OCR Maths Core 1

Mark Scheme Pack

2006-2013

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4721

Core Mathematics 1

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

1	(i)	16	B1	1	For correct value (fraction or exact decimal)
	(ii)		B1	1	For correct value 8 only
	(iii)	6	M1		For $1^3 + 2^3 + 3^3 = 36$ seen or implied
			A1	2 4	For correct value 6 only
2	(i)	$x^2 - 8x + 3 = (x - 4)^2 - 13$	В1		For $(x-4)^2$ seen, or statement $a = -4$
		i.e. $a = -4, b = -13$	M1		For use of (implied) relation $a^2 + b = 3$
		No. 1 (4 10)	A1	3	For correct value of b stated or implied
	(11)	Minimum point is $(4, -13)$	B1√ B1√	2	For <i>x</i> -coordinate equal to their $(-a)$ For <i>y</i> -coordinate equal to their <i>b</i>
			Div	5	1 or y coordinate equal to then b
3	(i)	Discriminant is $k^2 - 4k$	M1		For attempted use of the discriminant
			A1	2	For correct expression (in any form)
	(ii)	For no real roots, $k^2 - 4k < 0$ Hence $k(k-4) < 0$	M1 M1		For stating their $\Delta < 0$ For factorising attempt (or other soln method)
		So $0 < k < 4$	A1		For both correct critical values 0 and 4 seen
			A1		For correct pair of inequalities
		dv		6	
4	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 12x^2$	M1		For clear attempt at nx^{n-1}
			A1	2	For completely correct answer
	(ii)	$y = x^4 + 2x^2$	B1		For correct expansion
		Hence $\frac{dy}{dx} = 4x^3 + 4x$	M1		For correct differentiation of at least one term
			A1√	3	For correct differentiation of their 2 terms
	(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}$	M1		For clear differentiation attempt of $x^{\frac{1}{2}}$
			A1		For correct answer, in any form
5	(2)	$x^2 - 3x + 2 = 3x - 7 \Rightarrow x^2 - 6x + 9 = 0$	M1	7	Farancia de la companio del companio de la companio del companio de la companio del companio de la companio de la companio de la companio del companio de la companio della companio de la companio de la companio della
3	(1)	$x - 5x + 2 = 5x - 7 \Longrightarrow x - 6x + 9 = 0$	A1		For equating two expressions for <i>y</i> For correct 3-term quadratic in <i>x</i>
		Hence $(x-3)^2 = 0$	M1		For factorising, or other solution method
		So $x=3$ and $y=2$	A1	_	For correct value of <i>x</i> For correct value of <i>y</i>
	(ii)	The line $y = 3x - 7$ is the tangent to the curve	A1 B1		For stating tangency
	(11)	$y = x^2 - 3x + 2 \text{ at the point } (3, 2)$	B1	2	For identifying $x = 3$, $y = 2$ as coordinates
	(iii)	Gradient of tangent is 3	B1		For stating correct gradient of given line
		Hence gradient of normal is $-\frac{1}{3}$	B1√		For stating corresponding perpendicular grad
		Equation of normal is $y-2=-\frac{1}{3}(x-3)$	M1	4	For appropriate use of straight line equation
		i.e. $x + 3y - 9 = 0$	A1	11	For correct equation in required form
				لثث	

6	(i)	x	B1 B1	2	For correct 1st quadrant branch For both branches correct and nothing else
	(ii)	Translation of 2 units in the negative <i>x</i> -direction	B1 B1 B1		For translation parallel to the <i>x</i> -axis For correct magnitude For correct direction
		X X	B1√ B1	5	For correct sketch of new curve For some indication of location, e.g. $\frac{1}{2}$ at y-intersection or -2 at asymptote
	(iii)	Derivative is $-x^{-2}$	M1 A1	2	For correct power -2 in answer For correct coefficient -1
	(iv)	Gradient of $y = \frac{1}{x}$ at $x = 2$ is required This is -2^{-2} , which is $-\frac{1}{4}$	B1 M1 A1	3	For correctly using the translation For substituting $x = 2$ in their (iii) For correct answer
				12	
7	(i)	$AB^2 = (10-2)^2 + (3-9)^2 = 100$ Hence the radius is 5 Mid-point of AB is $\left(\frac{2+10}{2}, \frac{9+3}{2}\right)$ Hence centre is (6, 6)	M1 A1 M1	4	For correct calculation method for AB^2 For correct value for radius For correct calculation method for mid-point For both coordinates correct
	(ii)	Equation is $(x-6)^2 + (y-6)^2 = 5^2$ This is $x^2 - 12x + 36 + y^2 - 12y + 36 = 25$ i.e. $x^2 + y^2 - 12x - 12y + 47 = 0$, as required	M1 A1 A1	3	For using correct basic form of circle equn For expanding at least one bracket correctly For showing given answer correctly
	(iii)	Gradient of AB is $\frac{3-9}{10-2} = -\frac{3}{4}$	M1 A1		For finding the gradient of AB For correct value $-\frac{3}{4}$ or equivalent
		Hence perpendicular gradient is $\frac{4}{3}$ Equation of tangent is $y-3=\frac{4}{3}(x-10)$ Hence <i>C</i> is the point $(\frac{31}{4},0)$	A1√ M1 M1 A1	6	For relevant perpendicular gradient For using their perp grad and <i>B</i> correctly For substituting $y = 0$ in their tangent eqn For correct value $x = \frac{31}{4}$
				13	

8 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 6x - 12$	M1		For differentiation with at least 1 term OK
	<u></u>	A1		For completely correct derivative
	Hence $x^2 - x - 2 = 0$	M1		For equating their derivative to zero
	$(x-2)(x+1) = 0 \Rightarrow x = 2 \text{ or } -1$	M1		For factorising or other solution method
		A1		For both correct <i>x</i> -coordinates
	Stationary points are $(2, -27)$ and $(-1, 0)$	A1	6	For both correct y-coordinates
(ii)	$\frac{d^2 y}{dx^2} = 12x - 6 = \begin{cases} +18 \text{ when } x = 2\\ -18 \text{ when } x = -1 \end{cases}$	M1		For attempt at second derivative and at least
	Hence $(2, -27)$ is a min and $(-1, 0)$ is a max	A1 A1	3	one relevant evaluation For either one correctly identified For both correctly identified
				(Alternative methods, e.g. based on gradients either side, are equally acceptable)
(iii)	$RHS = (x^2 + 2x + 1)(2x - 7)$	M1		For squaring correctly and attempting
	$=2x^3 - 7x^2 + 4x^2 - 14x + 2x - 7$			complete expansion process
	$=2x^3-3x^2-12x-7$, as required	A1	2	For obtaining given answer correctly
(iv)	(-1,0) > x	B1 B1 B1	3	For correct cubic shape For maximum point lying on <i>x</i> -axis For $x = \frac{7}{2}$ and $y = -7$ at intersections
			14	

1 (i)	$11^{-2} = \frac{1}{121}$	B1 1	$\frac{1}{121}$ $(\frac{1}{11^2} = B0)$
	$100^{\frac{3}{2}} = 1000$	M1 A1 2	Square rooting or cubing soi 1000
(iii)	$\sqrt{50} + \frac{6}{\sqrt{3}}$ $= 5\sqrt{2} + \frac{6\sqrt{3}}{3}$ $= 5\sqrt{2} + 2\sqrt{3}$	B1	$5\sqrt{2}$ (allow \pm)
	$=5\sqrt{2}+\frac{6\sqrt{3}}{3}$	M1	Attempt to rationalise $\frac{6}{\sqrt{3}}$
	$=5\sqrt{2}+2\sqrt{3}$	A1 3	cao
		<u>6</u>	
2	<i>q</i> =2	B1	(allow embedded values)
	r=3	B1	
		M1	$qr^2 + 10 = p$ or other correct method
	p=28	A1√4	
		4	
3(i)	$y = 5\sqrt{2x}$	M1	$\sqrt{2x}$ or $\sqrt{\frac{x}{2}}$ seen $y = 5\sqrt{2x}$
		A1 2	$y = 5\sqrt{2x}$
(ii)	Translation $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$	B1	Translation
		B1 2	$\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ o.e.
		_	

4	Either $y = 2x + 1$	M1	Substitute for x/y or attempt
	or $y = \frac{x^2 + 11}{3}$	IVII	to get an equation in 1 variable only
	$x^2 - 6x + 8 = 0$	A1	Obtain correct 3 term quadratic
	(x-2)(x-4) = 0	M1	Correct method to solve 3 term quadratic
	x=2 $x=4$	A1	or one correct pair of values B1
	x = 2 x = 4 $y = 5 y = 9$	A1	second correct pair of values B1 c.a.o
	OR		
	$x = \frac{y-1}{2}$		
	$\frac{(y-1)^2}{4} - 3y + 11 = 0$		
	$y^2 - 14y + 45 = 0$		
	(y-5)(y-9) = 0		
	y = 5 y = 9		
	x=2 $x=4$		<u>SR</u>
			If solution by graphical methods:
			setting out to draw a
			parabola <u>and</u> a line M1 both correct A1
			reading off of coordinates at intersection point(s) M1
			one correct pair second correct pair A1
			OR
			No working shown: one correct pair B1
			second correct pair B1
			full justification that these are the only solutions B3
		<u>5</u>	

5 (i)		B1	Correct curve in +ve quadrant
		B1 2	in -ve quadrant
(ii)		M1	Positive cubic with clearly seen max and min points
		A1	(-1,0) (0,0) (1,0) Any one point stated or marked on sketch
	(-1,0) (0,0) (1,0)	A1 3	Curve passes through all 3 points and no extras stated or marked on sketch
(iii)		B1	Graph only in bottom right hand quadrant
		B1 2	Correct graph, passing through origin
		<u>7</u>	

6 (i)	$49 - 4 \times -2 \times 3 = 73$	M1		Uses $b^2 - 4ac$
	2 real roots	A1		73
		В1 ч	√3	2 real roots (ft from their value)
(ii)	$(p+1)^2 - 64 = 0$ or $2[(x+\frac{p+1}{4})^2 - \frac{(p+1)^2}{16} + 4] = 0$	M1		Attempts $b^2 - 4ac = 0$ (involving p) or attempts to complete square (involving p)
		A1		$(p+1)^2 - 64 = 0$ aef
	<i>p</i> = -9,7	B1		p= -9
		B1	4	p= 7
			<u>7</u>	

7 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 - 3$	B1	1 term correct
		B1 2	Completely correct (+c is an error, but only penalise
(ii)	$y = 2x^3 + 2x^2 + 3x + 3$	M1	once) Attempt to expand brackets
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 4x + 3$	A1	$2x^{3} + 2x^{2} + 3x + 3$
		A1 A1 4	2 terms correct Completely correct
			SR Recognisable attempt at product rule M1 one part correct A1 second part correct A1 final simplified answer A1
(iii)	$y = x^{\frac{1}{5}}$ $\frac{dy}{dx} = \frac{1}{5}x^{-\frac{4}{5}}$	B1	$x^{\frac{1}{5}}$ soi
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5}x^{-\frac{4}{5}}$	B1	$\frac{1}{5}x^c$
		B1 3	$kx^{-\frac{4}{5}}$
		9	
8(i)	2[10+x+x] > 64	B1 1	20 + 4x > 64 o.e.
(ii)	x(x+10) < 299	B1	x(x+10) < 299
	$x^{2} + 10x - 299 < 0$ $(x - 13)(x + 23) < 0$	B1 2	Correctly shows $(x-13)(x+23) < 0$ AG
			SR Complete proof worked backward B2
(iii)	$ \begin{array}{l} x > 11 \\ (x-13)(x+23) < 0 \end{array} $	B1 √ M2	x > 11 ft from their (i) Correct method to solve $(x-13)(x+23) < 0$ eg graph
	-23 < <i>x</i> < 13	A1	$-23 < x < 13$ seen in this form or as number line \underline{SR} if seen with no working B1
	$\therefore 11 < x < 13$	B1 5	
		<u>8</u>	

9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x$	B1		4x
	$\frac{dy}{dx} = 4x$ At x=3, $\frac{dy}{dx} = 12$	B1	2	12
(ii)	Gradient of tangent = - 8	M1		$\frac{\mathrm{d}y}{\mathrm{d}x} = -8$
	4x = -8 $x = -2$ $y = 8$	A1		x=-2 y=8
	y = 8	A1	3	<i>y</i> =8
(iii)	Gradient = 6	B1	1	Gradient = or approaches 6
	dy			dy
(iv)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2kx$	M1		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2kx$
	x=1	M1		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2k$
	$\frac{dy}{dx} = 2kx$ $x = 1$ $\frac{dy}{dx} = 2k$	Δ1./	_ ₃	
	$ dx \\ k = 3 $	Αίγ	3	$\frac{dx}{dx} = 2k$ $k = 3$ CWO
			<u>9</u>	

10(i)	Gradient DE = $-\frac{1}{2}$	B1 1	$-\frac{1}{2}$ (any working seen must be correct)
	2 1 2		must be correct)
(ii)	$y-3=-\frac{1}{2}(x-2)$	M1	Correct equation for straight line, any gradient, passing through F
		A1	$y-3 = -\frac{1}{2}(x-2)$ aef
	x+2y-8=0	A1 3	x+2y-8=0 (this form but can have fractional coefficients e.g. $\frac{1}{2}x+y-4=0$
(iii)	Gradient EF = $\frac{4}{2}$ =2	B1	Correct supporting working
	$-\frac{1}{2} \times 2 = -1$	B1 2	must be seen Attempt to show that product of their gradients = - 1 o.e.
(iv)	$DF = \sqrt{4^2 + 3^2} = 5$	M1	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ used
		A1 2	5
(v)	DF is a diameter as angle DEF is a right angle.	B1	Justification that DF is a diameter
	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$	B1	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$
	Radius = 2.5	B1	Radius = 2.5
	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$	B1 √	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$
	$\begin{vmatrix} x^2 + y^2 - 3y + \frac{9}{4} = \frac{25}{4} \\ x^2 + y^2 - 3y - 4 = 0 \end{vmatrix}$		
	$x^2 + y^2 - 3y - 4 = 0$	B1 5	$x^2 + y^2 - 3y - 4 = 0$ obtained correctly with at least one line of intermediate working. <u>SR</u> For working that only shows
			$x^{2} + y^{2} - 3y - 4 = 0$ is equation for a circle with
			centre $(0,1\frac{1}{2})$ B1
			radius 2.5 B1
		<u>13</u>	

Mark Scheme 4721 June 2005

1	2 (40 > 0	M1	Correct method to find roots
	$x^2 - 6x - 40 \ge 0$	'*' '	Correct method to find roots
	$(x+4)(x-10) \ge 0$		
		A1	-4, 10
	\ 10 † ¥	,	,,,,,
	-5 -10 - 5 - 0		
	20		
	-40	M1	Correct method to solve quadratic
	-50 -60		inequality e.g. +ve quadratic graph
	$x \le -4$, $x \ge 10$	A1 4	$x \le -4, x \ge 10$
		4	(not wrapped, not strict inequalities, no
0(')	FITUED		'and')
2(i)	EITHER 2 (x ² + 4 x) + 7		
	$3(x^2+4x)+7$		
	$3(x+2)^2-12+7$		
	$3(x+2)^2-5$		
	OR		
	$3(x^2+2ax+a^2)+b$		
	$3x^2 + 6ax + 3a^2 + b$		
	6 <i>a</i> = 12	M1	$a = \frac{12}{6 \text{ or } 2}$
	a=2	A1	a = 2
	$3a^2 + b = 7$		2 7 2
	b = -5	M1	$7 - a^2$ or $7 - 3a^2$ or $\frac{7}{3} - a^2$ (their a)
		A1 4	b = -5
(ii)	x = -2	B1 ft 1	x = -2
3 (i)		5 B1 1	Correct sketch showing point of inflection
3 (i)	∱y /		at origin
	! /		
	-		
	/ ‡		
	/ t		
(ii)	Reflection in x-axis or reflection in y-axis	B1 B1 2	Reflection In x-axis or y=0 or y-axis or x=0
			, ,
(iii)	$y = (x - p)^3$	M1	$y = (x \pm p)^{3}$ $y = (x - p)^{3}$
		A1 2	$y = (x - p)^3$
		5	

4	$k = x^3$	*M1	Attempt a substitution to obtain a
	$k^2 + 26k - 27 = 0$	A1	quadratic $k^2 + 26k - 27 = 0$
	k = -27, 1	A1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	27,1	DM1	Attempt cube root
	x = -3, 1		x = -3, 1 (no extras)
	3,1		(SR: x = 1 seen www B1
			x = -3 seen www B1)
		5	
5 (a)	$2x^{\frac{2}{3}} \times 3x^{-1}$	M1	Adds indices
	$=6x^{\frac{-1}{3}}$	A1 2	$6x^{\frac{-1}{3}}$
	$=6x^3$		
(b)	$2^{40} \times 4^{30}$		
	$=2^{40}\times 2^{60}$	M1	2 ⁶⁰ or 4 ²⁰
	$=2^{100}$	A1 2	2 ¹⁰⁰
	(
(c)	$\frac{26(4+\sqrt{3})}{}$	M1	Multiply top and bottom by
	$(4-\sqrt{3})(4+\sqrt{3})$		$\left(4+\sqrt{3}\right) \operatorname{or}\left(-4-\sqrt{3}\right)$
	$\frac{26(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}$ $=8+2\sqrt{3}$	A1	$\left(4 - \sqrt{3}\right)\left(4 + \sqrt{3}\right) = 13$
		A1 3	$8+2\sqrt{3}$
6 (i)	$(x^2+2x+1)(3x-4)$	M1	Expand 2 brackets to give an expression
	$=3x^3+2x^2-5x-4$		of the form $ax^2 + bx + c$ ($a \ne 0$, $b \ne 0$, $c \ne 0$) and attempt to multiply by third
	5.0 1 2.0		bracket
		A1	$3x^3 + 2x^2 - 5x - 4$
		A1 3	3 correct simplified terms Completely correct
(ii)	$9x^2 + 4x - 5$		
			$9x^2 + 4x - 5$
		B1 ft B1 ft 2	1 term correct
,	18x + 4	M1	Completely correct (3 terms)
(iii)	. 200	A1 ft 2	Attempt to differentiate their (ii) $18x + 4$ (2 terms)
			(SR (ii) $3ax^2 + 2bx + c$ B1
		_	(iii) $6ax + 2b$ B1)
		7	

		T	3
7 (i)	$\begin{vmatrix} b^2 - 4ac \\ (a) & 36 - 9 \times 4 = 0 \end{vmatrix}$	M1	Uses $b^2 - 4ac$
	(b) 100 – 48 = 52	A1	1 correct
	(c) $4-20=-16$	A1 3	3 correct
	(6) 4-20-10		SR All 3 values correct but √ used B1
(ii)	(a) Fig 3		
	(b) Fig 2	B1	1 correct matching
		B1	3 correct matchings
	(c) Fig 5		
	(a) 1 root, touches <i>x</i> -axis once, line of symmetry <i>x</i> = -3 or root <i>x</i> =-3	B1	1 correct comment relating roots to touching/crossing x-axis or about line of
	(b) 2 roots, meets x-axis twice, line of symmetry x=5		symmetry or vertex o.e. for one graph
	(c) No real roots, does not meet x-	B1 4	2 further correct comments about roots, line of symmetry o.e. for the other 2 graphs
	axis	7	
8 (i)	Circle, centre (0, 0), radius 5	B1 B1 2	Circle centre (0, 0) Radius 5
(ii)	5 2	D. 2	Tradico o
(11)	$y = 5 - 2x$ $x^{2} + (5 - 2x)^{2} = 25$	M1	Attempt to solve equations simultaneously
	$5x^2 - 20x = 0$	*M1	Substitute for x/y or correct attempt at
	OR 5-v		elimination of one variable (NOT for 2 linear equations)
	$x = \frac{5 - y}{2}$	DM1	Obtain quadratic $ax^2 + bx + c = 0$
	$\frac{(5-y)^2}{4} + y^2 = 25$	Divir	$(a \neq 0, b \neq 0)$
	$y^2 - 2y - 15 = 0$	M1	Correct method to solve quadratic
	x = 0, 4 $y = 5, -3$	A1	x = 0, 4 or y = 5, -3
	y = 5, -3	A1 6	
			SR one correct pair www B1
			SR If solution by graphical methods: Drawing circle, centre (0,0) radius 5 B1 Drawing line B1 Looking for intersection M1 (0,5) correct A1 (4, -3) correct A2
		8	
	<u>i</u>	1	<u>i</u>

9 (i)	$y = \frac{4}{3}x + \frac{5}{3}$		
	gradient = $\frac{4}{3}$	B1 1	$\frac{4}{3}$ or 1.33 or better
(ii)	gradient of		
	$\perp^r = -\frac{3}{4}$	B1 ft	$-\frac{3}{4}$ seen or implied
	$y-2 = -\frac{3}{4}(x-1)$ $4y+3x=11$	M1	Attempts equation of straight line through (1, 2) with any gradient
	4y + 3x = 11	A1	$y-2=-\frac{3}{4}(x-1)$
		A1 4	3x + 4y - 11 = 0 (not aef)
(iii)	$P\left(-\frac{5}{4},0\right)$	B1	$\left(-\frac{5}{4},0\right)$ seen or implied
	$P\left(-\frac{5}{4},0\right)$ $Q\left(0,\frac{11}{4}\right)$	B1 ft	$\left(0, \frac{11}{4}\right)$ seen or implied (from a straight)
			line equation in (ii))
	$\left(-\frac{5}{8},\frac{11}{8}\right)$	B1 ft 3	$\left(-\frac{5}{8},\frac{11}{8}\right)$ aef
(iv)	$\sqrt{\left(\frac{5}{4}\right)^2 + \left(\frac{11}{4}\right)^2}$	M1	Correct method to find line length using Pythagoras' theorem
		۸.4	
	$\frac{\sqrt{146}}{4}$	A1	$\sqrt{\left(\frac{5}{4}\right)^2 + \left(\frac{11}{4}\right)^2}$
		A1 3	$\frac{\sqrt{146}}{4}$
		11	

10 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 9$		$x^2 - 9$ 1 term correct Both terms correct
(ii)	$x^2 - 9 = 0$	*M1	uses $\frac{dy}{dx} = 0$
	x = 3, -3		x=3,-3
	y = -18, 18	A1 3	y = -18, 18
			(1 correct pair A1 A0)
(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2x$	DM1	Looks at sign of $\frac{d^2y}{dx^2}$ or other
	$x = 3 \frac{d^2 y}{dx^2} = 6$		correct method
	uλ	A1	$x = 3 \min i mum$
	$x = -3$ $\frac{d^2y}{dx^2} = -6$	A1 3	x = -3 max imum
	$\mathrm{d}x^2$		(N.B. If no method shown but min and
			max correctly stated, award all 3 marks unless earlier incorrect working)
(iv)	gradient of	B1 M1	Gradient = -8
	24x + 3y + 2 = 0 is -8	IVIII	$x^2 - 9 = -8$
	$x^2 - 9 = -8$	M1	one of their <i>x</i> values substituted in both
	$x = \pm 1$ For line		line and curve
	$x = 1, \ y = -8\frac{2}{3}$	M1	second x value substituted in both line and curve $\underline{\mathbf{or}}$ justification that first point is the correct one
	$x = -1$, $y = 7\frac{1}{3}$	A1 5	$p = 1, q = -8\frac{2}{3}$ seen
	For curve		Alternative methods:
	$x = 1, y = -8\frac{2}{3}$		Either: Solve equations for curve and line simultaneously to get one solution
			(either $x = 1$ or $x = -2$) M1 Gradient of line = -8 B1
	$x = -1, \ y = 8\frac{2}{3}$		Substitution of one <i>x</i> value into their
	$p = 1, q = -8\frac{2}{3}$		gradient formula and check for -8 M1 Substitution of other <i>x</i> value into
	$1 \cdot P \cdot P = 3$		gradient formula and check for -8
			or justification as above M1 Correct <i>q</i> value A1
			Or: Solve equations for curve and line
			simultaneously to get one solution M1
			Factorise to (x-1) ² (x+2) B1 State that a double root implies
		40	a tangent at x = 1 M2 Correct value for y A1
		13	

Mark Scheme 4721 January 2006

4	7	2	1	

1	(i)	1			(allow embedded values throughout
1	(i)	$x^{\frac{1}{3}} = 2$			question 1)
		x = 8	B1	1	8
	(ii)	$10^t = 1$			
		t = 0	B1	1	0
	(iii	$(y^{-2})^2 = \frac{1}{81}$			
)	81			
		$y^{-4} = \frac{1}{81}$			
			B1		y = 3
		$y = \pm 3$	B1	2	y = -3
2	(i)	$(3x+1)^2-2(2x-3)^2$	M1		Square to get at least one 3 or 4 term quadratic
		$= (9x^2 + 6x + 1) - 2(4x^2 - 12x + 9)$	A1		$9x^2 + 6x + 1$ or $4x^2 - 12x + 9$ soi
		$=x^2+30x-17$	A1	3	$x^2 + 30x - 17$
	(ii)	$2x^3 + 6x^3 + 4x^3 = 12x^3$	B1		$2 \text{ of } 2x^3, 6x^3, 4x^3 \text{ soi}$
		2.0 1 0.0 1 1.0 12.0			N.B. www for these terms, must be positive
		12	B1	2	$12 \text{ or } 12 x^3$
		12	DI	4	12 01 12 x
3	(i)	$dy_{-15}v^4$ $1_{v^{-\frac{1}{2}}}$	B1		$15x^4$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 15x^4 - \frac{1}{2}x^{-\frac{1}{2}}$	B1		$kx^{-\frac{1}{2}}$
			B1	3	
					$cx^4 - \frac{1}{2}x^{-\frac{1}{2}}$ only
	(ii)	$\frac{d^2y}{dx^2} = 60x^3 + \frac{1}{4}x^{-\frac{3}{2}}$	M1		Attempt to differentiate their 2 term $\frac{dy}{dx}$ and
		4			get one correctly differentiated term
			A1	2	$60x^3 + \frac{1}{x}x^{-\frac{3}{2}}$
	(1)	171	D.1		4
4	(i)		B1		Correct curve in one quadrant
		[]	B1	2	Completely correct
			_	-	r y
				ļ	
	(ii)		M1		Translate (i) horizontally
			A1√	2	(3)
			'	-	Translates all of their (i) $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$
		3			3 must be labelled or stated
	(iii	(One-way) stretch, sf 2, parallel	B1		Stretch
)	to the y-axis	B1		(Scale) factor 2
			B1	3	Parallel to <i>y</i> -axis o.e.
					SR
					Stretch B1
					Sf $\sqrt{2}$ parallel to <i>x</i> -axis B2

	(*)	2			
5	(i)	$x^2 + 3x = \left(x + \frac{3}{2}\right)^2 - \frac{9}{4}$	B1		$a = \frac{3}{2}$
			B1	2	$b = -\frac{9}{4}$ o.e.
	(ii)	$y^2 - 4y - \frac{11}{4} = (y - 2)^2 - \frac{27}{4}$	В1		p = -2
		4 (3 -) 4	B1	2	$q = -\frac{27}{4}$ o.e.
	(iii)	Centre $\left(-\frac{3}{2},2\right)$	B1√	1	$\left(-\frac{3}{2},2\right)$
					N.B. If question is restarted in this part, ft from part (iii) working only
	(iv)	$Radius = \sqrt{\frac{27}{4} + \frac{9}{4}}$	M1		$\sqrt{-their'b'-their'q'}$ or use $\sqrt{(f^2+g^2-c)}$
		$=\sqrt{9}$			
		= 3	A1	2	3 (±3 scores A0)
6	(i)	$y = x^3 - 3x^2 + 4$			$3x^2-6x$
		dv	B1		1 term correct
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x$	B1		Completely correct
		$3x^2 - 6x = 0$	M1		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
		3x(x-2)=0	M1		Correct method to solve quadratic
		x = 0 $x = 2$	A 1		x = 0, 2
		y = 4 $y = 0$	A1√	6	y = 4, 0
					SR one correct (<i>x</i> , <i>y</i>) pair www B1
	(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 6$	M1		Correct method to find nature of stationary points (can be a sketch)
		x = 0 y'' = -6 -ve max	B1		x = 0 max
		x = 2 $y'' = 6$ + ve min	B1	3	x = 2 min
					(N.B. If no method shown but both min and max correctly stated, award all 3 marks)
	(iii	Increasing	M1		Any inequality (or inequalities) involving
)	x < 0 $x > 2$	A1	2	both their x values from part (i) Allow $x \le 0$ $x \ge 2$
L					

4721

7	(i)	$8 + \sqrt{64 - 44}$	M1		Correct use of formula
		$x = \frac{8 \pm \sqrt{64 - 44}}{2}$			
		$=\frac{8\pm\sqrt{20}}{}$	A1		$\frac{8\pm\sqrt{20}}{2}$ aef
					<i>≟</i>
			B1		$\sqrt{20} = 2\sqrt{5}$ soi
		$=4\pm\sqrt{5}$	A1	4	$4\pm\sqrt{5}$
					Alternative method
					$(x-4)^2 - 16 + 11 = 0$ M1
					$\left(x-4\right)^2 = 5 $ A1
					$x = 4 + \sqrt{5}$ A1
					or $4 - \sqrt{5}$ A1
	(ii)	11 \(\)	B1		+ve parabola
			B1√		Root(s) in correct places
		4-5^0.5 4+5^0.5	B1	3	Completely correct curve with roots and (0, 11) labelled or referenced
	(iii	$y = x^2 = \left(4 \pm \sqrt{5}\right)^2$	M1 M1		$y = x^2$ soi Attempt to square at least one answer from
)	$y = x^2 = \left(4 \pm \sqrt{5}\right)^2$	1V1 1		part (i)
		$=16+5\pm 8\sqrt{5}$	A 1√		Correct evaluation of $(a + b\sqrt{c})^2$ $(a,b,c \neq 0)$
		$=21\pm8\sqrt{5}$	A1	4	$21\pm8\sqrt{5}$

8	(i)	$y = x^2 - 5x + 15$	M1		Attempt to eliminate <i>y</i>
		y = 5x - 10			
		$x^2 - 5x + 15 = 5x - 10$			$x^2 - 10x + 25 = 0$ AG
		$x^2 - 10x + 25 = 0$	A1	2	Obtained with no wrong working seen
					6
	(ii)	$b^2 - 4ac = 100 - 100$	D.1		
		= 0	B1	1	0 Do not allow $\sqrt{(b^2 - 4ac)}$
	(iii	Line is a tangent to the curve	B1√	1	Tangent or 'touches'
)	Line is a tangent to the curve	DIV	1	N.B. Strict ft from their discriminant
	<i>'</i>				
	(iv)	$x^2 - 10x + 25 = 0$	M1		Correct method to solve 3 term quadratic
		$x^{2}-10x+25=0$ $(x-5)^{2}=0$ $x=5 y=15$			
		x = 5 $y = 15$	A1		x = 5
			A1	3	y = 15
	(v)	Gradient of tengent - 5	B1		Gradient of tangent = 5
	(v)	Gradient of tangent = 5	DI		Gradient of tangent – 3
		Gradient of normal = $-\frac{1}{5}$	B1√		Gradient of normal = $-\frac{1}{5}$
		5			J
		$y-15=-\frac{1}{5}(x-5)$	M1		_ = = = = = = = = = = = = = = = = = = =
		_	Δ1	4	
		x + 3y = 60		•	$\begin{bmatrix} x + 3y = 60 \end{bmatrix}$
		$y-15 = -\frac{1}{5}(x-5)$ $x+5y = 80$	M1 A1	4	Correct equation of straight line, any gradie passing through $(5, 15)$ x+5y=80

4721 Mark Scheme January 2006

9	(i)	Length AC =	M1		(>2 / >2
		$\sqrt{(8-5)^2 + (2-1)^2}$	1711		Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		· ·			
		$=\sqrt{3^2+1^2}$			
		$=\sqrt{10}$	A1		$\sqrt{10}$ ($\pm \sqrt{10}$ scores A0)
		Length AB = $\sqrt{(p-5)^2 + (7-1)^2}$	A1		$\sqrt{(p-5)^2+(7-1)^2}$
		$=\sqrt{\left(p-5\right)^2+36}$			
		$\sqrt{(p-5)^2 + 36} = 2\sqrt{10}$	M1		AB = 2AC (with algebraic expression) used
		$p^2 - 10p + 25 + 36 = 40$			
		$p^2 - 10p + 21 = 0$	M1		Obtains 3 term quadratic = 0 suitable for
		(p-7)(p-3)=0			solving or $(p-5)^2 = 4$
		p = 7.3	A1		p = 7
			A1	7	p=3
					SR If no working seen, and one correct
					value found, award B2 in place of the final
					4 marks in part (i)
	(ii)	7 = 3x - 14	M1		Correct method to find <i>x</i>
	(11)	$\begin{vmatrix} 7 - 3x - 14 \\ x = 7 \end{vmatrix}$	A1		x = 7
			M1		$(x_1 + x_2 y_1 + y_2)$
		(5, 1) (7, 7)	1,11		Use $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
		(5, 1) (7, 7) Mid-point (6, 4)	A1√	4	Use $\left(\frac{s_1 - s_2}{2}, \frac{s_1 - s_2}{2}\right)$ (6, 4) or correct midpoint for their AB
				4	(6, 4) or correct midpoint for their AB
				4	
				4	(6, 4) or correct midpoint for their AB Alternative method y coordinate of midpoint = 4 M1 A1 sub 4 into equation of line M1
				4	(6, 4) or correct midpoint for their AB Alternative method y coordinate of midpoint = 4 M1 A1

Mark Scheme 4721 June 2006

1	(i)	$\frac{21-3}{4-1} = \frac{18}{3} = 6$	M1		Uses $\frac{y_2 - y_1}{x_2 - x_1}$
			A1	2	6 (not left as $\frac{18}{3}$)
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 1$	B1		
		$2\times 3+1=7$	B1	2	
2	(i)	$27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{9}$	M1		$\frac{1}{27^{\frac{2}{3}}}$ or $27^{\frac{2}{3}} = 9$ or 3^{-2} soi
			A1	2	$\frac{1}{9}$
	(ii)	$5\sqrt{5}=5^{\frac{3}{2}}$	B1	1	
	(iii)	$\frac{1-\sqrt{5}}{3+\sqrt{5}} = \frac{\left(1-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}$	M1		Multiply numerator and denominator by conjugate
		$=\frac{8-4\sqrt{5}}{4}$	B1		$\left(\sqrt{5}\right)^2 = 5$ soi
		$=2-\sqrt{5}$	A1	3	$2-\sqrt{5}$
3	(i)	$2x^{2} + 12x + 13 = 2(x^{2} + 6x) + 13$ $= 2[(x+3)^{2} - 9] + 13$	B1 B1 M1		a = 2 b = 3 $13 - 2b^2$ or $13 - b^2$ or $\frac{13}{2} - b^2$ (their b)
		$=2(x+3)^2-5$	A1	4	c= -5
	(ii)	$2(x+3)^2 - 5 = 0$	M1		Uses correct quadratic formula or completing square method
		$2(x+3)^{2} - 5 = 0$ $(x+3)^{2} = \frac{5}{2}$ $x = -3 \pm \sqrt{\frac{5}{2}}$	A1		$x = \frac{-12 \pm \sqrt{40}}{4} \text{or} (x+3)^2 = \frac{5}{2}$ $x = -3 \pm \sqrt{\frac{5}{2}} \text{or} -3 \pm \frac{1}{2}\sqrt{10}$
		$x = -3 \pm \sqrt{\frac{3}{2}}$	A1	3	$x = -3 \pm \sqrt{\frac{5}{2}}$ or $-3 \pm \frac{1}{2}\sqrt{10}$

4	(i)	(x-4)(x-3)(x+1)	B1		$x^2 - 7x + 12$ or $x^2 - 2x - 3$ or $x^2 - 3x - 4$ seen
	(-)	$ = (x^2 - 7x + 12)(x + 1) $ $ = (x^2 - 7x + 12)(x + 1) $ $ = x^3 + x^2 - 7x^2 - 7x + 12x + 12 $	M1		Attempt to multiply a quadratic by a linear factor or attempt to list an 8 term expansion of all 3 brackets
		$\equiv x^3 - 6x^2 + 5x + 12$	A1	3	$x^3 - 6x^2 + 5x + 12$ (AG) obtained (no wrong working seen)
	(ii) (iii)	/c1	B1		+ve cubic with 3 roots (not 3 line segments)
	()		B1		(0, 12) labelled or indicated on <i>y</i> -axis
		3 2 5 6 7	B1	3	(-1, 0), (3,0), (4, 0) labelled or indicated
			M1		on <i>x</i> -axis
		C2 _°	A1√	2	Reflect their (ii) in either x- or y-axis
		1	AIV	2	Reflect their (ii) in x-axis
5	(i)	1 < 4x - 9 < 5 10 < 4x < 14	M1		2 equations or inequalities both dealing with all 3 terms
		2.5 < x < 3.5	A1		2.5 and 3.5 seen oe
			A1	3	2.5 < x < 3.5 (or 'x > 2.5 <u>and</u> x < 3.5')
	(ii)	$y^2 \ge 4y + 5$	B1		$y^2 - 4y - 5 = 0$ soi
		$y^2 - 4y - 5 \ge 0$	M1		Correct method to solve quadratic
		$(y-5)(y+1) \ge 0$	A1		-1, 5
		$y \le -1, \ y \ge 5$			(SR If both values obtained from trial and improvement, award B3)
			M1		Correct method to solve inequality
			A1	5	$y \le -1, \ y \ge 5$

4721 Mark Scheme June 2006

6	(i)	$x^4 - 10x^2 + 25 = 0$	*M1		Use a substitution to obtain a quadratic
		Let $y = x^2$ $y^2 - 10y + 25 = 0$	""		or $(x^2 - 5)(x^2 - 5) = 0$
		(y-10y+25=0)	dep*M1		Correct method to solve a quadratic
		y=5	A1		5 (not $x = 5$ with no subsequent
		$x^2 = 5$			working)
		$x = \pm \sqrt{5}$	A1	4	$x = \pm \sqrt{5}$
	(ii)	$y = \frac{2x^5}{5} - \frac{20x^3}{3} + 50x + 3$	B1		$2x^4$ or $-20x^2$ oe seen
		$\frac{dy}{dx} = 2x^4 - 20x^2 + 50$	B1	2	$2x^4$ - $20x^2$ + 50 (integers required)
		dx			
	(iii)	$2x^4 - 20x^2 + 50 = 0$ $x^4 - 10x^2 + 25 = 0$	M1		their $\frac{dy}{dx} = 0$ seen (or implied by correct
		$\begin{array}{c} x^3 - 10x^2 + 25 = 0 \\ \text{which has 2 roots} \end{array}$			answer)
7	(i)	$y = x^2 - 5x + 4$	A1	2	2 stationary points www in any part
	(.)	y = x - 3x + 4 $y = x - 1$			
		$x^2 - 5x + 4 = x - 1$	M1		Substitute to find an equation in x (or y)
		$x^2 - 6x + 5 = 0$	M1		Correct method to solve quadratic
		(x-1)(x-5) = 0			·
		$ \begin{vmatrix} x=1 & x=5 \\ y=0 & y=4 \end{vmatrix} $	A1 A1	4	x = 1, 5 y = 0, 4
		y=0 $y=4$			(N.B. This final A1 may be awarded in part (ii) if y coordinates only seen in part
					(ii))
					SR one correct (x,y) pair www B1
	(ii)	2 points of intersection	B1	1	
	(iii)	EITHER	D 4 4		
		$x^{2}-5x+4=x+c$ has 1 solution $x^{2}-6x+(4-c)=0$	M1		$x^2 - 5x + 4 = x + c$ has 1 soln seen or implied
		$\begin{vmatrix} x & 6x + (4 & c) = 0 \\ b^2 - 4ac = 0 \end{vmatrix}$	M1		Discriminant = 0 or $(x - a)^2 = 0$ soi
		36-4(4-c)=0	A1		36 - 4(4 - c) = 0 or 9 = 4 - c
		c = -5 OR	A1	4	c = -5
		$\frac{dy}{dx} = 1 = 2x - 5$			
		dx	M1		Algebraic expression for gradient of curve = non-zero gradient of line
		x = 3 y = -2 $-2 = 3 + c$			used
		c = -5	A1		2x - 5 = 1
			A1 A1	4	$ \begin{array}{c} x = 3 \\ c = -5 \end{array} $
					SR $c = -5$ without any working B1

8	(i)	Height of box = $\frac{8}{x^2}$	*B1		Area of 1 vertical face = $\frac{8}{x^2} \times x$
		4 vertical faces = $4 \times \frac{8}{x}$ = $\frac{32}{x}$	*B1		$=\frac{8}{x}$
		Total surface area = $x^2 + x^2 + \frac{32}{x}$	B1 dep on both **		Correct final expression
		$A = 2x^2 + \frac{32}{x}$	DOIII	3	
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4x - \frac{32}{x^2}$	B1 B1 B1	3	4x kx ² -32x ²
	(iii)	$4x - \frac{32}{x^2} = 0$ $4x^3 = 32$ $x = 2$	M1		$\frac{\mathrm{d}A}{\mathrm{d}x} = 0$ soi
		$4x^3 = 32$ $x = 2$	A1		x = 2
			M1 A1	4	Check for minimum Correctly justified
					SR If <i>x</i> = 2 stated www but with no evidence of differentiated expression(s) having been used in part (iii) B1

4721 Mark Scheme June 2006

9	(i)	$\left(\frac{4+10}{2}, \frac{-2+6}{2}\right)$	M1		Uses $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
		(7, 2)	A1	2	(7, 2) (integers required)
	(ii)	$\sqrt{(7-4)^2 + (2-2)^2}$ $= \sqrt{3^2 + 4^2}$	M1		Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		$= \sqrt{3^2 + 4^2}$ $= 5$	A1	2	5
	(iii)	$(x-7)^2 + (y-2)^2 = 25$	B1√		$(x-7)^2$ and $(y-2)^2$ used (their
			B1√		centre) $r^2 = 25 \text{ used } (thoir r^2)$
			B1	3	$r^2 = 25 \text{ used } (their r^2)$ $(x-7)^2 + (y-2)^2 = 25 \text{ cao}$
					Expanded form: -14x and -4y used B1√
					$r = \sqrt{g^2} + f^2 - c \text{used} \qquad \qquad \text{B1}$
					$x^2 + y^2 - 14x - 4y + 28 = 0$ B1 cao
					By using ends of diameter: (x-4)(x-10) + (y+2)(y-6) = 0
					Both <i>x</i> brackets correct B1 Both <i>y</i> brackets correct B1
					Final equation fully correct B1
	(iv)	Gradient of $AB = \frac{6 - 2}{10 - 4} = \frac{4}{3}$	B1		oe
		Gradient of tangent = $-\frac{3}{4}$	B1√		
			M1		Correct equation of straight line through
		$y-2=-\frac{3}{4}(x-4)$	A1		A, any non-zero gradient
		$y2 = -\frac{3}{4}(x - 4)$ $3x + 4y = 4$	A1	5	a ,b, c need not be integers

Mark Scheme 4721 January 2007

1	5 $2 + \sqrt{3}$	M1		Multiply top and bottom by
	$\frac{5}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}$			$\pm (2 + \sqrt{3})$
				•
	$=\frac{5(2+\sqrt{3})}{4-3}$	A1		$(2+\sqrt{3})(2-\sqrt{3}) = 1$ (may be implied)
	$=10+5\sqrt{3}$	A1		$10 + 5\sqrt{3}$
			3	
2(i)	1	B1	1	
		21		1 1
(ii)	$\frac{1}{2} \times 2^4$	M1		$2^{-1} = \frac{1}{2} \ \underline{\text{or}} \ 32^{\frac{1}{5}} = 2 \ \underline{\text{or}} \ 2^{5} = 32 \ \text{soi}$
	_	M1		$32^{\frac{4}{5}} = 2^4$ or 16 seen or implied
		IVII		32 – 2 of 10 seen of hipfied
	= 8	A1	3	8
			4	
3(i)	$3x - 15 \le 24$	M1		Attempt to simplify expression by
3(1)				multiplying out brackets
	$3x \le 39$			
	$x \le 13$	A1	2	$x \le 13$
	or			Attempt to simplify expression by dividing
	$x-5 \le 8$ M1			through by 3
	<i>x</i> ≤ 13 A1			
				40
(ii)	$5x^2 > 80$	M1		Attempt to rearrange inequality or equation to combine the constant terms
	$x^2 > 16$			to combine the constant terms $x > 4$
	x > 4	B1		
	or $x < -4$	A 1	3	fully correct, not wrapped, not 'and'
				SR B1 for $x \ge 4$, $x \le -4$
			_	
			5	

		1	
4	Let $y = x^{\frac{1}{3}}$ $y^2 + 3y - 10 = 0$	*M1	Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket
	(y-2)(y+5) = 0	DM1	Correct attempt to solve quadratic
	y = 2, y = -5	A1	Both values correct
	$x = 2^3, x = (-5)^3$	DM1	Attempt cube
	x = 8, x = -125	A1 ft 5	Both answers correctly followed through
		5	SR B2 $x = 8$ from T & I
5 (i)		M1	Reflection in either axis
		A1 2	Correct reflection in x axis
(ii)	(1,3)	B1 B1 2	Correct x coordinate Correct y coordinate
			SR B1 for (3, 1)
(iii)	Translation 2 units in negative x direction	B1 B1 2	
6 (i)	$2(x^2-12x+40)$	B1	a=2
	$2(x^{2} - 12x + 40)$ $= 2[(x - 6)^{2} - 36 + 40]$	B1	b = 6
	$= 2[(x-6)^2 + 4]$	M1	$80 - 2b^2$ or $40 - b^2$ or $80 - b^2$ or $40 - 2b^2$
	$=2(x-6)^2+8$	A1 4	$ \begin{array}{l} \text{(their } b) \\ c = 8 \end{array} $
(ii)	x = 6	B1 ft 1	
(iii)	y = 8	B1 ft 1	
		6	

7(i)	$\frac{dy}{dx} = 5$	B1 1	
(ii)	$y = 2x^{-2}$	B1	x^{-2} soi
	$y = 2x$ $\frac{dy}{dx} = -4x^{-3}$	B1	$-4x^c$
	$\int dx$	B1 3	kx^{-3}
(iii)	$y = 10x^2 - 14x + 5x - 7$	M1	Expand the brackets to give an expression
	$y = 10x^2 - 9x - 7$	A1	of form $ax^2 + bx + c$ $(a \ne 0, b \ne 0, c \ne 0)$ Completely correct (allow 2 <i>x</i> -terms)
			1 town correctly differentiated
	$\frac{dy}{dx} = 20x - 9$	B1 ft B1 ft 4	1 term correctly differentiated Completely correct (2 terms)
		8	
8 (i)	dy 0 $\epsilon = 2\pi^2$	*M1	Attempt to differentiate y or –y (at least one
	$\frac{dy}{dx} = 9 - 6x - 3x^2$	A1	correct term) 3 correct terms
	At stationary points, $9 - 6x - 3x^2 = 0$	M1	Use of $\frac{dy}{dx} = 0$ (for y or -y)
	3(3+x)(1-x) = 0 x = -3 or x = 1	DM1 A1	Correct method to solve 3 term quadratic $x = -3$, 1
	y = 0, 32	A1ft 6	y = 0, 32 (1 correct pair www A1 A0)
(ii)	$\frac{d^2y}{dx^2} = -6x - 6$	M1	Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly
			from $k \frac{dy}{dx}$, or other correct method
	When $x = -3, \frac{d^2 y}{dx^2} > 0$	A1	x = -3 minimum
	When $x = 1$, $\frac{d^2 y}{dx^2} < 0$	A1 3	x = 1 maximum
(iii)	-3 < x < 1	M1	Uses the x values of both turning points in inequality/inequalities
		A1 2	inequality/inequalities Correct inequality or inequalities. Allow ≤
		11	

PhysicsAndMathsTutor.com

9 (i)	Gradient = 4	B1	Gradient of 4 soi
	y-7=4(x-2)	M1	Attempts equation of straight line through (2, 7) with any gradient
	y = 4x - 1	A1 3	(-, ·)
(ii)	$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $= \sqrt{(2 - 1)^2 + (7 - 2)^2}$	M1	Use of correct formula for d or d^2 (3 values correctly substituted)
	$=\sqrt{3^2+9^2}$	A1	$\sqrt{3^2+9^2}$
	$= \sqrt{90}$ $= 3\sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of AB = 3	B1	
	Gradient of perpendicular line = $-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	Midpoint of AB = $\left(\frac{1}{2}, \frac{5}{2}\right)$	B1	
	$y - \frac{5}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	Attempts equation of straight line through their midpoint with any non-zero gradient
	x + 3y - 8 = 0	A1	$y - \frac{5}{2} = \frac{-1}{3} (x - \frac{1}{2})$
		A1 6	x + 3y - 8 = 0
		12	

10 (i)	Centre (-1, 2)	B1		Correct centre
	$(x+1)^2 - 1 + (y-2)^2 - 4 - 8 = 0$	M1		Attempt at completing the square
	$(x+1)^2 + (y-2)^2 = 13$			
	Radius √13	A1	3	Correct radius
				Alternative method:
				Centre $(-g, -f)$ is $(-1, 2)$ B1
				$g^2 + f^2 - c \qquad M1$
				Radius = $\sqrt{13}$ A1
				Radius – VIS
(ii)	$(2)^{2} + (k-2)^{2} = 13$ $(k-2)^{2} = 9$	M1 M1		Attempt to substitute x = -3 into circle equation Correct method to solve quadratic
	$k-2=\pm 3$ $k=-1$	A1	3	k = -1 (negative value chosen)
	$\kappa = -1$	711	5	K = 1 (negative varietiessen)
(iii)	EITHER			
	y = 6 - x	M1		Attempt to solve equations simultaneously
	$(x+1)^2 + (6-x-2)^2 = 13$	M1		Substitute into their circle equation for x/y or attempt to get an equation in 1 variable
	$(x+1)^{2} + (4-x)^{2} = 13$ $x^{2} + 2x + 1 + 16 - 8x + x^{2} = 13$			only
	$2x^{2} - 6x + 4 = 0$	A1		Obtain correct 3 term quadratic
	2(x-1)(x-2) = 0	M1		Correct method to solve quadratic of form
				$ax^2 + bx + c = 0 (b \neq 0)$
	x = 1, 2	A1		Both x values correct
	$\therefore y = 5, 4$	A1	6	Both y values correct
				<u>or</u>
				one correct pair of values www B1 second correct pair of values B1
	OR			second correct pair of values B1
	x = 6 - y			
	$(6 - y + 1)^2 + (y - 2)^2 = 13$			
	$(7 - y)^{2} + (y - 2)^{2} = 13$ $49 - 14y + y^{2} + y^{2} - 4y + 4 = 13$			
	$\begin{vmatrix} 49 - 14y + y^2 + y^2 - 4y + 4 = 13 \\ 2y^2 - 18y + 40 = 0 \end{vmatrix}$			
	2(y-4)(y-5) = 0			GP.
	y=4,5			SR
	$\therefore x = 2$, 1			T & I M1 A1 One correct x (or y) value
				A1 Correct associated coordinate
			12	

Mark Scheme 4721 June 2007

1	$(4x^{2} + 20x + 25) - (x^{2} - 6x + 9)$ $= 3x^{2} + 26x + 16$	M1		Square one bracket to give an expression of the form $ax^2 + bx + c$ $(a \ne 0, b \ne 0, c \ne 0)$
		A1		One squared bracket fully correct
		A1	3	All 3 terms of final answer correct
	Alternative method using difference of two squares: (2x + 5 + (x - 3))(2x + 5 - (x - 3)) = $(3x + 2)(x + 8)$ = $3x^2 + 26x + 16$		3	 M1 2 brackets with same terms but different signs A1 One bracket correctly simplified A1 All 3 terms of final answer correct
2 (a)(i)		B1		Excellent curve for $\frac{1}{x}$ in either quadrant
		B1	2	Excellent curve for $\frac{1}{x}$ in other quadrant
(ii)	\			SR B1 Reasonably correct curves in 1 st and 3 rd quadrants
(")		B1	1	Correct graph, minimum point at origin, symmetrical
(b)	Stretch Scale factor 8 in y direction or scale factor ½ in x direction	B1 B1	2	
	of Scale factor /2 iff x direction		5	
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5}$ \times $\sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90}$ \times $\sqrt{2}$	M1		
	$=6\sqrt{5}$	A1	2	Correctly simplified answer
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified
	$= 15\sqrt{5}$	A1	3	cao
			5	

4721 Mark Scheme June 2007

4 (i)	$(-4)^2 - 4 \times k \times k$ = 16 - 4k ²	M1 A1	2	Uses $b^2 - 4ac$ (involving k) 16 - 4 k^2
(ii)	$16-4k^2=0$	M1		Attempts $b^2 - 4ac = 0$ (involving k) or attempts to complete square (involving
	$k^2 = 4$			<i>k</i>)
	k = 2 or $k = -2$	B1 B1	3	
	Of K = -2	ы		
5 (i)	Length = 20 - 2x	M1	5	Expression for length of enclosure in
3 (1)	Lengur = 20 - 2x	IVII		terms of x
		A1	2	Correctly shows that area = $20x - 2x^2$
	Area = $x(20 - 2x)$ = $20x - 2x^2$			AG
	$= 20x - 2x^2$			
(ii)	$\frac{dA}{dx} = 20 - 4x$	M1		Differentiates area expression
	For max, $20 - 4x = 0$			
				Uses $\frac{dy}{dx} = 0$
	x = 5 only Area = 50	M1 A1		$\frac{dx}{dx} = 0$
	Alea = 30	A1	4	
			6	
6	Let $y = (x + 2)^2$	B1		Substitute for (x + 2) ² to get
	$y^2 + 5y - 6 = 0$			$y^2 + 5y - 6 (= 0)$
	(y + 6)(y - 1) = 0	M1		Correct method to find roots
		A1		Both values for y correct
	y = -6 or y = 1	M1		Attempt to work out x
	$(x + 2)^2 = 1$	A1		One correct value
	x = -1	A1	6	Second correct value and no extra real
	or $x = -3$		6	values
7 (a)	$f(x) = x + 3x^{-1}$ $f'(x) = 1 - 3x^{-2}$	M1		Attempt to differentiate
	$f'(x) = 1 - 3x^2$	A1		First term correct
		A1		x ² soi www
		A1	4	Fully correct answer
(b)	$dy = 5 + \frac{3}{2}$	M1		Use of differentiation to find gradient
	$\frac{dy}{dx} = \frac{5}{2} x^{\frac{3}{2}}$	B1		$\frac{5}{2}$ x ^c
		B1		$kx^{\frac{3}{2}}$
	When x = 4, $\frac{dy}{dx} = \frac{5}{2} \sqrt{4^3}$	M1		$\sqrt{4^3}$ soi
	$\begin{array}{c} ax & 2 \\ = 20 \end{array}$	A1	5	SR If 0 scored for first 3 marks, award
			9	B1 if $\sqrt{4^n}$ correctly evaluated.

4721 Mark Scheme June 2007

8 (i)	$(x + 4)^2 - 16 + 15$ = $(x + 4)^2 - 1$	B1 M1 A1 3	a = 4 15 – their a^2 cao in required form
(ii)	(-4, -1)	B1 ft B1 ft 2	Correct x coordinate Correct y coordinate
		M1 A1	Correct method to find roots -5, -3
(iii)	$x^2 + 8x + 15 > 0$ (x + 5)(x + 3) > 0	M1	Correct method to solve quadratic inequality eg +ve quadratic graph
	x < -5, x > -3	A1 4	x < -5, x > -3 (not wrapped, strict inequalities, no 'and')
9 (i)	$(x-3)^2 - 9 + y^2 - k = 0$ (x-3) ² + y ² = 9 + k	B1	$(x-3)^2$ soi
	$(x-3)^2 + y^2 = 9 + k$ Centre (3, 0)	B1	Correct centre
	$9 + k = 4^2$	M1	Correct value for k (may be
	k = 7	A1 4	embedded)
			Alternative method using expanded form: Centre (-g, -f) Centre (3, 0) $4 = \sqrt{f^2 + g^2 - (-k)}$ M1 $k = 7$ M1 A1
(ii)	$(3-3)^2 + y^2 = 16$ $y^2 = 16$	M1	Attempt to substitute x = 3 into
	$y^2 = 16$ $y = 4$	A1	original equation or their equation $y = 4$ (do not allow ± 4)
	Length of AB = $\sqrt{(-1-3)^2 + (0-4)^2}$	M1	Correct method to find line length using Pythagoras' theorem
	$=\sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16+a^2}$
	$=4\sqrt{2}$	A1 5	cao
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft	
	y - 0 = m(x + 1) or $y - 4 = m$	M1	Attempts equation of straight line
	(x – 3)	A1 3	through their A or B with their gradient Correct equation in any form with
	y = x + 1	12	simplified constants

4721 Mark Scheme June 2007

10 (i)	(3x + 1)(x - 5) = 0	M1	Correct method to find roots
	-1	A1	Correct brackets or formula
	$x = \frac{-1}{3}$ or $x = 5$	A1 3	Both values correct
	3		
			SR B1 for x = 5 spotted www
(ii)	\ [/	B1	Positive quadratic (must be reasonably symmetrical)
		B1	y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4		
		M1*	Equating their gradient expression to 4
	x = 3	A1	
		A1 ft	Finding y co ordinate for their x value
	On curve, when $x = 3$, $y = -20$	71111	I maing y co ordinate for their x value
	$-20 = (4 \times 3) + c$ c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method: $3x^2 - 14x - 5 = 4x + c$		
	$3x^2 - 14x - 5 = 4x + c$	M1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0$ has one solution	B1	Statement that only one solution for a
	$b^2 - 4ac = 0$	M1	tangent (may be implied by next line) Use of discriminant = 0
	$(-18)^2 - (4 \times 3 \times (-5 - c)) = 0$	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32

4721 Core Mathematics 1

1	$\frac{4(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})}$	M1		Multiply top and bottom by conjugate
	$= \frac{12 + 4\sqrt{7}}{9 - 7}$	B1		9 ± 7 soi in denominator
	$=6+2\sqrt{7}$	A1	3 3	$6+2\sqrt{7}$
2(i)	$x^2 + y^2 = 49$	B1	1	$x^2 + y^2 = 49$
(ii)	$x^{2} + y^{2} - 6x - 10y - 30 = 0$ $(x - 3)^{2} - 9 + (y - 5)^{2} - 25 - 30 = 0$ $(x - 3)^{2} + (y - 5)^{2} = 64$	M1		3^2 5^2 30 with consistent signs soi
	$r^2 = 64$ $r = 8$	A1	2 3	8 cao
3	$a(x+3)^{2} + c = 3x^{2} + bx + 10$ $3(x^{2} + 6x + 9) + c = 3x^{2} + bx + 10$ $3x^{2} + 18x + 27 + c = 3x^{2} + bx + 10$ $c = -17$	B1 B1 M1 A1	4 4	$a = 3 \text{ soi}$ $b = 18 \text{ soi}$ $c = 10 - 9a \text{ or } c = 10 - \frac{b^2}{12}$ $c = -17$
4(i)	p = -1	B1	1	p = -1
(ii)	$\sqrt{25k^2} = 15$ $25k^2 = 225$	M1		Attempt to square 15 or attempt to square root $25k^2$
	$k^2 = 9$ $k = \pm 3$	A1 A1	3	k = 3 $k = -3$
(iii)	$\sqrt[3]{t} = 2$ $t = 8$	M1 A1	2 6	$\frac{1}{t^{\frac{1}{3}}} = \frac{1}{2} \text{ or } t^{\frac{1}{3}} = 2 \text{ soi}$ $t = 8$

		1	
5(i)	2 ×	B1 B1 2	+ve cubic +ve or -ve cubic with point of inflection at (0, 2) and no max/min points
(ii)	y ×	B1 B1 2	curve with correct curvature in +ve quadrant only completely correct curve
(iii)	Stretch scale factor 1.5 parallel to y-axis	B1 B1 B1 3	stretch factor 1.5 parallel to y-axis or in y-direction
6(i)	EITHER $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	M1	Correct method to solve quadratic
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-8 \pm \sqrt{64 - 40}}{2}$ $x = \frac{-8 \pm \sqrt{24}}{2}$	A1	$x = \frac{-8 \pm \sqrt{24}}{2}$
	$x = \frac{-8 \pm 2\sqrt{6}}{2}$ $x = -4 \pm \sqrt{6}$	A1 3	$x = -4 \pm \sqrt{6}$
	OR $(x+4)^2 - 16 + 10 = 0$ $(x+4)^2 = 6$ $x+4 = \pm \sqrt{6}$ M1 A1 $x = \pm \sqrt{6} - 4$ A1		
(ii)	$x = \pm \sqrt{6 - 4} $ A1	B1	+ve parabola
	10	B1	parabola cutting y-axis at (0, 10) where (0, 10) is not min/max point
		B1 3	parabola with 2 negative roots
(iii)	$x \le -\sqrt{6} - 4, x \ge \sqrt{6} - 4$	M1 A1 ft 2	$x \le \text{lower root} x \ge \text{higher root} (\text{allow} <, >)$ Fully correct answer, ft from roots found in (i)
		8	

7(i)	Gradient = $-\frac{1}{2}$		B1 1		$-\frac{1}{2}$
(ii)	$y - 5 = -\frac{1}{2}(x - 6)$		M1		Equation of straight line through (6, 5) with any non-zero numerical gradient
	2y - 10 = -x + 6		B1 ft		Uses gradient found in (i) in their equation of line
	x + 2y - 16 = 0		A1 3	3	Correct answer in correct form (integer coefficients)
(iii)	EITHER $\frac{4-x}{2} = x^2 + x + 1$		*M1		Substitute to find an equation in x (or y)
	$4 - x = 2x^2 + 2x + 2$				
	$2x^{2} + 3x - 2 = 0$ $(2x - 1)(x + 2) = 0$		DM1		Correct method to solve quadratic
	$x = \frac{1}{2}, x = -2$		A1		$x = \frac{1}{2}, x = -2$
	$y = \frac{7}{4}, y = 3$		A1 4	1	$y = \frac{7}{4}, y = 3$
	7				SR one correct (x,y) pair www B1
	OR				
	$y = (4-2y)^2 + (4-2y) + 1$	* M			
	$y = 16 - 16y + 4y^2 + 4 - 2y +$	1			
	$0 = 21 - 19y + 4y^{2}$ $0 = (4y - 7)(y - 3)$	DM1			
	4	A1			
	$x = \frac{1}{2}, x = -2$	A1			
			8		

8(i)	$\frac{dy}{dx} = 3x^2 + 2x - 1$ At stationary points, $3x^2 + 2x - 1 = 0$ $(3x - 1)(x + 1) = 0$	*M1 A1 M1 DM1	Attempt to differentiate (at least one correct term) 3 correct terms Use of $\frac{dy}{dx} = 0$ Correct method to solve 3 term quadratic
	$x = \frac{1}{3}, \ x = -1$ $y = \frac{76}{27}, \ y = 4$		$x = \frac{1}{3}, \ x = -1$ $y = \frac{76}{27}, \ 4$
			SR one correct (x,y) pair www B1
(ii)	$\frac{d^2y}{dx^2} = 6x + 2$	M1	Looks at sign of $\frac{d^2y}{dx^2}$ for at least one of their x-values or other correct method
	$x = \frac{1}{3}, \frac{d^2y}{dx^2} > 0$	A1	$x = \frac{1}{3}$, minimum point CWO
	$x = -1, \ \frac{d^2y}{dx^2} < 0$	A1 3	x = -1, maximum point CWO
(iii)	$-1 < x < \frac{1}{3}$	M1 A1 2	Any inequality (or inequalities) involving both their x values from part (i) Correct inequality (allow $<$ or \le)
		11	

9(i)	Gradient of AB = $\frac{-2-1}{-5-3}$ $=\frac{3}{8}$	B1	$\frac{3}{8}$ oe
	$y-1 = \frac{3}{8}(x-3)$ $8y-8 = 3x-9$	M1	Equation of line through either A or B, any non-zero numerical gradient
	8y - 8 = 3x - 9 $3x - 8y - 1 = 0$	A1 3	Correct equation in correct form
(ii)	$\left(\frac{-5+3}{2}, \frac{-2+1}{2}\right)$		Uses $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
	$=(-1, -\frac{1}{2})$	A1 2	$(-1, -\frac{1}{2})$
(iii)	$AC = \sqrt{(-5+3)^2 + (-2-4)^2}$	M1	Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	$= \sqrt{2^2 + 6^2}$ $= \sqrt{40}$	A1	$\sqrt{40}$
	$=2\sqrt{10}$	A1 3	Correctly simplified surd
(iv)	Gradient of AC = $\frac{-2-4}{-5+3}$ = 3	B1	3 oe
	Gradient of BC = $\frac{4-1}{-3-3} = -\frac{1}{2}$	B1	$-\frac{1}{2}$ oe
	$3 \times -\frac{1}{2} \neq -1$ so lines are not	M1	Attempts to check $m_1 \times m_2$
	perpendicular	A1 4	Correct conclusion www

	T	T	
10(i)	$24x^2 - 3x^{-4}$	B1	$24x^{2}$
10(1)	24x - 3x	B1	kx^{-4}
		B1	$-3x^{-4}$
	$48x + 12x^{-5}$	M1	Attempt to differentiate their (i)
		A1 5	Fully correct
<i>(</i>)	2 1		
(ii)	$8x^3 + \frac{1}{x^3} = -9$		
	$8x^6 + 1 = -9x^3$		
	$8x^6 + 9x^3 + 1 = 0$	*M1	Use a substitution to obtain a 3-term quadratic
	Let $y = x^3$	DM1	Correct method to solve quadratic
	$8y^2 + 9y + 1 = 0$	A1	$\left[-\frac{1}{8}, -1 \right]$
	(8y+1)(y+1) = 0	2.61	O
	$y = -\frac{1}{8}, y = -1$	M1	Attempt to cube root at least one of their
			y-values 1
	$x = -\frac{1}{2}, x = -1$	A1 5	$\left[-\frac{1}{2}, -1 \right]$
			SR one correct x value www B1
			SR one correct x value www B1
			CD for Arial and immune
			SR for trial and improvement: $x = -1$ B1
			$x = -\frac{1}{2}$ B2
		10	<u></u>
		10	Justification that there are no further solutions B2

4721 Core Mathematics 1

- 1 (i) n = -2B1
 1
 (ii) n = 3B1
 1
 - (iii) **M1** $\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or

A1 2

 $4 \times \sqrt{4}$ with brackets correct if used

 $\frac{3}{2}$

2 (i) M1 $y = (x \pm 2)^2$

 $y = (x \pm 2)^2$ A1

(ii) $y = -(x^3 - 4)$ R1 oe

- (ii) $y = -(x^3 4)$ B1 oe
- 3 (i) $\sqrt{2 \times 100} = 10\sqrt{2}$ B1 1
 - (ii) $\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$ B1
- (iii) M1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$
- $10\sqrt{2} 3\sqrt{2} = 7\sqrt{2}$ $\boxed{2}$
- - $y = \frac{1}{2}, y = 3$ A1 $x = \frac{1}{4}, x = 9$ A1
 Attempt to square to obtain x

SR If first M1 not gained and 3 and ½ given as final answers, award B1

A1
$$kx^{-\frac{1}{2}}$$

M1 Correct substitution of
$$x = 9$$
 into their

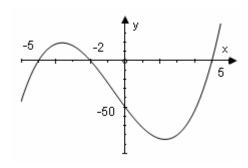
A1
$$\frac{7}{3}$$
 only

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{7}{3}$$

6 (i)
$$(x-5)(x+2)(x+5)$$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$

$$=(x^2-3x-10)(x+5)$$


$$= x^3 + 2x^2 - 25x - 50$$

B1 $x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$

M1 Attempt to multiply a quadratic by a linear factor

A1 3

(ii)

B1 +ve cubic with 3 roots (not 3 line segments)

B1 $\sqrt{(0, -50)}$ labelled or indicated on y-axis

B1 (-5, 0), (-2, 0), (5, 0) labelled or indicated on *x*-axis and no other *x*- intercepts

3

7 (i)
$$8 < 3x - 2 < 11$$

$$\frac{10}{3} < x < \frac{13}{3}$$

M1 2 equations or inequalities both dealing with all 3 terms resulting in a < kx < b

A1 10 and 13 seen

A1

(ii) $x(x+2) \ge 0$

$$x \ge 0, x \le -2$$

3 M1

Correct method to solve a quadratic

A1 0, -2

M1 Correct method to solve inequality

A1

8 ((i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$	B1	One term correct
		u.	B 1	Fully correct
			2	
((ii)	$3x^2 - 2kx + 1 = 0$ when $x = 1$	M1	their $\frac{dy}{dx} = 0$ soi
		3-2k+1=0	M1	$x = 1$ substituted into their $\frac{dy}{dx} = 0$
		k = 2	A1 √ 3	
($\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 4$	M1	Substitutes $x = 1$ into their $\frac{d^2y}{dx^2}$ and looks at sign
		When $x = 1$, $\frac{d^2 y}{dx^2} > 0$: min pt	A1	States minimum CWO
			2	
((iv)	$3x^2 - 4x + 1 = 0$	M1	their $\frac{dy}{dx} = 0$
		(3x-1)(x-1) = 0	M1	correct method to solve 3-term quadratic
		$x = \frac{1}{3}, x = 1$		
		$x = \frac{1}{3}$	A1	WWW at any stage
		J	3	

9 (i)		B 1	$(x-2)^2$ and $(y-1)^2$ seen
	$(x-2)^2 + (y-1)^2 = 100$	B1	$(x \pm 2)^2 + (y \pm 1)^2 = 100$
	$x^2 + y^2 - 4x - 2y - 95 = 0$	B1	correct form
		3	
(ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
	$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in k (or y) obtained
	$k = 1 + \sqrt{91}$	A1	cao
		3	
(iii)	distance from (-3, 9) to (2, 1)		
	$=\sqrt{(2-3)^2+(1-9)^2}$	M1	Uses $(x_2 - x_1)^2 + (y_2 - y_1)^2$
	$=\sqrt{25+64}$	A1	
	$=\sqrt{89}$		
	$\sqrt{89}$ < 10 so point is inside	B1	compares their distance with 10 and makes consistent conclusion
		3	
(iv)	gradient of radius = $\frac{9-1}{8-2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{4}{3}$	A1	oe
	gradient of tangent = $-\frac{3}{4}$	В1√	oe
	$y - 9 = -\frac{3}{4}(x - 8)$	M1	correct equation of straight line through (8, 9).
			any non-zero gradient
	$y - 9 = -\frac{3}{4}x + 6$		
	$y = -\frac{3}{4}x + 15$	A1	oe 3 term equation

10 (i) $2(x^2-3x)+11$	$\mathbf{B1} \qquad p=2$
$= 2\left[\left(x - \frac{3}{2}\right)^2 - \frac{9}{4}\right] + 11$	B1 $q = -\frac{3}{2}$
$=2\left(x-\frac{3}{2}\right)^2+\frac{13}{2}$	M1 $r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
	$\mathbf{A1} \qquad r = \frac{13}{2}$
	4
$(ii) \left(\frac{3}{2}, \frac{13}{2}\right)$	В1√
	B1√ 2
(iii) 36-4×2×11	M1 uses $b^2 - 4ac$
= -52	A1 2
(iv) 0 real roots	B1 cao
(v) $2x^2 - 6x + 11 = 14 - 7x$	M1* substitute for x/y or attempt to get an equation in 1 variable only
$2x^2 + x - 3 = 0$	A1 obtain correct 3 term quadratic
(2x+3)(x-1) = 0	M1dep correct method to solve 3 term quadratic
$x = -\frac{3}{2}, x = 1$	A1
$y = \frac{49}{2}, \ y = 7$	A1
	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1 5

4721 Core Mathematics 1

			Ţ
1	$3\sqrt{5} + \frac{20\sqrt{5}}{5}$ $= 7\sqrt{5}$	B1	$3\sqrt{5}$ soi
	$=7\sqrt{5}$	M1	Attempt to rationalise $\frac{20}{\sqrt{5}}$
		A1 3 3	cao
2 (i)	x^2	B1 1	cao
(ii)	$\frac{3y^4 \times 1000y^3}{2y^5}$		
	$2y^5$	B1	$1000y^3$ soi
	$=1500y^2$	B1	1500
		B1 3	y ²
3	Let $y = x^{\frac{1}{3}}$	*M1	Attempt a substitution to obtain a quadratic or
	$3y^2 + y - 2 = 0$		factorise with $\sqrt[3]{x}$ in each bracket
	(3y - 2)(y + 1) = 0	DM1	Correct method to find roots
	$y = \frac{2}{3}, y = -1$	A1	Both values correct
	$x = \left(\frac{2}{3}\right)^3, x = (-1)^3$	DM1	Attempt cube of at least one value
	$x = \frac{8}{27}, x = -1$	A1 ft 5	Both answers correctly followed through
			SR If M1* not awarded, B1 $x = -1$ from T & I
4 (i)		B1	Excellent curve in one quadrant or roughly correct curves in correct 2 quadrants
		B1 2	Completely correct
	'		1
(ii)	$y = \frac{1}{\left(x+3\right)^2}$	M1	$\sqrt{(x\pm3)^2}$
		A1 2	$y = \frac{1}{(x+3)^2}$
(iii)	(1, 4)	B1 B1 2	Correct x coordinate Correct y coordinate
	<u>L</u>	l .	

5 (i)	dy 50 -6	M1		kx^{-6}
3 (1)	$\frac{dy}{dx} = -50x^{-6}$	A1	2	
		AI	2	Fully correct answer
	1	B1		_ 1
(ii)	$y = x^{\frac{1}{4}}$ $\frac{dy}{dx} = \frac{1}{4}x^{-\frac{3}{4}}$	DI		$\sqrt[4]{x} = x^{\frac{1}{4}} \text{ soi}$ $\frac{1}{4}x^{c}$ $kx^{-\frac{3}{4}}$
	$dy = 1 - \frac{3}{4}$	B1		$\frac{1}{2}x^c$
	$\frac{1}{dx} = \frac{1}{4}x$	B1	3	4
				$kx^{-\frac{3}{4}}$
(iii)	$y = (x^2 + 3x)(1 - 5x)$	M1		Attempt to multiply out fully
	$y = (x^{2} + 3x)(1 - 5x)$ $= 3x - 14x^{2} - 5x^{3}$ $\frac{dy}{dx} = 3 - 28x - 15x^{2}$	A1		Correct expression (may have 4 terms)
	$dy = 3 + 38x + 15x^2$			
	$\frac{d}{dx} = 3 - 28x - 13x$	M1		Two terms correctly differentiated from their
		A1	4	expanded expression Completely correct (3 terms)
		**1	•	r,(e ee)
	•	D.	9	_
6(i)	$5(x^2 + 4x) - 8$	B1		p=5
	$= 5[(x+2)^2 - 4] - 8$	B1		$(x+2)^2 \text{ seen or } q=2$
	$=5(x+2)^2-20-8$	M1		$-8-5q^2$ or $-\frac{8}{5}-q^2$
	$=5(x+2)^2-28$	A1	4	$(x+2)^2$ seen or $q = 2$ $-8-5q^2$ or $-\frac{8}{5}-q^2$ r = -28
	x = -2			
(ii)	$\lambda = -2$	B1 f	t 1	
(iii)	$20^2 - 4 \times 5 \times -8$	M1		Uses $b^2 - 4ac$
	= 560	A1	2	560
(iv)	2 real roots	B1	1	
		Di	1 8	2 real roots
			<u> </u>	
7(i)	30 + 4k - 10 = 0	M1		Attempt to substitute $x = 10$ into equation of line
	$\therefore k = -5$	A1	2	
(ii)				
	$\sqrt{(10-2)^2 + (-5-1)^2}$ $= \sqrt{64+36}$	M1		Correct method to find line length using Pythagoras' theorem
	$=\sqrt{64+36}$			
	= 10	A1	2	cao, dependent on correct value of k in (i)
(iii)		D :		
	Centre (6, -2)	B1		
	Radius 5	B1	2	
(iv)	Midpoint of $AB = (6, -2)$	D1		
	Length of $AB = 2 x$ radius	B1	2	One correct statement of verification
	Both A and B lie on circumference	B1	2	Complete verification
	Centre lies on line $3x + 4y - 10 = 0$		8	

8 (i)	$8 \pm \sqrt{(-8)^2 - (4 \times -1 \times 5)}$	M1		Correct method to solve quadratic
	$x = \frac{8 \pm \sqrt{(-8)^2 - (4 \times -1 \times 5)}}{-2}$ $= \frac{8 \pm \sqrt{84}}{-2}$	A1		$x = \frac{8 \pm \sqrt{84}}{-2}$
	$= -4 - \sqrt{21} \text{ or } = -4 + \sqrt{21}$	A1	3	Both roots correct and simplified
(ii)	$x \le -4 - \sqrt{21} \ , \ x \ge -4 + \sqrt{21}$	M1 A1	2	Identifying $x \le$ their lower root, $x \ge$ their higher root $x \le -4 - \sqrt{21}$, $x \ge -4 + \sqrt{21}$
				(not wrapped, no 'and')
(iii)		B1		Roughly correct negative cubic with max and min
		B1		(-4, 0)
		B1		(0, 20)
		B1		Cubic with 3 distinct real roots
	'	B1	5	Completely correct graph
			10	
9	$\frac{dy}{dx} = 3x^2 + 2px$ When $x = 4$, $\frac{dy}{dx} = 0$	M1 A1		Attempt to differentiate Correct expression cao
		M1		Setting their $\frac{dy}{dx} = 0$
	$3 \times 4^2 + 8p = 0$ $8p = -48$	M1		Substitution of $x = 4$ into their $\frac{dy}{dx} = 0$ to evaluate p
	8p = -48 $p = -6$	A1		
	$\frac{d^2y}{dx^2} = 6x - 12$	M1		Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly from their
	When $x = 4$, $6x - 12 > 0$			$\frac{dy}{dx}$, or other correct method
	Minimum point	A1	7	Minimum point CWO
			7	

10(i)	$\frac{dy}{dx} = 2x + 1$ $= 5$	M1 A1 2	Attempt to differentiate <i>y</i> cao
(ii)	Gradient of normal $= -\frac{1}{5}$ When $x = 2$, $y = 6$ $y - 6 = -\frac{1}{5}(x - 2)$ x + 5y - 32 = 0	B1 ft B1 M1 A1 4	ft from a non-zero numerical value in (i) May be embedded in equation of line Equation of line, any non-zero gradient, their y coordinate Correct equation in correct form
(iii)	$x^{2} + x = kx - 4$ $x^{2} + (1 - k)x + 4 = 0$ One solution => $b^{2} - 4ac = 0$ $(1 - k)^{2} - 4 \times 1 \times 4 = 0$ $(1 - k)^{2} = 16$ $1 - k = \pm 4$ $k = -3$ or 5	*M1 DM1 DM1 A1 DM1 A1 DM1 A1	Equating $y_1 = y_2$ Statement that discriminant = 0 Attempt (involving k) to use a, b, c from their equation Correct equation (may be unsimplified) Correct method to find k , dep on 1 st 3Ms Both values correct
		12	

4721 Core Mathematics 1

4	(*)		D4	
1	(i)	$\frac{dy}{dx} = 5x^4 - 2x^{-3}$	B1	$5x^4$
		dx	M1	x^{-2} before differentiation or kx^{-3} in $\frac{dy}{dx}$ soi
			A1 3	$-2x^{-3}$
	(ii)	$\frac{d^2y}{dx^2} = 20x^3 + 6x^{-4}$	M1 A1 2 5	Attempt to differentiate their (i) – at least one term correct cao
2		$\frac{\left(8+\sqrt{7}\right)\left(2-\sqrt{7}\right)}{\left(2+\sqrt{7}\right)\left(2-\sqrt{7}\right)}$ $=\frac{9-6\sqrt{7}}{4-7}$	M1	Multiply numerator and denominator by conjugate
		$=\frac{9-6\sqrt{7}}{4-7}$	A1 A1	Numerator correct and simplified Denominator correct and simplified
		$= -3 + 2\sqrt{7}$	A1 4 4	cao
3	(i)	3^{-2}	B1 1	
	(ii)	$3^{\frac{1}{3}}$	B1 1	
	(iii)	$3^{10} \times 3^{30}$	M1	3^{30} or 9^{20} soi
		$=3^{40}$	A1 2 4	
4		y = 2x - 4		
		$4x^2 + (2x - 4)^2 = 10$	M1*	Attempt to get an equation in 1 variable only
		$8x^2 - 16x + 16 = 10$		
		$8x^2 - 16x + 6 = 0$	A1	Obtain correct 3 term quadratic (aef)
		$4x^2 - 8x + 3 = 0$		
		$4x^{2} - 8x + 3 = 0$ $(2x - 1)(2x - 3) = 0$	M1dep*	Correct method to solve quadratic of form $ax^2 + bx + c = 0 \ (b \neq 0)$ Correct factorisation oe
		$x = \frac{1}{2}$, $x = \frac{3}{2}$	A1	Both x values correct
		y = -3, y = -1	A1 A1 6	Both y values correct
			6	or one correct pair of values www B1 second correct pair of values B1

5	(i)	$(2x^{2}-5x-3)(x+4)$ $= 2x^{3}+8x^{2}-5x^{2}-20x-3x-12$	M1	Attempt to multiply a quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
		$=2x^3+3x^2-23x-12$	A1 A1 3	Expansion with no more than one incorrect term
	(ii)	$\begin{vmatrix} 2x^4 + 7x^4 \\ = 9x^4 \end{vmatrix}$	B1	$2x^4$ or $7x^4$ soi www
		$=9x^4$	B1 2	$9x^4 \text{ or } 9$
			5	
6	(i)		B1	One to one graph only in bottom right hand quadrant
			B1 2	Correct graph, passing through origin
	(ii)	Translation Parallel to <i>y</i> -axis, 5 units	B1 B1 2	
	(iii)	$y = -\sqrt{\frac{x}{2}}$	M1	$\sqrt{2x}$ or $\sqrt{\frac{x}{2}}$ seen
			A1 2 6	cao
7	(i)	$\left(x-\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+\frac{1}{4}$	B1	$a = \frac{5}{2}$
		$\left(x - \frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + \frac{1}{4}$ $= \left(x - \frac{5}{2}\right)^2 - 6$ $\left(x - \frac{5}{2}\right)^2 - 6 + y^2 = 0$ $\operatorname{Centre}\left(\frac{5}{2}, 0\right)$ $\operatorname{Radius} = \sqrt{6}$	M1 A1 3	$\begin{vmatrix} \frac{1}{4} - a^2 \\ \cos \theta \end{vmatrix}$
	(ii)	$\left(x - \frac{5}{2}\right)^2 - 6 + y^2 = 0$		cao
		Centre $\left(\frac{5}{2},0\right)$	B1 B1	Correct <i>x</i> coordinate Correct <i>y</i> coordinate
		Radius = $\sqrt{6}$	B1 3 6	

8	(i)	-42 < 6 <i>x</i> < -6	M1	2 equations or inequalities both dealing with all 3 terms
		-7 < x < -1	A1 A1 3	-7 and -1 seen oe -7 < x < -1 (or x > -7 and x < -1)
	(ii)	$x^2 > 16$	B1	±4 oe seen
		x > 4 or $x < -4$	B1 B1 3	x > 4 x < -4 not wrapped, not 'and'
0	(*)		6	
9	(i)	$\sqrt{(^{-}1-4)^{2}+(9-^{-}3)^{2}}$ =13 $\left(\frac{4+^{-}1}{2}, \frac{^{-}3+9}{2}\right)$	M1	Correct method to find line length using Pythagoras' theorem
	(ii)	$=13$ $(4+^{-}1 \ ^{-}3+9)$	A1 2	cao
	(11)	$\left(\frac{}{2},\frac{}{2}\right)$	M1	Correct method to find midpoint
		$\left(\frac{3}{2},3\right)$	A1 2	
	(iii)	2 12	B1	
	(III)	Gradient of $AB = -\frac{12}{5}$		
		$y - 3 = -\frac{12}{5}(x - 1)$	M1	Correct equation for line, any gradient, through (1, 3)
		12x + 5y - 27 = 0	A1	Correct equation in any form with gradient simplified
			A1 4 8	12x + 5y - 27 = 0
10	(i)	(3x+7)(3x-1) = 0	M1 A1	Correct method to find roots Correct factorisation oe
		$x = -\frac{7}{3}, x = \frac{1}{3}$	A1 3	Correct roots
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 18x + 18$	M1	Attempt to differentiate <i>y</i>
		dx $18x + 18 = 0$	M1	Uses $\frac{dy}{dx} = 0$
		x = -1 $y = -16$	A1 A1 ft 4	
	(iii)	1 9 1	B1 B1	Positive quadratic curve y intercept (0, -7)
		\	B1 3	Good graph, with correct roots indicated and minimum point in correct quadrant
		3/3		
		- 7 *		
	(iv)	<i>x</i> > -1	B1 1 11	

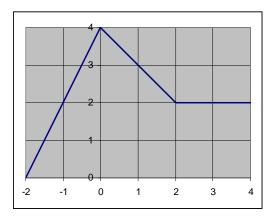
11	(i)	Gradient of normal = $-\frac{2}{3}$	B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}kx^{-\frac{1}{2}}$	M1* A1	Attempt to differentiate equation of curve $\frac{1}{2}kx^{-\frac{1}{2}}$
		When $x = 4$, $\frac{dy}{dx} = \frac{k}{4}$	M1dep*	Attempt to substitute $x = 4$ into their $\frac{dy}{dx}$ soi
		$\therefore \frac{k}{4} = \frac{3}{2}$ $k = 6$	M1dep* A1 6	Equate their gradient expression to negative reciprocal of their gradient of normal cao
	(ii)	<i>P</i> is point (4, 12)	B1 ft	
		<i>Q</i> is point (22, 0)	M1 A1	Correct method to find coordinates of Q Correct x coordinate
		Area of triangle = $\frac{1}{2} \times 12 \times 22$	M1	Must use <i>y</i> coordinate of P and <i>x</i> coordinate of Q
		= 132 sq. units	A1 5	

4721

Mark Scheme

January 2010

4721 Core Mathematics 1


B1 $(x-6)^2$

M1 $q = 1 - (\text{their } p)^2$

A1 q = -35

3

2 (i)

For x < 0, straight line joining (-2, 0) and (0, 4)

B1 2 For x > 0, line joining (0,4) to (2, 2) and horizontal line joining (2,2) and (4,2)

(ii) Translation
1 unit right parallel to x axis

B1 2 Allow:

4

1 unit right, 1 along the *x* axis,

1 in x direction,

allow vector notation e.g. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$,

1 unit horizontally

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x$

M1 Attempt to differentiate (one of $3x^2$, -8x)

A1 Correct derivative

When x = 2, $\frac{dy}{dx} = -4$

M1 Substitutes x = 2 into their $\frac{dy}{dx}$

 \therefore Gradient of normal to curve = $\frac{1}{4}$

B1 ft Must be numerical

 $=-1 \div \text{their } m$

 $y + 1 = \frac{1}{4}(x - 2)$

M1 Correct equation of straight line through (2, -1), any non-zero numerical gradient

x - 4y - 6 = 0

7 Correct equation in required form7

A1

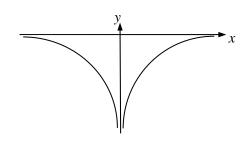
711	21	Mark Scheme			January 2010
4	(i)	m = 4	B1	1	May be embedded
	(ii)	$6p^2 = 24$	M1		$(\pm)6p^2 = 24$
		$p^2 = 4$			or $36p^4 = 576$
		p = 2 or $p = -2$	A1 A1	3	
		or $p = -2$			
	(iii)	$5^{2n+4} = 25$	M1		Addition of indices as powers of 5
		$\therefore 2n + 4 = 2$	M1	3	Equate powers of 5 or 25
		n = -1	A1	7	
5		$k = \sqrt{x}$			
		$k^2 - 8k + 13 = 0$	M1*		Use a substitution to obtain a quadratic (may be implied by squaring or rooting later) or factorise into 2 brackets each containing \sqrt{x}
		$k-4 = \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$	M1 dep A1		Correct method to solve resulting quadratic
		$k = 4 \pm \sqrt{3}$	A1		$k = 4 \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{12}}{2}$
					or $k = 4 \pm \frac{\sqrt{12}}{2}$
		$\therefore x = (4 + \sqrt{3})^2 \text{ or } x = (4 - \sqrt{3})^2$	M1		Recognise the need to square to obtain <i>x</i>
			M1		Correct method for squaring $a + \sqrt{b}$ (3 or 4 term expansion)
		$x = 19 \pm 8\sqrt{3}$ or $19 \pm 4\sqrt{12}$	A1	7 7	
6	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	B1*		
		When $x = 1$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 2$	B1 dep	2	
	(ii)	$\frac{a^2 + 5 - 6}{a - 1} = 2.3$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
		a-1	A1		correct expression
		$a^{2} - 2.3a + 1.3 = 0$ $(a - 1.3)(a - 1) = 0$	M1		correct method to solve a quadratic or correct factorisation and cancelling to get $a + 1 = 2.3$
		<i>a</i> =1.3	A1	4	1.3 only

		Alternative method:			
		Equation of straight line through (1,6) with			
		m = 2.3 found then			
		$a^2 + 5 = 2.3a + "c"$ seen M1			
		with $c = 3.7$ A1			
		then as main scheme			
	(iii)	A value between 2 and 2.3	B1	1	2 < value < 2.3 (strict
	()			7	inequality signs)
7	(i)	(a) Fig 3	B1		
•	(1)	(b) Fig 1	B1		
			B1	3	
	(22)	(c) Fig 4 $-(x-3)^2$			Overductic expression with
	(ii)	$-(x-3)^2$	M1		Quadratic expression with correct x^2 term and correct
					y-intercept and/or roots for
					their unmatched diagram
					(e.g. negative quadratic with
					y-intercept of –9 or root of 3
		2			for Fig 2)
		$y = -(x-3)^2$	A1	2	Completely correct equation
				5	for Fig 2
8	(i)	Centre $(-3, 2)$	B1		
		$(x+3)^2-9+(y-2)^2-4-4=0$	M1		Correct method to find r^2
		$r^2 = 17$			
		$r = \sqrt{17}$	A1	3	Correct radius
	(ii)	$x^{2} + (3x+4)^{2} + 6x - 4(3x+4) - 4 = 0$	M1*		substitute for x/y or attempt to
	` ´	<i>x</i> + (5 <i>x</i> + 1) + 6 <i>x</i> + 1(5 <i>x</i> + 1) + 0	1,11		get an equation in 1 variable
					only
			A1		correct unsimplified expression
			711		correct unsumprimed corpression
					obtain correct 3 term quadratic
		$10x^2 + 18x - 4 = 0$	A1		correct method to solve their
			M1		quadratic
		(5x-1)(x+2) = 0	_		4
		1	dep		
		$x = \frac{1}{5}$ or $x = -2$	A1		
					SR If A0 A0, one correct pair of
		$y = \frac{23}{5}$ or $y = -2$	A1	6	values, spotted or from correct
		5 3		_	factorisation www B1
				9	
9	(i)	$\frac{1}{2}$			
		$f'(x) = -x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$	M1		Attempt to differentiate
		2	4.4		$-x^{-2}$ or $-\frac{1}{2}kx^{-\frac{1}{2}}$ www
			A1		$-x$ or $-\frac{\pi}{2}kx - www$
				_	=
			A1	3	Fully correct expression

	(ii)	$\frac{3}{2}$	3.54		A4441-11-CC11-11-CC11-11-CC11-11
		$f''(x) = 2x^{-3} + \frac{1}{4}x^{-\frac{3}{2}}$	M1		Attempt to differentiate their f (x)
			A1 ft		One correctly differentiated term
			A1		Fully correct expression www in either part of the question
		$f''(4) = \frac{2}{4^3} + \frac{1}{4} \cdot \frac{1}{8}$	M1		Substitution of $x = 4$ into their $f''(x)$
		$=\frac{1}{16}$	A1	5 8	oe single fraction www in either part of the question
10		$(-30)^2 - 4 \times k \times 25k = 0$	M1	О	Attempts $b^2 - 4ac$ involving
		$900 - 100k^2 = 0$	M1 B1		k States their discriminant = 0
		k = 3 or $k = -3$	B1	4	
11	(i)	P = 2 + x + 3x + 2 + 5x + 5x $= 14x + 4$	M1		Adds lengths of all 4 edges with attempt to use Pythagoras
			A1	2	to find the missing length May be left unsimplified
	(ii)	Area of rectangle = $3x(2+x) = 6x + 3x^2$	M1		Correct method – splitting or formula for area of trapezium
		Area of triangle = $\frac{1}{2}(3x)(4x) = 6x^2$			1
		Total area = $9x^2 + 6x$	A1	2	Convincing working leading to given expression AG
	(iii)	$14x + 4 \ge 39$	B1 ft		ft on their expression for <i>P</i> from (i) unless restarted in (iii). (Allow >)
		$\frac{5}{2}$	B 1		o.e. (e.g. $\frac{35}{44}$) soi by
					subsequent working
		$9x^2 + 6x < 99$ $3x^2 + 2x - 33 < 0$	B 1		Allow ≤
		(3x+11)(x-3) < 0	M1		
		$\left(-\frac{11}{3}<\right)x<3$			Correct method to find critical values
			B 1		x < 3 identified
			M1		
		5	1411		root from linear $< x <$ upper root from quadratic
		$\therefore \frac{5}{2} \le x < 3$	A1	7 11	Fully correct including
				11	inequality signs or exact equivalent in words cwo

1 (i)

B1

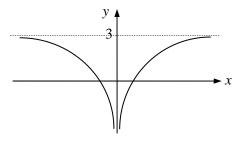

(ii)
$$\frac{1}{3}$$

M1

$$\frac{1}{9^{\frac{1}{2}}}$$
 or $\frac{1}{\sqrt{9}}$ so

A1

2 (i)


B1*

Reasonably correct curve for $y = -\frac{1}{r^2}$ in 3^{rd} and 4^{th} quadrants only

B1 dep* Very good curves in curve for $y = -\frac{1}{r^2}$ in 3rd and 4th quadrants

SC If 0, very good single curve in either 3rd or 4th quadrant and nothing in other three quadrants. **B1**

(ii)

M1

Translation of their $y = -\frac{1}{r^2}$ vertically

A1

Reasonably correct curve, horizontal asymptote soi at y = 3

(iii)

B1

1 5

 $\frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$ 3 (i)

$$=\frac{12(3-\sqrt{5})}{9-5}$$

 $=9-3\sqrt{5}$

M1

Multiply numerator and denom by $3 - \sqrt{5}$

A1

$$(3+\sqrt{5})(3-\sqrt{5})=9-5$$

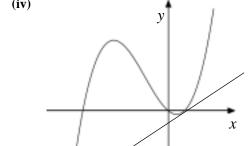
A1

3

 $3\sqrt{2}-\sqrt{2}$ (ii) $=2\sqrt{2}$

M1

Attempt to express $\sqrt{18}$ as $k\sqrt{2}$


A1

2 5

4 (i)	$(x^2 - 4x + 4)(x + 1)$	M1		Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
	3 - 2			Expansion with at most 1 incorrect term
	$=x^3-3x^2+4$	A1	3	Correct, simplified answer
(ii)	y	B1		+ve cubic with 2 or 3 roots
	x	B1		Intercept of curve labelled (0, 4) or indicated on <i>y</i> -axis
	-1 2	B1	3	(-1, 0) and turning point at $(2, 0)$ labelled or indicated on x -axis and no other x intercepts
	1 1		6	
5	$k = x^2$ $4k^2 + 3k - 1 = 0$	M1*		Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^2
	(4k-1)(k+1) = 0	M1 dep		Correct method to solve a quadratic
	$k = \frac{1}{4} (\text{or } k = -1)$	A1		
	•	M1		Attempt to square root to obtain <i>x</i>
	$x=\pm\frac{1}{2}$	M1 A1		$\pm \frac{1}{2}$ and no other values
			5 5	_ 2
1	1	M1	5	A 44 4 1° CC 4° - 4 -
6	$y = 2x + 6x^{-\frac{1}{2}}$	WII		Attempt to differentiate
	$\frac{1}{4}$	A1		$kx^{-\frac{3}{2}}$
	$\frac{dy}{dx} = 2 - 3x^{-\frac{3}{2}}$	A1		Completely correct expression (no +c)
	3			_ <u>3</u> _ <u>1</u>
	When $x = 4$, gradient = $2 - \frac{3}{\sqrt{4^3}}$	M1		Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$
	$=\frac{13}{8}$	A1	5	
	_ 8		5	
7	$2(6-2y)^2 + y^2 = 57$	M1*		substitute for x/y or attempt to get an
=	2(0-2y) + y = 31			equation in 1 variable only
	$2(36-24y+4y^2)+y^2=57$	A1		correct unsimplified expression
	$9y^2 - 48y + 15 = 0$	A1		obtain correct 3 term quadratic
	$3y^2 - 16y + 5 = 0$			
	(3y-1)(y-5) = 0	M1		correct method to solve 3 term quadratic
		dep		
	$y = \frac{1}{3}$ or $y = 5$	A1		
	$y - \frac{1}{3}$ or $y = 3$			
	$x = \frac{16}{3} \text{ or } x = -4$	A1		SC If A0 A0, one correct pair of values,

8 (i)	$2(x^2 + \frac{5}{2}x)$	B1		$\left(x+\frac{5}{4}\right)^2$
	$=2\left[\left(x+\frac{5}{4}\right)^2-\frac{25}{16}\right]$	M1		$q = -2p^2$
	$= 2\left(x + \frac{5}{4}\right)^2 - \frac{25}{8}$	A1	3	$q = -\frac{25}{8}$ c.w.o.
(ii)	$\left(-\frac{5}{4}, -\frac{25}{8}\right)$	B1√ B1√	2	
(iii)	$x = -\frac{5}{4}$	B1	1	
(iv)	x(2x+5) > 0	M1		Correct method to find roots
. ,		A1		$0, -\frac{5}{2} \operatorname{seen}$
	$x < -\frac{5}{2}, x > 0$	M 1		Correct method to solve quadratic
	2, 2,	A1	4	inequality.
		A1	10	(not wrapped, strict inequalities, no 'and')
9 (i)	$\frac{4+p}{2} = -1, \frac{5+q}{2} = 3$	M1		Correct method (may be implied by one correct coordinate)
	p = -6 $q = 1$	A1 A1	3	
(ii)	$r^2 = (4-1)^2 + (5-3)^2$	M1		Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for
	$r = \sqrt{29}$	A1	2	either radius or diameter
(;;;)	$(n+1)^2 + (n-2)^2 = 20$	M1		$(x+1)^2$ and $(y-3)^2$ seen
(iii)	$(x+1)^2 + (y-3)^2 = 29$	M1		$(x \pm 1)^2 + (y \pm 3)^2 = \text{their } r^2$
	$x^2 + y^2 + 2x - 6y - 19 = 0$	A1	3	Correct equation in correct form
(iv)	gradient of radius = $\frac{3-5}{-1-4}$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{2}{5}$	A1		oe
	gradient of tangent $= -\frac{5}{2}$	В1√		oe
	$y - 5 = -\frac{5}{2}(x - 4)$	M1		correct equation of straight line through (4, 5), any non-zero gradient
	$y = -\frac{5}{2}x + 15$	A1	5 13	oe 3 term equation e.g. $5x + 2y = 30$

10(i)	$\frac{dy}{dx} = 6x^2 + 10x - 4$	B1		1 term correct
		B 1		Completely correct (no +c)
	$6x^2 + 10x - 4 = 0$	M1*		Sets their $\frac{dy}{dx} = 0$
	$2(3x^2 + 5x - 2) = 0$			dx
	(3x-1)(x+2) = 0	M1		Correct method to solve quadratic
	1	dep*		
	$x = \frac{1}{3}$ or $x = -2$	A1		SC If AO AO and compact main of violage
	19	111	_	SC If A0 A0, one correct pair of values, spotted or from correct factorisation www
	$y = -\frac{19}{27}$ or $y = 12$	A1	6	B1
	1	M1		Any inequality (or inequalities) involving
(ii)	$-2 < x < \frac{1}{3}$		_	both their x values from part (i)
		A1	2	Allow \leq and \geq
(iii)	When $x = \frac{1}{2}$, $6x^2 + 10x - 4 = \frac{5}{2}$	M1		Substitute $x = \frac{1}{2}$ into their $\frac{dy}{dx}$
	and $2x^3 + 5x^2 - 4x = -\frac{1}{2}$	B1		Correct y coordinate
	$y + \frac{1}{2} = \frac{5}{2} \left(x - \frac{1}{2} \right)$	M1		Correct equation of straight line using their values. Must use their $\frac{dy}{dx}$ value not e.g. the negative reciprocal
	10x - 4y - 7 = 0	A1	4	Shows rearrangement to given equation CWO throughout for A1
(iv)	y	B1		Sketch of a cubic with a tangent which meets it at 2 points only
		B1	2	+ve cubic with max/min points and line

with +ve gradient as tangent to the curve to the right of the min

SC1

B1 Convincing algebra to show that the cubic $8x^3 + 20x^2 - 26x + 7 = 0$ factorises into (2x - 1)(2x - 1)(x + 7)B1 Correct argument to say there are 2 distinct roots

SC2 B1 Recognising y = 2.5x - 7/4 is tangent from part (iii)

B1 As second B1 on main scheme

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

	(2 6)2 (7 1)2	3.54		27 2 ()2	3 out of 4 substitutions correct
1 (i)	$\sqrt{(-2-6)^2+(7-1)^2}$	M1		Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Look out for no square root, $(x_2 + x_1)^2$ etc. M0
(::)	= 10	A1	2		
(ii)	$\frac{7-1}{2}$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$	3 out of 4 substitutions correct
	-2-6			$x_2 - x_1$	
	$=-\frac{3}{4}$	A1	2	o.e. ISW	Allow 0.75 3 etc.
	+				Allow $-0.75 \frac{3}{-4}$ etc.
(iii)	Gradient of given line = $\frac{4}{3}$	M1		Attempt to rearrange equation to make <i>y</i> the	Must at least isolate y
	3			subject OR attempt to find the gradient	
	3 4 _ 1	D164		using points on the line	
	$-\frac{3}{4} \times \frac{4}{3} = -1$	B1ft		Correct conclusion for their gradients	
	Co lines are namendicular	D4	2	States $-\frac{3}{4} \times \frac{4}{2} = -1$ or "negative reciprocal"	
	So lines are perpendicular	B1	3 7	4 3	
2	$2x^3 + 9x^2 - 2px^2 - 9px + 10x - 10p$			relating to the correct values www Attempt to expand both sides OR to	If expanding, minimum of 5 terms on LHS and 3terms
_		M1*		substitute 2 values of x into both	on RHS
	$= 2x^3 + qx^2 - 8x - 4q$			expressions OR to express at least one side	
		DM1		as a product of three factors Valid method to obtain either p or q	If comparing coefficients, must be of corresponding
		DIVII		tand medica to obtain chiler p or q	terms
				Park and an array	
	p = 2 and $q = 5$	A1	3 3	Both values correct	SR Spotted solutions B1 one correct B2 other correct
3 (i)	1				
3 (1)	$8^{\frac{1}{2}}$	B1			Allow 8 ^{0.5}
			1		Condone $p = \frac{1}{2}$, just " $\frac{1}{2}$ " seen as answer www
(ii)	8^{-2}	B 1			Condone $p = -2$, just "-2" seen as answer www
			1		$\frac{1}{8^2}$ only not enough
(iii)	(1)8			2^8 or $2^6 = 8^2$ soi	
. ,	$2^{8} = \left(8^{\frac{1}{3}}\right)^{8}$	M1		2 01 2 - 0 501	Condone p= $\frac{8}{3}$, just " $\frac{8}{3}$ " seen as answer www
		3.71		$2 = 8^{\frac{1}{3}}$ soi	23.0
	$=8^{\frac{8}{3}}$	M1		$2 = 8^{\circ} \text{ soi}$	2^3 = 8 not enough for second M mark
	<u> </u>	A1	3	o.e.	
			5		

4	$u^2 - 5u + 4 = 0$	M1*		Use the given substitution to obtain a quadratic or factorise into 2 brackets each containing $(3x-2)^2$	No marks if evidence of "square rooting" e.g. " $(3x-2)^2 - 5(3x-2) + 2$ (or 4) = 0"
	(u-1)(u-4)=0	DM1		Correct method to solve a quadratic	No marks if straight to quadratic formula to get $x = "1" x = "4"$ and no further working
	u = 1 or $u = 4$			Correct values for <i>u</i>	SR 1) If M0 Spotted solutions www B1 each Justifies 4 solutions exactly B2
	$3x-2 = \pm 1$ or $3x-2 = \pm 2$ M1 $x = 1$ or $\frac{1}{3}$ or $\frac{4}{3}$ or 0 A1	M1		Attempt to square root and rearrange to obtain x OR to expand, rearrange and solve	SR 2) If first 3 marks awarded, spotted solutions 2 correct B1 Other 2 correct B1 Justifies 4 solutions exactly B1 Alternative scheme for candidates who multiply out: Attempt to expand $(3x-2)^4$ and $(3x-2)^2$ M1 $81x^4-216x^3+171x^2-36x=0$ A1 $x=0$ a solution or $x=0$ a factor of the quartic A1 Attempt to use factor theorem to factorise their cubic M1*
		A1		quadratic (at least one) 2 correct values All 4 correct values $(\frac{0}{3} = \mathbf{A0})$	
		A1	6 6		
			U		
					Correct method to solve quadratic DM1 All 4 solutions correct A1
5 (i)		M1		Negative cubic through (0, 0) (may have max and min)	Must be continuous. Allow slight curve towards or away from y-axis at one end, but not both.
		A1	2	Must have reasonable rotational symmetry. Cannot be a finite "plot". Allow negative gradient at origin. Correct curvature at both ends.	
(ii)	$y = -(x-3)^3$	M1		$\pm (x-3)^3$ seen	
		A1	2	or $y = (3 - x)^3$	Must have " $y =$ " for A mark SR $y = -(x-3)^2$ B1
(iii)	Stretch scale factor 5 parallel to y-axis	B1 B1		o.e. e.g. scale factor $\frac{1}{\sqrt[3]{5}}$ parallel to the x	Allow "factor" for "scale factor"
			2	axis.	For "parallel to the y axis" allow "vertically", "in the y direction". Do not accept "in/on/across/up/along the y axis"

6 (i)	$y = 5x^{-2} - \frac{1}{4}x^{-1} + x$ $\frac{dy}{dx} = -10x^{-3} + \frac{1}{4}x^{-2} + 1$	M1 A1 A1 A1	4	x^{-2} used for $\frac{1}{x^2}$ OR x^{-1} used for $\frac{1}{x}$ soi, OR x correctly differentiated kx^{-3} or kx^{-2} from differentiating Two fully correct terms Completely correct	Look out for: $y = 5x^{-2} - 4x^{-1} + x$ followed by $\frac{dy}{dx} = -10x^{-3} + 4x^{-2} + 1$ and then the correct answer. This is M1 A1 A1 A0 $4x^{-1}$ is NOT a misread
(ii)	$\frac{d^2y}{dx^2} = 30x^{-4} - \frac{1}{2}x^{-3}$	M1		Attempt to differentiate their $\frac{dy}{dx}$ (one term correctly differentiated)	Allow a sign slip in coefficient for M mark
		A1	2 6	Completely correct	NB Only penalise "+ c" first time seen in the question

7 (i)	$4(x^{2} + 3x) - 3$ $= 4\left[\left(x + \frac{3}{2}\right)^{2} - \frac{9}{4}\right] - 3$ $= 4\left(x + \frac{3}{2}\right)^{2} - 12$	B1 B1 M1 A1	4	$p = 4$ $q = \frac{3}{2}$ $r = -3 - 4q^{2} \text{ or } r = -\frac{3}{4} - q^{2}$ $r = -12 \text{ (from } q = \pm 1.5\text{)}$	If p , q , r found correctly, then ISW slips in format. $4(x+1.5)^2 + 12$ B1 B1 M0 A0 4(x+1.5) - 12 B1 B1 M1 A1 (BOD) $4(x+1.5x)^2 - 12$ B1 B0 M1 A0 $4(x^2+1.5)^2 - 12$ B1 B0 M1 A0 $4(x-1.5)^2 - 12$ B1 B0 M1 A1 $4x(x+1.5)^2 - 12$ B0 B1M1A1
(ii)	$\frac{-12 \pm \sqrt{12^2 - 4 \times 4 \times -3}}{2 \times 4}$	M1		Correct method to solve quadratic	
	$=\frac{-12\pm\sqrt{192}}{8}$	A1		$\frac{-12 \pm \sqrt{192}}{8}$ or $\frac{-3 \pm \sqrt{12}}{2}$	
	$=\frac{-12\pm8\sqrt{3}}{8}$	B1		$\sqrt{192}=8\sqrt{3}$ or $\sqrt{12}=2\sqrt{3}$ from correct b^2 -4ac	
	$= -\frac{3}{2} \pm \sqrt{3}$ OR:	A1		$\frac{-3 \pm 2\sqrt{3}}{2}$ or $-\frac{12}{8} \pm \sqrt{3}, -\frac{6}{4} \pm \sqrt{3}$	
	$4\left(x+\frac{3}{2}\right)^2 - 12 = 0$				
	$x + \frac{3}{2} = \pm\sqrt{3}$	M1 A1ft		Must have \pm for method mark $x+1.5$ ft $x+q$ from part(i) www in LHS in part (ii)	Not for $2(x + q) =$
	$x = -\frac{3}{2} \pm \sqrt{3}$	A1		$\pm\sqrt{3}$	
		A1	4	Do not ISW	SR One correct root www B1
(iii)	$12^2 - 4 \times 4 \times (-k) = 0$	M1		Attempts $b^2 - 4ac = 0$ or $\sqrt{b^2 - 4ac} = 0$ involving k . If $b^2 - 4ac$ not quoted then expression must be correct.	Other alternative methods a) Attempt to factorise into two equal brackets, (madivide by 4 first – must be correct.) M1 Equate coefficient of x to 12 (or 3) A1 $k = -9$ A1
	144 + 16k = 0	A1		Correct, unsimplified expression	b) Uses differentiation to find x ordinate of turning point and uses this to form equation in <i>k</i> M1
	k = -9 OR (see next page)	A1			Correct equation in k A1 $k = -9$ A1

7(iii) cont.	$4x^{2} + 12x = k$ $4(x + \frac{3}{2})^{2} - 9 = k$	M1		Attempts completing the square in given equation or factorises to $(2x+3)^2 - 9 = k$	Must involve <i>k</i> in their working to gain the method marks in this scheme
	Equal roots when $x = -\frac{3}{2}$	M1	3	Substitutes $x = -\frac{3}{2}$	
	<i>k</i> = –9	A1	3 11		
8 (i)	$\frac{dy}{dx} = 6 - 2x$	M1 A1		Attempt to differentiate $\pm y$ Correct expression cao	One correct non-zero term
	When $x = 5$, $6 - 2x = -4$	M1		Substitute $x = 5$ into their $\frac{dy}{dx}$	
	When $x = 5$, $y = 12$	B1		Correct y coordinate	
	y - 12 = -4(x - 5)	M1		Correct equation of straight line through (5, their y), their non-zero, numerical	Allow $\frac{y-12}{x-5}$ = their gradient
	4x + y - 32 = 0	A1	6	gradient Shows rearrangement to correct form	If using $y = mx + c$ must attempt at evaluating c Allow any correct form e.g. $0 = 2y + 8x - 64$ etc.
(ii)	Q is point (8, 0)	B1ft		ft from line in (i)	
	Midpoint of $PQ = \left(\frac{5+8}{2}, \frac{12+0}{2}\right)$	M1		Uses $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ o.e. for their P,Q	(12.12)
	$=\left(\frac{13}{2},6\right)$	A1	3		Do not accept $\left(\frac{13}{2}, \frac{12}{2}\right)$
(iii)	6 - 2x = 0	M1		Solution of their $\frac{dy}{dx} = 0$	Alternatives for Method Mark a) attempts completion of square with $\pm (x-3)^2$
	(Line of symmetry is) $x = 3$	A1	2		b) attempts to solve quadratic (usual scheme) and to find the mid-point of the two roots
				Allow from $\pm [16 - (x - 3)^2]$, $\pm [6 - 2x = 0]$	c) attempts to use $x = -\frac{b}{2a}$ (allow one sign slip on
(iv)	x < 3	M1		$x < \text{their3 or } x > \text{their3 } \mathbf{OR} $ attempt to	substitution) May solve $\frac{dy}{dx} = 0$ then use $\frac{d^2y}{dx} < 0$ implies maximum
				solve their $\frac{dy}{dx} > 0$	point for the method mark, or sketch of curve
		A1	2 13	Allow from $\pm [16 - (x - 3)^2]$, $\pm [6 - 2x = 0]$ in (iii)	Allow $x \le 3$

9 (i)	Centre (4, 1)	B1		Correct centre		
` ` `	$(x-4)^2 + (y-1)^2 - 16 - 1 - 3 = 0$	M1		Correct method to find r^2	$r^2 = (\pm \text{ their } 4)^2 + (\pm \text{their } 1)^2 + 3 \text{ soi}$	
	$(x-4)^2 + (y-1)^2 = 20$					
	Radius = $\sqrt{20}$	A1	3	Correct radius	$\pm\sqrt{20}$ is A0 Ignore incorrect simplification of $\sqrt{20}$	
(ii)	$k = 1 \pm \sqrt{20}$	M1 A1ft		y ordinate of their centre \pm their radius or Both correct, unsimplified values	Alternatives for method mark: a) Substitutes k for y and uses $b^2 - 4ac = 0$ to obtain quadratic in k	
	$k = 1 \pm 2\sqrt{5}$	A1	3	cao	b) Recognises $x = 4$ is equation of normal, substitutes into circle equation and solves for k . SR $k = 1 + \sqrt{20}$ or $k = 1 - \sqrt{20}$ or better www B1	
(iii)	$MT^2 = r^2 - 2^2$	M1		Correct use of Pythagoras' theorem	SR ST=8 from particular S and T co-ordinates [e.g.	
	MT = 4	A1ft		involving MT (or SM) Correct value of <i>MT</i> for their <i>r</i>	horizontal chord calculated as (0,3) and (8,3)] B1 Justifies solution the same for all possible chords B2	
	ST = 8	A1	3	cao	Possible Charles	
(iv)	x = 2y + 12	M1*		Attempt to solve equations simultaneously	Must be a clear attempt to reduce to one variable using equation of line and either form of equation of	
	$(2y+8)^2 + (y-1)^2 = 20$	A1		Correct unsimplified expression, may be $(12+2y)^2 + y^2 - 8(12+2y) - 2y - 3 = 0$	circle. Condone poor algebra for first mark. If y eliminated:	
	$4y^2 + 32y + 64 + y^2 - 2y + 1 = 20$					
	$5y^2 + 30y + 45 = 0$	A1		Obtain correct 3 term quadratic	$(x-4)^2 + \left(\frac{1}{2}x - 7\right)^2 = 20$	
	$y^2 + 6y + 9 = 0$				2	
	$(y+3)^2=0$	DM1		Correct method to solve quadratic of form $ax^2 + bx + c = 0$ $(b \ne 0)$	Or $x^2 + \left(\frac{1}{2}x - 6\right)^2 - 8x - 2\left(\frac{1}{2}x - 6\right) - 3 = 0$	
	y = -3	A1		y value correct, no extra solutions		
	x = 6	A1		x value correct ISW	Leading to $x^2 - 12x + 36 = 0$	
	OR			A.,		
	y-1 = -2(x-4)	M1		Attempt to find equation of radius/normal Correct equation		
	1	A1		Correct equation		
	Solve simultaneously with $y = \frac{1}{2}x - 6$	M1				
	x = 6	A1				
	y = -3	A1	6		SR Correct coordinates spotted or from trial and	
	States line is tangent as meets at one point or verifies (6, -3) lies on circle	B1	6 15	Allow showing distance between $(6,-3)$ and $(4,1) = \sqrt{20}$	improvement www B2	

Allocation of method mark for solving a quadratic

e.g.
$$4x^2 + 12x - 3 = 0$$

By factorisation

- when expanded, quadratic term and one other term must be correct (with correct sign):

$$(2x+1)(2x-3) = 0$$
 M1 $4x^2$ and -3 obtained from expansion
 $(4x+4)(x+2) = 0$ M1 $4x^2$ and $+12x$ obtained from expansion
 $(4x-1)(x-3) = 0$ M0 only x^2 term correct

By formula

- if the formula is quoted correctly first, allow one sign slip in substituting values into it:

a = 4, b = 12, c = -3

$$\frac{12 \pm \sqrt{(12)^2 - 4 \times 4 \times -3}}{8}$$
 gains M1 (minus sign incorrect at start of formula)
$$\frac{-12 \pm \sqrt{(12)^2 - 4 \times 4 \times 3}}{8}$$
 gains M1 (3 for c instead of -3)

$$\frac{12 \pm \sqrt{(12)^2 - 4 \times 4 \times 3}}{8}$$
 M0 (2 sign errors: initial sign and c incorrect)

- if the formula is not quoted, then no errors at all are allowed in substitution.

By completing the square

$$4x^{2} + 12x - 3 = 0$$

$$4\left[\left(x + \frac{3}{2}\right)^{2} - \frac{9}{4}\right] - 3 = 0$$

$$\left(x + \frac{3}{2}\right)^{2} = 3$$

$$x + \frac{3}{2} = \pm\sqrt{3}$$

The method mark is awarded <u>only</u> at the last line of working

i.e. when $\pm \sqrt{\text{combined constants is seen.}}$

N.B. The value of the combined constants does not have to be correct for the M1 mark

Condone "invisible brackets" if justified by correct later working

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1	$3(x^{2} - 6x) + 4$ $= 3[(x - 3)^{2} - 9] + 4$ $= 3(x - 3)^{2} - 23$	B1 B1 M1 A1	4	$p = 3$ $(x-3)^2 \text{ seen or } q = -3$ $4-3q^2 \text{ or } \frac{4}{3} - q^2 \text{ (their } q)$ $r = -23$	If p , q , r found correctly, then ISW slips in format. $3(x-3)^2 + 23$ B1 B1 M0 A0 3(x-3) - 23 B1 B1 M1 A1 (BOD) $3(x-3x)^2 - 23$ B1 B0 M1 A0 $3(x^2-3)^2 - 23$ B1 B0 M1 A0 $3(x+3)^2 - 23$ B1 B0 M1 A1 (BOD) $3(x-3)^2 - 23$ B1 B0 M1 A1 (BOD)
2 (i)		B1	4	Reasonably correct curve for $y = \frac{1}{x}$ in 1 st and 3 rd quadrants only	N.B. Ignore 'feathering' now that answers are scanned. Reasonably correct shape, not touching axes more than twice.
=		В1	2	Very good curves for $y = \frac{1}{x}$ in 1 st and 3 rd quadrants SC If 0, very good single curve in either 1 st or 3 rd quadrant and nothing in other three quadrants. B1	Correct shape, not touching axes, asymptotes clearly the axes. Allow slight movement away from asymptote at one end but not more. Not finite.
(ii)	Translation 4 units parallel to y axis	B1 B1	2 4		For "parallel to the y axis" allow "vertically", "up", "in the (positive) y direction". Do not accept "in/on/across/up/along the y axis"
3 (i)	$16x^2 \times 2x^3$				
	$\frac{x}{x} = 32x^4$	B1 B1	2	x^4	
(ii)	$\frac{1}{6}x$	M1		6 or $\frac{1}{36^{\frac{1}{2}}}$ or $\frac{1}{\sqrt{36}}$ seen	$\frac{1}{\frac{1}{\sqrt{1-\alpha}}}$ is M0
	O	A1		$\frac{1}{6}$ in final answer	$\sqrt{36}$
		B1	3 5	x (Allow x^1) in final answer	$\pm \frac{1}{6}$ is A0

4	$2x^2 - 8x + 8 = 26 - 3x$	M1		Attempt to eliminate <i>x</i> or <i>y</i>	Must be a clear attempt to reduce to one variable. Condone poor algebra for first mark.
	$2x^2 - 5x - 18 (= 0)$	A1		Correct 3 term quadratic (not necessarily all in one side)	If x eliminated:
	(2x-9)(x+2)(=0)	M1		Correct method to solve quadratic	$y = 2(\frac{26-y}{3}-2)^2$
	$x = \frac{9}{2}, x = -2$	A1		x values correct	3 Leading to $2y^2 - 89y + 800 = 0$
	$y = \frac{25}{2}, y = 32$	A1	5	y values correct	(2y-25)(y-32)=0 etc.
	-		5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1	
5 (i)	$10\sqrt{3} - 4\sqrt{3}$	M1		Attempt to express both surds in terms of $\sqrt{3}$	e.g. $\sqrt{3x100} - \sqrt{3x16}$
		B1		One term correct	
	$=6\sqrt{3}$	A1	3	Fully correct (not $\pm 6\sqrt{3}$)	
(ii)	$\frac{\sqrt{5}(15+\sqrt{40})}{5}$	M1		Multiply numerator and denominator by $\sqrt{5}$ or - $\sqrt{5}$ or attempt to express both terms of numerator in terms of	Check both numerator and denominator have been multiplied
				$\sqrt{5}$ (e.g. dividing both terms by $\sqrt{5}$)	
	$=\frac{15\sqrt{5}+10\sqrt{2}}{5}$	B1		One of a, b correctly obtained	
	$=3\sqrt{5}+2\sqrt{2}$	A1	3	Both $a = 3$ and $b=2$ correctly obtained	
			6		

6	$k = x^{\frac{1}{4}}$	M1*		Use a substitution to obtain a quadratic or	No marks unless evidence of substitution (quadratic seen or square rooting or squaring of roots found). = 0 may be implied.
	$3k^{2} - 8k + 4 = 0$ $(3k - 2)(k - 2) = 0$	DM1		factorise into 2 brackets each containing x^{4} Correct method to solve a quadratic	Allow $x = x^{\frac{1}{4}}$ as a substitution.
	$k = \frac{2}{3} \text{ or } k = 2$	A1		4	No marks if straight to quadratic formula to get
	$x = \left(\frac{2}{3}\right)^4 \text{ or } x = 2^4$	M1		Attempt to calculate k^4	$x = \frac{2}{3}$ x = 2 and no further working No marks if $k = x^{\frac{1}{4}}$ then $3k - 8k^2 + 4 = 0$
	$x = \frac{16}{81}$ or $x = 16$	A1	5 5		SC If M0 Spotted solutions www B1 each Justifies 2 solutions exactly B3
	If candidates use $k = x^{\frac{1}{2}}$ and rearrange: $3k - 8\sqrt{k + 4} = 0$				
	$8\sqrt{k} = 3k + 4$ $64k = 9k^2 + 24k + 16$ $9k^2 - 40k + 16 = 0$	M1*		Substitute, rearrange and square both sides	
	(9k-4)(k-4)=0 $k = \frac{4}{9}$ or $k = 4$	DM1		Correct method to solve quadratic	
	$x = \left(\frac{4}{9}\right)^2 \text{ or } x = 4^2$	A1 M1		Attempt to calculate k^2	
	$x = \frac{16}{81}$ or $x = 16$	A1		Thempt to emodate k	
7 (i)	$-14 \le 6x \le -5$	M1 A1		2 equations or inequalities both dealing with all 3 terms resulting in $a \le 6x \le b$, $a \ne -9$, $b \ne 0$ -14 and -5 seen www	Do not ISW after correct answer if contradictory inequality seen.
	$-\frac{7}{3} \le x \le -\frac{5}{6}$	A1	3	Accept as two separate inequalities provided not linked by "or" (must be ≤)	Allow $-\frac{14}{6} \le x \le -\frac{5}{6}$
(ii)	$0 < x^2 - 4x - 12$ (x - 6)(x + 2)	M1 M1 A1 M1		Rearrange to collect all terms on one side Correct method to find roots 6, -2 seen Correct method to solve quadratic inequality i.e. x >	Do not ISW after correct answer if contradictory inequality seen.
	$x > 6, \ x < -2$	A1	5 8	their higher root, $x <$ their lower root (not wrapped, strict inequalities, no 'and')	e.g. for last two marks, $-2 > x > 6$ scores M1 A0

8 (i)	$\frac{dy}{dx} = 6x + 6x^{-2}$	M1 A1		Attempt to differentiate (one non-zero term correct) Completely correct	$\mathbf{NB} - x = -1$ (and therefore possibly $y = 7$) can be found from equating the incorrect differential
	$6x + \frac{6}{x^2} = 0$ $x = -1$	M1 S		Sets their $\frac{dy}{dx} = 0$	$\frac{dy}{dx}$ = 6x + 6 to 0. This could score M1A0 M1A0A1 ft
	x = -1 $y = 7$	A1		Correct value for <i>x</i> - www	
	<i>y</i> = 7	A1 ft	5	Correct value of y for their value of x	If more than one value of x found, allow A1 ft for one correct value of y
(ii)	$\frac{d^2y}{dx^2} = 6 - 12x^{-3}$	M1		Correct method e.g. substitutes their x from (i) into their $\frac{d^2y}{dx^2}$ (must involve x) and considers sign.	Allow comparing signs of their $\frac{dy}{dx}$ either side of their "–1", comparing values of y to their "7"
	When $x = -1$, $\frac{d^2y}{dx^2} > 0$ so minimum pt	A1 ft	2	ft from their $\frac{dy}{dx}$ differentiated correctly and correct	SC $\frac{d^2y}{dx^2}$ = a constant correctly obtained from their
			7	substitution of <i>their</i> value of x and consistent final conclusion NB If second derivate evaluated, it must be correct $(18 \text{ for } x = -1)$. If more than one value of x used, max M1 A0	$\frac{dy}{dx}$ and correct conclusion (ft) B1

9 (i)	Gradient of $AB = \frac{1-3}{7-1} = -\frac{1}{3}$	M1*		Uses $\frac{y_2 - y_1}{x_2 - x_1}$ for any 2 points	
	Gradient of $AC = \frac{-9 - 3}{-3 - 1} = 3$	A1		One correct gradient (may be for gradient of BC	
	Gradient of $AC = \frac{1}{-3-1}$	A1		=1)	
		M1		Gradients for both AB and AC found correctly	Do not allow final mark if vertex A found from
	Vertex A			Attempts to show that $m_1 \times m_2 = -1$ oe, accept	wrong working. (Dependent on 1 st M 1 A1 A1)
	OR:	DB1		"negative reciprocal"	Accept BÂC etc for vertex A or "between AB and
	Length of $AB = \sqrt{(7-1)^2 + (1-3)^2} = \sqrt{40}$			Correct use of Pythagoras, square rooting not	AC" Allow if marked on diagram.
	$AC = \sqrt{(-3-1)^2 + (-9-3)^2} = \sqrt{160}$	M1*		needed	
	$BC = \sqrt{(-3-7)^2 + (-9-1)^2} = \sqrt{200}$	A1		Any length or length squared correct All three correct	
	Shows that $AB^2 + AC^2 = BC^2$	A1		All tillee collect	
	Vertex A		5	C_{const}	i.e must add squares of shorter two lengths
		M1 DB1	3	Correct use of Pythagoras to show $AB^2 + AC^2 = BC^2$	i.e must add squares of shorter two lengths
9 (ii)	Midpoint of BC is $\left(\frac{7+-3}{2}, \frac{1+-9}{2}\right)$	M1*		Uses $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ o.e. for BC, AB or	Substitution method 1 (into $x^2 + y^2 + ax + by + c = 0$) Substitutes all 3 points to get 3 equations in a,b,c M1 At least 2 equations correct A1 Correct method to find one variable M1
	= (2, -4)			AC (3 out of 4 subs correct)	One of a, b, c correct A1
	Length of $BC =$	A1		Correct centre (cao)	Correct method to find other values M1 All values correct A1
	$\sqrt{(-3-7)^2 + (-9-1)^2} = \sqrt{200} = 10\sqrt{2}$			2 2	Correct equation in required form A1
	·	M1**		Correct method to find d or r or d^2 or r^2 o.e. for BC, AB or AC (must be consistent with their	Alternative markscheme for last 4 marks with f,g, c method:
	Radius = $5\sqrt{2}$			midpoint if found)	$x^2 - 4x + y^2 + 8y$ for their centre DM1*
	$(x-2)^2 + (y+4)^2 = (5\sqrt{2})^2$	DM1*	7	$(x-a)^2 + (y-b)^2$ seen for their centre	$c = (\pm 2)^2 + 4^2 - 50$ DM1** $c = -30$ A1
	$(x-2)^2 + (y+4)^2 = 50$	DM1**	12	$(x-a)^2 + (y-b)^2 = \text{their } r^2$	Correct equation in required form $A1$ Ends of diameter method (p, q) to (c, d) :
	$x^2 + y^2 - 4x + 8y - 30 = 0$	A1		Correct equation	Attempts to use $(x-p)$ $(x-c)$ + $(y-q)$ $(y-d)$ = 0 for
		A1		Correct equation in required form	BC,AC or AB M2
					(x-7)(x+3) + (y-1)(y+9) = 0 A2 for both x brackets correct, A2 for both y brackets correct
					$x^2 + y^2 - 4x + 8y - 30 = 0$ A1
					SC If M2 A0 A0 then B1 if both x brackets correct
					and B1 if both y brackets correct for AC or AB

	·· ··			Maik Ocheme	5 411.5 2 51.1
					Substitution method 2into $(x-p)^2 + (y-q)^2 =$ their r^2 Correct method to find d or r or d^2 or r^2 *M1 Substitutes all 3 points to get 3 equations in p,q DM1 At least 2 equations correct A1 Correct method to find one variable M1 One of p, q correct A1 Correct equation $[(x-2)^2 + (y+4)^2 = 50]$ A1 Correct equation in required form $[x^2 + y^2 - 4x + 8y - 30 = 0]$ A1
10(i)		B1		+ve cubic with 3 distinct roots	For first B1 , left end of curve must finish below x axis and right end must end above x axis. Allow slight wrong curvature at one end but not both ends.
	(0,3)	B1		(0, 3) labelled or indicated on y-axis	No cusp at either turning point. No straight lines drawn with a ruler. Condone (0, 3) as maximum point.
	$\left(\frac{1}{2},0\right)\left(1,0\right)$	B1	3	$(-3, 0), (\frac{1}{2}, 0)$ and $(1, 0)$ labelled or indicated on <i>x</i> -axis and no other <i>x</i> - intercepts	To gain second and third B marks, there must be an attempt at a curve, not just points on axes. Final B1 can be awarded for a negative cubic.
(ii)	$2x^{2} +5x - 3, x^{2} + 2x - 3, 2x^{2} - 3x + 1$ $(2x^{2} +5x - 3)(x - 1)$ $2x^{3} + 3x^{2} - 8x + 3$	B1 M1 A1		Obtain one quadratic factor (can be unsimplified) Attempt to multiply a quadratic by a linear factor	Alternative for first 3 marks: Attempt to expand all 3 brackets with an appropriate number of terms (including an x^3 term) M1
	$\frac{dy}{dx} = 6x^2 + 6x - 8$	M1 A1		Attempt to differentiate (one non-zero term correct) Fully correct expression www	Expansion with at most 1 incorrect term A1 Correct, answer (can be unsimplified) A1 Allow if done in part(i) please check.
	When $x = 1$, gradient = 4	A1 A1	6	Confirms gradient = 4 at $x = 1 **AG$	Allow It dolle III part(1) please check.
(iii)	Gradient of $l = 4$ On curve, when $x = -2$, $y = 15$ y - 15 = 4(x + 2) y = 4x + 23	B1 B1 M1 A1	4	May be embedded in equation of line Correct y coordinate Correct equation of line using their values Correct answer in correct form	M mark is for any equation of line with any non-zero numerical gradient through (-2, their evaluated y)
(iv)	Attempt to find gradient of curve when $x = -2$ $6(-2)^2 + 6(-2) - 8 = 4$	M1 A1		Substitute $x = -2$ into their $\frac{dy}{dx}$	Alternatives 1) Equates equation of l to equation of curve and attempts to divide resulting cubic by $(x + 2)$ M1
	So line is a tangent	A1	3 16	Obtain gradient of 4 CWO Correct conclusion	Obtains $(x + 2)^2 (2x - 5)$ (=0) A1 Concludes repeated root implies tangent at x = -2 A1 2) Equates their gradient function to 4 and uses
					correct method to solve the resulting quadratic M1
					Obtains $(x + 2)(x - 1) = 0$ oe A1
					Correctly concludes gradient = 4 when $x = -2$ A1

Allocation of method mark for solving a quadratic

e.g.
$$2x^2 - 5x - 18 = 0$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

(2x+2)(x-9) = 0	M1	$2x^2$ and -18 obtained from expansion
(2x+3)(x-4) = 0	M1	$2x^2$ and $-5x$ obtained from expansion
(2x-9)(x-2) = 0	MO	only $2x^2$ term correct

- 2) If the candidate attempts to solve by using the formula
- a) If the formula is quoted incorrectly then **M0**.
- b) If the formula is quoted correctly then one **sign** slip is permitted. Substituting the wrong numerical value for a or b or c scores **M0**

$$\frac{-5\pm\sqrt{(-5)^2-4\times2\times-18}}{2\times2}$$
 earns **M1** (minus sign incorrect at start of formula)
$$\frac{5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times2}$$
 earns **M1** (18 for *c* instead of -18)
$$\frac{-5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times2}$$
 M0 (2 sign errors: initial sign and *c* incorrect)
$$\frac{5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times-5}$$
 M0 (2*b* on the denominator)

Notes – for equations such as $2x^2 - 5x - 18 = 0$, then $b^2 = 5^2$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score **M0**.

- c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
- 3) If the candidate attempts to complete the square, they must get to the "square root stage" involving ±; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$2x^{2}-5x-18=0$$

$$2\left(x^{2}-\frac{5}{2}x\right)-18=0$$

$$2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}\right]-18=0$$

$$\left(x-\frac{5}{4}\right)^{2}=\frac{169}{16}$$

$$x-\frac{5}{4}=\pm\sqrt{\frac{169}{16}}$$
This is where the **M1** is awarded – arithmetical errors may be condoned provided $x-\frac{5}{4}$ seen or implied

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for January 2012

PhysicsAndMathsTutor.com

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

C	Question		Answer	Marks	Guidance		
1			$\frac{15 + \sqrt{3}}{3 - \sqrt{3}} \times \frac{3 + \sqrt{3}}{3 + \sqrt{3}}$	M1	Multiply top and bottom by $\pm(3 + \sqrt{3})$	SC If A0A0A0 scored, both parts correct but unsimplified B1	
			$=\frac{48+18\sqrt{3}}{9-3}$	A1	Numerator correct and simplified	i.e. $\frac{45+15\sqrt{3}+3\sqrt{3}+3}{9+3\sqrt{3}-3\sqrt{3}-3}$ o.e. Alternative method: Equates expression to $a+b\sqrt{3}$ and forms simultaneous equations in a and b M1	
			0. 0.5	A1 A1	Denominator correct and simplified to 6	Correct method to solve simultaneous equations M1 $a = 8$ found A1	
			$=8+3\sqrt{3}$	[4]	cao	b = 3 found A1	
2	(i)		1 1 x	M1 A1	Reflection of given graph in either axis Correct reflection in y-axis	Clear intention to show (-2, 1), (0,0), (2,2) by numbers, dashes or coordinates A0 If significantly short or long	
2	(ii)		1 1 x 2 x 2	M1 A1	Translation of given graph vertically (up or down) Correct translation of two units vertically	Clear intention to show (-2, 4), (0,2), (2,3) by numbers, dashes or coordinates A0 If significantly short or long	

C	Questio	n	Answer	Marks	Guidance	e
3			$5x^2 + px - 8 = 5(x - 1)^2 + r$	B1	q = 5 (may be embedded on RHS)	
			$= 5(x^2 - 2x + 1) + r$			
			$=5x^2-10x+5+r$	B1	p = -10	
			p = -10			
			r = -13	M1	$-8 = \pm q + r$ or $\frac{-p^2}{20} - 8 = r$	
				A1 [4]	r = -13	Allow from $p = 10$
4	(i)		<u>1</u>	B1		
			9	[1]		
4	(ii)		$\left(\sqrt[4]{16}\right)^3$	M1	Interprets the power $\frac{3}{4}$ correctly	$(\sqrt[4]{16})^3$ or $(\sqrt[4]{16^3})$ or $(16^{\frac{1}{4}})^3$ or $(16^3)^{\frac{1}{4}}$
			= 8	A1 [2]	± 8 is A0	
4	(iii)		$5\sqrt{8} \div \sqrt{8}$	M1	$\sqrt{100} \sqrt{2} \div \sqrt{4} \sqrt{2} \text{ or } \sqrt{\frac{200}{8}} \text{ or }$	
			= 5	A1 [2]	$\sqrt{25} \sqrt{8} \div \sqrt{8} \text{ or } \sqrt{1600} \div 8 \text{ soi}$ Condone ± 5	

Oı	uestion	Answer		Marks	Guidance	
5		$k = \frac{1}{y^2}$		M1*	Use a correct substitution or pair of substitutions to obtain a quadratic or factorise into 2 brackets each containing $\frac{1}{y^2}$	No marks if straight to quadratic formula to get $y = \frac{2}{3}$, $y = 4$ unless correct substitution applied later i.e. reciprocal and square root
		$3k^{2} - 10k - 8 = 0$ $(3k + 2)(k - 4) = 0$ $k = -\frac{2}{3} \text{ or } k = 4$ $y^{2} = -\frac{3}{2} \text{ or } y^{2} = \frac{1}{4}$		M1dep A1 M1	Correct method to solve a quadratic $k = 4$ from correct method. If other root stated it must be correct. Attempt to reciprocal and square root to obtain y (either term)	No marks if quadratic found from incorrect substitution SC If M0 Spotted solutions www B1 each Justifies 2 solutions exactly B3
		$y = \pm \frac{1}{2}$		A1 [5]	No other roots given. Must be from $k = 4$ from correct method.	
		Alternative method below: $3-10y^2-8y^4=0$ $k = y^2$ $8k^2+10k-3=0$ (4k-1)(2k+3)=0 $k = \frac{1}{4}$ or $k = -\frac{3}{2}$ $y = \pm \frac{1}{2}$	M1* M1 dep A1 M1 A1		$k = \frac{1}{4}$ from correct method. If other root stated it must be correct.	

C)uestio	n	Answer	Marks	Guidance	e
6	(i)		$f'(x) = -4x^{-2} - 3$	M1 A1 A1 [3]	Attempt to differentiate $-4x^{-2}$ Fully correct derivative (no "+ c ")	kx ⁻² or -3 correctly obtained
6	(ii)		$f''(x) = 8x^{-3}$ $f''\left(\frac{1}{2}\right) = \frac{8}{\left(\frac{1}{2}\right)^3}$	M1* A1 M1dep	Attempts to differentiate their (i) Correct derivative Substitutes $x = \frac{1}{2}$ correctly into their $f''(x)$ e.g.	Must involve reducing power of an x term by 1 $f''(x)$ must involve x .
			= 64	A1 [4]	$8\left(\frac{1}{2}\right)^{-3} \text{ (allow "invisible brackets")}$ www	T (x) must myorve w
7	(i)		$x^{3} - 3x^{2} + 5x + 2x^{2} - 6x + 10$ $= x^{3} - x^{2} - x + 10$ $\frac{dy}{dx} = 3x^{2} - 2x - 1$ $(3x + 1)(x - 1) = 0$ $x = -\frac{1}{3} \text{ or } x = 1$ $\frac{d^{2}y}{dx^{2}} = 6x - 2, x = 1 \text{ gives +ve (4)}$ Min point at $x = 1$ $y = 9 \text{ found}$	M1 M1* M1* M1 A1 M1dep A1 A1	Attempt to multiply out brackets Attempt to differentiate their cubic Sets their $\frac{dy}{dx} = 0$ Correct method to solve quadratic Correct x values of turning points found www Valid method to establish which is min point with a conclusion Correct conclusion for $x = 1$ found from correct factorisation (even if other root incorrect) www for $(1, 9)$ given as minimum point (ignore other point here)	Alternative for product rule Attempt to use product rule M1 Expand brackets of both parts M1 Then as main scheme Any extra values for turning points loses all three A marks (eg by sketching positive cubic, second diff method for either of their x values, y co-ords etc.) If constant incorrect in initial expansion, max 5/8

C	uestion	Answer	Marks	Guidanc	e
7	(ii)	$(-3)^2 - 4 \times 1 \times 5$	M1	Uses $b^2 - 4ac$	$\sqrt{b^2-4ac}$ is M0
		=-11	A1 [2]		, , , , , , , , , , , , , , , , , , , ,
7	(iii)		B2	Fully correct argument - no extra incorrect statements e.g. 1) Justifying the quadratic factor having no roots so only intersection with <i>x</i> -axis is at <i>x</i> = -2 and stating it's a positive cubic 2) Sketch of positive cubic with one root at (-2, 0) and a min point at (1, 9) (f/t positive <i>y</i> (1) from (i))	Award B1 for either of: 1) Justifying the quadratic factor having no roots so only intersection with <i>x</i> -axis is at $x = -2$ 2) Sketch of positive cubic with one root at $(-2, 0)$ and a min point with <i>y</i> coordinate positive or 0
8		B lies on l so has coordinates $(x, 11 - 2x)$ $(x-3)^2 + (11-2x-5)^2 = (6\sqrt{5})^2$ $5x^2 - 30x - 135 = 0$ 5(x+3)(x-9) = 0 x = -3, x = 9 y = 17, y = -7	M1 M1* M1dep A1 A1	Attempt to find equation of l with gradient -2 $(x-3)^2 + (y-5)^2 = (6\sqrt{5})^2$ o.e. seen Attempts to solve the equations simultaneously to get a quadratic Correct method to solve their quadratic Both x values Both y values	e.g. by substitution as shown SC If A0 A0, one correct pair of values from correct factorisation www B1
		Alternative method: Use of $(1, 2, \sqrt{5})$ triangle with -ve gradient M1 Scaling to $6\sqrt{5}$ M1 $(3, 5) + (6, -12)$ M1 $(9, -7)$ A1 $(3, 5) - (6, -12)$ M1 $(-3, 17)$ A1		SC Spotted solutions Each correct pair www B1 (May also earn first two Ms as in main scheme) -1 for one or two extra incorrect solutions -2 for three or more extra incorrect solutions Checks solutions and justifies only two solution * NB – First M1 may also be awarded for estable solution(s) is – 2	s B2

)uestic	n	Answer	Marks	Guidan	ce
9	(i)		(x-3)(x+4) = 0 x = 3 or x = -4	M1 A1 B1 B1 B1	Correct method to find roots Correct roots Negative quadratic curve y intercept (0, 12) Good curve, with correct roots 3 and –4 indicated and max point in 2 nd quadrant	i.e. max at (0, 12) B0 Curve must go below <i>x</i> -axis for final mark
				[5]		
9	(ii)		-4 < <i>x</i> < 3	M1 A1	Correct method to solve quadratic inequality Allow ≤ for the method mark but not the accuracy mark	their lower root $< x <$ their higher root Allow " $x > -4$, $x < 3$ " Allow " $x > -4$ and $x < 3$ " Do not allow " $x > -4$ or $x < 3$ "
9	(iii)		$y = 4 - 3x$ $12 - x - x^{2} = 4 - 3x$ $x^{2} - 2x - 8 = 0$	M1	substitute for x/y or attempt to get an equation in 1 variable only	e.g. for first mark $3x + 12 - x - x^2 = 4$, or $y = 12 - \left(\frac{4 - y}{3}\right) - \left(\frac{4 - y}{3}\right)^2$ (this leads to $y^2 - 2y - 80 = 0$).
			(x-4)(x+2) = 0 x = 4 or $x = -2y = -8$ or $y = 10$	M1 A1 A1 [5]	correct method to solve 3 term quadratic	Condone poor algebra for this mark. SC If A0 A0, give B1 for one correct pair of values spotted or from correct factorisation www

C	Duestic	on	Answer	Marks	Guidan	ce
10	(i)		$(x+2)^2 + (y-4)^2 = 25$	M1	$(x+2)^2$ and $(y-4)^2$ seen (or implied by	Alternative markscheme for f, g, c
					$x^2 + 4x + y^2 - 8y$	method:
			$x^2 + 4x + 4 + y^2 - 8y + 16 - 25 = 0$	M1	$(x\pm 2)^2 + (y\pm 4)^2 = 25$	$x^2 + 4x + y^2 - 8y$ B1
			$x^2 + y^2 + 4x - 8y - 5 = 0$	A1	Correct equation in correct form (terms can	$c = 2^2 + (\pm 4)^2 - 25$ M1
				[3]	be in any order but must have "=0")	Correct equation in correct form A1
				[S]		
10	(ii)		gradient of radius = $\frac{8-4}{-5+2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ (3/4 substitutions correct)	
			$=$ $-\frac{4}{3}$	A1	Allow $\frac{4}{-3}$	
			gradient of tangent $=\frac{3}{4}$	B1FT		
			$y-8=\frac{3}{4}(x+5)$	M1	correct equation of straight line through (-5, 8), any non-zero gradient	
			3x - 4y + 47 = 0	A1 [5]	Shows rearrangement to given equation AG CWO throughout for A1	
			Alternative by rearrangement		Alternative for equating given line to circle	Alternative markscheme for implicit
			Gradient of radius = $\frac{8-4}{-5+2} = \frac{-4}{3}$ M1* A1		Substitute for x/y or attempt to get an equation in 1 variable only M1 $k(x^2 + 10x + 25) = 0 \text{ or } k(y^2 - 16y + 64) = 0$ A1	differentiation: M1 Attempt at implicit diff as evidenced by $2y \frac{dy}{dx}$ term
			Attempts to rearrange equation of line to find gradient of line = $\frac{3}{2}$ M1dep		Correct method to solve quadratic M1 $x = -5$, $y = 8$ found A1	A1ft $2x + 2y \frac{dy}{dx} + 4 - 8 \frac{dy}{dx} = 0$ ft from
			Multiply gradients to get -1 B1 Check (-5, 8) lies on line B1 (dep on both M1s)		States one root implies tangent B1	their equation in (i)
						A1 Substitution of (-5, 8) to obtain $\frac{3}{4}$
						then final 2 marks as main scheme

)uestio	n	Answer	Marks	Guidan	ce
10	(iii)		$(3 \times 3) - (4 \times 14) + 47 = 0$	B1 [1]	Sufficient correct working to verify statement e.g. verifying co-ordinate as shown	Alt: showing line joining (-5, 8) to (3, 14) has same gradient etc.
10	(iv)		$\sqrt{(3-5)^2+(14-8)^2}$ =10	M1	Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for <i>TP</i>	Alternative method: Attempt to find area of enclosing
			-10	A1		rectangle and subtract areas of other three triangles M1*
			Area of triangle = $\frac{1}{2} \times 10 \times 5$	M1	Must use their TP and their CP	Correct use area of triangle formula M1 dep
			2			All four values correct A1
			= 25	A1		Final answer correct A1
				[4]		(Use the same principle for any enclosing shape)

Solving a quadratic

This is particularly important to mark correctly as it can sometimes feature several times on a single examination paper. An example is usually included with the markscheme each session; this has varied slightly over the years and should be referred to every session. Consider the equation $3x^2 - 10x - 8 = 0$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

(3x+1)(x-8) = 0	M1	$3x^2$ and -8 obtained from expansion
(3x-1)(x-3) = 0	M1	$3x^2$ and $-10x$ obtained from expansion
(3x-2)(x-4) = 0	MO	only $3x^2$ term correct

- 2) If the candidate attempts to solve by using the formula
- a) If the formula is quoted incorrectly then M0.
- b) If the formula is quoted correctly then one **sign** slip is permitted. Substituting the wrong numerical value for a or b or c scores **M0**.

$$\frac{-10\pm\sqrt{(-10)^2-4\times3\times-8}}{6}$$
 earns **M1** (minus sign incorrect at start of formula)
$$\frac{10\pm\sqrt{(-10)^2-4\times3\times-8}}{2\times3}$$
 earns **M1** (8 for *c* instead of -8)
$$\frac{-10\pm\sqrt{(-10)^2-4\times3\times8}}{6}$$
 M0 (2 sign errors: initial sign and *c* incorrect)
$$\frac{10\pm\sqrt{(-10)^2-4\times3\times-8}}{2\times10}$$
 M0 (2*b* on the denominator)

Notes – for equations such as $3x^2 - 10x - 8 = 0$, then $b^2 = 10^2$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for *a* both occurrences in the formula would be two sign errors and score **M0**.

c) If the formula is not quoted at all, substitution must be completely correct to earn the M1

3) If the candidate attempts to complete the square, they must get to the "square root stage" involving ±; we are looking for evidence that the candidate knows a quadratic has two solutions.

$$3x^{2} - 10x - 8 = 0$$

$$3\left(x^{2} - \frac{10}{3}x\right) - 8 = 0$$

$$3\left[\left(x - \frac{5}{3}\right)^{2} - \frac{25}{9}\right] - 8 = 0$$

$$\left(x - \frac{5}{3}\right)^{2} = \frac{49}{9}$$
This is where the **M1** is awarded – arithmetical errors may be condoned provided $x - \frac{5}{3}$ (or equivalent) seen or implied

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt – see guidance later in this document.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1. Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

2. Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c. The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Δ

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.
 - Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h. For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

(Questio	on	Answer	Marks	Guida	nce
1			$x^3 - 5x^2 + 3x - 15 - (x^2 + 4x - x - 4)$	M1	Attempt to expand both pairs of brackets	No more than one "missing term"
				A1	Expansion with at most one incorrect term (no missing terms)	Do not allow "invisible brackets" unless final answer correct Allow one simplified incorrect term e.g. $(x^2 + 5x - 4)$
			$= x^3 - 6x^2 - 11$	A1 [3]	cao	
2	(i)		$\sqrt[4]{7} = 7^{\frac{1}{4}}$	B1	Allow $7^{0.25}$, $k = 0.25$ etc.	
				[1]		
2	(ii)		$\frac{1}{7\sqrt{7}} = 7^{-\frac{3}{2}}$	M1	Clear evidence of correct use of $7^a \times 7^b = 7^{a+b}$ or a single term $\frac{1}{7^d} = 7^{-d}$	Allow $\frac{1}{7^d 7^e} = (7^d 7^e)^{-1} [\text{not} = 7^d 7^{-e}]$
				A1 [2]	Allow -1.5, $k = -1.5$ etc.	
2	(iii)		$7^4 \times 7^{20}$	M1	7^{20} or 49^2 seen (or 49^{12})	$(7^2)^{10}$ is not good enough for M1
			$=7^{24}$	A1	Allow $k = 24$	
				[2]		
3	(i)		$\frac{3}{5}$	B1	Allow 0.6 or any equivalent fraction	Do not allow $\frac{3}{5}x$ as final answer
				[1]		
3	(ii)		$P\left(\frac{20}{3},0\right)$	B1	May be implied by subsequent working	Allow $x = \frac{20}{3}$ for P
			Q(0, -4)	B1	May be implied	Allow $y = -4$ for Q Check formula, or if formula not seen,
			$Q(0, -4)$ $\left(\frac{20}{3} + 0, 0 + 4}{2}\right)$	M1	Correct method to find midpoint of line	the use of formula is correct (including correct signs) for both <i>x</i> and <i>y</i> , Can be implied by correct final answers SC
			$\left(\frac{10}{3}, -2\right)$	A1 [4]	Allow exact equivalent forms, decimals must be correct to at least 2dp	If P and Q given the wrong way round but then used correctly to obtain correct final answer B2

	Questio	on	Answer	Marks	Guida	nce
4	(i)		$2(x^{2} - 10x) + 49$ $= 2(x - 5)^{2} - 50 + 49$	B1	p=2	If <i>p</i> , <i>q</i> , <i>r</i> found correctly, then ISW slips in format.
				B1	$(x-5)^2$	$2(x - 5)^{2} + 1$ B1 B1 M0 A0 2(x - 5) - 1 B1 B1 M1 A1 (BOD) $2(x - 5x)^{2} - 1$ B1 B0 M1 A0 $2(x^{2} - 5)^{2} - 1$ B1 B0 M1 A0
			$=2(x-5)^2-1$	M1 A1 [4]	$49 - 2q^2 \text{ or } \frac{49}{2} - q^2$	$2(x + 5)^2 - 1$ B1 B0 M1 A1 (BOD) 2 $x (x - 5)^2 - 1$ B0 B1M1A1
4	(ii)		(5,-1)	B1 FT B1 FT [2]	ft their q (Do not allow "5 x ") ft their r (Do not allow "-1 y ")	If restarted then B1 B1 for each B0 if more than one answer given
5	(i)			M1 A1 [2]	Correct shape of graph in Q1 Ignore reflection in the <i>x</i> axis Correct graph in Q1 only	Ignore "feathering" Finite "plot" scores M0 Need not meet origin for M mark Allow slight curve downwards for M mark but not for A Allow tending to horizontal
5	(ii)		Translate(d) or Translation Parallel to <i>x</i> -axis, (+)4 units	B1 B1	Do not accept "shift", "move" etc. without the word translation/translate(d) For "parallel to the <i>x</i> axis" allow "horizontally", "across", "to the right", "in the (positive) <i>x</i> direction". Do not accept "in/on/across/up/along/to/towards the <i>x</i> axis"	Allow e.g. "4 units across in the positive <i>x</i> direction parallel to the <i>x</i> axis" but do not award second B1 if statements are contradictory. "Factor 4" not acceptable
5	(iii)		$y = \sqrt{\left(\frac{x}{5}\right)}$	M1 A1 [2]	$\sqrt{5x}$ or $\sqrt{\frac{x}{5}}$ seen Must have " $y =$ " to earn A mark (do not allow " $f(x) =$ ")	SC If doubt over whether use of square root/solidus is totally correct B1 (Must still have " $y =$ ") Allow $\sqrt{5}y = \sqrt{x}$ or equivalent

Question	Answer	Marks	Guidano	ce
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = -12x^{-3}$	M1 A1	Attempt to differentiate (i.e. kx^{-3} seen) Correct derivative	"+ C" is A0
	When $x = 2$, $\frac{dy}{dx} = -\frac{3}{2}$	A1	Correct value of $\frac{dy}{dx}$. Allow equivalent fractions.	
	Gradient of normal = $\frac{2}{3}$	B1 FT	Follow through their evaluated $\frac{dy}{dx}$	Must be processed correctly
	When $x = 2$, $y = -\frac{7}{2}$	B1	Correct <i>y</i> coordinate, accept equivalent forms	
	$y + \frac{7}{2} = \frac{2}{3}(x-2)$	M1	Correct equation of straight line through (2, their evaluated <i>y</i>), any non-zero gradient	
	4x - 6y - 29 = 0	A1 [7]	Correct equation in required form i.e. $k(4x - 6y - 29) = 0$ for integer k. Must have "=0".	
7	$k = x^{\frac{1}{2}} k^2 - 6k + 2 = 0$	M1*	Use a substitution to obtain a quadratic with k^2 , $6k$ and 2(may be implied by squaring or rooting later)	Any sight of 4 or 36x from "squaring" original equation scores 0/6. Alternative solution:
	$(k-3)^2-7=0$	M1 dep	Correct method to solve resulting quadratic	$\frac{6\sqrt{x} = x + 2}{6\sqrt{x} = x^2 + 4x + 4}$
	$k = 3 \pm \sqrt{7}$	A1	$k = 3 \pm \sqrt{7}$ or $k = \frac{6 \pm \sqrt{28}}{2}$ or $k = 3 \pm \frac{\sqrt{28}}{2}$	Rearrange and square both sides M1* Correct simplified quadratic $x^2 - 32x + 4 = 0$ A1
	$x = \left(3 \pm \sqrt{7}\right)^2$	M1 M1	Recognise the need to square to obtain x Correct method for squaring $a + \sqrt{b}$ (3 or 4 term expansion)	Method to solve quadratic M1dep Correct unsimplified expression A1 Correct discriminant A1 $16 \pm 6\sqrt{7}$ o.e. A1
	$x = 16 + 6\sqrt{7}$ or $x = 16 - 6\sqrt{7}$	A1	Allow $16 \pm 3\sqrt{28}$ or $16 \pm 2\sqrt{63}$	SC If no evidence of substitution at start and no squaring/rooting at end: Correct method for solving quadratic with $a = 1$, $b = -6$, $c = 2$ and
		[6]		solution simplified to $3 \pm \sqrt{7}$ B1

Q	Questic	on	Answer	Marks	Guidano	ce
8	(i)		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3 + 32$	M1 A1	Attempt to differentiate (one term correct) Completely correct	"+ C" is A0
			$4x^3 + 32 = 0$	M1	Sets their $\frac{dy}{dx} = 0$ (can be implied)	
			$\begin{vmatrix} x = -2 \\ y = -48 \end{vmatrix}$	A1 A1 FT	Correct value for x (not ± 2) www Correct value of y for <i>their</i> single non-zero	e.g. (2, 80), (4, 384), (-4, 128),
				[5]	value of x	(8, 4352), (-8, 3840)
8	(ii)		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12x^2$	M1	Correct method for determining nature of a stationary point – see right hand column	e.g. evaluating second derivate at $x = -2$ and stating a conclusion
			When $x = -2$, $\frac{d^2y}{dx^2} > 0$ so minimum pt	A1	Fully correct for $x = -2$ only	Evaluating $\frac{dy}{dx}$ either side of $x = -2$
				[2]		Evaluating <i>y</i> either side of $x = -2$
8	(iii)		x > -2	B1 FT [1]	ft from single x value in (i) consistent with (ii)	Do not accept $x \ge -2$
9	(i)		Area of tile = $4x(x + 3)$	B1	Correct expression for area of rectangle (may be unsimplified)	
			4x(x+3) < 112	B1 √	Correct inequality for their expression	
			$4x^2 + 12x - 112 < 0$			Correct alternative forms for
			4(x+7)(x-4) < 0	M1	Correct method to solve a three term quadratic	factorised inequality include: $(x + 7)(4x - 16) < 0$
			$\frac{1}{2}(x+1)(x-4) < 0$	M1	Chooses correct region for the quadratic	(4x + 7)(4x - 10) < 0 (4x + 28)(x - 4) < 0
				1,11	inequality i.e. lower root $< x <$ higher root	(2x + 14)(2x - 8) < 0 etc.
			-7 < x < 4	A1	(May be implied by correct final answer)	
			$\therefore 0 < x < 4$	A1 [6]	Restricts range to positive values of x CWO	Do not allow ≤ for final A mark
9	(ii)		Perimeter = $4y + (y + 3) + 2y + y + 2y + 3$	M1	Clear attempt to add lengths of all 6 edges	Allow < or ≤ throughout part (ii)
				A1	Correct perimeter simplified to $10y + 6$ seen	
			20 < 10y + 6 < 54	B1 FT	Correct inequalities for their expression	Can still be unsimplified here
				M1	Solving 2 linear equations or inequalities dealing with all 3 terms	
			1.4 < y < 4.8	A1 [5]	Accept "1.4 < y, y < 4.8", "1.4 < y and y < 4.8" but NOT "1.4 < y or y < 4.8".	Do not ISW if contradictory incorrect form follows correct answer

O	uestion	Answer	Marks	Guidano	ee
10	(i)	Centre (5, -2)	B1		
		Radius = 5	M1	$5 \text{ or } \sqrt{25} \text{ soi}$	
		Diameter = 10	A1		
			[3]		
10	(ii)	2^{-2}	M1	uses $\frac{y_2 - y_1}{y_1}$ with their centre	3/4 substitutions correct
		Gradient of line = $\frac{2-2}{7-5}$ (= 2)	A1	$x_2 - x_1$	
		y-2=2(x-7) or $y-2=2$ (x-5)	M1	correct equation of straight line through (7, 2)	Allow other points on the line e.g.
				or their centre, any non-zero gradient	mid-point is (6,0)
		y = 2x - 12	A1	o.e. 3 term equation	
			[4]		
10	(iii)	$\sqrt{(7-5)^2+(2-^2)^2}$	M1	Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ with their	3/4 substitutions correct. Must have
				centre	square root as length specifically
			A1		asked for.
		$=\sqrt{20}$			
		$\sqrt{20}$ < 5 so P lies inside the circle	B1 FT	Compares their length <i>CP</i> with their radius and states consistent conclusion.	SC If M0, award for B1 for finding
			[3]	Both lengths must be mentioned.	$CP^2 = 20$ and stating $20 < 25$ and concluding inside www
10	(iv)	$(x, 5)^2 + (2x + 2)^2 (-25)$	M1*	Substitute for x/y or attempt to eliminate one	concluding inside www
	(11)	$(x-5)^2 + (2x+2)^2 (=25)$	1,11	of the variables	
		$(x-5)^2 + (2x+2)^2 = 25$	A1	Correct unsimplified equation (= 0 can be	
		$\begin{cases} x^2 - 10x + 25 + 4x^2 + 8x + 4 = 25 \end{cases}$		implied)	
			A1	Obtain correct 3 term quadratic	If <i>x</i> eliminated, $5y^2 - 4y + 16 = 0$
		$5x^2 - 2x + 4 = 0$		^	11 x eminiated, $3y = 4y + 10 = 0$
		$b^2 - 4ac = 4 - (4 \times 5 \times 4)$	M1dep	Attempt to determine whether equation has real roots with consistent conclusion regarding	
				roots/intersection	
		$b^2 - 4ac < 0$ so no real roots	A1	Fully justified statement that line and circle do	If the discriminant is evaluated, this
		7 100 \ 0 50 110 10015		not meet www	must be -76 (from the quadratic in x)
					or –304 (from the quadratic in y) for
					full marks.
			[5]		

Allocation of method mark for solving a quadratic

e.g.
$$2x^2 - 5x - 18 = 0$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

$$(2x+2)(x-9)=0$$

M1 $2x^2$ and -18 obtained from expansion

$$(2x+3)(x-4) = 0$$

M1 $2x^2$ and -5x obtained from expansion

$$(2x-9)(x-2)=0$$

M0 only $2x^2$ term correct

- 2) If the candidate attempts to solve by using the formula
 - a) If the formula is quoted incorrectly then **M0**.
 - b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$$\frac{-5\pm\sqrt{(-5)^2-4\times2\times-18}}{2\times2}$$
 earns **M1** (minus sign incorrect at start of formula)
$$\frac{5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times2}$$
 earns **M1** (18 for *c* instead of -18)
$$\frac{-5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times2}$$
 M0 (2 sign errors: initial sign and *c* incorrect)
$$\frac{5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times-5}$$
 M0 (2*b* on the denominator)

Notes – for equations such as $2x^2 - 5x - 18 = 0$, then $b^2 = 5^2$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score **M0**.

- c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
- 3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm ; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$2x^{2} - 5x - 18 = 0$$

$$2\left(x^{2} - \frac{5}{2}x\right) - 18 = 0$$

$$2\left[\left(x - \frac{5}{4}\right)^{2} - \frac{25}{16}\right] - 18 = 0$$

$$\left(x - \frac{5}{4}\right)^{2} = \frac{169}{16}$$
This is where the **M1** is awarded – arithmetical errors may be condoned provided $x - \frac{5}{4}$ seen or implied

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for January 2013

PhysicsAndMathsTutor.com

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
۸	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*/DM1	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
ft or √	Follow through

4721 Mark Scheme January 2013

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c. The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Δ

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results.

 Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (eg 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

4721 Mark Scheme January 2013

g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h. For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

January 2013

	Question		Answer	Marks	Guida	ance
1	(i)		$\frac{6 \pm \sqrt{(-6)^2 - 4 \times 1 \times -2}}{2 \times 1}$	M1	Valid attempt to use quadratic formula	No marks for attempting to factorise
			$=\frac{6\pm\sqrt{44}}{2}$	A1		
			$=3\pm\sqrt{11}$	A1	Both roots correct and simplified	
			OR: $(x-3)^2 - 9 - 2 = 0$			
			$x - 3 = \pm \sqrt{11}$	M1 A1	Correct method to complete square	Must get to $(x-3)$ and \pm stage for the M mark, constants combined correctly
			$x = 3 \pm \sqrt{11}$	A1 [3]	Rearranged to correct form cao	gets A1
1	(ii)		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6$	B1		
			=-16	B1 [2]	www	
2	(i)		n = 0	B1 [1]	Allow 3 ⁰	
2	(ii)		$\frac{1}{t^3} = 64 \text{ (or } 4^3)$	M1	or $t^3 = \frac{1}{64}$ or $64t^3 = 1$ or $\left(\frac{1}{t}\right)^3 = 64$	Allow embedded
			$t = \frac{1}{4}$	A1	4^{-1} is A0 $t = \pm \frac{1}{4}$ is A0	4 ⁻¹ www alone implies M1 A0
				[2]		
2	(iii)		$2p^2 = 8$	M1	or $8p^6 = 8^3$. Allow $2p^{\frac{6}{3}} = 8$ for M1	If not 512, evidence of $8 \times 8 \times 8$ needed.
			p=2	A1	www	SC Spotted B1 for 2, B1 for -2, B1 for justifying exactly 2 solutions
			or $p = -2$	A1	www	$\mathbf{SC}^{3} 8p^{2} = 8, p = \pm 1 \mathbf{B1}$
				[3]		

	Question	Answer	Marks	Guida	ance
3	(i)	10	B1 B1	-ve cubic with 3 distinct roots (0, 6) labelled or indicated on y-axis –	Must not stop at x-axis. Condone errors in curvature at the extremes unless extra turning point(s)/root(s) clearly implied.
		1 3 2 1 0 1 1 3		seen elsewhere not enough	Must have a curve for 2 nd and 3 rd marks
		10'	B1	(-3, 0), (-1, 0) and (2, 0) labelled or indicated on <i>x</i> -axis and no other <i>x</i> -intercepts.	Do not allow final B1 if shown as repeated root(s)
			[3]	mercepts.	repeated root(s)
3	(ii)	Reflection	B1	Not mirrored/flipped etc.	Alt Stretch (scale) factor –1 B1
		in the y axis	B1	or $x = 0$. No/through/along etc. Must be	parallel to the x axis for B1
			[2]	"in". Cannot get 2 nd B1 without some	Must be a single transformation for
				indication of a reflection e.g. flip etc.	any marks
				Do not ISW if contradictory statement seen	
4	(i)	$2x^2 - 3x - 5 = \frac{-10x - 11}{2}$	*M1	Substitute for <i>x/y</i> or attempt to get an equation in 1 variable only	or $10x + 2(2x^2 - 3x - 5) + 11 = 0$
		2		equation in 1 variable only	If <i>x</i> is eliminated, expect
		$4x^2 + 4x + 1 = 0$	A1	Obtain correct 3 term quadratic – could be a multiple e.g. $2x^2 + 2x + 0.5 = 0$	$k(8y^2 + 48y + 72) = 0$
		(2x+1)(2x+1) = 0	DM1	Correct method to solve resulting 3 term quadratic	
		$x = -\frac{1}{2}$	A1		SC If DM0 and $x = -\frac{1}{2}$ spotted
		y = -3	A1		B1 for x value, B1 for y value
			[5]		B1 justifying only one root
4	(ii)	Line is a tangent to the curve	B1√	Must be consistent with their answers to their quadratic in (i).	Follow through from their solution to (i)
				1 repeated root – indicates one point.	
				Accept tangent, meet at, intersect, touch	
				etc. but do not accept cross 2 roots – indicates meet at two points	
				0 roots – indicates do not meet. Do not	
			[1]	accept "do not cross"	

	Question		Answer Ma		Guida	nnce
5	(i)		$5x^2 + 17x - 12 - 3(x^2 - 4x + 4)$	M1	Attempt to expand both pairs of brackets	
			$=2x^2 + 29x - 24$	A1 A1 [3]	$5x^2 + 17x - 12$ and $x^2 - 4x + 4$ soi; may be unsimplified, no more than one incorrect term, no "extra" terms at all. No "invisible brackets" $2x^2 + 29x - 24$	ISW if they then put expression equal to zero and go on to "solve"
5	(ii)		$-5x^2 + 2kx^2 + 6x^2$	M1	Correct method to multiply out 3	No more than 8 terms, but ignore sign
				A1	brackets or correctly identify all x^2 terms All x^2 terms correct, no extras	errors/accuracy of non x^2 terms
			k = -2	A1 [3]		

	Questi	on	Answer	Marks	Guidance	
6	(i)		$\frac{p-7}{-4-2}$ or $\frac{7-p}{-2-4}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ (at least 3out of 4 correct)	Alternative method: Equation of line through one of the given points with gradient 4 M1 Substitutes other point into their
			$\frac{p-7}{-4-2} = 4 \text{ or } \frac{7-p}{-2-4} = 4$	A1	Correct, unsimplified equation	equation M1 Obtains $p = -1$ (Accept $y = -1$) A1
			p = -1	A1 [3]		Note: Other "informal" methods can score full marks provided www
6	(ii)		$\frac{-2+6}{2} = m, \frac{7+q}{2} = 5$ $m = 2$ $q = 3$	M1 A1 A1	Correct method (may be implied by one correct coordinate)	Use the same marking principle for candidates who add/subtract half the difference to an end point or use similar triangles or other valid "informal" methods.
6	(iii)		$\sqrt{(-2-d)^2 + (7-3)^2}$ $d^2 + 4d + 20 = 52$ $d^2 + 4d - 32 = 0$ $(d+8)(d-4) = 0$ $d = -8 \text{ or } 4$	[3] *M1 B1 DM1 A1 [4]	Correct method to find line length/square of line length using Pythagoras' theorem (at least 3out of 4 correct) $(2\sqrt{13})^2 = 52$ or $2\sqrt{13} = \sqrt{52}$ Correct method to solve 3 term quadratic, must involve their "52"	SC: B1 for each value of d found or "spotted" from correct working Note: Other "informal" methods can score full marks provided www

	Questic	on	Answer	Marks	Guida	Guidance	
7	(i)		$y = 9x^5$	M1	Obtain kx^5	If individual terms are differentiated then M0A0B0	
			$\frac{\mathrm{d}y}{\mathrm{d}x} = 45x^4$	A1 B1 ft [3]	Correct expression for $y(9x^5)$ Follow through from their single kx^n , $n \ne 0$. Must be simplified.	$\frac{3x^2 + x^4}{x}$ is not a misread M0A0B0	
7	(ii)		$y = x^{\frac{1}{3}}$	B1	$\sqrt[3]{x} = x^{\frac{1}{3}}$		
			2	B1	$kx^{-\frac{2}{3}}$	SC $\sqrt[3]{x} = x^{-\frac{1}{3}}$ differentiated to	
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}x^{-\frac{2}{3}}$	B1 [3]	$\frac{1}{3}x^{-\frac{2}{3}}$. Allow 0.3 (not finite)	$-\frac{1}{3}x^{-\frac{4}{3}}\mathbf{B1}$	
7	(iii)		$y = \frac{1}{2}x^{-3}$ $\frac{dy}{dx} = -\frac{3}{2}x^{-4}$ $(3k-1)^2 - 4 \times k \times -4$	M1 A1 [2]	kx^{-4} seen		
8			$(3k-1)^2 - 4 \times k \times -4$	*M1	Attempts $b^2 - 4ac$ or an equation or inequality involving b^2 and $4ac$. Must involve k^2 in first term (but no x anywhere). If $b^2 - 4ac$ not stated, must be clear attempt.	Must be working with the discriminant explicitly and not only as part of the quadratic formula. Allow $\sqrt{b^2 - 4ac}$ for first M1 A1	
			$= 9k^2 + 10k + 1$	A1	Correct discriminant, simplified to 3 terms		
			$9k^2 + 10k + 1 < 0$	M1	States discriminant < 0 or $b^2 < 4ac$.	Can be awarded at any stage. Doesn't need first M1. No square root here.	
			(9k+1)(k+1) < 0	DM1	Correct method to find roots of a three term quadratic	4	
			$-1, -\frac{1}{9}$	A1	Both values of k correct		
			$-1, -\frac{1}{9}$ $-1 < k < -\frac{1}{9}$	M1	Chooses "inside region" of inequality	Allow correct region for their inequality	
			9	A1 [7]	Allow " $k < -\frac{1}{9}$ and $k > -1$ " etc. must be strict inequalities for A mark	Do not allow " $k < -\frac{1}{9}$ or $k > -1$ ";	

	Questio	on	Answer	Marks	Guidance		
9	(i)		Centre (1, -5)	B1	Correct centre		
			$(x-1)^2 + (y+5)^2 - 19 - 1 - 25 = 0$	M1	Correct method to find r^2	$r^2 = (\pm 5)^2 + (\pm 1)^2 + 19$ for the M mark	
			$(x-1)^2 + (y+5)^2 = 45$				
			Radius = $\sqrt{45}$	A1 [3]	Correct radius. Do not allow if wrong centre used in calculation of radius.	A0 if $\pm \sqrt{45}$	
9	(ii)		$7^2 + (-2)^2 - 14 - 20 - 19$	B1	Substitution of coordinates into equation	No follow through for this part as	
			=0		of circle in any form or use of	AG. Must be consistent – do not	
				[1]	Pythagoras' theorem to calculate the	allow finding the distance as $\sqrt{45}$ if	
				[1]	distance of (7, -2) from C	no/wrong radius found in 9(i).	
9	(iii)		gradient of radius = $\frac{-5 - (-2)}{1 - 7}$ or $\frac{-2 - (-5)}{7 - 1}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ with their C (3/4 correct)	Follow through from 9(i) until final mark.	
			$=\frac{1}{2}$	A1√	Follow through from their C, allow unsimplified single fraction e.g. $\frac{-3}{2}$	If (-1,5) is used for C, then expect	
			gradient of tangent $= -2$	B1√	Follow through from their gradient, even	Gradient of radius = $\frac{5-(-2)}{-1-7} = -\frac{7}{8}$	
					if M0 scored. Allow $\frac{-1}{\text{their fraction}}$ B1	1 / 0	
			y+2=-2(x-7)	M1	correct equation of straight line through $(7, -2)$, any non-zero numerical gradient	Gradient of tangent = $\frac{8}{7}$	
			2x + y - 12 = 0	A1	oe 3 term equation in correct form i.e.		
					k(2x + y - 12) = 0 where k is an integer		
					cao	Alternative markscheme for implicit	
				[5]		differentiation: M1 Attempt at implicit diff as	
				[5]			
						evidenced by $2y \frac{dy}{dx}$ term	
						$\mathbf{A1} 2x + 2y\frac{dy}{dx} - 2 + 10\frac{dy}{dx} = 0$	
						A1 Substitution of (7, -2) to obtain	
						gradient of tangent = -2	
						Then M1 A1 as main scheme	

	Question	Answer	Marks	Guidance	
10		$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 9x^{-2}$	B1	x^2 from differentiating first term	
			M1	kx^{-2}	
			A1	$-9x^{-2}$ (no + c)	
		Gradient of line = 8	B1		
		$x^2 - 9x^{-2} = 8$	M1	Equate their $\frac{dy}{dx}$ to 8 (or their gradient of	Note: If equated to +/-1/8 then M0 but the next M1 and its dependencies are available
				line, if clear)	1
		$x^4 - 8x^2 - 9 = 0$			
		$k^2 - 8k - 9 = 0$	*M1	Use a correct substitution to obtain a 3 term quadratic or factorise into 2 brackets each containing x^2	If no substitution stated and treated as a quadratic (e.g. quadratic formula), no more marks
		(k-9)(k+1) = 0	DM1	Correct method to solve 3 term quadratic – dependent on previous M1	until square rooting seen SC: If spotted after first five marks-
		k = 9 (don't need $k = -1$)	A1	No extras	(3, 12) B1 (-3, -12) B1 Justifies exactly two solutions B3
		x = 3, -3	DM1	Attempt to find <i>x</i> by square rooting – accept one value	
		y = 12, -12	A1	No extras	
			[10]		

More Additional Guidance for Q10

If curve equated to line and before differentiating: First four marks **B1 M1 A1 B1** available as main scheme

Then M0 for equating as this not been explicitly done

Allow the **M1** for the substitution

DM1 for quadratic as main scheme (dependent on a correct substitution)

A0 for the 9 (as follows wrong working)

DM1 for square rooting (dependent on a correct substitution)

A0 for the co-ordinates (as follows wrong working). Max mark 7/10

Allocation of method mark for solving a quadratic

e.g.
$$2x^2 - 5x - 18 = 0$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

$$(2x+2)(x-9) = 0$$
 M1 $2x^2$ and -18 obtained from expansion
 $(2x+3)(x-4) = 0$ M1 $2x^2$ and $-5x$ obtained from expansion
 $(2x-9)(x-2) = 0$ M0 only $2x^2$ term correct

- 2) If the candidate attempts to solve by using the formula
 - a) If the formula is quoted incorrectly then **M0**.
 - b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$$\frac{-5\pm\sqrt{(-5)^2-4\times2\times-18}}{2\times2}$$
 earns **M1** (minus sign incorrect at start of formula)
$$\frac{5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times2}$$
 earns **M1** (18 for *c* instead of -18)
$$\frac{-5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times2}$$
 M0 (2 sign errors: initial sign and *c* incorrect)
$$\frac{5\pm\sqrt{(-5)^2-4\times2\times18}}{2\times-5}$$
 M0 (2*b* on the denominator)

Notes – for equations such as $2x^2 - 5x - 18 = 0$, then $b^2 = 5^2$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score **M0**.

- c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
- 3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm ; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$2x^{2}-5x-18=0$$

$$2\left(x^{2}-\frac{5}{2}x\right)-18=0$$

$$2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}\right]-18=0$$

$$\left(x-\frac{5}{4}\right)^{2}=\frac{169}{16}$$

$$x-\frac{5}{4}=\pm\sqrt{\frac{169}{16}}$$
This is where the **M1** is awarded – arithmetical errors may be condoned provided $x-\frac{5}{4}$ seen or implied

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations and abbreviations

Annotation in scoris	Meaning			
✓and ≭				
BOD	Benefit of doubt			
FT	Follow through			
ISW	Ignore subsequent working			
M0, M1	Method mark awarded 0, 1			
A0, A1	Accuracy mark awarded 0, 1			
B0, B1	Independent mark awarded 0, 1			
SC	Special case			
٨	Omission sign			
MR	Misread			
Highlighting				
Other abbreviations	Meaning			
in mark scheme				
E1	Mark for explaining			
	Mark for explaining Mark for correct units			
E1	, v			
E1 U1	Mark for correct units			
E1 U1 G1	Mark for correct units Mark for a correct feature on a graph			
E1 U1 G1 M1 dep*	Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by *			
E1 U1 G1 M1 dep* cao	Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only			
E1 U1 G1 M1 dep* cao oe	Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only Or equivalent			
E1 U1 G1 M1 dep* cao oe rot	Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated			
E1 U1 G1 M1 dep* cao oe rot soi	Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated Seen or implied			

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

\mathbf{M}

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

\mathbf{E}

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should

be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Qı	uestion	Answer	Marks	Guidan	ce
1	(i)	$4\sqrt{45}$	M1	or $4\sqrt{5}\sqrt{3} \times \sqrt{3}$ (not just $4\sqrt{5} \times 3 \times \sqrt{3}$) or $\sqrt{720}$ or $\sqrt{240} \times \sqrt{3}$ or better	For method mark, makes a correct start to manipulate the expression i.e. at least combines two parts correctly or splits one part correctly
		$=12\sqrt{5}$	A1 [2]	Correctly simplified answer	
1	(ii)	$\frac{20\sqrt{5}}{5} = 4\sqrt{5}$	B1	cao, do not allow unsimplified, do not allow if clearly from wrong working	
			[1]		
1	(iii)	$5\sqrt{5}$	B1	cao www, do not allow unsimplified, do not allow if clearly from wrong working	
			[1]		
2		$\begin{cases} k = x^3 \\ 8k^2 + 7k - 1 = 0 \end{cases}$	M1*	Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^3	No marks if whole equation cube rooted etc. No marks if straight to formula with no evidence of substitution at start and no cube rooting/cubing at end.
		(8k - 1)(k + 1) = 0	DM1 *	Correct method to solve a quadratic	
		$(8k-1)(k+1) = 0$ $k = \frac{1}{8}, \ k = -1$	A1	Both values of k correct	Spotted solutions:
			M1	Attempt to cube root at least one value to obtain <i>x</i>	If M0 DMO or M1 DM0 SC B1 $x = -1$ www
		$x = \frac{1}{2}, x = -1$	A1	Both values of <i>x</i> correct and no other values	$\mathbf{SC} \ \mathbf{B1} \ x = \frac{1}{2} \ \mathbf{www}$
					(Can then get 5/5 if both found www and exactly two solutions justified)
			[5]		

Qı	uestion	Answer	Marks	Guida	nce
3	(i)	$f(x) = 6x^{-2} + 2x$ $f'(x) = -12x^{-3} + 2$	M1	kx^{-3} obtained by differentiation	
			A1	$-12x^{-3}$	ISW incorrect simplification after correct expression
			B1 [3]	2x correctly differentiated to 2	
3	(ii)	$f''(x) = 36x^{-4}$	M1	Attempt to differentiate their (i) i.e. at least one term "correct"	Allow constant differentiated to zero
			A1	Fully correct cao No follow through for A mark	ISW incorrect simplification after correct expression
			[2]		
4	(i)	$3\left(x^2+3x\right)+10$			If p, q found correctly, then ISW slips in format.
		$3(x^{2}+3x)+10$ $=3(x+\frac{3}{2})^{2}-\frac{27}{4}+10$	B1	$\left(x+\frac{3}{2}\right)^2$	$3(x + 1.5)^2 - 3.25$ B1 M0 A0 3(x + 1.5) + 3.25 B1 M1 A1 (BOD) $3(x + 1.5x)^2 + 3.25$ B0 M1 A0 $3(x^2 + 1.5)^2 + 3.25$ B0 M1 A0
				$10-3p^2 \text{ or } \frac{10}{3}-p^2$	$3(x - 1.5)^2 + 3.25$ B0 M1 A1 (BOD) $3 x (x + 1.5)^2 + 3.25$ B0M1A0
		$=3\left(x+\frac{3}{2}\right)^2+\frac{13}{4}$	A1	Allow $p = \frac{3}{2}$, $q = \frac{13}{4}$ A1 www	
			[3]		
4	(ii)	$\left(-\frac{3}{2},\frac{13}{4}\right)$	B1 B1	FT i.e. – their <i>p</i> FT i.e. their <i>q</i>	If restarted e.g. by differentiation: Correct method to find <i>x</i> value of
		(24)	[2]		minimum point M1 Fully correct answer www A1
4	(iii)	$9^2 - (4 \times 3 \times 10)$	M1	Uses $b^2 - 4ac$	Use of $\sqrt{b^2 - 4ac}$ is M0 unless recovered
		= -39	A1	Ignore >0, <0 etc. ISW comments about number of roots	recovered
			[2]		

Q	uestion	Answer	Marks	Guidan	ce
5	(i)	/ ↑\	B1	Excellent curve for $y = \frac{2}{x^2}$ in either quadrant	N.B. Ignore 'feathering' now that answers are scanned.
			B1	Excellent curve for $y = \frac{2}{x^2}$ in other quadrant and no more.	For Excellent: Correct shape, not touching axes, asymptotes clearly the axes. Allow slight movement away from asymptote at one end but not more. Not finite.
			[2]	SC B1 Reasonably correct curves in 1st and 2nd quadrants and no more	For SC B1, graph must not touch axes more than twice.
5	(ii)	$y = \frac{2}{\left(x+5\right)^2}$	M1	$\frac{2}{(x+5)^2} \text{ or } \frac{2}{(x-5)^2} \text{ seen}$	
			A1 [2]	Fully correct, must include " $y =$ " or " $f(x) =$ "	
5	(iii)	Stretch scale factor $\frac{1}{2}$ parallel to y-axis	B1 B1 [2]	Or "stretched" etc; do not accept squashed, compressed etc. oe e.g. scale factor $\sqrt{\frac{1}{\sqrt{2}}}$ parallel to <i>x</i> -axis	0/2 if more than one type of transformation mentioned ISW non-contradictory statements For "parallel to the <i>y</i> -axis" allow "vertically", "up", "in the (positive) <i>y</i> direction". Do not accept "in/on/across/up/along/to/towards the <i>y</i> -axis"
6	(i)	Centre $(0, -4)$ $x^2 + (y+4)^2 - 16 - 24 = 0$ Radius = $\sqrt{40}$	B1 M1 A1 [3]	$(y \pm 4)^2 - 4^2$ seen (or implied by correct answer) Do not allow A mark from $(y - 4)^2$	Or attempt at $r^2 = f^2 + g^2 - c$ A0 for $\pm \sqrt{40}$
6	(ii)	(-2, -10)	B1FT B1FT	FT through centre given in (i) FT through centre given in (i)	i.e. (their $2x - 2$, their $2y - 2$) Apply same scheme if equation of diameter found and attempt to solve simultaneously; no marks until a correct value of x/y found.

Qı	estion	Answer	Marks	Guidan	ce
7	(i)	$8x < -1$ $x < -\frac{1}{8}$	B1 B1	soi, allow $-8x > 1$ but not just $8x + 1 < 0$ Correct working only, allow $-\frac{1}{8} > x$	Allow \le or \ge for first mark Do not ISW if contradictory Do not allow \le or \ge
			[2]	Do not allow $\frac{1}{-8}$	
7	(ii)	$2x^2 - 10x \le 0$	M1*	Expand brackets and rearrange to collect all terms on one side	No more than one incorrect term
		$2x(x-5) \le 0$	DM1*	Correct method to find roots of resulting quadratic	Allow $(2x + 0)(x - 5)$ Do not allow $(2x - 4)(x - 3)$, this is the original expression.
			A1 DM1*	0, 5 seen as roots – could be on sketch graph Chooses "inside region" for their roots of their resulting quadratic (not the original)	Dependent on first M1 only
		$0 \le x \le 5$	A1 [5]	Do not accept strict inequalities for final mark	Allow " $x \ge 0$, $x \le 5$ ", " $x \ge 0$ and $x \le 5$ " but do not allow " $x \ge 0$ or $x \le 5$ "
8		Midpoint of AB is $\left(\frac{-2+3}{2}, \frac{6+-8}{2}\right)$	M1 A1	Correct method to find midpoint – can be implied by one correct value	NB – "correct" answer can be found with wrong mid-pt. Check working thoroughly.
		$\left(\frac{1}{2},-1\right)$ Gradient of given line = $\frac{1}{3}$	B1	Must be stated or used – just rearranging the equation is not sufficient	
		Gradient of $l = -3$	B1FT	Use of $m_1m_2 = -1$ (may be implied), allow for any initial non-zero numerical gradient	
		$y+1=-3\left(x-\frac{1}{2}\right)$	M1	Correct equation for line, any non-zero numerical gradient, through their $\left(\frac{1}{2}, -1\right)$	
		6x + 2y - 1 = 0	A1 A1 [7]	Correct equation in any three-term form $k(6x + 2y - 1) = 0$ for integer k www	Must include "= 0"

Qı	iestion	Answer	Marks	Guidan	ce
9	(i)	(2x+3)(x-2) = 0 3	M1	Correct method to find roots	
		$x = -\frac{3}{2}, x = 2$	A1 B1 B1 B1	Correct roots Reasonably symmetrical positive quadratic curve, must cross <i>x</i> axis <i>y</i> intercept (0, -6) only Good curve, with correct roots indicated and min point in 4th quadrant (not on axis)	Indicated on graph or clearly stated, but there must be a curve Only allow final B1 if curve is clearly intended to be a quadratic symmetrical about min point in 4th quadrant
		-10	[5]		
9	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 1 = 0$	M1	Attempt to find <i>x</i> coordinate of vertex by differentiating and equating/comparing to zero, completing the square, finding the midpoint of their roots oe	SC Award B1 (FT) for $x < 0$ if clearly from their graph
		Vertex when $x = \frac{1}{4}$	A1	cao	NB Look for solution to 9ii done in the space below 9i graph
		$x < \frac{1}{4}$	A1 FT	$x < \text{their vertex}, \text{ allow} \le$	
			[3]		
9	(iii)	$2x^{2} - x - 6 = 4$ $2x^{2} - x - 10 = 0$ $(2x - 5)(x + 2) = 0$	M1	Set quadratic expression equal to 4	
		(2x - 5)(x + 2) = 0	M1	Correct method to solve resulting three term quadratic	Not $2x^2 - x - 6 = 0$ with no use of 4
		$x = \frac{5}{2}, x = -2$	A1	Must have both solutions – no mark for one spotted root	
		Distance $PQ = 4\frac{1}{2}$	B1FT	FT from their x values found from their resulting quadratic, provided $y = 4$	Allow $\frac{9}{2}$ oe, but do not accept
			[4]		unsimplified expressions like $\sqrt{\frac{81}{4}}$

Qı	estion	Answer	Marks	Guidan	ce
10	(i)	$y = -x^3 - 3x^2 + 4x - kx + k$	M1 A1	Attempt to multiply out brackets Can be unsimplified	Must have $\pm x^3$ and 5 or 6 terms
		$\frac{\mathrm{d}y}{\mathrm{d}x} = -3x^2 - 6x + 4 - k$	M1 A1	Attempt to differentiate their expansion (M0 if signs have changed throughout)	If using product rule: Clear attempt at correct rule M1*
		$\frac{dy}{dx} = -3x^2 - 6x + 4 - k$ When $x = -3$, $\frac{dy}{dx} = 0$	M1*	Sets $\frac{dy}{dx} = 0$	Differentiates both parts correctly A1 Expand brackets of both parts * DM1
			DM1*	Substitutes $x = -3$ into their $\frac{dy}{dx} = 0$	
		$ \begin{aligned} -27 + 18 + 4 - k &= 0 \\ k &= -5 \end{aligned} $	A1 [7]	www	Then as main scheme
10	(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -6x - 6$	M1	Evaluates second derivative at $x = -3$ or other fully correct method	Alternate valid methods include: 1) Evaluating gradient at either side of -3 2) Evaluating wat either side of -2
		When $x = -3$, $\frac{d^2 y}{dx^2}$ is positive so min point	A1 [2]	No incorrect working seen in this part i.e. if second derivate is evaluated, it must be 12. (Ignore errors in <i>k</i> value)	2) Evaluating y at either side of -3 3) Finding other turning point and stating "negative cubic so min before max"
10	(iii)	$-3x^2 - 6x + 9 = 9$	M1	Sets their gradient function from (i) (or from a restart) to 9	Allow first M even if <i>k</i> not found but look out for correct answer from wrong
		3x(x+2) = 0 x = 0 or x = -2	A1	Correct x-values	working. SEE NEXT PAGE FOR ALTERNATIVE METHODS
		When $x = 0$, $y = -9$ for line y = -5 for curve	M1	One of their <i>x</i> -values substituted into both curve and line/substituted into one and verified to be on the other	Note: Putting a value into $x^3 + 3x^2 - 4 = 0$ (where the line and curve meet) is equivalent
		When $x = -2$, $y = -27$ for line $y = -27$ for curve	M1	Conclusion that $x = -2$ is the correct value <u>or</u> Second x-value substituted into both curve and line/verified as above	If curve equated to line before differentiating:
		x = -2, y = -27	A1	x = -2, $y = -27$ www (Check k correct)	M0 A0, can get M1M1 but A0 ww
			[5]		Maximum mark 2/5

Qı	estion	Answer	Marks	Guidance		
10	(iii)	Alternative method				
		$(x^3 + 3x^2 - 4 = 0 \text{ oe})$ M1 All roots found A1 <u>Either</u> 1) States $x = -2$ is repeated root so tangent M2 (If double root found but not explicitly stated that Or 2) Substitutes one x value into their gradient fund	I roots found A1 ther States $x = -2$ is repeated root so tangent M2 double root found but not explicitly stated that repeated root implies tangent then M0 but B1 if $(-2, -27)$ found) Substitutes one x value into their gradient function to determine if equal to gradient of the line M1 bstitutes other x value into their gradient function to determine if equal to gradient of the line or conclusion that -2 is the correct one M1			
		SC Trial and Improvement				
		Finds at least one value at which the gradient of Verifies on both line and curve B1 2/5	the curve i	s 9 B1		

APPENDIX 1

Allocation of method mark for solving a quadratic

e.g.
$$2x^2 - x - 6 = 0$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

(2x - 3)(x + 2)
(2x - 3)(x + 1)
(2x + 3)(x + 2)
M1
$$2x^2$$
 and -6 obtained from expansion
M1 $2x^2$ and -x obtained from expansion
only $2x^2$ term correct

- 2) If the candidate attempts to solve by using the formula
 - a) If the formula is quoted incorrectly then **M0**.
 - b) If the formula is quoted correctly then one **sign** slip is permitted. Substituting the wrong numerical value for a or b or c scores **M0**

$$\frac{-1\pm\sqrt{(-1)^2-4\times2\times-6}}{2\times2}$$
 earns **M1** (minus sign incorrect at start of formula)
$$\frac{1\pm\sqrt{(-1)^2-4\times2\times6}}{2\times2}$$
 earns **M1** (6 for c instead of -6)
$$\frac{-1\pm\sqrt{(-1)^2-4\times2\times6}}{2\times2}$$

$$\frac{-1\pm\sqrt{(-1)^2-4\times2\times6}}{2\times2}$$

$$\frac{1\pm\sqrt{(-1)^2-4\times2\times-6}}{2\times-6}$$
M0 (2 sign errors: initial sign and c incorrect)
$$\frac{1\pm\sqrt{(-1)^2-4\times2\times-6}}{2\times-6}$$
M0 (2 c on the denominator)

Notes – for equations such as $2x^2 - x - 6 = 0$, then $b^2 = 1^2$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score **M0**.

c) If the formula is not quoted at all, substitution must be completely correct to earn the M1

3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm ; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$2x^{2} - x - 6 = 0$$

$$2\left(x^{2} - \frac{1}{2}x\right) - 6 = 0$$

$$2\left[\left(x - \frac{1}{4}\right)^{2} - \frac{1}{16}\right] - 6 = 0$$
This is where the **M1** is awarded – arithmetical errors may be condoned
$$\left(x - \frac{1}{4}\right)^{2} = \frac{49}{16}$$

$$x - \frac{1}{4} = \pm \sqrt{\frac{49}{16}}$$
provided $x - \frac{1}{4}$ seen or implied

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored