OCR Maths Core 1

Mark Scheme Pack
2006-2013

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MATHEMATICS

Core Mathematics 1
MARK SCHEME

Specimen Paper

	$1 \quad$ (i) $\frac{1}{16}$	B1 1	For correct value (fraction or exact decimal)
	(ii) 8	B1 $\quad 1$	For correct value 8 only
	(iii) 6	$\begin{array}{\|lr} \mathrm{M} 1 & \\ \text { A1 } & \mathbf{2} \\ & \boxed{4} \\ \hline \end{array}$	For $1^{3}+2^{3}+3^{3}=36$ seen or implied For correct value 6 only
2	(i) $x^{2}-8 x+3=(x-4)^{2}-13$ i.e. $a=-4, b=-13$	$\begin{array}{\|ll} \mathrm{B} 1 & \\ \text { M1 } \\ \text { A1 } & \mathbf{3} \end{array}$	For $(x-4)^{2}$ seen, or statement $a=-4$ For use of (implied) relation $a^{2}+b=3$ For correct value of b stated or implied
	(ii) Minimum point is $(4,-13)$	$\begin{array}{\|lr\|} \hline \text { B1 } & \\ \text { B1 } \checkmark & \mathbf{2} \\ \hline \end{array}$	For x-coordinate equal to their $(-a)$ For y-coordinate equal to their b
	3 (i) Discriminant is $k^{2}-4 k$	$\begin{array}{\|ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array}$	For attempted use of the discriminant For correct expression (in any form)
	(ii) For no real roots, $k^{2}-4 k<0$ Hence $k(k-4)<0$ So $0<k<4$	M1 M1 A1 A1 $\mathbf{4}$ $\boxed{6}$	For stating their $\Delta<0$ For factorising attempt (or other soln method) For both correct critical values 0 and 4 seen For correct pair of inequalities
	(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=12 x^{2}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array}$	For clear attempt at $n x^{n-1}$ For completely correct answer
	(ii) $y=x^{4}+2 x^{2}$ Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}+4 x$	B1 M1 A1 \checkmark 3	For correct expansion For correct differentiation of at least one term For correct differentiation of their 2 terms
	(iii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$	M1 A1 $\mathbf{2}$ $\boxed{7}$	For clear differentiation attempt of $x^{\frac{1}{2}}$ For correct answer, in any form
	(i) $x^{2}-3 x+2=3 x-7 \Rightarrow x^{2}-6 x+9=0$ Hence $(x-3)^{2}=0$ So $x=3$ and $y=2$	$\left.\begin{array}{lll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{5} \end{array} \right\rvert\,$	For equating two expressions for y For correct 3-term quadratic in x For factorising, or other solution method For correct value of x For correct value of y
	(ii) The line $y=3 x-7$ is the tangent to the curve $y=x^{2}-3 x+2$ at the point $(3,2)$	$\left\|\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}\right\|$	For stating tangency For identifying $x=3, y=2$ as coordinates
	(iii) Gradient of tangent is 3 Hence gradient of normal is $-\frac{1}{3}$ Equation of normal is $y-2=-\frac{1}{3}(x-3)$ i.e. $x+3 y-9=0$	$\begin{array}{lr} \text { B1 } & \\ \text { B1 } \checkmark & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \\ & \boxed{\mathbf{1 1}} \end{array}$	For stating correct gradient of given line For stating corresponding perpendicular grad For appropriate use of straight line equation For correct equation in required form

8 (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-6 x-12$
Hence $x^{2}-x-2=0$
$(x-2)(x+1)=0 \Rightarrow x=2$ or -1
Stationary points are $(2,-27)$ and
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 x-6=\left\{\begin{array}{l}+18 \text { when } x=2 \\ -18 \text { when } x=-1\end{array}\right.$

Hence $(2,-27)$ is a min and $(-1,0)$ is a max

1 (i)	$11^{-2}=\frac{1}{121}$	B1 1	$\frac{1}{121} \quad\left(\frac{1}{11^{2}}=B 0\right)$
(ii)	$100^{\frac{3}{2}}=1000$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Square rooting or cubing soi 1000
(iii)	$\sqrt{50}+\frac{6}{\sqrt{3}}$	B1	$5 \sqrt{2} \quad(\text { allow } \pm)$
	$\begin{aligned} & =5 \sqrt{2}+\frac{6 \sqrt{3}}{3} \\ & =5 \sqrt{2}+2 \sqrt{3} \end{aligned}$	M1 A1 3	Attempt to rationalise $\frac{6}{\sqrt{3}}$ cao
2	$q=2$	B1	(allow embedded values)
	$r=3$	B1	
		M1	$q r^{2}+10=p$ or other correct method
	$p=28$	A1 $\sqrt{ } 4$	
		4	
3(i)	$y=5 \sqrt{2 x}$		$\sqrt{2 x} \text { or } \sqrt{\frac{x}{2}} \text { seen }$
		A1 2	$y=5 \sqrt{2 x}$
(ii)	Translation $\binom{0}{-3}$	B1	Translation
		$\text { B1 } 2$	$\binom{0}{-3}$ o.e.

4	Either $\begin{aligned} & y=2 x+1 \\ & \text { or } y=\frac{x^{2}+11}{3} \\ & x^{2}-6 x+8=0 \\ & (x-2)(x-4)=0 \\ & x=2 \quad x=4 \\ & y=5 \quad y=9 \end{aligned}$ OR $\begin{aligned} & x=\frac{y-1}{2} \\ & \frac{(y-1)^{2}}{4}-3 y+11=0 \\ & y^{2}-14 y+45=0 \\ & (y-5)(y-9)=0 \\ & y=5 \quad y=9 \\ & x=2 \quad x=4 \end{aligned}$	M1 A1 M1 A1 A1	Substitute for x / y or attempt to get an equation in 1 variable only Obtain correct 3 term quadratic Correct method to solve 3 term quadratic or one correct pair of values B1 second correct pair of values B1 c.a.o SR If solution by graphical methods: setting out to draw a parabola and a line M1 both correct reading off of coordinates at intersection point(s) M1 one correct pair A1 second correct pair A1 OR No working shown: one correct pair B1 second correct pair B1 full justification that these are the only solutions B3

6 (i)	$49-4 \times-2 \times 3=73$	M1	Uses $b^{2}-4 a c$
	2 real roots	A1	73
		B1 $\sqrt{ } 3$	2 real roots (ft from their value)
(ii)	$(p+1)^{2}-64=0$ or $2\left[\left(x+\frac{p+1}{4}\right)^{2}-\frac{(p+1)^{2}}{16}+4\right]=0$	M1	Attempts $b^{2}-4 a c=0$ (involving p) or attempts to complete square (involving p)
		A1	$(p+1)^{2}-64=0$ aef
	$p=-9,7$	B1	$p=-9$
		B1 4	$\mathrm{p}=7$
		7	

7 (i)	$\frac{\mathrm{d} y}{\mathrm{dx}}=2 x^{3}-3$	B1	1 term correct
	$\begin{aligned} & y=2 x^{3}+2 x^{2}+3 x+3 \\ & \frac{\mathrm{~d} y}{\mathrm{dx}}=6 x^{2}+4 x+3 \end{aligned}$	B1 2	Completely correct (+c is an error, but only penalise once)
(ii)		M1	Attempt to expand brackets
		A1	$2 x^{3}+2 x^{2}+3 x+3$
			2 terms correct
		A1 4	Completely correct
(iii)	$\begin{aligned} & y=x^{\frac{1}{5}} \\ & \frac{\mathrm{~d} y}{\mathrm{dx}}=\frac{1}{5} x^{-\frac{4}{5}} \end{aligned}$	B1	$x^{\frac{1}{5}}$ soi
		B1	$\frac{1}{5} x^{c}$
		B1 3	
		9	
8(i)	$2[10+x+x]>64$	B1 1	$20+4 x>64$ o.e.
(ii)	$\begin{aligned} & x(x+10)<299 \\ & x^{2}+10 x-299<0 \\ & (x-13)(x+23)<0 \end{aligned}$	B1	$x(x+10)<299$
		B1 2	Correctly shows $(x-13)(x+23)<0 \quad \text { AG }$
			SR Complete proof worked backward
(iii)	$\begin{aligned} & x>11 \\ & (x-13)(x+23)<0 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \mathrm{M} 2 \end{aligned}$	$x>11 \quad \mathrm{ft}$ from their (i) Correct method to solve $(x-13)(x+23)<0 \quad$ eg graph
	$-23<x<13$	A1	$-23<x<13$ seen in this form or as number line SR if seen with no working B1
	$\therefore 11<x<13$	B1 5	

9(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x$	B1	$4 x$
	$\text { At } x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=12$	B1 2	12
(ii)	Gradient of tangent $=-8$	M1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-8$
	$\begin{aligned} & 4 x=-8 \\ & x=-2 \end{aligned}$	A1	$x=-2$
	$y=8$	A1 3	$y=8$
(iii)	Gradient $=6$	B1 1	Gradient = or approaches 6
(iv)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 k x$	M1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 k x$
	$x=1$	M1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 k$
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 k \\ & k=3 \end{aligned}$	A1 $\sqrt{ } 3$	$k=3$ CWO

Mark Scheme 4721
June 2005

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \[
\begin{aligned}
\& x^{2}-6 x-40 \geq 0 \\
\& (x+4)(x-10) \geq 0
\end{aligned}
\]

\[
x \leq-4, \quad x \geq 10
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
\(\begin{array}{rr}\text { A1 } \& 4 \\ \& 4\end{array}\)
\end{tabular} \& \begin{tabular}{l}
Correct method to find roots
\[
-4,10
\] \\
Correct method to solve quadratic inequality e.g. +ve quadratic graph
\[
x \leq-4, \quad x \geq 10
\] \\
(not wrapped, not strict inequalities, no 'and')
\end{tabular} \\
\hline 2(i) \& \begin{tabular}{l}
EITHER
\[
\begin{aligned}
\& 3\left(x^{2}+4 x\right)+7 \\
\& 3(x+2)^{2}-12+7 \\
\& 3(x+2)^{2}-5
\end{aligned}
\] \\
OR
\[
\begin{aligned}
\& 3\left(x^{2}+2 a x+a^{2}\right)+b \\
\& 3 x^{2}+6 a x+3 a^{2}+b \\
\& 6 a=12 \\
\& a=2 \\
\& 3 a^{2}+b=7 \\
\& b=-5 \\
\& x=-2
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 4 \\
B 1 ft 1
5
\end{tabular} \& \[
\begin{aligned}
\& a=\frac{12}{6 \text { or } 2} \\
\& a=2 \\
\& \left.7-a^{2} \text { or } 7-3 a^{2} \text { or } \frac{7}{3}-a^{2} \text { (their } a\right) \\
\& b=-5 \\
\& x=-2
\end{aligned}
\] \\
\hline 3 (i)

(ii)

(iii) \& \begin{tabular}{l}

Reflection in x-axis or reflection in y-axis
$$
y=(x-p)^{3}
$$

 \&

B1 1

B1

B1 2

M1

A1 $\begin{array}{ll}2 \\ & 5\end{array}$

 \&

Correct sketch showing point of inflection at origin

Reflection

In x-axis or $y=0$ or y-axis or $x=0$

$$
\begin{aligned}
& y=(x \pm p)^{3} \\
& y=(x-p)^{3}
\end{aligned}
$$

\end{tabular}

\hline
\end{tabular}

Mark Scheme 4721 January 2006

1	(i)		B1	1	(allow embedded values throughout question 1) 8
	(ii)	$\begin{aligned} & 10^{t}=1 \\ & t=0 \end{aligned}$	B1	1	0
	(iii	$\begin{aligned} & \left(y^{-2}\right)^{2}=\frac{1}{81} \\ & y^{-4}=\frac{1}{81} \\ & y= \pm 3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & y=3 \\ & y=-3 \\ & \hline \end{aligned}$
2	(i)	$\begin{aligned} & (3 x+1)^{2}-2(2 x-3)^{2} \\ & =\left(9 x^{2}+6 x+1\right)-2\left(4 x^{2}-12 x+9\right) \\ & =x^{2}+30 x-17 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Square to get at least one 3 or 4 term quadratic $\begin{aligned} & 9 x^{2}+6 x+1 \text { or } 4 x^{2}-12 x+9 \text { soi } \\ & x^{2}+30 x-17 \end{aligned}$
	(ii)	$2 x^{3}+6 x^{3}+4 x^{3}=12 x^{3}$ 12	B1 B1	2	2 of $2 x^{3}, 6 x^{3}, 4 x^{3}$ soi N.B. www for these terms, must be positive 12 or $12 x^{3}$
3	(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=15 x^{4}-\frac{1}{2} x^{-\frac{1}{2}}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	$\begin{aligned} & 15 x^{4} \\ & k x^{-\frac{1}{2}} \\ & c x^{4}-\frac{1}{2} x^{-\frac{1}{2}} \text { only } \end{aligned}$
	(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=60 x^{3}+\frac{1}{4} x^{-\frac{3}{2}}$	M1 A1	2	Attempt to differentiate their 2 term $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and get one correctly differentiated term $60 x^{3}+\frac{1}{4} x^{-\frac{3}{2}}$
4	(i)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Correct curve in one quadrant Completely correct
	(ii)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \end{aligned}$	2	Translate (i) horizontally Translates all of their (i) $\binom{3}{0}$ 3 must be labelled or stated
	(iii	(One-way) stretch, sf 2, parallel to the y-axis	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	Stretch (Scale) factor 2 Parallel to y-axis o.e. SR Stretch B1 Sf $\sqrt{2}$ parallel to x-axis \quad B2

5	(i)	$x^{2}+3 x=\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & a=\frac{3}{2} \\ & b=-\frac{9}{4} \quad \text { o.e. } \end{aligned}$
	(ii)	$y^{2}-4 y-\frac{11}{4}=(y-2)^{2}-\frac{27}{4}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	$\begin{aligned} & p=-2 \\ & q=-\frac{27}{4} \quad \text { o.e. } \end{aligned}$
	$\begin{aligned} & \text { (iii } \\ & \text { and } \end{aligned}$	Centre $\left(-\frac{3}{2}, 2\right)$	B1V	1	$\left(-\frac{3}{2}, 2\right)$ N.B. If question is restarted in this part, ft from part (iii) working only
	(iv)	$\begin{aligned} \text { Radius } & =\sqrt{\frac{27}{4}+\frac{9}{4}} \\ & =\sqrt{9} \\ & =3 \end{aligned}$	M1 A1	2	$\sqrt{- \text { their'b'-their' } q}$ ' or use $\left.\sqrt{\left(f^{2}+g^{2}\right.}-c\right)$ $3 \quad(\pm 3 \text { scores A0) }$
6	(i)	$\begin{aligned} & y=x^{3}-3 x^{2}+4 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-6 x \\ & 3 x^{2}-6 x=0 \\ & 3 x(x-2)=0 \\ & x=0 \quad x=2 \\ & y=4 \quad y=0 \end{aligned}$	B1 B1 M1 M1 A1 A1 $\sqrt{ }$	6	$3 x^{2}-6 x$ 1 term correct Completely correct $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Correct method to solve quadratic $\begin{aligned} & x=0,2 \\ & y=4,0 \end{aligned}$ SR one correct (x, y) pair www B1
	(ii)	$\begin{array}{lll} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x-6 & \\ x=0 & y^{\prime \prime}=-6 & \text { - ve max } \\ x=2 & y^{\prime \prime}=6 & \text { + ve min } \end{array}$	M1 B1 B1	3	Correct method to find nature of stationary points (can be a sketch) $\begin{array}{ll} x=0 & \text { max } \\ x=2 & \text { min } \end{array}$ (N.B. If no method shown but both min and max correctly stated, award all 3 marks)
	(iii	Increasing $x<0 \quad x>2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Any inequality (or inequalities) involving both their x values from part (i) Allow $x \leq 0 \quad x \geq 2$

7	(i)	$\begin{aligned} & x=\frac{8 \pm \sqrt{64-44}}{2} \\ & =\frac{8 \pm \sqrt{20}}{2} \\ & =4 \pm \sqrt{5} \end{aligned}$	M1 A1 B1 A1	4	Correct use of formula $\frac{8 \pm \sqrt{20}}{2}$ aef $\sqrt{20}=2 \sqrt{5}$ soi $4 \pm \sqrt{5}$ Alternative method $(x-4)^{2}-16+11=0$ M1 $(x-4)^{2}=5$ $x=4+\sqrt{5}$$\quad$ A1 \quad A1
	(ii)		B1 B1 $\sqrt{ }$ B1	3	+ve parabola Root(s) in correct places Completely correct curve with roots and (0, 11) labelled or referenced
	$\begin{aligned} & \text { (iii } \\ & \text { (} \end{aligned}$	$\begin{aligned} y & =x^{2}=(4 \pm \sqrt{5})^{2} \\ & =16+5 \pm 8 \sqrt{5} \\ & =21 \pm 8 \sqrt{5} \end{aligned}$	M1 M1 A1 $\sqrt{ }$ A1	4	$y=x^{2} \text { soi }$ Attempt to square at least one answer from part (i) Correct evaluation of $(a+b \sqrt{c})^{2} \quad(a, b, c \neq 0)$ $21 \pm 8 \sqrt{5}$

8	(i)	$\begin{aligned} & y=x^{2}-5 x+15 \\ & y=5 x-10 \\ & x^{2}-5 x+15=5 x-10 \\ & x^{2}-10 x+25=0 \end{aligned}$	M1 A1	2	Attempt to eliminate y $x^{2}-10 x+25=0 \quad \text { AG }$ Obtained with no wrong working seen
	(ii)	$\begin{aligned} & b^{2}-4 a c=100-100 \\ & =0 \end{aligned}$	B1	1	0 Do not allow $\left.\sqrt{\left(b^{2}\right.}-4 a c\right)$
	$\begin{aligned} & \text { (iii } \\ & \text {) } \end{aligned}$	Line is a tangent to the curve	B1V	1	Tangent or 'touches’ N.B. Strict ft from their discriminant
	(iv)	$\begin{aligned} & x^{2}-10 x+25=0 \\ & (x-5)^{2}=0 \\ & x=5 \quad y=15 \end{aligned}$	M1 A1 A1	3	Correct method to solve 3 term quadratic $\begin{aligned} & x=5 \\ & y=15 \end{aligned}$
	(v)	Gradient of tangent $=5$ $\begin{aligned} & \text { Gradient of normal }=-\frac{1}{5} \\ & y-15=-\frac{1}{5}(x-5) \\ & x+5 y=80 \end{aligned}$	B1 B1 $\sqrt{ }$ M1 A1	4	Gradient of tangent $=5$ $\text { Gradient of normal }=-\frac{1}{5}$ Correct equation of straight line, any gradient, passing through $(5,15)$ $x+5 y=80$

9	(i)	Length AC = $\begin{aligned} & \sqrt{(8-5)^{2}+(2-1)^{2}} \\ & =\sqrt{3^{2}+1^{2}} \\ & =\sqrt{10} \end{aligned}$ $\begin{aligned} \text { Length } \mathrm{AB} & =\sqrt{(p-5)^{2}+(7-1)^{2}} \\ & =\sqrt{(p-5)^{2}+36} \end{aligned}$ $\begin{aligned} & \sqrt{(p-5)^{2}+36}=2 \sqrt{10} \\ & p^{2}-10 p+25+36=40 \\ & p^{2}-10 p+21=0 \\ & (p-7)(p-3)=0 \\ & p=7,3 \end{aligned}$	M1 A1 A1 M1 M1 A1 A1	7	Uses $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ $\begin{aligned} & \sqrt{10} \quad(\pm \sqrt{10} \text { scores A0 }) \\ & \sqrt{(p-5)^{2}+(7-1)^{2}} \end{aligned}$ $A B=2 A C$ (with algebraic expression) used Obtains 3 term quadratic $=0$ suitable for solving or $(p-5)^{2}=4$ _ $\begin{aligned} & p=7 \\ & p=3 \end{aligned}$ SR If no working seen, and one correct value found, award $B 2$ in place of the final 4 marks in part (i)
	(ii)	$\begin{aligned} & 7=3 x-14 \\ & x=7 \\ & (5,1) \quad(7,7) \\ & \text { Mid-point }(6,4) \end{aligned}$	M1 A1 M1 A1 $\sqrt{ }$	4	Correct method to find x $x=7$ Use $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ $(6,4)$ or correct midpoint for their AB Alternative method y coordinate of midpoint $=4$ M1 A1 sub 4 into equation of line M1 obtains $x=6$

Mark Scheme 4721
 June 2006

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \[
\frac{21-3}{4-1}=\frac{18}{3}=6
\]
\[
\begin{aligned}
\& \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+1 \\
\& 2 \times 3+1=7
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
B1
\end{tabular} \& 2
2 \& \begin{tabular}{l}
Uses \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\) \\
6 (not left as \(\frac{18}{3}\))
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& 27^{-\frac{2}{3}}=\frac{1}{27^{\frac{2}{3}}}=\frac{1}{9} \\
\& \begin{aligned}
\& 5 \sqrt{5}=5^{\frac{3}{2}} \\
\& \begin{aligned}
\frac{1-\sqrt{5}}{3+\sqrt{5}} \& =\frac{(1-\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} \\
\& =\frac{8-4 \sqrt{5}}{4} \\
\& =2-\sqrt{5}
\end{aligned}
\end{aligned} . \begin{array}{l}
\\
\end{array}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
B1 \\
A1
\end{tabular} \& 281 \& \begin{tabular}{l}
\(\frac{1}{27^{\frac{2}{3}}}\) or \(27^{\frac{2}{3}}=9\) or \(3^{-2}\) soi \(\frac{1}{9}\) \\
Multiply numerator and denominator by conjugate
\[
\begin{aligned}
\& (\sqrt{5})^{2}=5 \text { soi } \\
\& 2-\sqrt{5}
\end{aligned}
\]
\end{tabular} \\
\hline 3 \& (i) \& \[
\begin{aligned}
2 x^{2}+12 x+13 \& =2\left(x^{2}+6 x\right)+13 \\
\& =2\left[(x+3)^{2}-9\right]+13 \\
\& =2(x+3)^{2}-5
\end{aligned}
\]
\[
\begin{aligned}
\& 2(x+3)^{2}-5=0 \\
\& (x+3)^{2}=\frac{5}{2} \\
\& x=-3 \pm \sqrt{\frac{5}{2}}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 4

3 \& | $\begin{aligned} & a=2 \\ & b=3 \\ & 13-2 b^{2} \text { or } 13-b^{2} \text { or } \frac{13}{2}-b^{2} \text { (their } b \text {) } \\ & c=-5 \end{aligned}$ |
| :--- |
| Uses correct quadratic formula or completing square method $\begin{aligned} & x=\frac{-12 \pm \sqrt{40}}{4} \text { or }(x+3)^{2}=\frac{5}{2} \\ & x=-3 \pm \sqrt{\frac{5}{2}} \text { or }-3 \pm \frac{1}{2} \sqrt{10} \end{aligned}$ |

\hline
\end{tabular}

4	(i) (ii) (iii)	$\begin{aligned} & (x-4)(x-3)(x+1) \\ & \equiv\left(x^{2}-7 x+12\right)(x+1) \\ & \equiv x^{3}+x^{2}-7 x^{2}-7 x+12 x+12 \\ & \equiv x^{3}-6 x^{2}+5 x+12 \end{aligned}$	B1 M1 A1 B1 B1 B1 M1 A1 $\sqrt{ }$	3 2	$x^{2}-7 x+12 \text { or } x^{2}-2 x-3 \text { or } x^{2}-3 x-4 \text { seen }$ Attempt to multiply a quadratic by a linear factor or attempt to list an 8 term expansion of all 3 brackets $x^{3}-6 x^{2}+5 x+12$ (AG) obtained (no wrong working seen) +ve cubic with 3 roots (not 3 line segments) $(0,12)$ labelled or indicated on y-axis $(-1,0),(3,0),(4,0)$ labelled or indicated on x-axis Reflect their (ii) in either x - or y-axis Reflect their (ii) in x-axis
5	(i)	$\begin{aligned} & 1<4 x-9<5 \\ & 10<4 x<14 \\ & 2.5<x<3.5 \\ & \\ & y^{2} \geq 4 y+5 \\ & y^{2}-4 y-5 \geq 0 \\ & (y-5)(y+1) \geq 0 \\ & y \leq-1, y \geq 5 \end{aligned}$	M1 A1 A1 B1 M1 A1 M1 A1	3	2 equations or inequalities both dealing with all 3 terms 2.5 and 3.5 seen oe $2.5<x<3.5$ (or ' $x>2.5$ and $x<3.5$ ') $y^{2}-4 y-5=0 \text { soi }$ Correct method to solve quadratic -1, 5 (SR If both values obtained from trial and improvement, award B3) Correct method to solve inequality $y \leq-1, y \geq 5$

6	(i)	$x^{4}-10 x^{2}+25=0$ Let $y=x^{2}$ $\begin{aligned} & y^{2}-10 y+25=0 \\ & (y-5)^{2}=0 \\ & y=5 \\ & x^{2}=5 \\ & x= \pm \sqrt{5} \end{aligned}$ $y=\frac{2 x^{5}}{5}-\frac{20 x^{3}}{3}+50 x+3$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{4}-20 x^{2}+50$ $\begin{aligned} & 2 x^{4}-20 x^{2}+50=0 \\ & x^{4}-10 x^{2}+25=0 \end{aligned}$ which has 2 roots	dep*M1 A1 A1 B1 B1 M1 A1	2	Use a substitution to obtain a quadratic or $\left(x^{2}-5\right)\left(x^{2}-5\right)=0$ Correct method to solve a quadratic 5 (not $x=5$ with no subsequent working) $x= \pm \sqrt{5}$ $2 x^{4}$ or $-20 x^{2}$ oe seen $2 x^{4}-20 x^{2}+50$ (integers required) their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ seen (or implied by correct answer) 2 stationary points www in any part
7	(i)	$\begin{aligned} & y=x^{2}-5 x+4 \\ & y=x-1 \\ & x^{2}-5 x+4=x-1 \\ & x^{2}-6 x+5=0 \\ & (x-1)(x-5)=0 \\ & x=1 \quad x=5 \\ & y=0 \quad y=4 \end{aligned}$	M1 M1 A1 A1	4	Substitute to find an equation in x (or y) Correct method to solve quadratic $\begin{aligned} & x=1,5 \\ & y=0,4 \end{aligned}$ (N.B. This final A1 may be awarded in part (ii) if y coordinates only seen in part (ii)) SR one correct (x, y) pair www B1
	(ii) (iii)	2 points of intersection EITHER $\begin{aligned} & x^{2}-5 x+4=x+c \text { has } 1 \text { solution } \\ & x^{2}-6 x+(4-c)=0 \\ & b^{2}-4 a c=0 \\ & 36-4(4-c)=0 \\ & c=-5 \end{aligned}$ OR $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=1=2 x-5 \\ & x=3 \quad y=-2 \\ & -2=3+c \\ & c=-5 \end{aligned}$	M1 M1 A1 A1 M1 A1 A1 A1	1	$\begin{aligned} & x^{2}-5 x+4=x+c \text { has } 1 \text { soln seen or } \\ & \text { implied } \\ & \text { Discriminant }=0 \quad \text { or }(x-a)^{2}=0 \text { soi } \\ & 36-4(4-c)=0 \text { or } 9=4-c \\ & c=-5 \end{aligned}$ Algebraic expression for gradient of curve = non-zero gradient of line used $2 x-5=1$ $x=3$ $c=-5$ SR $c=-5$ without any working

\begin{tabular}{|c|c|c|c|c|c|}
\hline 8 \& \begin{tabular}{|c}
(i) \\
\\
\\
\\
\\
\\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{align*}
\& \text { Height of box }=\frac{8}{x^{2}} \\
\& \text { 4 vertical faces }=4 \times \frac{8}{x} \\
\& =\frac{32}{x} \\
\& \text { Total surface area }=x^{2}+x^{2}+\frac{32}{x} \\
\& A=2 x^{2}+\frac{32}{x} \\
\& \frac{\mathrm{~d} A}{\mathrm{~d} x}=4 x-\frac{32}{x^{2}} \\
\& 4 x-\frac{32}{x^{2}}=0 \tag{soi}\\
\& 4 x^{3}=32 \\
\& x=2
\end{align*}
\] \& \begin{tabular}{l}
*B1 \\
*B1 \\
B1 dep on both ** \\
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 3
3

4 \& | $\begin{aligned} \text { Area of } 1 \text { vertical face } & =\frac{8}{x^{2}} \times x \\ & =\frac{8}{x} \end{aligned}$ |
| :--- |
| Correct final expression |
| $4 x$ |
| $k x^{-2}$ |
| $-32 x^{-2}$ $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ $x=2$ |
| Check for minimum Correctly justified |
| SR If $x=2$ stated www but with no evidence of differentiated expression(s) having been used in part (iii) B1 |

\hline
\end{tabular}

Mark Scheme 4721 January 2007

1	$\begin{aligned} & \frac{5}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} \\ & =\frac{5(2+\sqrt{3})}{4-3} \\ & =10+5 \sqrt{3} \end{aligned}$	A1 $\begin{array}{ll}\text { A1 } & 3 \\ & 3\end{array}$	$\begin{aligned} & \text { Multiply top and bottom by } \\ & \pm(2+\sqrt{3}) \\ & (2+\sqrt{3})(2-\sqrt{3})=1 \text { (may be implied) } \\ & 10+5 \sqrt{3} \end{aligned}$
$2(\mathrm{i})$ (ii)	$\begin{aligned} & 1 \\ & \frac{1}{2} \times 2^{4} \\ & =8 \end{aligned}$	$\begin{array}{ll} \text { B1 } & 1 \\ & 1 \\ \text { M1 } & \\ & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \\ & 4 \end{array}$	$2^{-1}=\frac{1}{2} \underline{\text { or }} 32^{\frac{1}{5}}=2 \underline{\text { or }} 2^{5}=32$ soi $32^{\frac{4}{5}}=2^{4}$ or 16 seen or implied 8
3(i)	$\begin{aligned} & 3 x-15 \leq 24 \\ & 3 x \leq 39 \\ & x \leq 13 \end{aligned}$ or $\begin{array}{ll} x-5 \leq 8 & \text { M1 } \\ x \leq 13 & \text { A1 } \end{array}$	M1 $\text { A1 } 2$	Attempt to simplify expression by multiplying out brackets $x \leq 13$ Attempt to simplify expression by dividing through by 3
(ii)	$\begin{aligned} 5 x^{2} & >80 \\ x^{2} & >16 \\ x & >4 \\ \text { or } x & <-4 \end{aligned}$	M1 B1 A1 3	Attempt to rearrange inequality or equation to combine the constant terms $x>4$ fully correct, not wrapped, not 'and' SR B1 for $x \geq 4, x \leq-4$

7(i)	$\frac{d y}{d x}=5$		
(ii)	$\begin{aligned} & y=2 x^{-2} \\ & \frac{d y}{d x}=-4 x^{-3} \end{aligned}$	B1 B1 B1 3	$\begin{aligned} & x^{-2} \text { soi } \\ & -4 x^{c} \\ & k x^{-3} \end{aligned}$
(iii)	$\begin{aligned} & y=10 x^{2}-14 x+5 x-7 \\ & y=10 x^{2}-9 x-7 \end{aligned}$	M1 A1	Expand the brackets to give an expression of form $a x^{2}+b x+c \quad(a \neq 0, b \neq 0, c \neq 0)$ Completely correct (allow $2 x$-terms)
	$\frac{d y}{d x}=20 x-9$	B1 ft B1 ft 4 8	1 term correctly differentiated Completely correct (2 terms)
8 (i)	$\frac{d y}{d x}=9-6 x-3 x^{2}$	$\begin{aligned} & \text { *M1 } \\ & \text { A1 } \end{aligned}$	Attempt to differentiate y or $-y$ (at least one correct term) 3 correct terms
	At stationary points, $9-6 x-3 x^{2}=0$	M1	Use of $\frac{d y}{d x}=0$ (for y or $-y$)
	$\begin{array}{\|l} 3(3+x)(1-x)=0 \\ x=-3 \text { or } x=1 \end{array}$	$\begin{aligned} & \text { DM1 } \\ & \text { A1 } \end{aligned}$	Correct method to solve 3 term quadratic $x=-3,1$
	$y=0,32$	A1ft 6	$y=0,32$ (1 correct pair www A1 A0)
(ii)	$\frac{d^{2} y}{d x^{2}}=-6 x-6$	M1	Looks at sign of $\frac{d^{2} y}{d x^{2}}$, derived correctly from $k \frac{d y}{d x}$, or other correct method
	When $x=-3, \frac{d^{2} y}{d x^{2}}>0$ When $x=1, \frac{d^{2} y}{d x^{2}}<0$		$x=-3$ minimum $x=1$ maximum
(iii)	$-3<x<1$	M1	Uses the x values of both turning points in inequality/inequalities
		$\begin{array}{ll} \text { A1 } & 2 \\ & \mathbf{1 1} \end{array}$	Correct inequality or inequalities. Allow \leq

9 (i)	Gradient $=4$	B1	Gradient of 4 soi
	$y-7=4(x-2)$	M1	Attempts equation of straight line through $(2,7)$ with any gradient
	$y=4 x-1$	A1 3	
(ii)	$\begin{aligned} & \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\ & =\sqrt{(2--1)^{2}+\left(7-^{-} 2\right)^{2}} \end{aligned}$	M1	Use of correct formula for d or d^{2} (3 values correctly substituted)
	$\begin{aligned} & =\sqrt{3^{2}+9^{2}} \\ & =\sqrt{90} \end{aligned}$	A1	$\sqrt{3^{2}+9^{2}}$
	$=3 \sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of $\mathrm{AB}=3$	B1	
	$\text { Gradient of perpendicular line }=-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	$\text { Midpoint of } \mathrm{AB}=\left(\frac{1}{2}, \frac{5}{2}\right)$	B1	
	$\begin{aligned} & y-\frac{5}{2}=-\frac{1}{3}\left(x-\frac{1}{2}\right) \\ & x+3 y-8=0 \end{aligned}$	M1 A1	Attempts equation of straight line through their midpoint with any non-zero gradient $y-\frac{5}{2}=\frac{-1}{3}\left(x-\frac{1}{2}\right)$
		A1 6	$x+3 y-8=0$
		12	

Mark Scheme 4721 June 2007

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \left(4 x^{2}+20 x+25\right)-\left(x^{2}-6 x+9\right) \\
\& =3 x^{2}+26 x+16
\end{aligned}
\] \\
Alternative method using difference of two squares:
\[
\begin{aligned}
\& (2 x+5+(x-3))(2 x+5-(x-3)) \\
\& =(3 x+2)(x+8) \\
\& =3 x^{2}+26 x+16
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 3
\end{tabular} \& \begin{tabular}{l}
Square one bracket to give an expression of the form \(a x^{2}+b x+c\) \((a \neq 0, b \neq 0, c \neq 0)\) \\
One squared bracket fully correct \\
All 3 terms of final answer correct \\
M1 2 brackets with same terms but different signs \\
A1 One bracket correctly simplified \\
A1 All 3 terms of final answer correct
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2 \text { (a)(i) }
\] \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Stretch \\
Scale factor 8 in y direction or scale factor \(1 / 2\) in x direction
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 2 \\
B1 1 \\
B1 \\
B1 2
\end{tabular} \& \begin{tabular}{l}
Excellent curve for \(\frac{1}{x}\) in either quadrant \\
Excellent curve for \(\frac{1}{x}\) in other quadrant \\
SR B1 Reasonably correct curves in \(1^{\text {st }}\) and \(3^{\text {rd }}\) quadrants \\
Correct graph, minimum point at origin, symmetrical
\end{tabular} \\
\hline 3 (i)

(ii) \& $3 \sqrt{20}$ or $3 \sqrt{2} \sqrt{5} \times \sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90} \times \sqrt{2}$

$$
\begin{aligned}
& =6 \sqrt{5} \\
& 10 \sqrt{5}+5 \sqrt{5}
\end{aligned}
$$

\[
=15 \sqrt{5}

\] \& | A1 2 |
| :--- |
| M1 |
| B1 |
| A1 3 | \& | Correctly simplified answer |
| :--- |
| Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified cao |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
4 \text { (i) }
\] \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& (-4)^{2}-4 \times k \times k \\
\& =16-4 k^{2} \\
\& 16-4 k^{2}=0 \\
\& k^{2}=4 \\
\& k=2 \\
\& \text { or } k=-2
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 2 \\
M1 \\
B1 \\
B1 3 \\
5
\end{tabular} \& \begin{tabular}{l}
Uses \(b^{2}-4 a c\) (involving \(k\))
\[
16-4 k^{2}
\] \\
Attempts \(b^{2}-4 a c=0\) (involving \(k\)) or attempts to complete square (involving k)
\end{tabular} \\
\hline 5 (i)

(ii) \& \begin{tabular}{l}
$$
\begin{aligned}
& \text { Length }=20-2 x \\
& \begin{aligned}
\text { Area } & =x(20-2 x) \\
& =20 x-2 x^{2}
\end{aligned} \\
& \begin{aligned}
\frac{d A}{d x} & =20-4 x
\end{aligned}
\end{aligned}
$$
$$
\text { For max, } 20-4 x=0
$$
$$
x=5 \text { only }
$$

Area $=50$

 \& M1 A1 A1 4 6 \&

Expression for length of enclosure in terms of x

Correctly shows that area $=20 x-2 x^{2}$ AG

Differentiates area expression

Uses $\frac{d y}{d x}=0$
\end{tabular}

\hline 6 \& \[
$$
\begin{aligned}
& \text { Let } y=(x+2)^{2} \\
& y^{2}+5 y-6=0 \\
& (y+6)(y-1)=0 \\
& y=-6 \text { or } y=1 \\
& (x+2)^{2}=1 \\
& x=-1 \\
& \text { or } x=-3
\end{aligned}
$$

\] \& | B1 | |
| :--- | :--- |
| | |
| M1 | |
| A1 | |
| M1 | |
| A1 | |
| A1 | 6 |
| | 6 | \& | $\text { Substitute for }(x+2)^{2} \text { to get }$ $y^{2}+5 y-6(=0)$ |
| :--- |
| Correct method to find roots |
| Both values for y correct |
| Attempt to work out x |
| One correct value |
| Second correct value and no extra real values |

\hline | $7 \text { (a) }$ |
| :--- |
(b)	\&	$\begin{aligned} & f(x)=x+3 x^{-1} \\ & f^{\prime}(x)=1-3 x^{-2} \end{aligned}$ $\frac{d y}{d x}=\frac{5}{2} x^{\frac{3}{2}}$	
When $\begin{aligned} x=4, \frac{d y}{d x} & =\frac{5}{2} \sqrt{4^{3}} \\ & =20 \end{aligned}$	\&	M1	
:---	:---		
A1			
A1			
A1	4		
M1			
B1			
B1			
M1			
A1	5		
	9	\&	Attempt to differentiate
:---			
First term correct			
x^{-2} soi www			
Fully correct answer			
Use of differentiation to find gradient $\begin{aligned} & \frac{5}{2} x^{\mathrm{c}} \\ & \mathrm{kx} \\ & \sqrt{\frac{3}{2}} \\ & \sqrt{4^{3}} \text { soi } \end{aligned}$			
SR If 0 scored for first 3 marks, award B1 if $\sqrt{4^{n}}$ correctly evaluated.	 		

\hline
\end{tabular}

10 (i)	$\begin{aligned} & (3 x+1)(x-5)=0 \\ & x=\frac{-1}{3} \text { or } x=5 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Correct method to find roots Correct brackets or formula Both values correct SR B1 for $\mathrm{x}=5$ spotted www
(ii)	1	B1	Positive quadratic (must be reasonably symmetrical)
	1.	B1 B1 ft 3	y intercept correct both x intercepts correct
(iii)	$\frac{d y}{d x}=6 x-14$	M1*	Use of differentiation to find gradient of curve
	$\begin{aligned} & 6 x-14=4 \\ & x=3 \end{aligned}$	$\begin{array}{\|l} \text { M1* } \\ \text { A1 } \end{array}$	Equating their gradient expression to 4
	On curve, when $\mathrm{x}=3, \mathrm{y}=-20$	A1 ft	Finding y co ordinate for their x value
	$\begin{aligned} & -20=(4 \times 3)+c \\ & c=-32 \end{aligned}$	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method: $3 x^{2}-14 x-5=4 x+c$	M1	Equate curve and line (or substitute for x)
	$3 x^{2}-18 x-5-c=0$ has one solution	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^{2}-4 a c=0$		Use of discriminant $=0$
	$(-18)^{2}-(4 \times 3 \times(-5-c))=0$		Attempt to use a, b, c from their equation
	$\mathrm{c}=-32$	A1	Correct equation
		A1 12	$\mathrm{c}=-32$

4721 Core Mathematics 1

1	$\begin{aligned} & \frac{4(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})} \\ & =\frac{12+4 \sqrt{7}}{9-7} \\ & =6+2 \sqrt{7} \end{aligned}$	M1 B1 $\begin{array}{lr}\text { A1 } & 3 \\ & 3\end{array}$	Multiply top and bottom by conjugate $\begin{aligned} & 9 \pm 7 \text { soi in denominator } \\ & 6+2 \sqrt{7} \end{aligned}$
$2(\mathrm{i})$ (ii)	$\begin{aligned} & x^{2}+y^{2}=49 \\ & x^{2}+y^{2}-6 x-10 y-30=0 \\ & (x-3)^{2}-9+(y-5)^{2}-25-30=0 \\ & (x-3)^{2}+(y-5)^{2}=64 \\ & r^{2}=64 \\ & r=8 \end{aligned}$	B1 1 M1 $\begin{array}{ll}\text { A1 } & 2 \\ & 3\end{array}$	$x^{2}+y^{2}=49$ $3^{2} 5^{2} 30$ with consistent signs soi $8 \text { cao }$
3	$\begin{aligned} & a(x+3)^{2}+c=3 x^{2}+b x+10 \\ & 3\left(x^{2}+6 x+9\right)+c=3 x^{2}+b x+10 \\ & 3 x^{2}+18 x+27+c=3 x^{2}+b x+10 \\ & c=-17 \end{aligned}$	B1 B1 M1 A1 4	$\begin{aligned} & a=3 \text { soi } \\ & b=18 \text { soi } \\ & c=10-9 a \text { or } c=10-\frac{b^{2}}{12} \\ & c=-17 \end{aligned}$
4(i) (ii) (iii)	$\begin{aligned} & p=-1 \\ & \sqrt{25 k^{2}}=15 \\ & 25 k^{2}=225 \\ & k^{2}=9 \\ & k= \pm 3 \\ & \sqrt[3]{t}=2 \\ & t=8 \end{aligned}$	$\begin{array}{ll} \text { B1 } & 1 \\ \text { M1 } & \\ & \\ & \\ \text { A1 } & \\ \text { A1 } & 3 \\ & \\ \text { M1 } & \\ & \\ \text { A1 } & 2 \\ & 6 \end{array}$	$p=-1$ Attempt to square 15 or attempt to square root $25 k^{2}$ $\begin{aligned} & k=3 \\ & k=-3 \end{aligned}$ $\frac{1}{t^{\frac{1}{3}}}=\frac{1}{2}$ or $t^{\frac{1}{3}}=2$ soi $t=8$

7(i)	$\text { Gradient }=-\frac{1}{2}$	B1 1	$-\frac{1}{2}$
(ii)	$y-5=-\frac{1}{2}(x-6)$	M1 B1 ft	Equation of straight line through $(6,5)$ with any non-zero numerical gradient Uses gradient found in (i) in their equation of line
	$\begin{aligned} & 2 y-10=-x+6 \\ & x+2 y-16=0 \end{aligned}$	A1 3	Correct answer in correct form (integer coefficients)
(iii)	EITHER $\begin{aligned} & \frac{4-x}{2}=x^{2}+x+1 \\ & 4-x=2 x^{2}+2 x+2 \end{aligned}$	*M1	Substitute to find an equation in x (or y)
	$\begin{aligned} & 2 x^{2}+3 x-2=0 \\ & (2 x-1)(x+2)=0 \end{aligned}$	DM1	Correct method to solve quadratic 1
	$\begin{aligned} & x=\frac{1}{2}, x=-2 \\ & y=\frac{7}{4}, y=3 \end{aligned}$	A1 $\text { A1 } 4$	$\begin{aligned} & x=\frac{1}{2}, x=-2 \\ & y=\frac{7}{4}, y=3 \end{aligned}$ SR one correct (x, y) pair www B1
	$\begin{array}{lr} \text { OR } \\ y=(4-2 y)^{2}+(4-2 y)+1 & * \mathrm{M} \\ y=16-16 y+4 y^{2}+4-2 y+1 \\ 0=21-19 y+4 y^{2} \\ 0=(4 y-7)(y-3) & \text { DM } \\ y=\frac{7}{4}, y=3 & \text { A1 } \\ x=\frac{1}{2}, x=-2 & \text { A1 } \end{array}$		
		8	

8(i)	$\frac{d y}{d x}=3 x^{2}+2 x-1$	$\begin{array}{\|c} * \mathrm{M} 1 \\ \text { A1 } \end{array}$	Attempt to differentiate (at least one correct term) 3 correct terms
	At stationary points, $3 x^{2}+2 x-1=0$	M1	Use of $\frac{d y}{d x}=0$
	$(3 x-1)(x+1)=0$	DM1	Correct method to solve 3 term quadratic
	$\begin{aligned} & x=\frac{1}{3}, x=-1 \\ & y=\frac{76}{27}, y=4 \end{aligned}$	A1 A1 6	$\begin{aligned} & x=\frac{1}{3}, x=-1 \\ & y=\frac{76}{27}, 4 \end{aligned}$
			SR one correct (x, y) pair www B1
(ii)	$\frac{d^{2} y}{d x^{2}}=6 x+2$	M1	Looks at sign of $\frac{d^{2} y}{d x^{2}}$ for at least one of their x-values or other correct method
	$x=\frac{1}{3}, \frac{d^{2} y}{d x^{2}}>0$		$x=\frac{1}{3}$, minimum point CWO
	$x=-1, \frac{d^{2} y}{d x^{2}}<0$	A1 3	$x=-1$, maximum point CWO
(iii)	$-1<x<\frac{1}{3}$	M1	Any inequality (or inequalities) involving both their x values from part (i)
		$\begin{array}{rr} \text { A1 } & 2 \\ \\ 11 \end{array}$	Correct inequality (allow < or \leq)

9(i)	$\begin{aligned} & \text { Gradient of } \mathrm{AB}=\frac{-2-1}{-5-3} \\ & \\ & =\frac{3}{8} \\ & y-1=\frac{3}{8}(x-3) \\ & 8 y-8=3 x-9 \\ & 3 x-8 y-1=0 \end{aligned}$	B1 M1 A1 3	$\frac{3}{8}$ ое Equation of line through either A or B, any nonzero numerical gradient Correct equation in correct form
(ii)	$\begin{aligned} & \left(\frac{-5+3}{2}, \frac{-2+1}{2}\right) \\ & =\left(-1,-\frac{1}{2}\right) \end{aligned}$	M1 $\text { A1 } 2$	Uses $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ $\left(-1,-\frac{1}{2}\right)$
(iii)	$\begin{aligned} & A C=\sqrt{(-5+3)^{2}+(-2-4)^{2}} \\ & =\sqrt{2^{2}+6^{2}} \\ & =\sqrt{40} \\ & =2 \sqrt{10} \end{aligned}$	M1 A1 A1 3	Uses $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ $\sqrt{40}$ Correctly simplified surd
(iv)	Gradient of $\mathrm{AC}=\frac{-2-4}{-5+3}=3$ Gradient of $\mathrm{BC}=\frac{4-1}{-3-3}=-\frac{1}{2}$	B1 B1	3 oe $-\frac{1}{2} \text { ое }$
	$3 \times-\frac{1}{2} \neq-1$ so lines are not perpendicular	M1 A1 4 12	Attempts to check $\mathrm{m}_{1} \times \mathrm{m}_{2}$ Correct conclusion www

10(i)	$24 x^{2}-3 x^{-4}$	B1 B1 B1	$\begin{aligned} & 24 x^{2} \\ & k x^{-4} \\ & -3 x^{-4} \end{aligned}$
	$48 x+12 x^{-5}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & 5 \end{array}$	Attempt to differentiate their (i) Fully correct
(ii)	$\begin{aligned} & 8 x^{3}+\frac{1}{x^{3}}=-9 \\ & 8 x^{6}+1=-9 x^{3} \\ & 8 x^{6}+9 x^{3}+1=0 \end{aligned}$	*M1	Use a substitution to obtain a 3-term quadratic
	$\begin{aligned} & \text { Let } y=x^{3} \\ & 8 y^{2}+9 y+1=0 \\ & (8 y+1)(y+1)=0 \end{aligned}$	$\begin{aligned} & \text { DM1 } \\ & \text { A1 } \end{aligned}$	Correct method to solve quadratic $-\frac{1}{8},-1$
	$\begin{aligned} & y=-\frac{1}{8}, y=-1 \\ & x=-\frac{1}{2}, x=-1 \end{aligned}$	$\begin{array}{ll}\text { M1 } \\ \\ \text { A1 } & 5\end{array}$	Attempt to cube root at least one of their y-values $-\frac{1}{2},-1$
			SR one correct x value www B1
		10	SR for trial and improvement: $\begin{array}{ll} x=-1 & \text { B1 } \\ x=-\frac{1}{2} & \text { B2 } \end{array}$ Justification that there are no further solutions B2

4721 Core Mathematics 1

 given as final answers, award B1
\qquad

5

M1 Attempt to differentiate

$$
\text { A1 } k x^{-\frac{1}{2}}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{-\frac{1}{2}}+1 \\
& =4\left(\frac{1}{\sqrt{9}}\right)+1 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad=\frac{7}{3}
\end{aligned}
$$

A1

M1 Correct substitution of $x=9$ into their
A1 $\frac{7}{3}$ only
\square

B1 $\quad x^{2}-3 x-10$ or $x^{2}+7 x+10$ or $x^{2}-25$
seen
M1 Attempt to multiply a quadratic by a linear factor
A1
3
(ii)

B1 +ve cubic with 3 roots (not 3 line segments)
B1 $\sqrt{ }(0,-50)$ labelled or indicated on y-axis
B1 $(-5,0),(-2,0),(5,0)$ labelled or indicated on x-axis and no other x - intercepts

7 (i) $8<3 x-2<11$
$10<3 x<13$
$\frac{10}{3}<x<\frac{13}{3}$
M1 2 equations or inequalities both dealing with all 3 terms resulting in $a<k x<b$
A1 10 and 13 seen
A1

(ii) $x(x+2) \geq 0$

$$
x \geq 0, x \leq-2
$$

M1 Correct method to solve a quadratic
A1 $0,-2$
M1 Correct method to solve inequality

8 (i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 k x+1$	B1	One term correct
		B1	Fully correct
		2	
(ii)	$3 x^{2}-2 k x+1=0$ when $x=1$	M1	their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ soi
	$3-2 k+1=0$	M1	$x=1$ substituted into their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
	$k=2$	$\begin{gathered} \mathbf{A 1} \sqrt{ } \\ \hline 3 \\ \hline \end{gathered}$	
(iii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x-4$	M1	Substitutes $x=1$ into their $\frac{\mathrm{d}^{2} y}{\mathrm{~d}^{2}}$ and looks at sign
	When $x=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d}^{2}}>0 \therefore$ min pt	A1	States minimum CWO
		2	
(iv)	$3 x^{2}-4 x+1=0$		$\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}=0$
	$(3 x-1)(x-1)=0$	M1	correct method to solve 3-term quadratic
	$x=\frac{1}{3}, x=1$		
	$x=\frac{1}{3}$	A1	WWW at any stage
		3	

9 (i) $\begin{aligned} & (x-2)^{2}+(y-1)^{2}=100 \\ & x^{2}+y^{2}-4 x-2 y-95=0 \end{aligned}$	B1 B1 B1 3	$\begin{aligned} & (x-2)^{2} \text { and }(y-1)^{2} \text { seen } \\ & (x \pm 2)^{2}+(y \pm 1)^{2}=100 \end{aligned}$ correct form
	$\begin{array}{r}\text { M1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \hline 3 \\ \hline\end{array}$	```x=5 substituted into their equation correct, simplified quadratic in k(or y) obtained cao```
$\text { (iii) } \begin{aligned} & \text { distance from }(-3,9) \text { to }(2,1) \\ & =\sqrt{(2--3)^{2}+(1-9)^{2}} \\ & =\sqrt{25+64} \\ & =\sqrt{89} \\ & \sqrt{89}<10 \text { so point is inside } \end{aligned}$	$\begin{array}{r}\text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \hline 3 \\ \hline\end{array}$	Uses $\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$ compares their distance with 10 and makes consistent conclusion
$\text { (iv) } \begin{aligned} \text { gradient of radius } & =\frac{9-1}{8-2} \\ & =\frac{4}{3} \end{aligned}$	M1 A1	$\text { uses } \frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ oe
gradient of tangent $=-\frac{3}{4}$	B1 $\sqrt{ }$	oe
$\begin{aligned} & y-9=-\frac{3}{4}(x-8) \\ & y-9=-\frac{3}{4} x+6 \end{aligned}$	M1	correct equation of straight line through (8, 9), any non-zero gradient
$y=-\frac{3}{4} x+15$	$\begin{array}{r}\text { A1 } \\ \square \\ \hline\end{array}$	oe 3 term equation

4721 Core Mathematics 1

5 (i)	$\frac{d y}{d x}=-50 x^{-6}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	$k x^{-6}$ Fully correct answer
(ii)	$y=x^{\frac{1}{4}}$	B1	$\sqrt[4]{x}=x^{\frac{1}{4}} \text { soi }$
	$\frac{d y}{d .}=\frac{1}{\Lambda} x^{-\frac{3}{4}}$	B1	$\frac{1}{4} x^{c}$
	$d x \quad 4$	B1	$k x^{-\frac{3}{4}}$
(iii)	$y=\left(x^{2}+3 x\right)(1-5 x)$	M1	Attempt to multiply out fully
	$=3 x-14 x^{2}-5 x^{3}$	A1	Correct expression (may have 4 terms)
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3-28 x-15 x^{2}$	M1 A1 4	Two terms correctly differentiated from their expanded expression Completely correct (3 terms)
		9	
6(i)	$5\left(x^{2}+4 x\right)-8$	B1	$p=5$
	$=5\left[(x+2)^{2}-4\right]-8$	B1	$(x+2)^{2}$ seen or $q=2$
	$=5(x+2)^{2}-20-8$	M1	$-8-5 q^{2}$ or $-\frac{8}{5}-q^{2}$
	$=5(x+2)^{2}-28$	A1 4	$r=-28$
(ii)	$x=-2$	B1 ft 1	
(iii)	$20^{2}-4 \times 5 \times-8$	M1	Uses $b^{2}-4 a c$
	$=560$	A1 2	560
(iv)	2 real roots	$\text { B1 } 1$	2 real roots
		8	
7(i)	$30+4 k-10=0$	M1	Attempt to substitute $\mathrm{x}=10$ into equation of line
	$\therefore k=-5$	A1 2	
(ii)			
	$\begin{aligned} & \sqrt{(10-2)^{2}+(-5-1)^{2}} \\ & =\sqrt{64+36} \end{aligned}$	M1	Correct method to find line length using Pythagoras’ theorem
	$=10$	A1 2	cao, dependent on correct value of k in (i)
(iii)	Centre ($6,-2$)	B1	
	Radius 5	$\text { B1 } 2$	
(iv)	Midpoint of $\mathrm{AB}=(6,-2)$	B1	One correct statement of verification
	Length of $\mathrm{AB}=2 \mathrm{x}$ radius	B1	One correct statement of verification
	Both A and B lie on circumference	$\text { B1 } 2$	Complete verification
	Centre lies on line $3 x+4 y-10=0$	8	

4721 Core Mathematics 1

1 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{4}-2 x^{-3}$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20 x^{3}+6 x^{-4}$	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \\ \text { M1 } & \\ & \\ \text { A1 } & 2 \\ & 5 \end{array}$	$\begin{aligned} & 5 x^{4} \\ & x^{-2} \text { before differentiation or } k x^{-3} \text { in } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { soi } \\ & -2 x^{-3} \end{aligned}$ Attempt to differentiate their (i) - at least one term correct cao
2	$\begin{aligned} & \frac{(8+\sqrt{7})(2-\sqrt{7})}{(2+\sqrt{7})(2-\sqrt{7})} \\ & =\frac{9-6 \sqrt{7}}{4-7} \\ & =-3+2 \sqrt{7} \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \\ & 4 \end{array}$	Multiply numerator and denominator by conjugate Numerator correct and simplified Denominator correct and simplified cao
3 (i) (ii) (iii)	$\begin{aligned} & 3^{-2} \\ & 3^{\frac{1}{3}} \\ & 3^{10} \times 3^{30} \\ & =3^{40} \end{aligned}$	B1 1 B1 1 M1 $\begin{array}{rr}\text { A1 } 2 \\ & 4\end{array}$	3^{30} or 9^{20} soi
4	$\begin{aligned} & y=2 x-4 \\ & 4 x^{2}+(2 x-4)^{2}=10 \\ & 8 x^{2}-16 x+16=10 \\ & 8 x^{2}-16 x+6=0 \\ & 4 x^{2}-8 x+3=0 \\ & (2 x-1)(2 x-3)=0 \\ & x=\frac{1}{2}, \quad x=\frac{3}{2} \\ & y=-3, \quad y=-1 \end{aligned}$		Attempt to get an equation in 1 variable only Obtain correct 3 term quadratic (aef) Correct method to solve quadratic of form $a x^{2}+b x+c=0 \quad(b \neq 0)$ Correct factorisation oe Both x values correct Both y values correct or one correct pair of values www B1 second correct pair of values B1

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
5 (i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \left(2 x^{2}-5 x-3\right)(x+4) \\
\& =2 x^{3}+8 x^{2}-5 x^{2}-20 x-3 x-12 \\
\& =2 x^{3}+3 x^{2}-23 x-12 \\
\& \\
\& 2 x^{4}+7 x^{4} \\
\& =9 x^{4} \\
\& 9
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 3 \\
B1 \\
B1 2 \\
5
\end{tabular} \& \begin{tabular}{l}
Attempt to multiply a quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an \(x^{3}\) term) \\
Expansion with no more than one incorrect term \\
\(2 x^{4}\) or \(7 x^{4}\) soi www \\
\(9 x^{4}\) or 9
\end{tabular} \\
\hline \begin{tabular}{l}
6 (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
 \\
Translation \\
Parallel to \(y\)-axis, 5 units
\[
y=-\sqrt{\frac{x}{2}}
\]
\end{tabular} \& \begin{tabular}{l}
B1 2 \\
B1 \\
B1 2 \\
M1 \\
A1 \(\quad 2\)
\end{tabular} \& \begin{tabular}{l}
One to one graph only in bottom right hand quadrant \\
Correct graph, passing through origin
\[
\begin{aligned}
\& \sqrt{2 x} \text { or } \sqrt{\frac{x}{2}} \text { seen } \\
\& \text { cao }
\end{aligned}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
\[
7 \quad \text { (i) }
\] \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \left(x-\frac{5}{2}\right)^{2}-\left(\frac{5}{2}\right)^{2}+\frac{1}{4} \\
\& =\left(x-\frac{5}{2}\right)^{2}-6 \\
\& \left(x-\frac{5}{2}\right)^{2}-6+y^{2}=0 \\
\& \text { Centre }\left(\frac{5}{2}, 0\right) \\
\& \text { Radius }=\sqrt{6}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 3 \\
B1 \\
B1 \\
B1

6

 \&

$$
\begin{aligned}
& a=\frac{5}{2} \\
& \frac{1}{4}-a^{2} \\
& \text { cao }
\end{aligned}
$$

Correct x coordinate Correct y coordinate
\end{tabular}

\hline
\end{tabular}

8 (i) (ii)	$\begin{aligned} & -42<6 x<-6 \\ & -7<x<-1 \\ & \\ & x^{2}>16 \\ & x>4 \\ & \text { or } x<-4 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & 3 \\ & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \\ & 6 \\ \hline \end{array}$	```2 equations or inequalities both dealing with all 3 terms -7 and -1 seen oe \(-7<x<-1 \quad\) (or \(x>-7\) and \(x<-1\)) \(\pm 4\) oe seen \(x>4\) \(x<-4\) not wrapped, not 'and'```
9 (i) (ii) (iii)	$\begin{aligned} & \sqrt{\left(^{-} 1-4\right)^{2}+(9-)^{2}} \\ & =13 \\ & \left(\frac{4+^{-} 1}{2}, \frac{-3+9}{2}\right) \\ & \left(\frac{3}{2}, 3\right) \\ & \text { Gradient of } A B=-\frac{12}{5} \\ & y-3=-\frac{12}{5}(x-1) \\ & 12 x+5 y-27=0 \end{aligned}$	M1 A1 2 M1 A1 2 B1 M1 A1 A1 $\begin{array}{r}4 \\ \\ 8\end{array}$	Correct method to find line length using Pythagoras' theorem cao Correct method to find midpoint Correct equation for line, any gradient, through (1, 3) Correct equation in any form with gradient simplified $12 x+5 y-27=0$
10 (i) (ii) (iii) (iv)	$\begin{aligned} & (3 x+7)(3 x-1)=0 \\ & x=-\frac{7}{3}, x=\frac{1}{3} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=18 x+18 \\ & 18 x+18=0 \\ & x=-1 \\ & y=-16 \end{aligned}$ $x>-1$	M1 A1 A1 3 M1 M1 A1 A1 ft 4 B1 B1 B1 3 B1 1 11	Correct method to find roots Correct factorisation oe Correct roots Attempt to differentiate y Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Positive quadratic curve y intercept (0, -7) Good graph, with correct roots indicated and minimum point in correct quadrant

11 (i)	$\begin{aligned} & \text { Gradient of normal }=-\frac{2}{3} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} k x^{-\frac{1}{2}} \end{aligned}$ When $x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{k}{4}$ $\begin{aligned} & \therefore \frac{k}{4}=\frac{3}{2} \\ & k=6 \end{aligned}$	B1 M1* A1 M1dep* M1dep* A1 6	Attempt to differentiate equation of curve $\frac{1}{2} k x^{-\frac{1}{2}}$ Attempt to substitute $x=4$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ soi Equate their gradient expression to negative reciprocal of their gradient of normal cao
(ii)	P is point $(4,12)$ Q is point $(22,0)$ $\begin{aligned} \text { Area of triangle } & =\frac{1}{2} \times 12 \times 22 \\ & =132 \text { sq. units } \end{aligned}$	B1 ft M1 A1 M1 A1 5 11	Correct method to find coordinates of Q Correct x coordinate Must use y coordinate of P and x coordinate of Q

4721 Core Mathematics 1

B1
B1
(ii) Translation

1 unit right parallel to x axis

2 Allow:
1 unit right,
1 along the x axis,
1 in x direction,
allow vector notation e.g. $\binom{1}{0}$,
1 unit horizontally

4

When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4$
\therefore Gradient of normal to curve $=\frac{1}{4}$
$y+1=\frac{1}{4}(x-2)$
M1
M1
A1

B1 ft
$3 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-8 x$
$x-4 y-6=0$
Attempt to differentiate (one of $3 x^{2},-8 x$)
Correct derivative
Substitutes $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$

Must be numerical

$$
=-1 \div \text { their } m
$$

Correct equation of straight line through $(2,-1)$, any nonzero numerical gradient

Correct equation in required form
(i) $m=4$

B1 1 May be embedded

6
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x$

B1*

When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$
B1 2
(ii) $\frac{a^{2}+5-6}{a-1}=2.3$
dep

(ii) \begin{tabular}{lll}
$\frac{a^{2}+5-6}{a-1}=2.3$ \& M1 \& uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

\& A1 \& correct expression

$a^{2}-2.3 a+1.3=0$ \& M1 \& | correct method to solve a |
| :--- |
| quadratic or correct |
| $(a-1.3)(a-1)=0$ |

\& \& factorisation and cancelling to

get $a+1=2.3$
\end{tabular}

(ii)

$$
\mathrm{f}^{\prime \prime}(x)=2 x^{-3}+\frac{1}{4} x^{-\frac{3}{2}}
$$

M1 Attempt to differentiate their f ' (x)
A1 ft One correctly differentiated term
A1 Fully correct expression www in either part of the question

$$
\begin{aligned}
\mathrm{f}^{\prime \prime}(4) & =\frac{2}{4^{3}}+\frac{1}{4} \cdot \frac{1}{8} \\
& =\frac{1}{16}
\end{aligned}
$$

M1 Substitution of $x=4$ into their $\mathrm{f}^{\prime \prime}(x)$

A1 5 oe single fraction www in either part of the question

Attempts $b^{2}-4 a c$ involving k
$900-100 k^{2}=0$ States their discriminant $=0$

$$
k=3
$$

B1
or $k=-3$
B1 \square
11 (i) $P=2+x+3 x+2+5 x+5 x$
M1
$=14 x+4$

A1
M1 Correct method - splitting or formula for area of trapezium
Area of triangle $=\frac{1}{2}(3 x)(4 x)=6 x^{2}$
Total area $=9 x^{2}+6 x$
A1 2 Convincing working leading to given expression AG
(iii) $14 x+4 \geq 39$

B1 ft
ft on their expression for P from (i) unless restarted in
(iii). (Allow >)
$\frac{5}{2}$
B1
$9 x^{2}+6 x<99$
$3 x^{2}+2 x-33<0$
$(3 x+11)(x-3)<0$
$\left(-\frac{11}{3}<\right) x<3$
B1

M1
Allow \leq

Correct method to find critical values

B1
$x<3$ identified
M1 root from linear $<x<$ upper root from quadratic
$\therefore \frac{5}{2} \leq x<3$
A1 $7 \quad$ Fully correct including
11 inequality signs or exact equivalent in words cwo

Total

1 (i)	1	B1	1	
(ii)	$\frac{1}{3}$	M1 A1	$\underline{2}$	$\begin{aligned} & \frac{1}{9^{\frac{1}{2}}} \text { or } \frac{1}{\sqrt{9}} \text { soi } \\ & \text { cao } \end{aligned}$
2 (i)		$\begin{aligned} & \text { B1* } \\ & \text { B1 } \\ & \text { dep* } \end{aligned}$	2	Reasonably correct curve for $y=-\frac{1}{x^{2}}$ in $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants only Very good curves in curve for $y=-\frac{1}{x^{2}}$ in $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants SC If 0 , very good single curve in either $3^{\text {rd }}$ or $4^{\text {th }}$ quadrant and nothing in other three quadrants. B1
		M1 A1	2	Translation of their $y=-\frac{1}{x^{2}}$ vertically Reasonably correct curve, horizontal asymptote soi at $y=3$
(iii)	$y=-\frac{2}{x^{2}}$	B1	1 5	
3 (i)	$\begin{aligned} & \frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} \\ & =\frac{12(3-\sqrt{5})}{9-5} \\ & =9-3 \sqrt{5} \end{aligned}$	M1 A1 A1	3	Multiply numerator and denom by $3-\sqrt{5}$ $(3+\sqrt{5})(3-\sqrt{5})=9-5$
(ii)	$\begin{aligned} & 3 \sqrt{2}-\sqrt{2} \\ & =2 \sqrt{2} \end{aligned}$	M1 A1	2 5	Attempt to express $\sqrt{18}$ as $\mathrm{k} \sqrt{2}$

\begin{tabular}{|c|c|c|c|c|}
\hline 4 (i) \& $$
\left(x^{2}-4 x+4\right)(x+1)
$$
$$
=x^{3}-3 x^{2}+4
$$ \& M1

A1

A1 \& 3 \& | Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^{3} term) |
| :--- |
| Expansion with at most 1 incorrect term |
| Correct, simplified answer |

\hline (ii) \& \& | B1 |
| :--- |
| B1 |
| B1 | \& \& | +ve cubic with 2 or 3 roots |
| :--- |
| Intercept of curve labelled (0,4) or indicated on y-axis |
| $(-1,0)$ and turning point at $(2,0)$ labelled or indicated on x-axis and no other x intercepts |

\hline 5 \& $$
\begin{aligned}
& k=x^{2} \\
& 4 k^{2}+3 k-1=0 \\
& (4 k-1)(k+1)=0 \\
& k=\frac{1}{4}(\text { or } k=-1) \\
& x= \pm \frac{1}{2}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \text { M1* } \\
& \text { M1 } \\
& \text { dep } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | 5 |
| :---: |
| 5 | \& | Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^{2} |
| :--- |
| Correct method to solve a quadratic |
| Attempt to square root to obtain x $\pm \frac{1}{2}$ and no other values |

\hline 6 \& $$
\begin{aligned}
& y=2 x+6 x^{-\frac{1}{2}} \\
& \frac{d y}{d x}=2-3 x^{-\frac{3}{2}}
\end{aligned}
$$

$$
\text { When } \begin{aligned}
x=4 \text {, gradient } & =2-\frac{3}{\sqrt{4^{3}}} \\
& =\frac{13}{8}
\end{aligned}
$$ \& M1

A1
A1

M1
A1 \& 5

\square \& | Attempt to differentiate $k x^{-\frac{3}{2}}$ |
| :--- |
| Completely correct expression (no +c) |
| Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$ |

\hline 7 \& $$
\begin{aligned}
& 2(6-2 y)^{2}+y^{2}=57 \\
& 2\left(36-24 y+4 y^{2}\right)+y^{2}=57 \\
& 9 y^{2}-48 y+15=0 \\
& 3 y^{2}-16 y+5=0 \\
& (3 y-1)(y-5)=0 \\
& y=\frac{1}{3} \text { or } y=5 \\
& x=\frac{16}{3} \text { or } x=-4
\end{aligned}
$$ \& M1 ${ }^{*}$

A1
A1
A1
M1
dep
A1

A1 \& ${ }_{6}^{6}$ \& | substitute for x / y or attempt to get an equation in 1 variable only correct unsimplified expression |
| :--- |
| obtain correct 3 term quadratic |
| correct method to solve 3 term quadratic |
| SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1 |

\hline
\end{tabular}

$\begin{array}{ll} \hline 8 \text { (i) } \quad & 2\left(x^{2}+\frac{5}{2} x\right) \\ & =2\left[\left(x+\frac{5}{4}\right)^{2}-\frac{25}{16}\right] \\ & =2\left(x+\frac{5}{4}\right)^{2}-\frac{25}{8} \end{array}$	B1 M1 A1	3	$\begin{aligned} & \left(x+\frac{5}{4}\right)^{2} \\ & q=-2 p^{2} \\ & q=-\frac{25}{8} \text { c.w.o. } \end{aligned}$
(ii) $\left(-\frac{5}{4},-\frac{25}{8}\right)$	$\begin{aligned} & \text { B1 } \sqrt{ } \\ & \text { B1 } \sqrt{ } \end{aligned}$	2	
(iii) $\quad x=-\frac{5}{4}$	B1	1	
(iv) $x(2 x+5)>0$	M1		Correct method to find roots 0 , $-\frac{5}{2}$ seen
$x<-\frac{5}{2}, x>0$	M1 A1	$\begin{gathered} 4 \\ 10 \\ \hline \end{gathered}$	Correct method to solve quadratic inequality. (not wrapped, strict inequalities, no ‘and')
9 (i) $\quad \frac{4+p}{2}=-1, \quad \frac{5+q}{2}=3$	M1		Correct method (may be implied by one correct coordinate)
$\begin{gathered} p=-6 \\ q=1 \end{gathered}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	
$\text { (ii) } \begin{aligned} & r^{2}=\left(4-{ }^{-} 1\right)^{2}+(5-3)^{2} \\ & r=\sqrt{29} \end{aligned}$	M1 A1	2	Use of $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ for either radius or diameter
(iii) $(x+1)^{2}+(y-3)^{2}=29$			$\begin{aligned} & (x+1)^{2} \text { and }(y-3)^{2} \text { seen } \\ & (x \pm 1)^{2}+(y \pm 3)^{2}=\text { their } r^{2} \end{aligned}$
$x^{2}+y^{2}+2 x-6 y-19=0$	A1	3	Correct equation in correct form
$\text { (iv) } \begin{aligned} \text { gradient of radius } & =\frac{3-5}{-1-4} \\ & =\frac{2}{5} \end{aligned}$	M1		uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ oe
$\text { gradient of tangent }=-\frac{5}{2}$	B1 $\sqrt{ }$		oe
$\begin{aligned} & y-5=-\frac{5}{2}(x-4) \\ & y=-\frac{5}{2} x+15 \end{aligned}$	M1 A1	$\stackrel{5}{13}$	correct equation of straight line through (4, 5), any non-zero gradient oe 3 term equation e.g. $5 x+2 y=30$

10(i)	$\begin{aligned} & \frac{d y}{d x}=6 x^{2}+10 x-4 \\ & 6 x^{2}+10 x-4=0 \\ & 2\left(3 x^{2}+5 x-2\right)=0 \\ & (3 x-1)(x+2)=0 \\ & x=\frac{1}{3} \text { or } x=-2 \\ & y=-\frac{19}{27} \text { or } y=12 \end{aligned}$	B1 B1 M1*	6	1 term correct Completely correct (no +c) Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Correct method to solve quadratic SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1
(ii)	$-2<x<\frac{1}{3}$		2	Any inequality (or inequalities) involving both their x values from part (i) Allow \leq and \geq
(iii)	When x $x=\frac{1}{2}, 6 x^{2}+10 x-4=\frac{5}{2}$ and $2 x^{3}+5 x^{2}-4 x=-\frac{1}{2}$ $y+\frac{1}{2}=\frac{5}{2}\left(x-\frac{1}{2}\right)$	M1 B1 M1		Substitute $x=\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Correct y coordinate Correct equation of straight line using their values. Must use their $\frac{d y}{d x}$ value not e.g. the negative reciprocal
	$10 x-4 y-7=0$	A1		Shows rearrangement to given equation CWO throughout for A1

(iv)

B1

B1

Sketch of a cubic with a tangent which meets it at 2 points only
+ve cubic with max/min points and line with + ve gradient as tangent to the curve to the right of the min

SC1

B1 Convincing algebra to show that the cubic
$8 x^{3}+20 x^{2}-26 x+7=0$ factorises into $(2 x-1)(2 x-1)(x+7)$
B1 Correct argument to say there are 2 distinct roots
SC2 B1 Recognising $y=2.5 x-7 / 4$ is tangent from part (iii)
B1 As second B1 on main scheme

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|c|}
\hline 4 \& \begin{tabular}{l}
\[
\begin{aligned}
\& u^{2}-5 u+4=0 \\
\& (u-1)(u-4)=0 \\
\& u=1 \text { or } u=4 \\
\& 3 x-2= \pm 1 \text { or } 3 x-2= \pm 2
\end{aligned}
\] \\
\(x=1\) or \(\frac{1}{3}\) or \(\frac{4}{3}\) or 0
\end{tabular} \& M1*

DM1
A1
M1

A1

A1 \& \begin{tabular}{l}
Use the given substitution to obtain a quadratic or factorise into 2 brackets each containing $(3 x-2)^{2}$

Correct method to solve a quadratic

Correct values for u

Attempt to square root and rearrange to obtain x OR to expand, rearrange and solve quadratic (at least one)

2 correct values

All 4 correct values $\left(\frac{0}{3}=A 0\right)$

 \&

No marks if evidence of "square rooting" e.g.

$$
"(3 x-2)^{2}-5(3 x-2)+2(\text { or } 4)=0 "
$$

No marks if straight to quadratic formula to get $\mathrm{x}=$ " 1 " $\mathrm{x}=$ " 4 " and no further working

SR 1) If M0 Spotted solutions www B1 each Justifies 4 solutions exactly B2

SR 2) If first 3 marks awarded, spotted solutions

2 correct B1

Other 2 correct B1

Justifies 4 solutions exactly B1

Alternative scheme for candidates who multiply out:

Attempt to expand $(3 x-2)^{4}$ and $(3 x-2)^{2} \quad$ M1

$$
81 x^{4}-216 x^{3}+171 x^{2}-36 x=0 \mathbf{A 1}
$$

$x=0$ a solution or x a factor of the quartic A1

Attempt to use factor theorem to factorise their cubic M1*

Correct method to solve quadratic DM1

All 4 solutions correct A1
\end{tabular}

\hline 5 (i) \& \& M1

A1 \& | Negative cubic through $(0,0)$ (may have max and min) |
| :--- |
| Must have reasonable rotational symmetry. Cannot be a finite "plot". Allow negative gradient at origin. Correct curvature at both 2 ends. | \& Must be continuous. Allow slight curve towards or away from y-axis at one end, but not both.

\hline (ii) \& $y=-(x-3)^{3}$ \& \[
$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm(x-3)^{3} \text { seen } \\
& 2 \quad \text { or } y=(3-x)^{3}
\end{aligned}
$$
\] \& Must have " $y=$ " for A mark SR $y=-(x-3)^{2} \mathbf{B 1}$

\hline (iii) \& Stretch scale factor 5 parallel to y-axis \& \[
$$
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& o.e. e.g. scale factor $\frac{1}{\sqrt[3]{5}}$ parallel to the x 2 axis. \& | Allow "factor" for "scale factor" |
| :--- |
| For "parallel to the y axis" allow "vertically", "in the y direction". Do not accept "in/on/across/up/along the y axis" |

\hline
\end{tabular}

6 (i) $\begin{aligned} & y=5 x^{-2}-\frac{1}{4} x^{-1}+x \\ & \frac{d y}{d x}=-10 x^{-3}+\frac{1}{4} x^{-2}+1 \end{aligned}$	M1 A1 A1 A1	4	x^{-2} used for $\frac{1}{x^{2}} \mathbf{O R} x^{-1}$ used for $\frac{1}{x}$ soi, OR x correctly differentiated $k x^{-3}$ or $k x^{-2}$ from differentiating Two fully correct terms Completely correct	Look out for: $y=5 x^{-2}-4 x^{-1}+x$ followed by $\frac{d y}{d x}=-10 x^{-3}+4 x^{-2}+1$ and then the correct answer. This is M1 A1 A1 A0 $4 x^{-1}$ is NOT a misread
(ii) $\frac{d^{2} y}{d x^{2}}=30 x^{-4}-\frac{1}{2} x^{-3}$	M1		Attempt to differentiate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (one term correctly differentiated)	Allow a sign slip in coefficient for M mark
	A1	2	Completely correct	NB Only penalise "+ c" first time seen in the question

Allocation of method mark for solving a quadratic

$$
\text { e.g. } \quad 4 x^{2}+12 x-3=0
$$

By factorisation

- when expanded, quadratic term and one other term must be correct (with correct sign):

$$
\begin{aligned}
& (2 x+1)(2 x-3)=0 \quad \text { M1 } 4 x^{2} \text { and }-3 \text { obtained from expansion } \\
& (4 x+4)(x+2)=0 \\
& (4 x-1)(x-3)=0 \\
& \text { M1 } 4 x^{2} \text { and }-3 \text { obtained from expansion } \\
& \text { M1 } 4 x^{2} \text { and }+12 x \text { obtained from expansion } \\
& \text { M0 only } x^{2} \text { term correct }
\end{aligned}
$$

By formula

- if the formula is quoted correctly first, allow one sign slip in substituting values into it:

$$
a=4, \quad b=12, c=-3
$$

- if the formula is not quoted, then no errors at all are allowed in substitution.

By completing the square

$$
\begin{aligned}
& 4 x^{2}+12 x-3=0 \\
& 4\left[\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}\right]-3=0 \\
& \left(x+\frac{3}{2}\right)^{2}=3 \\
& x+\frac{3}{2}= \pm \sqrt{3}
\end{aligned}
$$

The method mark is awarded only at the last line of working
i.e. when $\pm \sqrt{ }$ combined constants is seen.
N.B. The value of the combined constants does not have to be correct for the M1 mark

Condone "invisible brackets" if justified by correct later working

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

Mathematics

Advanced Subsidiary GCE

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& 3\left(x^{2}-6 x\right)+4 \\
& =3\left[(x-3)^{2}-9\right]+4 \\
& =3(x-3)^{2}-23
\end{aligned}
$$ \& B1
B1
M1
A1 \& $$
\begin{aligned}
& p=3 \\
& (x-3)^{2} \text { seen or } q=-3 \\
& 4-3 q^{2} \text { or } \frac{4}{3}-q^{2}(\text { their } q) \\
& r=-23
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { If } p, q, r \text { found correctly, then ISW slips in format. } \\
& 3(x-3)^{2}+23 \text { B1 B1 M0 A0 } \\
& 3(x-3)-23 \text { B1 B1 M1 A1 (BOD) } \\
& 3(x-3 x)^{2}-23 \text { B1 B0 M1 A0 } \\
& 3\left(x^{2}-3\right)^{2}-23 \text { B1 B0 M1 A0 } \\
& 3(x+3)^{2}-23 \text { B1 B0 M1 A1 (BOD) } \\
& 3 x(x-3)^{2}-23 \text { B0 B1M1A1 }
\end{aligned}
$$

\hline 2 (i) \& B1

B1 \& \begin{tabular}{l}
Reasonably correct curve for $y=\frac{1}{x}$ in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants only

Very good curves for $y=\frac{1}{x}$ in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants SC If 0 , very good single curve in either $1^{\text {st }}$ or $3^{\text {rd }}$ quadrant and nothing in other three quadrants. B1

 \&

N.B. Ignore 'feathering' now that answers are scanned. Reasonably correct shape, not touching axes more than twice.

Correct shape, not touching axes, asymptotes clearly the axes. Allow slight movement away from asymptote at one end but not more. Not finite.
\end{tabular}

\hline (ii) $\begin{aligned} & \text { Translation } \\ & 4 \text { units parallel to } y \text { axis }\end{aligned}$ \& B1 \& $$
\begin{array}{ll}
& \text { Must be translation/translated - not shift, move etc. } \\
2 & \\
4 & \text { Or }\binom{0}{4}
\end{array}
$$ \& For "parallel to the y axis" allow "vertically", "up", "in the (positive) y direction". Do not accept "in/on/across/up/along the y axis"

\hline $$
\text { 3 (i) } \begin{array}{ll}
& \frac{16 x^{2} \times 2 x^{3}}{x} \\
& =32 x^{4}
\end{array}
$$ \& B1

B1 \& $$
\begin{gathered}
\\
\\
2
\end{gathered} \begin{gathered}
32 \\
x^{4}
\end{gathered}
$$ \&

\hline (ii) $\frac{1}{6} x$ \& M1
A1
B1 \& 6 or $\frac{1}{36^{\frac{1}{2}}}$ or $\frac{1}{\sqrt{36}}$ seen $\frac{1}{6}$ in final answer 3

5 \quad (Allow x^{1}) in final answer \& $$
\begin{aligned}
& \frac{1}{\frac{1}{\sqrt{36}}} \text { is M0 } \\
& \pm \frac{1}{6} \text { is A0 }
\end{aligned}
$$

\hline
\end{tabular}

4	$2 x^{2}-8 x+8=26-3 x$	M1		Attempt to eliminate x or y	Must be a clear attempt to reduce to one variable. Condone poor algebra for first mark.
	$2 x^{2}-5 x-18(=0)$	A1		Correct 3 term quadratic (not necessarily all in one side)	If x eliminated:
	$(2 x-9)(x+2)(=0)$	M1		Correct method to solve quadratic	$y=2\left(\frac{26-y}{3}-2\right)^{2}$
	$x=\frac{9}{2}, x=-2$	A1		x values correct	Leading to $2 y^{2}-89 y+800=0$
	$y=\frac{25}{2}, y=32$	A1	5	y values correct	$(2 y-25)(y-32)=0$ etc.
			5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1	
5 (i)	$10 \sqrt{3}-4 \sqrt{3}$	M1		Attempt to express both surds in terms of $\sqrt{3}$	e.g. $\sqrt{3 \times 100}-\sqrt{3 \times 16}$
		B1		One term correct	
	$=6 \sqrt{3}$	A1	3	Fully correct (not $\pm 6 \sqrt{3}$)	
(ii)	$\frac{\sqrt{5}(15+\sqrt{40})}{5}$	M1		Multiply numerator and denominator by $\sqrt{5}$ or - $\sqrt{5}$ or attempt to express both terms of numerator in terms of $\sqrt{5}$ (e.g. dividing both terms by $\sqrt{5}$) One of a, b correctly obtained	Check both numerator and denominator have been multiplied
	$\begin{gathered} 5 \\ 15 \sqrt{5}+10 \sqrt{2} \end{gathered}$				
	$=\frac{10 \sqrt{2}+10 \sqrt{ } 2}{5}$	B1			
	$=3 \sqrt{5}+2 \sqrt{2}$	A1	3 6	Both $\mathrm{a}=3$ and $\mathrm{b}=2$ correctly obtained	

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\text { (i) } \begin{aligned}
\& \frac{d y}{d x}=6 x+6 x^{-2} \\
\& 6 x+\frac{6}{x^{2}}=0 \\
\& x=-1 \\
\& y=7
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 ft
\end{tabular} \& 5 \& \begin{tabular}{l}
Attempt to differentiate (one non-zero term correct) \\
Completely correct \\
Sets their \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0\) \\
Correct value for \(x\) - www \\
Correct value of \(y\) for their value of \(x\)
\end{tabular} \& \begin{tabular}{l}
\(\mathbf{N B}-x=-1\) (and therefore possibly \(y=7\)) can be found from equating the incorrect differential \(\frac{d y}{d x}=6 x+6\) to 0 . This could score M1A0 M1A0A1 ft \\
If more than one value of x found, allow \(\mathbf{A 1} \mathbf{f t}\) for one correct value of \(y\)
\end{tabular} \\
\hline \begin{tabular}{l}
(ii) \(\frac{d^{2} y}{d x^{2}}=6-12 x^{-3}\) \\
When \(x=-1, \frac{d^{2} y}{d x^{2}}>0\) so minimum pt
\end{tabular} \& M1

A1 ft \& 7 \& \begin{tabular}{l}
Correct method e.g. substitutes their x from (i) into their $\frac{d^{2} y}{d x^{2}}$ (must involve x) and considers sign.

ft from their $\frac{d y}{d x}$ differentiated correctly and correct substitution of their value of x and consistent final conclusion

NB If second derivate evaluated, it must be correct (18 for $x=-1$).

If more than one value of x used, \max M1 A0

 \&

Allow comparing signs of their $\frac{d y}{d x}$ either side of their " -1 ", comparing values of y to their " 7 "

SC $\frac{d^{2} y}{d x^{2}}=$ a constant correctly obtained from their $\frac{d y}{d x}$ and correct conclusion (ft) B1
\end{tabular}

\hline
\end{tabular}

9 (i)	Gradient of $A B=\frac{1-3}{7-1}=-\frac{1}{3}$ Gradient of $A C=\frac{-9-3}{-3-1}=3$	M1*		Uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ for any 2 points	
		A1		One correct gradient (may be for gradient of BC	
		A1		=1)	
		M1		Gradients for both $A B$ and $A C$ found correctly	Do not allow final mark if vertex A found from wrong working. (Dependent on $1^{\text {st }} \mathrm{M} 1 \mathrm{~A} 1 \mathrm{~A} 1$)
	Vertex A	DB1		Attempts to show that $m_{1} \times m_{2}=-1$ oe, accept "negative reciprocal"	Accept BÂC etc for vertex A or "between AB and
	Length of $A B=\sqrt{(7-1)^{2}+(1-3)^{2}}=\sqrt{40}$				AC" Allow if marked on diagram.
	$A C=\sqrt{(-3-1)^{2}+(-9-3)^{2}}=\sqrt{160}$	M1*		Correct use of Pythagoras, square rooting not needed Any length or length squared correct All three correct	
	$B C=\sqrt{(-3-7)^{2}+(-9-1)^{2}}=\sqrt{200}$	A1			
	Shows that $A B^{2}+A C^{2}=B C^{2}$ Vertex A	A1			
		$\begin{aligned} & \text { M1 } \\ & \text { DB1 } \end{aligned}$	5	Correct use of Pythagoras to show $A B^{2}+A C^{2}=$ $B C^{2}$	i.e must add squares of shorter two lengths
9 (ii)	$\begin{gathered} \text { Midpoint of } B C \text { is }\left(\frac{7+-3}{2}, \frac{1+-9}{2}\right) \\ =(2,-4) \end{gathered}$	M1*		Uses $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ o.e. for BC, AB or AC (3 out of 4 subs correct) Correct centre (cao)	Substitution method 1 (into $x^{2}+y^{2}+a x+\mathrm{b} y+c=0$) Substitutes all 3 points to get 3 equations in a, b, c M1 At least 2 equations correct A1 Correct method to find one variable M1 One of a, b, c correct A1
	Length of $B C=$ $\sqrt{(-3-7)^{2}+(-9-1)^{2}}=\sqrt{200}=10 \sqrt{2}$	A1			Correct method to find other values M1 All values correct A1 Correct equation in required form A1
	$\begin{aligned} & \text { Radius }=5 \sqrt{2} \\ & (x-2)^{2}+(y+4)^{2}=(5 \sqrt{2})^{2} \\ & (x-2)^{2}+(y+4)^{2}=50 \\ & x^{2}+y^{2}-4 x+8 y-30=0 \end{aligned}$	M1**		Correct method to find d or r or d^{2} or r^{2} o.e. for $B C, A B$ or $A C$ (must be consistent with their midpoint if found)	Alternative markscheme for last 4 marks with f, q, c method: $x^{2}-4 x+y^{2}+8 y$ for their centre DM1*
		$\begin{aligned} & \text { DM1* } \\ & \text { DM1 }^{* *} \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 7 \\ & 12 \end{aligned}$	$(x-a)^{2}+(y-b)^{2}$ seen for their centre	$c=(\pm 2)^{2}+4^{2}-50 \quad$ DM1 ${ }^{* *} \quad \mathrm{c}=-30 \mathbf{A 1}$
				$(x-a)^{2}+(y-b)^{2}=$ their r^{2}	Correct equation in required form A1 Ends of diameter method (p, q) to (c, d) :
				Correct equation Correct equation in required form	Attempts to use $(x-p)(x-c)+(y-q)(y-d)=0$ for BC,AC or AB M2 $(x-7)(x+3)+(y-1)(y+9)=0$ A2 for both x brackets correct, A2 for both y brackets correct $x^{2}+y^{2}-4 x+8 y-30=0 \mathbf{A 1}$ SC If M2 A0 A0 then B1 if both x brackets correct and $\mathbf{B 1}$ if both y brackets correct for $\mathbf{A C}$ or $\mathbf{A B}$

Substitution method 2into $(x-p)^{2}+(y-q)^{2}=$ their r^{2}
Correct method to find d or r or d^{2} or $r^{2} * \mathbf{M} 1$
Substitutes all 3 points to get 3 equations in p, q DM1
At least 2 equations correct A1
Correct method to find one variable M1
One of p, q correct A1
Correct equation $\left[(x-2)^{2}+(y+4)^{2}=50\right] \mathbf{A} 1$
Correct equation in required form
$\left[x^{2}+y^{2}-4 x+8 y-30=0\right] \mathbf{A 1}$

10(i)		B1 B1 B1	3	+ve cubic with 3 distinct roots $(0,3)$ labelled or indicated on y-axis $(-3,0),\left(\frac{1}{2}, 0\right)$ and $(1,0)$ labelled or indicated on x axis and no other x - intercepts	For first B1, left end of curve must finish below x axis and right end must end above x axis. Allow slight wrong curvature at one end but not both ends. No cusp at either turning point. No straight lines drawn with a ruler. Condone $(0,3)$ as maximum point. To gain second and third \mathbf{B} marks, there must be an attempt at a curve, not just points on axes. Final B1 can be awarded for a negative cubic.
(ii)	$\begin{aligned} & 2 x^{2}+5 x-3, x^{2}+2 x-3,2 x^{2}-3 x+1 \\ & \left(2 x^{2}+5 x-3\right)(x-1) \\ & 2 x^{3}+3 x^{2}-8 x+3 \\ & \frac{d y}{d x}=6 x^{2}+6 x-8 \\ & \text { When } x=1 \text {, gradient }=4 \end{aligned}$	B1 M1 A1 M1 A1 A1	6	Obtain one quadratic factor (can be unsimplified) Attempt to multiply a quadratic by a linear factor Attempt to differentiate (one non-zero term correct) Fully correct expression www Confirms gradient $=4$ at $\mathrm{x}=1{ }^{* *} \mathbf{A G}$	Alternative for first 3 marks: Attempt to expand all 3 brackets with an appropriate number of terms (including an x^{3} term) M1 Expansion with at most 1 incorrect term A1 Correct, answer (can be unsimplified) A1 Allow if done in part(i) please check.
(iii)	Gradient of $l=4$ On curve, when $x=-2, y=15$ $\begin{aligned} & y-15=4(x+2) \\ & y=4 x+23 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	May be embedded in equation of line Correct y coordinate Correct equation of line using their values Correct answer in correct form	M mark is for any equation of line with any non-zero numerical gradient through (-2 , their evaluated y)
(iv)	Attempt to find gradient of curve when $\begin{aligned} & x=-2 \\ & 6(-2)^{2}+6(-2)-8=4 \end{aligned}$ So line is a tangent	M1 A1 A1	$\begin{aligned} & 3 \\ & 16 \end{aligned}$	Substitute $x=-2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Obtain gradient of 4 CWO Correct conclusion	Alternatives 1) Equates equation of l to equation of curve and attempts to divide resulting cubic by $(x+2)$ M1 Obtains $(x+2)^{2}(2 x-5)(=0)$ A1 Concludes repeated root implies tangent at $x=-2$ A1 2) Equates their gradient function to 4 and uses correct method to solve the resulting quadratic M1 Obtains $(x+2)(x-1)=0$ oe A1 Correctly concludes gradient $=4$ when $x=-2$ A1

Allocation of method mark for solving a quadratic

$$
\text { e.g. } \quad 2 x^{2}-5 x-18=0
$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the correct quadratic term and one other correct term (with correct sign):

$$
\begin{array}{lll}
(2 x+2)(x-9)=0 & \text { M1 } & 2 x^{2} \text { and }-18 \text { obtained from expansion } \\
(2 x+3)(x-4)=0 & \text { M1 } & 2 x^{2} \text { and }-5 x \text { obtained from expansion } \\
(2 x-9)(x-2)=0 & \text { M0 } & \text { only } 2 x^{2} \text { term correct }
\end{array}
$$

2) If the candidate attempts to solve by using the formula
a) If the formula is quoted incorrectly then MO.
b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$\frac{-5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-18}}{2 \times 2}$	earns M1 (minus sign incorrect at start of formula)
$\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times 18}}{2 \times 2}$	earns M1 (18 for c instead of -18$)$
$\frac{-5 \pm \sqrt{(-5)^{2}-4 \times 2 \times 18}}{2 \times 2}$	M0 (2 sign errors: initial sign and c incorrect)
$\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-18}}{2 \times-5}$	M0 (2b on the denominator)

Notes - for equations such as $2 x^{2}-5 x-18=0$, then $b^{2}=5^{2}$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score MO.
c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$
\begin{aligned}
& 2 x^{2}-5 x-18=0 \\
& 2\left(x^{2}-\frac{5}{2} x\right)-18=0 \\
& 2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}\right]-18=0 \\
& \left(x-\frac{5}{4}\right)^{2}=\frac{169}{16} \\
& x-\frac{5}{4}= \pm \sqrt{\frac{169}{16}} \longleftrightarrow \begin{array}{l}
\text { This is where the M1 is awarded }- \\
\text { arithmetical errors may be condoned } \\
\text { provided } x-\frac{5}{4} \text { seen or implied }
\end{array}
\end{aligned}
$$

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	Mark for explaining
E1	Mark for correct units
U1	Mark for a correct feature on a graph
G1	Method mark dependent on a previous mark, indicated by *
M1 dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	

Subject-specific Marking Instructions for GCE Mathematics Pure strand

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

C
The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
$\mathrm{f} \quad$ Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	
1		$\frac{15+\sqrt{3}}{3-\sqrt{3}} \times \frac{3+\sqrt{3}}{3+\sqrt{3}}$ $=\frac{48+18 \sqrt{3}}{9-3}$ $=8+3 \sqrt{3}$	M1 A1 A1 A1 [4]	Multiply top and bottom by $\pm(3+\sqrt{3})$ Numerator correct and simplified Denominator correct and simplified to 6 cao	SC If A0A0A0 scored, both parts correct but unsimplified B1 $\text { i.e. } \frac{45+15 \sqrt{3}+3 \sqrt{3}+3}{9+3 \sqrt{3}-3 \sqrt{3}-3} \text { o.e. }$ Alternative method: Equates expression to $a+b \sqrt{3}$ and forms simultaneous equations in a and b M1 Correct method to solve simultaneous equations M1 $a=8$ found A1 $b=3$ found A1
2	(i)		M1 A1 [2]	Reflection of given graph in either axis Correct reflection in y-axis	Clear intention to show $(-2,1),(0,0)$, $(2,2)$ by numbers, dashes or coordinates A0 If significantly short or long
2	(ii)		M1 A1 [2]	Translation of given graph vertically (up or down) Correct translation of two units vertically	Clear intention to show $(-2,4),(0,2)$, $(2,3)$ by numbers, dashes or coordinates A0 If significantly short or long

Question		Answer	Marks	Guidance	
3		$\begin{aligned} & \begin{aligned} 5 x^{2}+p x-8= & 5(x-1)^{2}+r \\ & =5\left(x^{2}-2 x+1\right)+r \\ & =5 x^{2}-10 x+5+r \end{aligned} \\ & \begin{array}{l} p=-10 \\ r=-13 \end{array} \end{aligned}$	B1 B1 M1 A1 $[4]$	$q=5$ (may be embedded on RHS) $p=-10$ $\begin{aligned} & -8= \pm q+r \text { or } \frac{-p^{2}}{20}-8=r \\ & r=-13 \end{aligned}$	Allow from $p=10$
4	(i)	$\frac{1}{9}$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		
4	(ii)	$(\sqrt[4]{16})^{3}$ $=8$	M1 A1 [2]	Interprets the power $\frac{3}{4}$ correctly $\pm 8 \text { is } \mathbf{A 0}$	$\begin{aligned} & (\sqrt[4]{16})^{3} \text { or }\left(\sqrt[4]{16^{3}}\right) \text { or } \\ & \left(16^{\frac{1}{4}}\right)^{3} \text { or }\left(16^{3}\right)^{\frac{1}{4}} \end{aligned}$
4	(iii)	$5 \sqrt{8} \div \sqrt{8}$ $=5$	M1 A1 [2]	$\begin{aligned} & \sqrt{100} \sqrt{2} \div \sqrt{4} \sqrt{2} \text { or } \sqrt{\frac{200}{8}} \text { or } \\ & \sqrt{25} \sqrt{8} \div \sqrt{8} \text { or } \sqrt{1600} \div 8 \text { soi } \\ & \text { Condone } \pm 5 \end{aligned}$	

Question		Answer	Marks	Guidance	
5		$k=\frac{1}{y^{2}}$ $\begin{aligned} & 3 k^{2}-10 k-8=0 \\ & (3 k+2)(k-4)=0 \\ & k=-\frac{2}{3} \text { or } k=4 \\ & y^{2}=-\frac{3}{2} \text { or } y^{2}=\frac{1}{4} \\ & y= \pm \frac{1}{2} \end{aligned}$	M1* M1dep A1 M1 A1 [5]	Use a correct substitution or pair of substitutions to obtain a quadratic or factorise into 2 brackets each containing $\frac{1}{y^{2}}$ Correct method to solve a quadratic $k=4$ from correct method. If other root stated it must be correct. Attempt to reciprocal and square root to obtain y (either term) No other roots given. Must be from $k=4$ from correct method.	No marks if straight to quadratic formula to get $y=$ " $-\frac{2}{3} ", y=" 4$ " unless correct substitution applied later i.e. reciprocal and square root No marks if quadratic found from incorrect substitution SC If M0 Spotted solutions www B1 each Justifies 2 solutions exactly B3
		Alternative method below: $\begin{array}{ll} 3-10 y^{2}-8 y^{4}=0 & \\ k=y^{2} & \text { M1* } \\ 8 k^{2}+10 k-3=0 & \text { M1 dep } \\ (4 k-1)(2 k+3)=0 & \text { A1 } \\ k=\frac{1}{4} \text { or } k=-\frac{3}{2} & \\ y= \pm \frac{1}{2} & \text { M1 A1 } \end{array}$		$k=\frac{1}{4}$ from correct method. If other root stated it must be correct.	

Question		Answer	Marks	Guidance	
6	(i)	$\mathrm{f}^{\prime}(x)=-4 x^{-2}-3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Attempt to differentiate $-4 x^{-2}$ Fully correct derivative (no "+ c ")	$k x^{-2}$ or -3 correctly obtained
6	(ii)	$\mathrm{f}^{\prime \prime}(x)=8 x^{-3}$ $\mathrm{f}^{\prime \prime}\left(\frac{1}{2}\right)=\frac{8}{\left(\frac{1}{2}\right)^{3}}$ $=64$	M1* A1 M1dep A1 [4]	Attempts to differentiate their (i) Correct derivative Substitutes $x=\frac{1}{2}$ correctly into their $\mathrm{f}^{\prime \prime}(x)$ e.g. $8\left(\frac{1}{2}\right)^{-3}$ (allow "invisible brackets") www	Must involve reducing power of an x term by 1 $\mathrm{f}^{\prime \prime}(x)$ must involve x.
7	(i)	$\begin{aligned} & x^{3}-3 x^{2}+5 x+2 x^{2}-6 x+10 \\ & =x^{3}-x^{2}-x+10 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-2 x-1 \\ & (3 x+1)(x-1)=0 \\ & x=-\frac{1}{3} \text { or } x=1 \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6 x-2, x=1 \text { gives +ve (4) } \\ & \text { Min point at } x=1 \\ & y=9 \text { found } \end{aligned}$	M1 M1 M1* M1 A1 M1dep A1 A1 [8]	Attempt to multiply out brackets Attempt to differentiate their cubic Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Correct method to solve quadratic Correct x values of turning points found www Valid method to establish which is min point with a conclusion Correct conclusion for $x=1$ found from correct factorisation (even if other root incorrect) www for (1, 9) given as minimum point (ignore other point here)	Alternative for product rule Attempt to use product rule M1 Expand brackets of both parts M1 Then as main scheme Any extra values for turning points loses all three A marks (eg by sketching positive cubic, second diff method for either of their x values, y co-ords etc.) If constant incorrect in initial expansion, max $\mathbf{5 / 8}$

Question		Answer	Marks	Guidance	
7	(ii)	$\begin{aligned} & (-3)^{2}-4 \times 1 \times 5 \\ & =-11 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Uses $b^{2}-4 a c$	$\sqrt{b^{2}-4 a c}$ is M0
7	(iii)		B2 [2]	Fully correct argument - no extra incorrect statements e.g. 1) Justifying the quadratic factor having no roots so only intersection with x-axis is at $x=$ -2 and stating it's a positive cubic 2) Sketch of positive cubic with one root at $(-2,0)$ and a min point at $(1,9)(f / t$ positive $y(1)$ from (i))	Award B1 for either of: 1) Justifying the quadratic factor having no roots so only intersection with x-axis is at $x=-2$ 2) Sketch of positive cubic with one root at $(-2,0)$ and a min point with y coordinate positive or 0
8		B lies on I so has coordinates ($x, 11-2 x$) $\begin{aligned} & (x-3)^{2}+(11-2 x-5)^{2}=(6 \sqrt{5})^{2} \\ & 5 x^{2}-30 x-135=0 \\ & 5(x+3)(x-9)=0 \\ & x=-3, x=9 \\ & y=17, y=-7 \end{aligned}$	M1 M1 M1* M1dep A1 A1 [6]	Attempt to find equation of l with gradient -2 $(x-3)^{2}+(y-5)^{2}=(6 \sqrt{ } 5)^{2}$ o.e. seen Attempts to solve the equations simultaneously to get a quadratic Correct method to solve their quadratic Both x values Both y values	e.g. by substitution as shown SC If A0 A0, one correct pair of values from correct factorisation www B1
		Alternative method: Use of $(1,2, \sqrt{5})$ triangle with -ve gradient M1 Scaling to $6 \sqrt{5}$ M1 $(3,5)+(6,-12)$ M1 (9, -7) A1 $(3,5)-(6,-12)$ M1 $(-3,17)$ A1		SC Spotted solutions Each correct pair www B1 (May also earn first two Ms as in main scheme) -1 for one or two extra incorrect solutions -2 for three or more extra incorrect solutions Checks solutions and justifies only two solution * NB - First M1 may also be awarded for estab solution(s) is -2	B2 shing gradient between $(3,5)$ and their

Question		Answer	Marks	Guidance	
9	(i)	$\begin{aligned} & (x-3)(x+4)=0 \\ & x=3 \text { or } x=-4 \end{aligned}$	M1 A1 B1 B1 B1 [5]	Correct method to find roots Correct roots Negative quadratic curve y intercept $(0,12)$ Good curve, with correct roots 3 and -4 indicated and max point in $2^{\text {nd }}$ quadrant	i.e. max at $(0,12)$ B0 Curve must go below x-axis for final mark
9	(ii)	$-4<x<3$	M1 A1 [2]	Correct method to solve quadratic inequality Allow \leq for the method mark but not the accuracy mark	their lower root $<x<$ their higher root Allow " $x>-4, x<3$ " Allow " $x>-4$ and $x<3$ " Do not allow " $x>-4$ or $x<3$ "
9	(iii)	$\begin{aligned} & y=4-3 x \\ & 12-x-x^{2}=4-3 x \end{aligned}$ $\begin{aligned} & x^{2}-2 x-8=0 \\ & (x-4)(x+2)=0 \\ & x=4 \text { or } x=-2 \\ & y=-8 \text { or } y=10 \end{aligned}$	M1 A1 M1 A1 A1 [5]	substitute for x / y or attempt to get an equation in 1 variable only obtain correct 3 term quadratic correct method to solve 3 term quadratic	e.g. for first mark $3 x+12-x-x^{2}=4$, or $y=12-\left(\frac{4-y}{3}\right)-\left(\frac{4-y}{3}\right)^{2}$ (this leads to $y^{2}-2 y-80=0$). Condone poor algebra for this mark. SC If A0 A0, give B1 for one correct pair of values spotted or from correct factorisation www

Question		Answer	Marks	Guidance	
10	(i)	$(x+2)^{2}+(y-4)^{2}=25$ $\begin{aligned} & x^{2}+4 x+4+y^{2}-8 y+16-25=0 \\ & x^{2}+y^{2}+4 x-8 y-5=0 \end{aligned}$	M1 M1 A1 [3]	$\begin{aligned} & (x+2)^{2} \text { and }(y-4)^{2} \text { seen (or implied by } \\ & \left.x^{2}+4 x+y^{2}-8 y\right) \\ & (x \pm 2)^{2}+(y \pm 4)^{2}=25 \end{aligned}$ Correct equation in correct form (terms can be in any order but must have " $=0$ ")	Alternative markscheme for f, g, c method: $\begin{aligned} & x^{2}+4 x+y^{2}-8 y \quad \text { B1 } \\ & c=2^{2}+(\pm 4)^{2}-25 \quad \text { M1 } \end{aligned}$ Correct equation in correct form A1
10	(ii)	$\begin{aligned} & \text { gradient of radius }=\frac{8-4}{-5+2} \\ & \qquad=-\frac{4}{3} \\ & \text { gradient of tangent }=\frac{3}{4} \\ & y-8=\frac{3}{4}(x+5) \\ & 3 x-4 y+47=0 \end{aligned}$	M1 A1 B1FT M1 A1 [5]	uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}(3 / 4$ substitutions correct) Allow $\frac{4}{-3}$ correct equation of straight line through $(-5,8)$, any non-zero gradient Shows rearrangement to given equation AG CWO throughout for A1	
		Alternative by rearrangement Gradient of radius $=\frac{8-4}{-5+2}=\frac{-4}{3} \mathbf{M 1} * \mathbf{A 1}$ Attempts to rearrange equation of line to find gradient of line $=\frac{3}{4}$ M1dep Multiply gradients to get -1 B1 Check ($-5,8$) lies on line B1 (dep on both M1s)		Alternative for equating given line to circle Substitute for x / y or attempt to get an equation in 1 variable only M1 $k\left(x^{2}+10 x+25\right)=0 \text { or } k\left(y^{2}-16 y+64\right)=0$ A1 Correct method to solve quadratic M1 $\mathrm{x}=-5, \mathrm{y}=8$ found $\mathbf{A 1}$ States one root implies tangent B1	Alternative markscheme for implicit differentiation: M1 Attempt at implicit diff as evidenced by $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ term A1ft $2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+4-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \mathrm{ft}$ from their equation in (i) A1 Substitution of $(-5,8)$ to obtain $\frac{3}{4}$ then final 2 marks as main scheme

Question		Answer	Marks	Guidance	
10	(iii)	$(3 \times 3)-(4 \times 14)+47=0$	B1 [1]	Sufficient correct working to verify statement e.g. verifying co-ordinate as shown	Alt: showing line joining $(-5,8)$ to $(3$, 14) has same gradient etc.
10	(iv)	$\begin{aligned} & \sqrt{(3--5)^{2}+(14-8)^{2}} \\ & =10 \end{aligned}$ $\begin{aligned} \text { Area of triangle } & =\frac{1}{2} \times 10 \times 5 \\ & =25 \end{aligned}$	M1 A1 M1 A1 [4]	Use of $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ for $T P$ Must use their $T P$ and their $C P$	Alternative method: Attempt to find area of enclosing rectangle and subtract areas of other three triangles M1* Correct use area of triangle formula M1 dep All four values correct A1 Final answer correct A1 (Use the same principle for any enclosing shape)

Solving a quadratic

This is particularly important to mark correctly as it can sometimes feature several times on a single examination paper. An example is usually included with the markscheme each session; this has varied slightly over the years and should be referred to every session. Consider the equation $3 x^{2}-10 x-8=0$.

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the correct quadratic term and one other correct term (with correct sign):
$(3 x+1)(x-8)=0$
M1 $3 x^{2}$ and - 8 obtained from expansion
$(3 x-1)(x-3)=0$
M1 $3 x^{2}$ and $-10 x$ obtained from expansion
$(3 x-2)(x-4)=0$
M0 only $3 x^{2}$ term correct
2) If the candidate attempts to solve by using the formula
a) If the formula is quoted incorrectly then M0.
b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0.

$\frac{-10 \pm \sqrt{(-10)^{2}-4 \times 3 \times-8}}{6}$	earns M1 (minus sign incorrect at start of formula)
$\frac{10 \pm \sqrt{(-10)^{2}-4 \times 3 \times-8}}{2 \times 3}$	earns M1 (8 for c instead of -8$)$
$\frac{-10 \pm \sqrt{(-10)^{2}-4 \times 3 \times 8}}{6}$	M0 (2 sign errors: initial sign and c incorrect)
$\frac{10 \pm \sqrt{(-10)^{2}-4 \times 3 \times-8}}{2 \times-10}$	M0 (2b on the denominator)

Notes - for equations such as $3 x^{2}-10 x-8=0$, then $b^{2}=10^{2}$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a both occurrences in the formula would be two sign errors and score M0.
c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm; we are looking for evidence that the candidate knows a quadratic has two solutions.

$$
\begin{aligned}
& 3 x^{2}-10 x-8=0 \\
& 3\left(x^{2}-\frac{10}{3} x\right)-8=0 \\
& 3\left(\left(x-\frac{5}{3}\right)^{2}-\frac{25}{9}\right]-8=0 \\
& \left(x-\frac{5}{3}\right)^{2}=\frac{49}{9} \\
& x-\frac{5}{3}= \pm \sqrt{\frac{49}{9}} \quad \begin{array}{l}
\text { This is where the M1 is awarded }- \\
\text { arithmetical errors may be condoned } \\
\text { provided } x-\frac{5}{3} \text { (or equivalent) seen or } \\
\text { implied }
\end{array}
\end{aligned}
$$

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt see guidance later in this document.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

Mathematics

Advanced Subsidiary GCE

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1. Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0,1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0,1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

2. Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
c. The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore MO A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	
1		$x^{3}-5 x^{2}+3 x-15-\left(x^{2}+4 x-x-4\right)$ $=x^{3}-6 x^{2}-11$	M1 A1 A1 [3]	Attempt to expand both pairs of brackets Expansion with at most one incorrect term (no missing terms)	No more than one "missing term" Do not allow "invisible brackets" unless final answer correct Allow one simplified incorrect term e.g. $\left(x^{2}+5 x-4\right)$
2	(i)	$\sqrt[4]{7}=7^{\frac{1}{4}}$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	Allow $7^{0.25}, k=0.25$ etc.	
2	(ii)	$\frac{1}{7 \sqrt{7}}=7^{-\frac{3}{2}}$	M1 A1 [2]	Clear evidence of correct use of $7^{a} \times 7^{b}=7^{a+b}$ or a single term $\frac{1}{7^{d}}=7^{-d}$ Allow -1.5, $k=-1.5$ etc.	$\text { Allow } \frac{1}{7^{d} 7^{e}}=\left(7^{d} 7^{e}\right)^{-1}\left[\text { not }=7^{d} 7^{-e}\right]$
2	(iii)	$\begin{aligned} & 7^{4} \times 7^{20} \\ & =7^{24} \end{aligned}$	M1 A1 [2]	$\begin{aligned} & 7^{20} \text { or } 49^{2} \text { seen }\left(\text { or } 49^{12}\right) \\ & \text { Allow } k=24 \end{aligned}$	$\left(7^{2}\right)^{10}$ is not good enough for M1
3	(i)	$\frac{3}{5}$	B1 [1]	Allow 0.6 or any equivalent fraction	Do not allow $\frac{3}{5} x$ as final answer
3	(ii)	$\begin{aligned} & P\left(\frac{20}{3}, 0\right) \\ & Q(0,-4) \\ & \left(\frac{\frac{20}{3}+0}{2}, \frac{0+-4}{2}\right) \\ & \left(\frac{10}{3},-2\right) \end{aligned}$	B1 B1 M1 A1 [4]	May be implied by subsequent working May be implied Correct method to find midpoint of line Allow exact equivalent forms, decimals must be correct to at least 2dp	Allow $x=\frac{20}{3}$ for P Allow $y=-4$ for Q Check formula, or if formula not seen, the use of formula is correct (including correct signs) for both x and y, Can be implied by correct final answers SC If P and Q given the wrong way round but then used correctly to obtain correct final answer B2

Question		Answer	Marks	Guidance	
4	(i)	$\begin{aligned} & 2\left(x^{2}-10 x\right)+49 \\ & =2(x-5)^{2}-50+49 \end{aligned}$ $=2(x-5)^{2}-1$	B1 B1 M1 A1 [4]	$\begin{aligned} & p=2 \\ & (x-5)^{2} \\ & 49-2 q^{2} \text { or } \frac{49}{2}-q^{2} \end{aligned}$	If p, q, r found correctly, then ISW slips in format. $\begin{aligned} & 2(x-5)^{2}+1 \quad \text { B1 B1 M0 A0 } \\ & 2(x-5)-1 \quad \text { B1 B1 M1 A1 (BOD) } \\ & 2(x-5 x)^{2}-1 \quad \text { B1 B0 M1 A0 } \\ & 2\left(x^{2}-5\right)^{2}-1 \text { B1 B0 M1 A0 } \\ & 2(x+5)^{2}-1 \quad \text { B1 B0 M1 A1 (BOD) } \\ & 2 x(x-5)^{2}-1 \quad \text { B0 B1M1A1 } \end{aligned}$
4	(ii)	$(5,-1)$	$\begin{gathered} \text { B1 FT } \\ \text { B1 FT } \\ {[2]} \\ \hline \end{gathered}$	ft their q (Do not allow " $5 x$ ") ft their r (Do not allow "-1y")	If restarted then $\mathbf{B 1} \mathbf{B 1}$ for each B0 if more than one answer given
5	(i)		M1 A1 [2]	Correct shape of graph in Q1 Ignore reflection in the x axis Correct graph in Q1 only	Ignore "feathering" Finite "plot" scores M0 Need not meet origin for \mathbf{M} mark Allow slight curve downwards for \mathbf{M} mark but not for \mathbf{A} Allow tending to horizontal
5	(ii)	Translate(d) or Translation Parallel to x-axis, (+)4 units	B1 B1 [2]	Do not accept "shift", "move" etc. without the word translation/translate(d) For "parallel to the x axis" allow "horizontally", "across", "to the right", "in the (positive) x direction". Do not accept "in/on/across/up/along/to/towards the x axis"	Allow e.g. "4 units across in the positive x direction parallel to the x axis" but do not award second B1 if statements are contradictory. "Factor 4" not acceptable
5	(iii)	$y=\sqrt{\left(\frac{x}{5}\right)}$	M1 A1 [2]	$\sqrt{5 x} \text { or } \sqrt{\frac{x}{5}} \text { seen }$ Must have " $y=$ " to earn A mark (do not allow " $f(x)=$ ")	SC If doubt over whether use of square root/solidus is totally correct $\mathbf{B 1}$ (Must still have " $y=$ ") Allow $\sqrt{5} y=\sqrt{x}$ or equivalent

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}+32 \\ & 4 x^{3}+32=0 \\ & x=-2 \\ & y=-48 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { A1 FT } \\ \\ {[5]} \\ \hline \end{gathered}$	Attempt to differentiate (one term correct) Completely correct Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ (can be implied) Correct value for x (not ± 2) www Correct value of y for their single non-zero value of x	$\begin{aligned} & \hline \text { "+ C" is A0 } \\ & \text { e.g. }(2,80),(4,384),(-4,128) \text {, } \\ & (8,4352),(-8,3840) \end{aligned}$
8	(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 x^{2}$ When $x=-2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0$ so minimum pt	M1 A1 [2]	Correct method for determining nature of a stationary point - see right hand column Fully correct for $x=-2$ only	e.g. evaluating second derivate at $x=$ " -2 " and stating a conclusion Evaluating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ either side of $x="-2 "$ Evaluating y either side of $x=$ " -2 "
8	(iii)	$x>-2$	$\begin{gathered} \text { B1 FT } \\ \text { [1] } \end{gathered}$	ft from single x value in (i) consistent with (ii)	Do not accept $x \geq-2$
9	(i)	Area of tile $=4 x(x+3)$ $\begin{aligned} & 4 x(x+3)<112 \\ & 4 x^{2}+12 x-112<0 \\ & 4(x+7)(x-4)<0 \end{aligned}$ $\begin{aligned} & -7<x<4 \\ & \therefore 0<x<4 \end{aligned}$	B1 B1 $\sqrt{ }$ M1 M1 A1 A1 [6]	Correct expression for area of rectangle (may be unsimplified) Correct inequality for their expression Correct method to solve a three term quadratic Chooses correct region for the quadratic inequality i.e. lower root $<x<$ higher root (May be implied by correct final answer) Restricts range to positive values of x CWO	Correct alternative forms for factorised inequality include: $\begin{aligned} & (x+7)(4 x-16)<0 \\ & (4 x+28)(x-4)<0 \\ & (2 x+14)(2 x-8)<0 \text { etc. } \end{aligned}$ Do not allow \leq for final A mark
9	(ii)	$\begin{aligned} & \text { Perimeter }=4 y+(y+3)+2 y+y+2 y+3 \\ & 20<10 y+6<54 \\ & 1.4<y<4.8 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 FT } \\ \text { M1 } \\ \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	Clear attempt to add lengths of all 6 edges Correct perimeter simplified to $10 y+6$ seen Correct inequalities for their expression Solving 2 linear equations or inequalities dealing with all 3 terms Accept " $1.4<y, y<4.8$ ", " $1.4<y$ and $y<$ 4.8" but NOT " $1.4<y$ or $y<4.8$ ".	Allow < or \leq throughout part (ii) Can still be unsimplified here Do not ISW if contradictory incorrect form follows correct answer

Question		Answer	Marks	Guidance	
10	(i)	$\begin{aligned} & \text { Centre }(5,-2) \\ & \text { Radius =5 } \\ & \text { Diameter = } 0 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	5 or $\sqrt{25}$ soi	
10	(ii)	$\begin{aligned} & \text { Gradient of line }=\frac{2-^{-}-2}{7-5}(=2) \\ & y-2=2(x-7) \text { or } y-2=2(x-5) \\ & y=2 x-12 \end{aligned}$	M1 A1 M1 A1 [4]	uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ with their centre correct equation of straight line through $(7,2)$ or their centre, any non-zero gradient o.e. 3 term equation	3/4 substitutions correct Allow other points on the line e.g. mid-point is $(6,0)$
10	(iii)	$\begin{aligned} & \sqrt{(7-5)^{2}+\left(2-^{-} 2\right)^{2}} \\ & =\sqrt{20} \\ & \sqrt{20}<5 \text { so } P \text { lies inside the circle } \end{aligned}$	M1 A1 B1 FT [3]	Use of $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ with their centre Compares their length $C P$ with their radius and states consistent conclusion. Both lengths must be mentioned.	3/4 substitutions correct. Must have square root as length specifically asked for. SC If M0, award for $\mathbf{B 1}$ for finding $\mathrm{CP}^{2}=20$ and stating $20<25$ and concluding inside www
10	(iv)	$\begin{aligned} & (x-5)^{2}+(2 x+2)^{2}(=25) \\ & (x-5)^{2}+(2 x+2)^{2}=25 \\ & x^{2}-10 x+25+4 x^{2}+8 x+4=25 \\ & 5 x^{2}-2 x+4=0 \\ & b^{2}-4 a c=4-(4 \times 5 \times 4) \end{aligned}$ $b^{2}-4 a c<0 \text { so no real roots }$	M1* A1 A1 M1dep A1 [5]	Substitute for x / y or attempt to eliminate one of the variables Correct unsimplified equation (= 0 can be implied) Obtain correct 3 term quadratic Attempt to determine whether equation has real roots with consistent conclusion regarding roots/intersection Fully justified statement that line and circle do not meet www	If x eliminated, $5 y^{2}-4 y+16=0$ If the discriminant is evaluated, this must be -76 (from the quadratic in x) or -304 (from the quadratic in y) for full marks.

Allocation of method mark for solving a quadratic

$$
\text { e.g. } 2 x^{2}-5 x-18=0
$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the correct quadratic term and one other correct term (with correct sign):

$$
\begin{array}{lll}
(2 x+2)(x-9)=0 & \text { M1 } & 2 x^{2} \text { and }-18 \text { obtained from expansion } \\
(2 x+3)(x-4)=0 & \text { M1 } & 2 x^{2} \text { and }-5 x \text { obtained from expansion } \\
(2 x-9)(x-2)=0 & \text { M0 } & \text { only } 2 x^{2} \text { term correct }
\end{array}
$$

2) If the candidate attempts to solve by using the formula
a) If the formula is quoted incorrectly then $\mathbf{M 0}$.
b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$$
\begin{array}{lc}
\frac{-5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-18}}{2 \times 2} & \text { earns M1 } \\
\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times 18}}{2 \times 2} & \text { earns M1 (minus sign incorrect at start of formula) } \\
\frac{-5 \pm \sqrt{(-5)^{2}-4 \times 2 \times 18}}{2 \times 2} & \text { M0 (2 for } c \text { instead of }-18) \\
\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-18}}{2 \times-5} & \text { M0 (2b on the denominator) }
\end{array}
$$

Notes - for equations such as $2 x^{2}-5 x-18=0$, then $b^{2}=5^{2}$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score M0.
c) If the formula is not quoted at all, substitution must be completely correct to earn the M1

3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$
\begin{aligned}
& 2 x^{2}-5 x-18=0 \\
& 2\left(x^{2}-\frac{5}{2} x\right)-18=0 \\
& 2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}\right]-18=0 \\
& \left(x-\frac{5}{4}\right)^{2}=\frac{169}{16} \\
& x-\frac{5}{4}= \pm \sqrt{\frac{169}{16}} \longleftrightarrow \begin{array}{l}
\text { This is where the M1 is awarded }- \\
\text { arithmetical errors may be condoned } \\
\text { provided } x-\frac{5}{4} \text { seen or implied }
\end{array}
\end{aligned}
$$

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Mathematics

Advanced Subsidiary GCE

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0,1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*/DM1	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
ft or $\sqrt{ }$	Follow through

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader
c. The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E
A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (eg 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer $\begin{aligned} & \frac{6 \pm \sqrt{(-6)^{2}-4 \times 1 \times-2}}{2 \times 1} \\ & =\frac{6 \pm \sqrt{44}}{2} \\ & =3 \pm \sqrt{11} \end{aligned}$ OR: $\begin{aligned} & (x-3)^{2}-9-2=0 \\ & x-3= \pm \sqrt{11} \end{aligned}$ $x=3 \pm \sqrt{11}$	Marks	Guidance	
1	(i)		M1 A1 A1 M1 A1 A1 [3]	Valid attempt to use quadratic formula Both roots correct and simplified Correct method to complete square Rearranged to correct form cao	No marks for attempting to factorise Must get to $(x-3)$ and \pm stage for the M mark, constants combined correctly gets A1
1	(ii)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =2 x-6 \\ & =-16 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	WWw	
2	(i)	$n=0$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	Allow 3^{0}	
2	(ii)	$\begin{aligned} & \frac{1}{t^{3}}=64\left(\text { or } 4^{3}\right) \\ & t=\frac{1}{4} \end{aligned}$	M1 A1 [2]	or $t^{3}=\frac{1}{64}$ or $64 \mathrm{t}^{3}=1$ or $\left(\frac{1}{t}\right)^{3}=64$ 4^{-1} is $\mathbf{A 0} t= \pm \frac{1}{4}$ is A0	Allow embedded 4^{-1} www alone implies M1 A0
2	(iii)	$\begin{aligned} & 2 p^{2}=8 \\ & p=2 \end{aligned}$ or $p=-2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	or $8 p^{6}=8^{3}$. Allow $2 p^{\frac{6}{3}}=8$ for M1 www www	If not 512, evidence of $8 \times 8 \times 8$ needed. SC Spotted B1 for 2, B1 for -2, B1 for justifying exactly 2 solutions SC $8 p^{2}=8, p= \pm 1$ B1

Question		Answer	Marks	Guidance	
3	(i)		B1 B1 B1 [3]	-ve cubic with 3 distinct roots $(0,6)$ labelled or indicated on y-axis seen elsewhere not enough $(-3,0),(-1,0)$ and $(2,0)$ labelled or indicated on x-axis and no other x intercepts.	Must not stop at x-axis. Condone errors in curvature at the extremes unless extra turning point(s)/root(s) clearly implied. Must have a curve for $2^{\text {nd }}$ and $3^{\text {rd }}$ marks Do not allow final B1 if shown as repeated root(s)
3	(ii)	Reflection in the y axis	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	Not mirrored/flipped etc. or $x=0$. No/through/along etc. Must be "in". Cannot get ${ }^{\text {nd }}$ B1 without some indication of a reflection e.g. flip etc. Do not ISW if contradictory statement seen	Alt Stretch (scale) factor -1 B1 parallel to the x axis for $\mathbf{B 1}$ Must be a single transformation for any marks
4	(i)	$\begin{aligned} & 2 x^{2}-3 x-5=\frac{-10 x-11}{2} \\ & 4 x^{2}+4 x+1=0 \\ & (2 x+1)(2 x+1)=0 \\ & x=-\frac{1}{2} \\ & y=-3 \end{aligned}$	*M1 A1 DM1 A1 A1 [5]	Substitute for x / y or attempt to get an equation in 1 variable only Obtain correct 3 term quadratic - could be a multiple e.g. $2 x^{2}+2 x+0.5=0$ Correct method to solve resulting 3 term quadratic	or $10 x+2\left(2 x^{2}-3 x-5\right)+11=0$ If x is eliminated, expect $k\left(8 y^{2}+48 y+72\right)=0$ SC If DM0 and $x=-\frac{1}{2}$ spotted B1 for x value, $\mathbf{B 1}$ for y value B1 justifying only one root
4	(ii)	Line is a tangent to the curve	$\mathrm{B} 1 \sqrt{ }$ [1]	Must be consistent with their answers to their quadratic in (i). 1 repeated root - indicates one point. Accept tangent, meet at, intersect, touch etc. but do not accept cross 2 roots - indicates meet at two points 0 roots - indicates do not meet. Do not accept "do not cross"	Follow through from their solution to (i)

Question		Answer	Marks	Guidance	
5	(i)	$5 x^{2}+17 x-12-3\left(x^{2}-4 x+4\right)$ $=2 x^{2}+29 x-24$	M1 A1 A1 [3]	Attempt to expand both pairs of brackets $5 x^{2}+17 x-12$ and $x^{2}-4 x+4$ soi ; may be unsimplified, no more than one incorrect term, no "extra" terms at all. No "invisible brackets" $2 x^{2}+29 x-24$	ISW if they then put expression equal to zero and go on to "solve"
5	(ii)	$-5 x^{2}+2 k x^{2}+6 x^{2}$ $k=-2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Correct method to multiply out 3 brackets or correctly identify all x^{2} terms All x^{2} terms correct, no extras	No more than 8 terms, but ignore sign errors/accuracy of non x^{2} terms

Question		Answer	Marks	Guidance	
6	(i)	$\frac{p-7}{-4-^{-} 2} \text { or } \frac{7-p}{-2-^{-} 4}$ $\begin{aligned} & \frac{p-7}{-4--2}=4 \text { or } \frac{7-p}{-2--4}=4 \\ & p=-1 \end{aligned}$	M1 A1 A1 [3]	uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ (at least 3out of 4 correct) Correct, unsimplified equation	Alternative method: Equation of line through one of the given points with gradient 4 M1 Substitutes other point into their equation M1 Obtains $p=-1$ (Accept $y=-1$)A1 Note: Other "informal" methods can score full marks provided www
6	(ii)	$\begin{aligned} & \frac{-2+6}{2}=m, \quad \frac{7+q}{2}=5 \\ & m=2 \\ & q=3 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Correct method (may be implied by one correct coordinate)	Use the same marking principle for candidates who add/subtract half the difference to an end point or use similar triangles or other valid "informal" methods.
6	(iii)	$\begin{aligned} & \sqrt{(-2-d)^{2}+(7-3)^{2}} \\ & d^{2}+4 d+20=52 \\ & d^{2}+4 d-32=0 \\ & (d+8)(d-4)=0 \\ & d=-8 \text { or } 4 \end{aligned}$	*M1 B1 DM1 A1 [4]	Correct method to find line length/square of line length using Pythagoras’ theorem (at least 3out of 4 correct) $(2 \sqrt{13})^{2}=52 \text { or } 2 \sqrt{13}=\sqrt{52}$ Correct method to solve 3 term quadratic, must involve their " 52 "	SC: B1 for each value of d found or "spotted" from correct working Note: Other "informal" methods can score full marks provided www

Question		Answer	Marks	Guidance	
7	(i)	$y=9 x^{5}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=45 x^{4}$	M1 A1 B1 ft [3]	Obtain $k x^{5}$ Correct expression for $y\left(9 x^{5}\right)$ Follow through from their single $k x^{n}, n \neq$ 0 . Must be simplified.	If individual terms are differentiated then M0A0B0 $\frac{3 x^{2}+x^{4}}{x}$ is not a misread M0A0B0
7	(ii)	$y=x^{\frac{1}{3}}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3} x^{-\frac{2}{3}}$	B1 B1 B1 [3]	$\begin{aligned} & \sqrt[3]{x}=x^{\frac{1}{3}} \\ & k x^{-\frac{2}{3}} \\ & \frac{1}{3} x^{-\frac{2}{3}} . \text { Allow } 0.3 \text { (not finite) } \end{aligned}$	SC $\sqrt[3]{x}=x^{-\frac{1}{3}}$ differentiated to $-\frac{1}{3} x^{-\frac{4}{3}} \mathbf{B 1}$
7	(iii)	$\begin{gathered} y=\frac{1}{2} x^{-3} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{3}{2} x^{-4} \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	$k x^{-4}$ seen	
8		$\begin{aligned} & (3 k-1)^{2}-4 \times k \times-4 \\ & =9 k^{2}+10 k+1 \\ & 9 k^{2}+10 k+1<0 \\ & (9 k+1)(k+1)<0 \\ & -1,-\frac{1}{9} \\ & -1<k<-\frac{1}{9} \end{aligned}$	*M1 A1 M1 DM1 A1 M1 A1 [7]	Attempts $b^{2}-4 a c$ or an equation or inequality involving b^{2} and 4ac. Must involve k^{2} in first term (but no x anywhere). If $b^{2}-4 a c$ not stated, must be clear attempt. Correct discriminant, simplified to 3 terms States discriminant <0 or $b^{2}<4 a c$. Correct method to find roots of a three term quadratic Both values of k correct Chooses "inside region" of inequality Allow " $k<-\frac{1}{9}$ and $k>-1$ " etc. must be strict inequalities for A mark	Must be working with the discriminant explicitly and not only as part of the quadratic formula. Allow $\sqrt{b^{2}-4 a c}$ for first M1 A1 Can be awarded at any stage. Doesn't need first M1. No square root here. Allow correct region for their inequality Do not allow " $k<-\frac{1}{9}$ or $k>-1$ ";

Question		Answer	Marks	Guidance	
9	(i)	Centre ($1,-5$) $\begin{aligned} & (x-1)^{2}+(y+5)^{2}-19-1-25=0 \\ & (x-1)^{2}+(y+5)^{2}=45 \\ & \text { Radius }=\sqrt{45} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Correct centre Correct method to find r^{2} Correct radius. Do not allow if wrong centre used in calculation of radius.	$r^{2}=(\pm 5)^{2}+(\pm 1)^{2}+19$ for the M mark A0 if $\pm \sqrt{45}$
9	(ii)	$\begin{aligned} & 7^{2}+(-2)^{2}-14-20-19 \\ & =0 \end{aligned}$	B1 [1]	Substitution of coordinates into equation of circle in any form or use of Pythagoras' theorem to calculate the distance of $(7,-2)$ from C	No follow through for this part as AG. Must be consistent- do not allow finding the distance as $\sqrt{45}$ if no/wrong radius found in 9(i).
9	(iii)	$\begin{aligned} & \text { gradient of radius }=\frac{-5-(-2)}{1-7} \text { or } \frac{-2-(-5)}{7-1} \\ & =\frac{1}{2} \\ & \text { gradient of tangent }=-2 \\ & y+2=-2(x-7) \\ & 2 x+y-12=0 \end{aligned}$	M1 A1 $\sqrt{ }$ B1 $\sqrt{ }$ M1 A1 [5]	uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ with their $\mathbf{C}(3 / 4$ correct $)$ Follow through from their C, allow unsimplified single fraction e.g. $\frac{-3}{-6}$ Follow through from their gradient, even if M0 scored. Allow $\frac{-1}{\text { B1 }}$ their fraction correct equation of straight line through (7, -2), any non-zero numerical gradient oe 3 term equation in correct form i.e. $k(2 x+y-12)=0$ where k is an integer cao	Follow through from 9(i) until final mark. If $(-1,5)$ is used for C, then expect Gradient of radius $=\frac{5-(-2)}{-1-7}=-\frac{7}{8}$ Gradient of tangent $=\frac{8}{7}$ Alternative markscheme for implicit differentiation: M1 Attempt at implicit diff as evidenced by $2 y \frac{d y}{d x}$ term A1 $2 x+2 y \frac{d y}{d x}-2+10 \frac{d y}{d x}=0$ A1 Substitution of $(7,-2)$ to obtain gradient of tangent $=-2$ Then M1 A1 as main scheme

More Additional Guidance for Q10

If curve equated to line and before differentiating:

First four marks B1 M1 A1 B1 available as main scheme
Then M0 for equating as this not been explicitly done
Allow the M1 for the substitution
DM1 for quadratic as main scheme (dependent on a correct substitution)
A0 for the 9 (as follows wrong working)
DM1 for square rooting (dependent on a correct substitution)
A0 for the co-ordinates (as follows wrong working). Max mark 7/10

Allocation of method mark for solving a quadratic

$$
\text { e.g. } 2 x^{2}-5 x-18=0
$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the correct quadratic term and one other correct term (with correct sign):

$$
\begin{array}{lll}
(2 x+2)(x-9)=0 & \text { M1 } & 2 x^{2} \text { and }-18 \text { obtained from expansion } \\
(2 x+3)(x-4)=0 & \text { M1 } & 2 x^{2} \text { and }-5 x \text { obtained from expansion } \\
(2 x-9)(x-2)=0 & \text { M0 } & \text { only } 2 x^{2} \text { term correct }
\end{array}
$$

2) If the candidate attempts to solve by using the formula
a) If the formula is quoted incorrectly then $\mathbf{M 0}$.
b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$$
\begin{array}{lr}
\frac{-5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-18}}{2 \times 2} & \text { earns M1 (minus sign incorrect at start of formula) } \\
\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times 18}}{2 \times 2} & \text { earns M1 (18 for } c \text { instead of }-18) \\
\frac{-5 \pm \sqrt{(-5)^{2}-4 \times 2 \times 18}}{2 \times 2} & \text { M0 (2 sign errors: initial sign and } c \text { incorrect) } \\
\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-18}}{2 \times-5} & \text { M0 (2b on the denominator) }
\end{array}
$$

Notes - for equations such as $2 x^{2}-5 x-18=0$, then $b^{2}=5^{2}$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score M0.
c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$
\begin{aligned}
& 2 x^{2}-5 x-18=0 \\
& 2\left(x^{2}-\frac{5}{2} x\right)-18=0 \\
& 2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}\right]-18=0 \\
& \left(x-\frac{5}{4}\right)^{2}=\frac{169}{16} \\
& x-\frac{5}{4}= \pm \sqrt{\frac{169}{16}} \longleftrightarrow \begin{array}{l}
\text { This is where the M1 is awarded }- \\
\text { arithmetical errors may be condoned } \\
\text { provided } x-\frac{5}{4} \text { seen or implied }
\end{array}
\end{aligned}
$$

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
PARICFTLE
CNMRRDGE ASSESSMENT
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

Mathematics

Advanced Subsidiary GCE

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and $\boldsymbol{\bullet}$	Benefit of doubt
BOD	Follow through
FT	Ignore subsequent working
ISW	Method mark awarded 0,1
M0, M1	Accuracy mark awarded 0, 1
A0, A1	Independent mark awarded 0, 1
B0, B1	Special case
SC	Omission sign
^	Misread
MR	
Highlighting	
	Meaning
Other abbreviations in mark scheme	Mark for explaining
E1	Mark for correct units
U1	Mark for a correct feature on a graph
G1	Method mark dependent on a previous mark, indicated by *
M1 dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	

Subject-specific Marking Instructions for GCE Mathematics Pure strand

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should
be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & 4 \sqrt{45} \\ & =12 \sqrt{5} \end{aligned}$	M1 A1 [2]	or $4 \sqrt{5} \sqrt{3} \times \sqrt{3}$ (not just $4 \sqrt{5 \times 3} \times \sqrt{3}$) or $\sqrt{720}$ or $\sqrt{240} \times \sqrt{3}$ or better Correctly simplified answer	For method mark, makes a correct start to manipulate the expression i.e. at least combines two parts correctly or splits one part correctly
1	(ii)	$\frac{20 \sqrt{5}}{5}=4 \sqrt{5}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	cao, do not allow unsimplified, do not allow if clearly from wrong working	
1	(iii)	$5 \sqrt{5}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	cao www, do not allow unsimplified, do not allow if clearly from wrong working	
2		$\begin{aligned} & \begin{array}{l} k=x^{3} \\ 8 k^{2}+7 k-1=0 \\ (8 k-1)(k+1)=0 \\ k=\frac{1}{8}, k=-1 \end{array} \\ & x=\frac{1}{2}, x=-1 \end{aligned}$		Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^{3} Correct method to solve a quadratic Both values of k correct Attempt to cube root at least one value to obtain X Both values of x correct and no other values	No marks if whole equation cube rooted etc. No marks if straight to formula with no evidence of substitution at start and no cube rooting/cubing at end. Spotted solutions: If M0 DMO or M1 DM0 SC B1 $x=-1$ www SC B1 $x=\frac{1}{2}$ www (Can then get $5 / 5$ if both found www and exactly two solutions justified)

Question		Answer	Marks	Guidance	
3	(i)	$\begin{aligned} & f(x)=6 x^{-2}+2 x \\ & f^{\prime}(x)=-12 x^{-3}+2 \end{aligned}$	M1 A1 B1 [3]	$k x^{-3}$ obtained by differentiation $-12 x^{-3}$ $2 x$ correctly differentiated to 2	ISW incorrect simplification after correct expression
3	(ii)	$\mathrm{f}^{\prime \prime}(x)=36 x^{-4}$	M1 A1 [2]	Attempt to differentiate their (i) i.e. at least one term "correct" Fully correct cao No follow through for A mark	Allow constant differentiated to zero ISW incorrect simplification after correct expression
4	(i)	$\begin{aligned} & 3\left(x^{2}+3 x\right)+10 \\ & =3\left(x+\frac{3}{2}\right)^{2}-\frac{27}{4}+10 \end{aligned}$ $=3\left(x+\frac{3}{2}\right)^{2}+\frac{13}{4}$	B1 M1 A1 [3]	$\begin{aligned} & \left(x+\frac{3}{2}\right)^{2} \\ & 10-3 p^{2} \text { or } \frac{10}{3}-p^{2} \\ & \text { Allow } p=\frac{3}{2}, q=\frac{13}{4} \mathbf{A 1} \mathbf{w w w} \end{aligned}$	If p, q found correctly, then ISW slips in format. $\begin{aligned} & 3(x+1.5)^{2}-3.25 \text { B1 M0 A0 } \\ & 3(x+1.5)+3.25 \text { B1 M1 A1 (BOD) } \\ & 3(x+1.5 x)^{2}+3.25 \text { B0 M1 A0 } \\ & 3\left(x^{2}+1.5\right)^{2}+3.25 \text { B0 M1 A0 } \\ & 3(x-1.5)^{2}+3.25 \text { B0 M1 A1 (BOD) } \\ & 3 x(x+1.5)^{2}+3.25 \text { B0M1A0 } \end{aligned}$
4	(ii)	$\left(-\frac{3}{2}, \frac{13}{4}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	FT i.e. - their p FT i.e. their q	If restarted e.g. by differentiation: Correct method to find x value of minimum point M1 Fully correct answer www A1
4	(iii)	$\begin{aligned} & 9^{2}-(4 \times 3 \times 10) \\ & =-39 \end{aligned}$	M1 A1 [2]	Uses $b^{2}-4 a c$ Ignore $>0,<0$ etc. ISW comments about number of roots	Use of $\sqrt{b^{2}-4 a c}$ is M0 unless recovered

Question		Answer		Guidance	
5	(i)		B1 B1 [2]	Excellent curve for $y=\frac{2}{x^{2}}$ in either quadrant Excellent curve for $y=\frac{2}{x^{2}}$ in other quadrant and no more. SC B1 Reasonably correct curves in 1st and 2nd quadrants and no more	N.B. Ignore 'feathering' now that answers are scanned. For Excellent: Correct shape, not touching axes, asymptotes clearly the axes. Allow slight movement away from asymptote at one end but not more. Not finite. For SC B1, graph must not touch axes more than twice.
5	(ii)	$y=\frac{2}{(x+5)^{2}}$	M1 A1 [2]	$\frac{2}{(x+5)^{2}}$ or $\frac{2}{(x-5)^{2}}$ seen Fully correct, must include " $y=$ " or " $\mathrm{f}(x)=$ "	
5	(iii)	Stretch scale factor $\frac{1}{2}$ parallel to y-axis	B1 B1 [2]	Or "stretched" etc; do not accept squashed, compressed etc. oe e.g. scale factor $1 / \sqrt{2}$ parallel to x-axis	$\mathbf{0 / 2}$ if more than one type of transformation mentioned ISW non-contradictory statements For "parallel to the y-axis" allow "vertically", "up", "in the (positive) y direction". Do not accept "in/on/ across/up/along/to/towards the y-axis"
6	(i)	$\begin{aligned} & \text { Centre }(0,-4) \\ & x^{2}+(y+4)^{2}-16-24=0 \\ & \text { Radius }=\sqrt{40} \end{aligned}$	B1 M1 A1 [3]	$(y \pm 4)^{2}-4^{2}$ seen (or implied by correct answer) Do not allow A mark from $(y-4)^{2}$	Or attempt at $r^{2}=f^{2}+g^{2}-c$ A0 for $\pm \sqrt{40}$
6	(ii)	(-2, -10)	B1FT B1FT	FT through centre given in (i) FT through centre given in (i)	i.e. (their $2 x-2$, their $2 y-2$) Apply same scheme if equation of diameter found and attempt to solve simultaneously; no marks until a correct value of x / y found.

Question		Answer	Marks	Guidance	
7	(i)	$\begin{aligned} & 8 x<-1 \\ & x<-\frac{1}{8} \end{aligned}$	B1 B1 [2]	soi, allow $-8 x>1$ but not just $8 x+1<0$ Correct working only, allow $-\frac{1}{8}>x$ Do not allow $\frac{1}{-8}$	Allow \leq or \geq for first mark Do not ISW if contradictory Do not allow \leq or \geq
7	(ii)	$\begin{aligned} & 2 x^{2}-10 x \leq 0 \\ & 2 x(x-5) \leq 0 \\ & 0 \leq x \leq 5 \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { DM1* } \\ \text { A1 } \\ \text { DM1* } \\ \text { A1 } \\ {[5]} \end{gathered}$	Expand brackets and rearrange to collect all terms on one side Correct method to find roots of resulting quadratic 0,5 seen as roots - could be on sketch graph Chooses "inside region" for their roots of their resulting quadratic (not the original) Do not accept strict inequalities for final mark	No more than one incorrect term Allow $(2 x+0)(x-5)$ Do not allow $(2 x-4)(x-3)$, this is the original expression. Dependent on first M1 only Allow " $x \geq 0, x \leq 5$ ", " $x \geq 0$ and $x \leq 5$ " but do not allow " $x \geq 0$ or $x \leq 5$ "
8		Midpoint of AB is $\left(\frac{-2+3}{2}, \frac{6+-8}{2}\right)$ $\left(\frac{1}{2},-1\right)$ Gradient of given line $=\frac{1}{3}$ Gradient of $l=-3$ $y+1=-3\left(x-\frac{1}{2}\right)$ $6 x+2 y-1=0$	M1 A1 B1 B1FT M1 A1 A1 [7]	Correct method to find midpoint - can be implied by one correct value Must be stated or used - just rearranging the equation is not sufficient Use of $m_{1} m_{2}=-1$ (may be implied), allow for any initial non-zero numerical gradient Correct equation for line, any non-zero numerical gradient, through their $\left(\frac{1}{2},-1\right)$ Correct equation in any three-term form $k(6 x+2 y-1)=0$ for integer $k \mathbf{w w w}$	NB - "correct" answer can be found with wrong mid-pt. Check working thoroughly. Must include " $=0$ "

Question		Answer	Marks	Guidance	
9	(i)	$\begin{aligned} & (2 x+3)(x-2)=0 \\ & x=-\frac{3}{2}, x=2 \end{aligned}$	M1 A1 B1 B1 B1 [5]	Correct method to find roots Correct roots Reasonably symmetrical positive quadratic curve, must cross x axis y intercept $(0,-6)$ only Good curve, with correct roots indicated and min point in 4th quadrant (not on axis)	Indicated on graph or clearly stated, but there must be a curve Only allow final B1 if curve is clearly intended to be a quadratic symmetrical about min point in 4th quadrant
9	(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x-1=0$ Vertex when $x=\frac{1}{4}$ $x<\frac{1}{4}$	M1 A1 A1 FT [3]	Attempt to find x coordinate of vertex by differentiating and equating/comparing to zero, completing the square, finding the midpoint of their roots oe cao $x<$ their vertex, allow \leq	SC Award B1 (FT) for $x<0$ if clearly from their graph NB Look for solution to 9ii done in the space below 9i graph
9	(iii)	$\begin{aligned} & 2 x^{2}-x-6=4 \\ & 2 x^{2}-x-10=0 \\ & (2 x-5)(x+2)=0 \\ & \\ & x=\frac{5}{2}, x=-2 \\ & \text { Distance } P Q=41 / 2 \end{aligned}$	M1 M1 A1 B1FT [4]	Set quadratic expression equal to 4 Correct method to solve resulting three term quadratic Must have both solutions - no mark for one spotted root FT from their x values found from their resulting quadratic, provided $y=4$	Not $2 x^{2}-x-6=0$ with no use of 4 Allow $\frac{9}{2}$ oe, but do not accept unsimplified expressions like $\sqrt{\frac{81}{4}}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer \& Marks \& \multicolumn{2}{|l|}{Guidance}

\hline 10 \& (i) \& $$
\begin{aligned}
& y=-x^{3}-3 x^{2}+4 x-k x+k \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-3 x^{2}-6 x+4-k \\
& \text { When } x=-3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& -27+18+4-k=0 \\
& k=-5
\end{aligned}
$$ \& M1
A1
M1
A1
M1*
DM1*

A1

[7] \& \begin{tabular}{l}
Attempt to multiply out brackets Can be unsimplified Attempt to differentiate their expansion (M0 if signs have changed throughout) Sets $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$

Substitutes $x=-3$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ www

 \&

Must have $\pm x^{3}$ and 5 or 6 terms

If using product rule:

Clear attempt at correct rule M1*

Differentiates both parts correctly A1

Expand brackets of both parts *DM1

Then as main scheme
\end{tabular}

\hline 10 \& (ii) \& | $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-6 x-6$ |
| :--- |
| When $x=-3, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ is positive so min point | \& | M1 |
| :--- |
| A1 |
| [2] | \& | Evaluates second derivative at $x=-3$ or other fully correct method |
| :--- |
| No incorrect working seen in this part i.e. if second derivate is evaluated, it must be 12. (Ignore errors in k value) | \& | Alternate valid methods include: |
| :--- |
| 1) Evaluating gradient at either side of -3 |
| 2) Evaluating y at either side of -3 |
| 3) Finding other turning point and stating "negative cubic so min before max" |

\hline 10 \& (iii) \& \[
$$
\begin{aligned}
& -3 x^{2}-6 x+9=9 \\
& \begin{array}{l}
3 x(x+2)=0 \\
x=0 \text { or } x=-2
\end{array} \\
& \text { When } x=0, y=-9 \text { for line } \\
& \qquad y=-5 \text { for curve } \\
& \text { When } x=-2, y=-27 \text { for line } \\
& \qquad y=-27 \text { for curve } \\
& x=-2, y=-27
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| M1 |
| A1 |
| [5] | \& | Sets their gradient function from (i) (or from a restart) to 9 |
| :--- |
| Correct x-values |
| One of their x-values substituted into both curve and line/substituted into one and verified to be on the other Conclusion that $x=-2$ is the correct value or Second x-value substituted into both curve and line/verified as above $x=-2, y=-27$ www (Check \boldsymbol{k} correct) | \& | Allow first \mathbf{M} even if k not found but look out for correct answer from wrong working. |
| :--- |
| SEE NEXT PAGE FOR ALTERNATIVE METHODS |
| Note: Putting a value into $x^{3}+3 x^{2}-4=$ 0 (where the line and curve meet) is equivalent |
| If curve equated to line before differentiating: |
| M0 A0, can get M1M1 but A0 ww |
| Maximum mark 2/5 |

\hline
\end{tabular}

	estion		Answer ${ }^{\text {a }}$ Marks	Guidance
10	(iii)	Alternative method Attempt to solve equations of curve and tangent simultaneously and uses valid method to establish at least one root of the resulting cubic ($x^{3}+3 x^{2}-4=0$ oe) M1 All roots found A1 Either 1) States $x=-2$ is repeated root so tangent M2 (If double root found but not explicitly stated that repeated root implies tangent then M0 but $\mathbf{B 1}$ if $(-2,-27)$ found) Or 2) Substitutes one x value into their gradient function to determine if equal to gradient of the line M1 Substitutes other x value into their gradient function to determine if equal to gradient of the line or conclusion that -2 is the correct one M1 $x=-2, y=-27$ A1 www SC Trial and Improvement Finds at least one value at which the gradient of the curve is $9 \mathbf{B 1}$ Verifies on both line and curve B1 2/5		

APPENDIX 1

Allocation of method mark for solving a quadratic

$$
\text { e.g. } 2 x^{2}-x-6=0
$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the correct quadratic term and one other correct term (with correct sign):

$$
\begin{array}{lll}
(2 x-3)(x+2) & \text { M1 } & 2 x^{2} \text { and }-6 \text { obtained from expansion } \\
(2 x-3)(x+1) & \text { M1 } & 2 x^{2} \text { and }-x \text { obtained from expansion } \\
(2 x+3)(x+2) & \text { M0 } & \text { only } 2 x^{2} \text { term correct }
\end{array}
$$

2) If the candidate attempts to solve by using the formula
a) If the formula is quoted incorrectly then M0.
b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$\frac{-1 \pm \sqrt{(-1)^{2}-4 \times 2 \times-6}}{2 \times 2}$	earns M1 (minus sign incorrect at start of formula)
$\frac{1 \pm \sqrt{(-1)^{2}-4 \times 2 \times 6}}{2 \times 2}$	earns M1 (6 for c instead of -6)
$\frac{-1 \pm \sqrt{(-1)^{2}-4 \times 2 \times 6}}{2 \times 2}$	M0 (2 sign errors: initial sign and c incorrect)
$\frac{1 \pm \sqrt{(-1)^{2}-4 \times 2 \times-6}}{2 \times-6}$	M0 (2c on the denominator)

Notes - for equations such as $2 x^{2}-x-6=0$, then $b^{2}=1^{2}$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score M0.
c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$
\begin{aligned}
& 2 x^{2}-x-6=0 \\
& 2\left(x^{2}-\frac{1}{2} x\right)-6=0 \\
& 2\left[\left(x-\frac{1}{4}\right)^{2}-\frac{1}{16}\right]-6=0 \\
& \left(x-\frac{1}{4}\right)^{2}=\frac{49}{16} \\
& x-\frac{1}{4}= \pm \sqrt{\frac{49}{16}}
\end{aligned}
$$

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

