone lack of brackets with coordinates, here and in other questions

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 11 \& (i) \& \& \begin{tabular}{l}
sketch of cubic the right way up, with two tps and clearly crossing the \(x\) axis in 3 places \\
crossing/reaching the \(x\)-axis at \(-4,-2\) and 1.5 \\
intersection of \(y\)-axis at -24
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
[3]
\end{tabular} \& intersections must be shown correctly labelled or worked out nearby; mark intent \& \begin{tabular}{l}
no section to be ruled; no curving back; condone slight 'flicking out’ at ends but not approaching another turning point; condone some doubling (eg erased curves may continue to show); accept min tp on \(y\)-axis or in \(3^{\text {rd }}\) or \(4^{\text {th }}\) quadrant; curve must clearly extend beyond the \(x\) axis at both 'ends' \\
accept curve crossing axis halfway between 1 and 2 if \(3 / 2\) not marked \\
NB to find -24 some are expanding \(\mathrm{f}(x)\) here, which gains M1 in iiiA. If this is done, put a yellow line here and by (iii)A to alert you; this image appears again there
\end{tabular} \\
\hline 11 \& (ii) \& \& \(-2,0\) and \(7 / 2\) oe isw or ft their intersections \& 2

[2] \& B1 for 2 correct or ft or for $(-2,0)(0,0)$ and $(3.5,0)$ or M1 for $(x+2) x(2 x-7)$ oe or SC1 for $-6,-4$ and $-1 / 2$ oe \&

\hline
\end{tabular}

Appendix: revised tolerances for modified papers for visually impaired candidates (graph in 12(i) with 6 mm squares)

[^0]: Section B Total: 36

