Mark Scheme 4752
 June 2005

Section A

1	$1+\frac{3}{2} X^{\frac{1}{2}}$	$1+3$	B2 for $k x^{\frac{1}{2}}$, or M1 for $x^{\frac{3}{2}}$ seen before differentiation or B 1 ft their $x^{\frac{3}{2}}$ correctly differentiated	4
2	1170	4	B1 for $a=11$ and B1 for $d=5$ or $20^{\text {th }}$ term $=106$ and M1 for 20/2[their (a) + their(106)] or 20/2[2their (a)+ (20-1)×their(d)] OR M1 for 6×20 and M2 for $5\left(\frac{20}{2}[20+1]\right)$ o.e.	4
3	$\pm \sqrt{13 / 4}$	3	B2 for $(-) \sqrt{ } 13 / 4$ or $\pm \sqrt{\frac{13}{16}}$ or M1 for $\sqrt{ } 13$ or $\sin ^{2} \theta+\cos ^{2} \theta=1$ used	3
4	$\begin{aligned} & x+x^{-1} \text { soi } \\ & y^{\prime}=1-1 / x^{2} \end{aligned}$ subs $x=1$ to get $y^{\prime}=0$ $y^{\prime \prime}=2 x^{-3}$ attempted Stating $y^{\prime \prime}>0$ so min cao	B1 B1 B1 M1ft A1	$1-x^{-2}$ is acceptable Or solving $1-x^{-2}=0$ to obtain $x=1$ or checking y^{\prime} before and after $x=1$ Valid conclusion First quadrant sketch scores B2	5
5	(i) 1 (ii) -2 (iii) $6 \log x$	1 2 2	M1 for $1 / 9=3^{-2}$ or $\log (1)-\log \left(3^{2}\right)$ base not requd; M1 for $5 \log x$ or $\log \left(x^{6}\right)$	5
6	Correct curve thro' y axis $(0,1)$ indicated on sketch or table 5.64	$\begin{aligned} & \text { G1 } \\ & \text { G1 } \\ & 3 \end{aligned}$	y, $y^{\prime} \& y^{\prime \prime}$ all positive independent B2 for other versions of 5.64(3....) or B1 for other ans 5.6 to 5.7 or M1 for $x \log 2=\log 50$ and M1 for $x=\log 50 \div \log 2$	5
7	$y=7-3 / x^{2}$ ое	5	B3 for $(y=)-3 / x^{2}+c$ [B1 for each of $k / x^{2}, k=-6 / 2$ and $+c$] and M1 for substituting $(1,4)$ in their attempted integration with $+c$, the constant of integration	5
8	(i) 66° or 66.4 or $66.5 \ldots$ 293.58 to 3 or more sf cao (ii) stretch (one way) parallel to the x-axis sf 0.5	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow 1.16 or 73.8 Lost for extras in range. Ignore extras outside the range Horizontal, from y axis, in x axis, oe	5
				36

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 \& i
ii
iii

iv \& \begin{tabular}{l}
$$
3 x^{2}-20 x+12
$$

$y-64=-16(x-2)$ o.e.

eg $y=-16 x+96$

Factorising $f(x) \equiv(x+2)(x-6)^{2}$

OR Expanding $(x+2)(x-6)^{2}$
$$
\frac{x^{4}}{4}-\frac{10 x^{3}}{3}+6 x^{2}+72 x
$$

value at $(x=6) \sim$ value at $(x=-2)$ 341(.3..) cao

 \&

4

B3

M2

E1

B2

M1

A1

 \&

B1 if one error " +c " is an error

M1 for subst $x=2$ in their y^{\prime}

A1 for $y^{\prime}=-16$ and B1 for $y=64$

or B1 for $f(-2)=-8-40-24+72=0$ and

B1 for $f^{\prime}(6)=0$ and

B1dep for $f(6)=0$

-1 for each error

Must have integrated $f(x)$
\end{tabular} \& 2

4
3
3
4

\hline 10 \& ii \& ```
$\mathrm{AB}=7.8(0), 7.798$ to 7.799 seen
area $=52.2$ to 52.3
$\tan 0.91=\mathrm{ST} / 12.6$
$\mathrm{ST}=12.6 \times \tan 0.91$ and
completion (16.208...)
area OSTR $=[2 \times][0.5 \times] 12.6 \times$
their(16.2) nb 204.
area of sector $=0.5 \times 12.6^{2} \times 1.82$
$=144.47$...
Logo $=59.6$ to 60.0
$\operatorname{arc}=12.6 \times 1.82[=22.9 \ldots]$
perimeter $=55.3$ to 55.4

``` &  & \begin{tabular}{l}
M1 for correct use of sine rule For long methods M1A1 for art 7.8 \\
M1 for \([2 \times][0.5 \times]\) their \(\mathrm{AB} \times 11.4 \times\) \(\sin 36^{\circ}\) \\
Accept 16.2 if ST is explicit but for long methods with pa check that their explicit expression \(=16.2\) \\
oe using degrees \\
soi by correct ans Accept 144, 144.5 \\
oe using degrees
\end{tabular} & 4 \\
\hline 11 & ii
iii
iv
v & \begin{tabular}{l}
81 \\
\((1 \mathrm{x}) 3^{n-1}\) \\
(GP with) \(a=1\) and \(r=3\) \\
clear correct use GP sum formula \\
(A) 6 www \\
(B) 243 \\
their (ii) \(>900\) \\
\((y-1) \log 3>\log 900\) \\
\(y-1>\log 900 \div \log 3\) \\
\(y=8\) cao
\end{tabular} & \[
\begin{aligned}
& \hline 1 \\
& 1 \\
& \text { M1 } \\
& \text { M1 } \\
& 2 \\
& 1 \\
& \\
& \text { M1ft } \\
& \text { M1ft } \\
& \text { M1 } \\
& \text { B1 } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
or M1 for \(=1+3+9+\ldots+3^{n-1}\) \\
M1 for \(364=\left(3^{n}-1\right) / 2\) \\
-1 once for = or < seen: condone wrong letter / missing brackets / no base
\end{tabular} & 1
1
2
3
3
4 \\
\hline
\end{tabular}

Mark Scheme 4752
January 2006

\section*{Section A}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 7/9 or 140/180 o.e. & 2 & B1 for \(180^{\circ}=\pi \mathrm{rad}\) o.e. or 0.78 or other approximations & 2 \\
\hline 2 & 224 & 2 & M1 for \(2^{3}+3^{3}+4^{3}+5^{3}\) & 2 \\
\hline 3 & triangle divided into 2 rt angled tris \(\sqrt{3}\) and 1 indicated 60 indicated & \[
\begin{aligned}
& \hline \text { H1 } \\
& \text { S1 } \\
& \text { A1 }
\end{aligned}
\] & & 3 \\
\hline 4 & \begin{tabular}{l}
16.1
 \\
overestimate + expn eg sketch
\end{tabular} & \begin{tabular}{l}
4 \\
1
\end{tabular} & \[
\begin{aligned}
& \text { M3 for } 1 / 4\{8.2+4.2+2(6.4+5.5+5+ \\
& 4.7+4.4)\} \\
& \text { M2 for one slip/error } \\
& \text { M1 for two slips/errors }
\end{aligned}
\] & 5 \\
\hline 5 & \begin{tabular}{l}
(i)
\[
\tan x=3 / 4
\] \\
(ii) 36.8 to 36.9 and 216.8 to 216.9
\end{tabular} & \begin{tabular}{l}
2 \\
M1 \\
A1A1
\end{tabular} & \begin{tabular}{l}
no numbers required on axes unless more branches shown. \\
G1 for a correct first sweep \\
Allow 37, 217
\end{tabular} & 5 \\
\hline 6 & \begin{tabular}{l}
\[
\begin{aligned}
& y^{\prime \prime}=2 x-6 \\
& y^{\prime \prime}=0 \text { at } x=3 \\
& y^{\prime}=0 \text { at } x=3
\end{aligned}
\] \\
showing \(y^{\prime}\) does not change sign
\end{tabular} & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { E1 }
\end{aligned}
\] & or that \(y^{\prime \prime}\) changes sign & 4 \\
\hline 7 & \begin{tabular}{l}
(i) 5 \\
(ii) 5.646... to 2 sf or more
\end{tabular} & \[
2
\]
\[
3
\] & \begin{tabular}{l}
M1 for \(6=1.2 r\) \\
M2 for \(2 \times 5 x \sin 0.6\) \\
or \(\sqrt{ }\left(5^{2}+5^{2}-2.5 .5\right.\). \(\left.\cos 1.2\right)\) \\
or \(5 \sin 1.2 / \sin 0.971\) \\
M1 for these methods with 1 error
\end{tabular} & 5 \\
\hline 8 & \(\frac{2}{3} x^{\frac{3}{2}}-3 x^{-2}+c\) o.e. & 5 & 1 for each element & 5 \\
\hline 9 & \begin{tabular}{l}
(i) \(\log _{10} y=0.5 x+3\) \\
(ii) \(y=10^{0.5 x+3}\) isw
\end{tabular} & \[
\begin{aligned}
& \text { B3 } \\
& 2
\end{aligned}
\] & B1 for each term scored in either part o.e. e.g. \(y=1000 \times 10^{\sqrt{x}}\) & 5 \\
\hline
\end{tabular}

\section*{Section B}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 & ii
iii & \begin{tabular}{l}
\[
\begin{aligned}
& y^{\prime}=6-2 x \\
& y^{\prime}=0 \text { used } \\
& x=3 \\
& y=16
\end{aligned}
\] \\
\((0,7)(-1,0)\) and \((7,0)\) found or marked on graph \\
sketch of correct shape \\
58.6 to 58.7 \\
using his (ii) and 48
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
3 \\
1 \\
3 \\
M1 \\
1
\end{tabular} & \begin{tabular}{l}
condone one error \\
1 each \\
must reach pos. y - axis \\
B1 for \(7 x+3 x^{2}-x^{3} / 3\) \\
[their value at 5] - [their value at 1 ] dependent on integration attempted
\end{tabular} & 8
3
1 \\
\hline 11 & i
ii
iii & \[
\begin{aligned}
& 3 x^{2}-6 \\
& -\sqrt{ } 2<x<\sqrt{ } 2 \\
& \\
& \text { subst } x=-1 \text { in their } y^{\prime}[=-3] \\
& y=7 \text { when } x=-1 \\
& y+3 x=4 \\
& x^{3}-6 x+2=-3 x+4 \\
& (2,-2) \quad \text { c.a.o. }
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 2 \\
3 \\
\\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { M1 } \\
\text { A1,A1 }
\end{array}
\] & \begin{tabular}{l}
1 if one error \\
M1 for using their \(y^{\prime}=0\) B1 f.t. for both roots found f.t. f.t. 3 terms f.t.
\end{tabular} & 2
3


6 \\
\hline 12 & ii & \begin{tabular}{l}
A 23 \\
B 24 \\
C 480 \\
A \(11.78-11.80\) \\
B \(5 \times 1.1^{\mathrm{n}-1}>50\) \\
\(1.1^{\mathrm{n}-1}>10\) \\
\((\mathrm{n}-1) \log 1.1>1\) \\
\(\mathrm{n}-1>1 / \log 1.1\)
\[
\mathrm{n}=26
\]
\end{tabular} & \begin{tabular}{l}
2 \\
2 \\
2 \\
2 \\
B1 \\
B1 \\
L1 \\
A1 \\
1
\end{tabular} & \begin{tabular}{l}
M1 for 5, 7, 9 etc or AP with \(a=5, d\) = 2 \\
M1 for \(51=5+2(n-1)\) o.e. \\
M1 for attempted use of sum of AP formula eg 20/2[10+19×2] \\
Or other step towards completion (NB answer given) \\
independent
\end{tabular} & 2
2
2 \\
\hline
\end{tabular}

Mark Scheme 4752 June 2006

Section A
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 1, 3 & 1,1 & & 2 & \\
\hline 2 & \(r=0.2\) & 3 & M1 for \(10=8 /(1-r)\), then M1 dep't for any correct step & 3 & \\
\hline 3 & 1/V15 i.s.w. not +/- & 3 & M2 for \(\sqrt{ } 15\) seen M1 for rt angled triangle with side 1 and hyp 4 , or \(\cos ^{2} \theta=1-1 / 4^{2}\). & 3 & \\
\hline 4 & \begin{tabular}{l}
\[
x^{5} / 5-3 x^{-1} /-1+x
\] \\
[value at 2 - value at 1] attempted
\[
5.7 \text { с.a.o. }
\]
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { B3 } \\
\text { M1 } \\
\text { A1 }
\end{array}
\] & 1 each term dep't on B2 & 5 & \\
\hline 5 & \begin{tabular}{l}
\[
\begin{aligned}
& {[y=] 3 x-x^{3} / 3} \\
& +c
\end{aligned}
\] \\
subst of \((6,1)\) in their eqn with \(c\)
\[
y=3 x-x^{3} / 3+55 \text { c.a.o }
\]
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{array}
\] & \begin{tabular}{l}
Dep't on integration attempt Dep't on B0B1 \\
Allow \(c=55\) isw
\end{tabular} & 4 & 17 \\
\hline 6 & \begin{tabular}{l}
(i) \(3,8,13,18\) \\
(ii) use of \(n / 2[2 a+(n-1) d]\) \(\left(\mathrm{S}_{100}=\right) 25050\) or \(\left(\mathrm{S}_{50}=\right) 6275\) \(\left(\mathrm{S}_{49}=\right) 6027\) or \(\left(\mathrm{S}_{51}=\right) 6528\) their \(\left(\mathrm{S}_{100}-\mathrm{S}_{50}\right)\) dep't on M1
\[
18775 \text { cao }
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
Ignore extras \\
Use of \(a+(n-1) d\) \\
\(u_{51}=253 u_{100}=498\) \\
\(u_{50}=248 \quad u_{52}=258\) \\
50/2(their \(\left(\mathrm{u}_{51}+\mathrm{u}_{100}\right)\) ) dep't on M1 \\
or \(50 / 2\left[2 \times\right.\) their \(\left.\left(u_{51}\right)+49 \times 5\right]\)
\end{tabular} & 5 & \\
\hline 7 & \begin{tabular}{l}
(i) sketch of correct shape correct period and amplitude period halved for \(y=\cos 2 x\); amplitude unchanged \\
(ii) 30, 150, 210, 330
\end{tabular} & \begin{tabular}{l}
G1 \\
G1 \\
G1 \\
B2
\end{tabular} & \begin{tabular}{l}
Not ruled lines need 1 and -1 indicated; nos. on horiz axis not needed if one period shown \\
B1 for 2 of these, ignore extras outside range.
\end{tabular} & 5 & \\
\hline 8 & \[
\begin{aligned}
& \sqrt{ } x=x^{1 / 2} \text { soi } \\
& 18 x^{2}, 1 / 2 x^{-1 / 2} \\
& 36 x \\
& \mathrm{~A} x^{-3 / 2}\left(\text { from } \mathrm{Bx} x^{-1 / 2}\right. \text { ) } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { B1 } \\
\text { B1B1 } \\
\text { B1 } \\
\text { B1 } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1 \text { if } \mathrm{d} / \mathrm{d} x(3) \text { not }=0 \\
& \text { any } \mathrm{A}, \mathrm{~B}
\end{aligned}
\] & 5 & \\
\hline 9 & \[
\begin{aligned}
& 3 x \log 5=\log 100 \\
& 3 x=\log 100 / \log 5 \\
& x=0.954
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { M1 } \\
\text { M1 } \\
\text { A2 }
\end{array}
\] & \begin{tabular}{l}
allow any or no base or \(3 x=\log _{5} 100\) dep't \\
A1 for other rot versions of 0.9537... \\
SC B2/4 for 0.954 with no log wkg SC B1 r.o.t. 0.9537...
\end{tabular} & 4 & 19 \\
\hline
\end{tabular}

Section B
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 & \begin{tabular}{l}
i \\
(A) \\
i \\
(B) \\
ii
\end{tabular} & \[
\begin{aligned}
& 5.2^{2}+6.3^{2}-2 \times 5.2 \times 6.3 \times \cos \text { " } 57^{\prime \prime} \\
& \mathrm{ST}=5.6 \text { or } 5.57 \text { cao } \\
& \sin \mathrm{T} / 5.2=\sin (\text { their } 57) / \text { /their } \mathrm{ST} \\
& \mathrm{~T}=51 \text { to } 52 \text { or } \mathrm{S}=71 \text { to } 72 \\
& \text { bearing } 285+\text { their } \mathrm{T} \\
& \text { or } 408-\text { their } \mathrm{S} \\
& \\
& 5.2 \theta, 24 \times 26 / 60 \\
& \theta=1.98 \text { to } 2.02 \\
& \theta=\text { their } 2 \times 180 / \pi \text { or } 114.6^{\circ} \ldots \\
& \text { Bearing }=293 \text { to } 294 \text { cao }
\end{aligned}
\] & \begin{tabular}{l}
M2 \\
A1 \\
M1 \\
A1 \\
B1 \\
B1B1 \\
B1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
M1 for recognisable attempt at cos rule. or greater accuracy \\
Or \(\sin \mathrm{S} / 6.3=\ldots\) or cosine rule \\
If outside 0 to 360 , must be adjusted \\
Lost for all working in degrees Implied by 57.3
\end{tabular} & 3
3
3
5 & 11 \\
\hline 11 & ii & \begin{tabular}{l}
\[
\begin{aligned}
& \hline y^{\prime}=3 x^{2}-6 x \\
& \text { use of } y^{\prime}=0 \\
& (0,1) \text { or }(2,-3)
\end{aligned}
\] \\
sign of \(y^{\prime \prime}\) used to test or \(y^{\prime}\) either side
\[
\begin{aligned}
& y^{\prime}(-1)=3+6=9 \\
& 3 x^{2}-6 x=9 \\
& x=3
\end{aligned}
\] \\
At Py=1 \\
grad normal \(=-1 / 9\) cao
\[
y-1=-1 / 9(x-3)
\] \\
intercepts 12 and 4/3or use of
\[
\begin{aligned}
& \int_{0}^{12} 4 / 3-1 / 9 x \mathrm{~d} x \text { (their normal) } \\
& 1 / 2 \times 12 \times 4 / 3 \text { cao }
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
A2 \\
T1 \\
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
B1 \\
A1
\end{tabular} & \begin{tabular}{l}
condone one error \\
A1 for one correct or \(x=0,2\) SC B1 for \((0,1)\) from their \(y^{\prime}\) Dep't on M1 or \(y\) either side or clear cubic sketch \\
ft for their \(y^{\prime}\) implies the M1 \\
ft their \((3,1)\) and their grad, not 9 ft their normal (linear)
\end{tabular} & 5 & 13 \\
\hline 12 & \begin{tabular}{l}
ii \\
iii \\
iv
\end{tabular} & \[
\begin{aligned}
& \log _{10} P=\log _{10} a+\log _{10} 10^{b t} \\
& \log _{10} 10^{b t}=b t \\
& \text { intercept indicated as } \log _{10} a \\
& \\
& 3.9(0), 3.94,4(.00), 4.05,4.11 \\
& \text { plots ft } \\
& \text { line of best fit } \mathrm{ft} \\
& \text { (gradient }=) 0.04 \text { to } 0.06 \text { seen } \\
& \text { (intercept }=) 3.83 \text { to } 3.86 \text { seen } \\
& (a=) 6760 \text { to } 7245 \text { seen } \\
& P=7000 \times 10^{0.05 t} \text { oe } \\
& \\
& 17000 \text { to } 18500
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1 \\
& \mathrm{~B} 1 \\
& \\
& \mathrm{~T} 1 \\
& \mathrm{P} 1 \\
& \mathrm{~L} 1 \\
& \\
& \mathrm{M} 1 \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1 \\
& \mathrm{~A} 1 \\
& \\
& \mathrm{~B} 2
\end{aligned}
\] & \begin{tabular}{l}
condone omission of base \\
to 3 sf or more; condone one error 1 mm ruled and reasonable
\[
\begin{aligned}
& 7000 \times 1.12^{t} \\
& \text { SC P }=10^{0.05 t+3.85} \text { left A2 } \\
& 14000 \text { to } 22000 \text { B1 }
\end{aligned}
\]
\end{tabular} & 3
3

4
4 & 12 \\
\hline
\end{tabular}

Mark Scheme 4752 January 2007

Section A
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \[
\frac{5}{2} \times 6 x^{\frac{3}{2}}
\] & 1+1 & - 1 if extra term & 2 \\
\hline 2 & -0.2 & 3 & M1 for \(5=\frac{6}{1-r}\) and M1 dep for correct constructive step & 3 \\
\hline 3 & \(\sqrt{8}\) or \(2 \sqrt{2}\) not \(\pm \sqrt{ } 8\) & 3 & M1 for use of \(\sin ^{2} \theta+(1 / 3)^{2}=1\) and M1for \(\sin \theta=\sqrt{8} / 3\) (ignore \(\pm\) ) Diag.: hypot \(=3\), one side \(=1\) M1 3rd side \(\sqrt{ } 8 \mathrm{M} 1\) & 3 \\
\hline 4 & \begin{tabular}{l}
(i) C \\
(ii) B \\
(iii) \(2^{n-1}\)
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & & 3 \\
\hline 5 & \begin{tabular}{l}
(i) \(-0.93,-0.930,-0.9297 \ldots\) \\
(ii) answer strictly between 1.91 and 2 or 2 and 2.1 \\
(iii) \(y^{\prime}=-8 / x^{3}\), gradient \(=-1\)
\end{tabular} & \begin{tabular}{l}
2 \\
B1 \\
M1A1
\end{tabular} & M1 for grad = (1 - their \(\left.y_{\mathrm{B}}\right) /(2-2.1)\) if M0, SC1 for 0.93 don't allow 1.9 recurring & 5 \\
\hline 6 & At least one cycle from \((0,0)\) amplitude 1 and period \(360\left[{ }^{\circ}\right]\) indicated
\[
222.8 \text { to } 223 \text { and } 317 \text { to } 317.2\left[^{\circ}\right]
\] & G1 G1dep 2 & 1 each, ignore extras & 4 \\
\hline 7 & \(x<0\) and \(x>6\) & 3 & B2 for one of these or for 0 and 6 identified or M 1 for \(\mathrm{x}^{2}-6 \mathrm{x}>0\) seen (M1 if y found correctly and sketch drawn) & 3 \\
\hline 8 & \begin{tabular}{l}
\[
a+6 d=6 \text { correct }
\] \\
\(30=\frac{10}{2}(2 a+9 d)\) correct o.e. \\
elimination using their equations
\[
a=-6 \text { and } d=2
\] \\
5th term \(=2\)
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
M1f.t. \\
A1 \\
A1
\end{tabular} & Two equations in a and d & 5 \\
\hline 9 & \begin{tabular}{l}
\[
(y=) 2 x^{3}+4 x^{2}-1
\] \\
accept \(2 x^{3}+4 x^{2}+c\) and \(c=-1\)
\end{tabular} & 4 & M2 for \((y=) 2 x^{3}+4 x^{2}+c\) (M1 if one error) and M1 for subst of \((1,5)\) dep on their \(\mathrm{y}=,+\mathrm{c}\), integration attempt. & 4 \\
\hline 10 & \begin{tabular}{l}
(i) \(3 \log _{2} X\) \\
ii) \(b=\frac{1000}{c}\)
\end{tabular} & \[
2
\]
\[
2
\] & \begin{tabular}{l}
M1 for \(4 \log _{2} x\) or \(-\log _{2} x\); or \(\log x^{3}\) \\
M1 for 1000 or \(10^{3}\) seen
\end{tabular} & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 & i
ii
iiiA
iiiB & \begin{tabular}{l}
Correct attempt at cos rule correct full method for C
\[
C=141.1 \ldots
\] \\
bearing \(=[0] 38.8\) cao \\
\(1 / 2 \times 118 \times 82 \times\) sin their \(C\) or supp. \\
3030 to \(3050\left[\mathrm{~m}^{2}\right]\)
\[
\sin (\theta / 2)=(1 / 2 \times 189) / 130
\]
\[
1.6276 \rightarrow 1.63
\]
\[
\begin{aligned}
& 0.5 \times 130^{2} \times \sin 1.63 \\
& 0.5 \times 130^{2} \times 1.63
\end{aligned}
\] \\
their sector - their triangle AOB
\[
5315 \text { to } 5340
\]
\end{tabular} & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \\
& \text { M1 } \\
& \text { M1 } \\
& \text { M1 }
\end{aligned}
\] & \begin{tabular}{l}
any vertex, any letter \\
or B4 \\
or correct use of angle A or angle B
\[
\begin{aligned}
& \text { or } \cos \theta=\left(130^{2}+130^{2}-\right. \\
& \left.189^{2}\right) /(2 \times 130 \times 130)
\end{aligned}
\] \\
In all methods, the more accurate number to be seen. condone their \(\theta\) (8435) condone their \(\theta\) in radians (13770) dep on sector \(>\) triangle
\end{tabular} & 2
2 \\
\hline 12 & ii

iii & \begin{tabular}{l}
\[
\begin{aligned}
& (2 x-3)(x-4) \\
& x=4 \text { or } 1.5
\end{aligned}
\]
\[
y^{\prime}=4 x-11
\] \\
\(=5\) when \(x=4\) c.a.o. \\
grad of normal \(=-1 /\) their \(y^{\prime}\) \\
\(y[-0]=\) their \(-0.2(x-4)\) \\
\(y\)-intercept for their normal area \(=1 / 2 \times 4 \times 0.8\) c.a.o.
\[
\frac{2}{3} x^{3}-\frac{11}{2} x^{2}+12 x
\] \\
attempt difference between value at 4 and value at 1.5 \\
[-] \(5 \frac{5}{24}\) o.e. or [-]5.2(083..)
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1f.t. } \\
& \text { M1 } \\
& \text { B1f.t. } \\
& \text { A1 } \\
& \text { M11 } \\
& \text { M1 } \\
& \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
or \((11 \pm \sqrt{ }(121-96)) / 4\) \\
if M0, then B1 for showing \(y=0\) when \(x=4\) and B 2 for \(\mathrm{x}=1.5\) condone one error \\
or \(0=\) their \((-0.2) \times 4+c\) dep on normal attempt s.o.i. normal must be linear or integrating their \(\mathrm{f}(\mathrm{x})\) from 0 to 4 M1 \\
condone one error, ignore +c ft their (i), dep on integration attempt. c.a.o.
\end{tabular} & 3
6 \\
\hline 13 & ii
iii
iv
iv
v & \begin{tabular}{l}
\[
\begin{aligned}
& \log _{10} y=\log _{10} k+\log _{10} 10^{a x} \\
& \log _{10} y=a x+\log _{10} k \text { compared }
\end{aligned}
\]
\[
\text { to } y=m x+c
\] \\
2.9(0), 3.08, 3.28, 3.48, 3.68 \\
plots [tol 1 mm ] \\
ruled line of best fit drawn \\
intercept \(=2.5\) approx \\
gradient \(=0.2\) approx \\
\(\mathrm{y}=\) their \(\left.300 \times 10^{x(t h e i r ~} 0.2\right)\) \\
or \(y=10^{\text {(their } 2.5+\text { their } 0.2 x)}\) \\
subst 75000 in any \(\mathrm{x} / \mathrm{y}\) eqn subst in a correct form of the relationship \\
11,12 or 13 \\
"Profits change" or any reason for this.
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
T1 \\
P1f.t \\
L1f.t. \\
M1 \\
M1 \\
M1f.t. \\
M1 \\
M1 \\
A1 \\
R1
\end{tabular} & \begin{tabular}{l}
condone one error \\
or \(y-2.7=m(x-1)\) \\
B3 with evidence of valid working too big, too soon
\end{tabular} & 2
3
3
3
3
1 \\
\hline
\end{tabular}

Mark Scheme 4752 June 2007
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \begin{tabular}{l}
(i) \(-\sqrt{3}\) \\
(ii) \(\frac{5}{3} \pi\)
\end{tabular} & 1
2 & Accept any exact form accept \(\frac{5 \pi}{3}, 12 / 3 \pi\). M1 \(\pi \mathrm{rad}=180^{\circ}\) used correctly & 3 \\
\hline 2 & \[
\begin{aligned}
& y^{\prime}=6 \times \frac{3}{2} x^{\frac{1}{2}} \text { or } 9 x^{\frac{1}{2}} \text { o.e. } \\
& y^{\prime \prime}=\frac{9}{2} x^{-\frac{1}{2}} \text { o.e. } \\
& \sqrt{36}=6 \text { used } \\
& \text { interim step to obtain } \frac{3}{4}
\end{aligned}
\] & \begin{tabular}{l}
2 \\
1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
1 if one error in coeff or power, or extra term \\
f.t. their \(y^{\prime}\) only if fractional power \\
f.t. their \(y^{\prime \prime}\) www answer given
\end{tabular} & 5 \\
\hline 3 & \begin{tabular}{l}
(i) \(y=2 \mathrm{f}(x)\) \\
(ii) \(y=\mathrm{f}(x-3)\)
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1 if ' } y=\text { ' omitted [penalise only once] } \\
& \text { M1 for } \mathrm{y}=\mathrm{kf}(\mathrm{x}), \mathrm{k}>0 \\
& \text { M1 for } y=\mathrm{f}(x+3) \text { or } \mathrm{y}=\mathrm{f}(\mathrm{x}-\mathrm{k})
\end{aligned}
\] & 4 \\
\hline 4 & \begin{tabular}{l}
(i) 11 27 or ft from their 11 \\
(ii) 20
\end{tabular} & \[
\begin{array}{|l|}
\hline 1 \\
1 \\
2
\end{array}
\] & M1 for \(1 \times 2+2 \times 3+3 \times 4\) soi, or \(2,6,12\) identified, or for substituting \(n=3\) in standard formulae & 4 \\
\hline 5 & \[
\begin{aligned}
& \theta=0.72 \text { o.e } \\
& 13.6[\mathrm{~cm}]
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 2 \\
3
\end{array}
\] & \begin{tabular}{l}
M1 for \(9=1 / 2 \times 25 \times \theta\) No marks for using degrees unless attempt to convert \\
B2 ft for \(10+5 \times\) their \(\theta\) or for 3.6 found or M1 for \(s=5 \theta\) soi
\end{tabular} & 5 \\
\hline 6 & \begin{tabular}{l}
(i) \(\log _{a} 1=0, \log _{a} a=1\) \\
(ii) showing both sides equivalent
\end{tabular} & \[
\begin{array}{|l|}
\hline 1+1 \\
3
\end{array}
\] & \begin{tabular}{l}
NB, if not identified, accept only in this order \\
M1 for correct use of \(3^{\text {rd }}\) law and M1 for correct use of \(1^{\text {st }}\) or \(2^{\text {nd }}\) law. Completion www A1. Condone omission of \(a\).
\end{tabular} & 5 \\
\hline 7 & \begin{tabular}{l}
(i) curve with increasing gradient any curve through \((0,1)\) marked \\
(ii) 2.73
\end{tabular} & \[
\begin{aligned}
& \mathrm{G} 1 \\
& \mathrm{G} 1 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
correct shape in both quadrants \\
M1 for \(x \log 3=\log 20\left(\right.\) or \(\left.x=\log _{3} 20\right)\) and M1 for \(x=\log 20 \div \log 3\) or B2 for other versions of 2.726833.. or B1 for other answer 2.7 to 2.8
\end{tabular} & 5 \\
\hline 8 & \begin{tabular}{l}
(i) \(2\left(1-\sin ^{2} \theta\right)+7 \sin \theta=5\) \\
(ii) \((2 \sin \theta-1)(\sin \theta-3)\) \(\sin \theta=1 / 2\) \\
\(30^{\circ}\) and \(150^{\circ}\)
\end{tabular} & \[
\begin{array}{|l|}
\hline 1 \\
\text { M1 } \\
\text { DM1 } \\
\text { A1 } \\
\text { A1 } \\
\hline
\end{array}
\] & \begin{tabular}{l}
for \(\cos ^{2} \theta+\sin ^{2} \theta=1\) o.e. used \\
\(1^{\text {st }}\) and \(3^{\text {rd }}\) terms in expansion correct \\
f.t. factors \\
B1,B1 for each solution obtained by any valid method, ignore extra solns outside range, \(30^{\circ}, 150^{\circ}\) plus extra soln(s) scores 1
\end{tabular} & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 & i


ii

iii & \begin{tabular}{l}
\[
\begin{aligned}
& y^{\prime}=6 x^{2}-18 x+12 \\
& =12 \\
& y=7 \text { when } x=3
\end{aligned}
\] \\
tgt is \(y-7=12(x-3)\) verifying \((-1,-41)\) on tgt
\[
y^{\prime}=0 \text { soi }
\] \\
quadratic with 3 terms
\[
x=1 \text { or } 2
\]
\[
y=3 \text { or } 2
\] \\
cubic curve correct orientation touching x - axis only at \((0.2,0)\) max and min correct curve crossing \(y\) axis only at -2
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
B1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
G1 \\
G1 \\
G1
\end{tabular} & \begin{tabular}{l}
condone one error subst of \(x=3\) in their \(y^{\prime}\) \\
f.t. their \(y\) and \(y^{\prime}\) or B 2 for showing line joining \((3,7)\) and \((-1,-41)\) has gradient 12 \\
Their \(y^{\prime}\) \\
Any valid attempt at solution or A1 for \((1,3)\) and A1 for \((2,2)\) marking to benefit of candidate \\
f.t.
\end{tabular} & 5

4

3 \\
\hline 10 & i

ii

iii

iv & \begin{tabular}{l}
\[
970 \text { [m] }
\] \\
concave curve or line of traps is above curve
\[
(19+14+11+11+12+16) \times 10
\] \\
830 to 880 incl.[m]
\[
t=10, v_{\text {model }}=19.5
\] \\
difference \(=0.5\) compared with \(3 \%\) of \(19=0.57\) \\
\(28 t-1 / 2 t^{2}+0.005 t^{3}\) o.e. \\
value at 60 [ - value at 0 ] \\
960
\end{tabular} & \begin{tabular}{l}
4 \\
1 \\
M1 \\
A1 \\
B1 \\
B1f.t. \\
M1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
M3 for attempt at trap rule \(1 / 2 \times 10 \times(28+22+2[19+14+11+12+16])\) M2 with 1 error, M1 with 2 errors. Or M3 for 6 correct trapezia, M2 for 4 correct trapezia, M1 for 2 correct trapezia. \\
Accept suitable sketch \\
M1 for 3 or more rectangles with values from curve. \\
or \(\frac{0.5}{19} \times 100 \approx 2.6\) \\
2 terms correct, ignore +c \\
ft from integrated attempt with 3 terms
\end{tabular} & 4
3
3

2
3 \\
\hline 11 & \begin{tabular}{l}
ai \\
aii \\
bi \\
ii \\
iii
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& 13 \\
& 120 \\
& \frac{125}{1296} \\
& a=1 / 6, r=5 / 6 \text { s.o.i. } \\
& S_{\infty}=\frac{\frac{1}{6}}{1-\frac{5}{6}} \text { o.e. } \\
& \quad\left(\frac{5}{6}\right)^{n-1}<0.006 \\
& (n-1) \log _{10}\left(\frac{5}{6}\right)<\log _{10} 0.006 \\
& n-1>\frac{\log _{10} 0.006}{\log _{10}\left(\frac{5}{6}\right)} \\
& n_{\min }=30
\end{aligned}
\] \\
Or
\[
\log (1 / 6)+\log (5 / 6)^{\mathrm{n}-1}<\log 0.001
\]
\[
(\mathrm{n}-1) \log (5 / 6)<\log (0.001 /(1 / 6))
\]
\end{tabular} & \begin{tabular}{l}
1
2 \\
2 \\
\(1+1\) \\
1 \\
M1 \\
M1 \\
DM1 \\
B1 \\
M1 \\
M1
\end{tabular} & \begin{tabular}{l}
M1 for attempt at AP formula ft their \(a\), \(d\) or for \(3+5+\ldots+21\) \\
M1 for \(\frac{1}{6} \times\left(\frac{5}{6}\right)^{3}\) \\
If not specified, must be in right order \\
condone omission of base, but not brackets \\
NB change of sign must come at correct place
\end{tabular} & 1
2
2
2
3


4 \\
\hline
\end{tabular}

4752 (C2) Concepts for Advanced Mathematics

\section*{Section A}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \(40 x^{3}\) & 2 & -1 if extra term & 2 \\
\hline 2 & \begin{tabular}{l}
(i) 3 \\
(ii) 141
\end{tabular} & \[
1
\]
\[
2
\] & M1 for \(9 \times(1+2+3+4+5)+1+2+3\) & 3 \\
\hline 3 & \begin{tabular}{l}
right angled triangle with 1 and 2 on correct sides \\
Pythagoras used to obtain hyp \(=\sqrt{ } 5\)
\[
\cos \theta=\frac{a}{h}=\frac{2}{\sqrt{5}}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
or M1 for \(\sin \theta=1 / 2 \cos \theta\) and M1 for substituting in \(\sin ^{2} \theta+\cos ^{2} \theta=1\) \\
E1 for sufficient working
\end{tabular} & 3 \\
\hline 4 & \begin{tabular}{l}
\[
\begin{aligned}
& \text { (i)line along } y=6 \text { with } \\
& \text { V }(1,6),(2,2),(3,6)
\end{aligned}
\] \\
(ii) line along \(y=3\) with
\[
V^{\prime}(-2,3),(-1,1),(0,3)
\]
\end{tabular} & \[
2
\]
\[
2
\] & \begin{tabular}{l}
1 for two points correct \\
1 for two points correct
\end{tabular} & 4 \\
\hline 5 & \[
2 x^{6}+\frac{3}{4} x^{\frac{4}{3}}+7 x+c
\] & 5 & 1 for \(2 x^{6} ; 2\) for \(\frac{3}{4} x^{\frac{4}{3}}\) or 1 for other \(k x^{\frac{4}{3}} ; 1\) for \(7 x\); & 5 \\
\hline 6 & \begin{tabular}{l}
(i) correct sine shape through O amplitude of 1 and period \(2 \pi\) shown \\
(ii) \(7 \pi / 6\) and \(11 \pi / 6\)
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 3
\end{aligned}
\] & B2 for one of these; 1 for \(-\pi / 6\) found & 5 \\
\hline 7 & \begin{tabular}{l}
(i) 60 \\
(ii) -6 \\
(iii)
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
1 \\
1 \\
1
\end{tabular} & \begin{tabular}{l}
M1 for \(2^{2}+2^{3}+2^{4}+2^{5}\) o.e. \\
Correct in both quadrants Through \((0,1)\) shown dep.
\end{tabular} & 5 \\
\hline 8 & \[
\begin{aligned}
& r=1 / 3 \text { s.o.i. } \\
& a=54 \text { or ft } 18 \div \text { their } r \\
& \mathrm{~S}=\frac{a}{1-r} \text { used with }-1<\mathrm{r}<1 \\
& \mathrm{~S}=81 \text { c.a.o. }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 2 \\
\text { M1 } \\
\text { M1 } \\
\text { A1 }
\end{array}
\] & 1 mark for ar \(=18\) and \(\mathrm{ar}^{3}=2\) s.o.i. & 5 \\
\hline 9 & \begin{tabular}{l}
(i) 0.23 c.a.o. \\
(ii) 0.1 or \(1 / 10\) \\
(iii) \(4(3 x+2)\) or \(12 x+8\) \\
(iv) \([y=] 10^{3 x+2}\) o.e.
\end{tabular} & \begin{tabular}{l}
1 \\
1 \\
1 \\
1
\end{tabular} & \(10^{-1}\) not sufficient & 4 \\
\hline
\end{tabular}

\section*{Section B}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 & i & \begin{tabular}{l}
\[
\begin{aligned}
& h=120 / x^{2} \\
& A=2 x^{2}+4 x h \text { o.e. }
\end{aligned}
\] \\
completion to given answer
\[
\begin{aligned}
& A^{\prime}=4 x-480 / x^{2} \text { o.e. } \\
& A^{\prime \prime}=4+960 / x^{3}
\end{aligned}
\] \\
use of \(A^{\prime}=0\)
\[
x=\sqrt[3]{120} \text { or } 4.9(3 . .)
\] \\
Test using \(A^{\prime}\) or \(A^{\prime \prime}\) to confirm minimum \\
Substitution of their x in A
\[
A=145.9 \text { to } 146
\]
\end{tabular} & B1
M1
A1
2
2
2
M1
A1
T1
M1
A1 & \begin{tabular}{l}
at least one interim step shown \\
1 for \(k x^{-2}\) o.e. included ft their \(A^{\prime}\) only if \(k x^{-2}\) seen ; 1 if one error \\
Dependent on previous M1
\end{tabular} & 3
4
4
5 \\
\hline 11 & iA & \[
\begin{aligned}
& \mathrm{BC}^{2}=348^{2}+302^{2}-2 \times 348 \times \\
& 302 \times \cos 72^{\circ} \\
& \mathrm{BC}=383.86 \ldots \\
& 1033.86 \ldots[\mathrm{~m}] \text { or } \mathrm{ft} 650+\text { their } \mathrm{BC} \\
& \\
& \frac{\sin B}{302}=\frac{\sin 72}{\text { their } B C} \\
& \mathrm{~B}=48.4 . . \\
& 355-\text { their } \mathrm{B} \text { o.e. } \\
& \text { answer in range } 306 \text { to } 307 \\
& \\
& \text { Arc length } \mathrm{PQ}=\frac{224}{360} \times 2 \pi \times 120 \\
& \text { o.e. or } 469.1 \ldots \text { to } 3 \mathrm{sf} \text { or more } \\
& \mathrm{QP}=222.5 \ldots \text { to } 3 \mathrm{sf} \text { or more } \\
& \text { answer in range } 690 \text { to } 692[\mathrm{~m}]
\end{aligned}
\] & \[
\begin{aligned}
& \text { M2 } \\
& \text { A1 } \\
& 1 \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M2 } \\
& \text { B1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
M1 for recognisable attempt at Cosine Rule to 3 sf or more accept to 3 sf or more \\
Cosine Rule acceptable or Sine Rule to find C \\
or \(247+\) their \(C\) \\
M1 for \(\frac{136}{360} \times 2 \pi \times 120\)
\end{tabular} & 4
4
4

4 \\
\hline 12 & iA & \begin{tabular}{l}
\[
x^{4}=8 x
\] \\
\((2,16)\) c.a.o. \\
\(\mathrm{PQ}=16\) and completion to show
\[
1 / 2 \times 2 \times 16=16
\] \\
\(x^{5} / 5\) \\
evaluating their integral at their co-ord of P and zero [or 32/5 o.e.] 9.6 o.e.
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
NB answer 16 given \\
ft only if integral attempted, not for \(x^{4}\) or differentiation c.a.o.
\end{tabular} & 3
3 \\
\hline & \begin{tabular}{l}
iiA \\
iiB \\
iiC \\
iid
\end{tabular} & \[
\begin{aligned}
& 6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
& 4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3} \\
& 4 x^{3} \\
& \text { gradient of [tangent to] curve }
\end{aligned}
\] & \begin{tabular}{l}
\[
2
\] \\
2 \\
1
\[
1
\]
\end{tabular} & \begin{tabular}{l}
B1 for two terms correct. \\
B1 for three terms correct
\end{tabular} & 2
2
1
1 \\
\hline
\end{tabular}

\section*{4752 (C2) Concepts for Advanced Mathematics}

\section*{Section A}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 210 c.a.o. & 2 & 1 for m rads \(=180^{\circ}\) soi & 2 \\
\hline 2 & \begin{tabular}{l}
(i) \(5.4 \times 10^{-3}, 0.0054\) or \(\frac{27}{5000}\) \\
(ii) 6 www
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & M 1 for \(\mathrm{S}=5.4 /(1-0.1)\) & 3 \\
\hline 3 & stretch, parallel to the \(y\) axis, sf 3 & 2 & 1 for stretch plus one other element correct & 2 \\
\hline 4 & \[
\begin{aligned}
& {\left[f^{\prime}(x)=\right] 12-3 x^{2}} \\
& \text { their } \mathrm{f}^{\prime}(x)>0 \text { or }=0 \text { soi } \\
& -2<x<2
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{B} 1 \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1 \\
& \hline
\end{aligned}
\] & condone \(-2 \leq x \leq 2\) or "between -2 and 2" & 3 \\
\hline 5 & \begin{tabular}{l}
\[
\begin{aligned}
& \text { (i) grad of chord }=\left(2^{3.1}-2^{3}\right) / 0.1 \\
& \text { o.e. } \\
& =5.74 \text { c.a.o. }
\end{aligned}
\] \\
(ii) correct use of A and C where for C, \(2.9<x<3.1\) answer in range \((5.36,5.74)\)
\end{tabular} & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & or chord with ends \(x=3 \pm h\), where \(0<\mathrm{h} \leq 0.1\) s.c. 1 for consistent use of reciprocal of gradient formula in parts (i) and (ii) & 4 \\
\hline 6 & \begin{tabular}{l}
\[
\begin{aligned}
& {[y=] \mathrm{k} x^{3 / 2}[+c]} \\
& \mathrm{k}=4
\end{aligned}
\] \\
subst of \((9,105)\) in their eqn with \(c\) \\
or \(c=-3\)
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & may appear at any stage must have \(c\); must have attempted integration & 4 \\
\hline 7 & ```
sector area =28.8 or }\frac{144}{5}[\mp@subsup{\textrm{cm}}{}{2}
c.a.o.
area of triangle = 1/2 \times 6 }\times\mathrm{ 人 sin 1.6
o.e.
their sector - their triangle s.o.i.
10.8 to 10.81 [cm}\mp@subsup{}{}{2}
``` & \[
\begin{aligned}
& \hline 2 \\
& \mathrm{M} 1 \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1
\end{aligned}
\] & \begin{tabular}{l}
M1 for \(1 / 2 \times 6^{2} \times 1.6\) \\
must both be areas leading to a positive answer
\end{tabular} & 5 \\
\hline 8 & \[
\begin{aligned}
& \hline a+10 d=1 \text { or } 121=5.5(2 a+10 d) \\
& 5(2 a+9 d)=120 \text { o.e. } \\
& a=21 \text { s.o.i. www } \\
& \text { and } d=-2 \text { s.o.i. www } \\
& \text { 4th term is } 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & or \(121=5.5(a+1)\) gets M2 eg \(2 a+9 d=24\) & 5 \\
\hline 9 & \[
\begin{aligned}
& x \log 5=\log 235 \text { or } x=\frac{\log 235}{\log 5} \\
& 3.39
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A2 }
\end{aligned}
\] & \begin{tabular}{l}
or \(x=\log _{5} 235\) \\
A1 for 3.4 or versions of \(3.392 \ldots\)
\end{tabular} & 3 \\
\hline 10 & \begin{tabular}{l}
\[
2\left(1-\cos ^{2} \theta\right)=\cos \theta+2
\] \\
\(-2 \cos ^{2} \theta=\cos \theta\) s.o.i. \\
valid attempt at solving their quadratic in \(\cos \theta\) \(\cos \theta=-1 / 2 \mathrm{www}\)
\[
\theta=90,270,120,240
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
DM1 \\
A1 \\
A1
\end{tabular} & for \(1-\cos ^{2} \theta=\sin ^{2} \theta\) substituted graphic calc method: allow M3 for intersection of \(y=2 \sin ^{2} \theta\) and \(y=\cos\) \(\theta+2\) and A2 for all four roots. All four answers correct but unsupported scores B2. 120 and 240 only: B1. & 5 \\
\hline
\end{tabular}

\section*{Section B}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 & i
ii

iii

iv & \begin{tabular}{l}
\[
\begin{aligned}
& (x+5)(x-2)(x+2) \\
& {[(x+2)]\left(x^{2}+3 x-10\right)} \\
& x^{3}+3 x^{2}-10 x+2 x^{2}+6 x-20
\end{aligned}
\] \\
o.e.
\[
y^{\prime}=3 x^{2}+10 x-4
\] \\
their \(3 x^{2}+10 x-4=0\) s.o.i. \(x=0.36 \ldots\) from formula o.e.
\[
(-3.7,12.6)
\]
\[
(-1.8,12.6)
\]
\end{tabular} & \begin{tabular}{l}
2 \\
M1 \\
M1 \\
M2 \\
M1 \\
A1 \\
B1+1 \\
B1+1
\end{tabular} & \begin{tabular}{l}
M1 for \(a(x+5)(x-2)(x+2)\) \\
for correct expansion of one pair of their brackets for clear expansion of correct factors - accept given answer from \((x+5)\left(x^{2}-4\right)\) as first step \\
M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change \\
accept (\(-1.9,12.6\)) or f.t. \((1 / 2\) their \(\max x\), their \(\max y\))
\end{tabular} & 2

2

6
2 \\
\hline 12 & i
ii & \begin{tabular}{l}
Area \(=(-) 0.136\) seen \(\left[\mathrm{m}^{2}\right]\) www \\
Volume \(=0.34\left[\mathrm{~m}^{3}\right]\) or ft from their area \(\times 2.5\)
\[
2 x^{4}-x^{3}-0.25 x^{2}-0.15 x \text { o.e. }
\] \\
value at 0.5 [- value at 0]
\[
=-0.1375
\] \\
area of cross section (of trough) or area between curve and x -axis 0.34375 r.o.t. to 3 or more sf [\(\mathrm{m}^{3}\)] \(\mathrm{m}^{3}\) seen in (i) or (ii)
\end{tabular} & \begin{tabular}{l}
4 \\
1 \\
M2 \\
M1 \\
A1 \\
E1 \\
B1 \\
U1
\end{tabular} & \begin{tabular}{l}
M3 for \(0.1 / 2 \times(0.14+0.16+2[0.22\) \(+0.31+0.36+0.32]) \mathrm{M} 2\) for one slip; M1 for two slips must be positive \\
M1 for 2 terms correct dep on integral attempted must have neg sign
\end{tabular} & 5

7 \\
\hline 13 & i
ii

iii

iv & \begin{tabular}{l}
\(\log P=\log a+b \log t \quad w w w\) comparison with \(y=m x+c\) intercept \(=\log _{10} a\)
\[
\begin{array}{|lllll}
\log t & 0 & 0.78 & 1.15 & 1.18 \\
1.20 & & & & \\
\log P & 1.49 & 1.64 & 1.75 & 1.74 \\
1.76 & & & &
\end{array}
\]
plots f.t. \\
ruled line of best fit gradient rounding to 0.22 or
\[
\begin{gathered}
0.23 \\
\mathrm{a}=10^{1.49} \mathrm{~s} \text { s.o.i. } \\
\mathrm{P}=31 \mathrm{t}^{\mathrm{m}}
\end{gathered}
\] \\
allow the form \(P=10^{0.22 \text { logt }}\)
\[
+1.49
\] \\
answer rounds in range 60 to 63
\end{tabular} & \[
\begin{aligned}
& \hline 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \\
& 2 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
must be with correct equation condone omission of base \\
accept to 2 or more dp \\
M1 for y step / x-step accept1.47-1.50 for intercept accept answers that round to 30 32 , their positive \(m\)
\end{tabular} & 3
4
4

4
1 \\
\hline
\end{tabular}

\section*{4752 (C2) Concepts for Advanced Mathematics}

Section A
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \[
\begin{aligned}
& 4 x^{5} \\
& -12 x^{-\frac{1}{2}} \\
& +c
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 1 \\
2 \\
1
\end{array}
\] & M1 for other \(k x^{-\frac{1}{2}}\) & 4 \\
\hline 2 & 95.25, 95.3 or 95 & 4 & \begin{tabular}{l}
\[
\begin{aligned}
& \text { M3 } \\
& 1 / 2 \times 5 \times(4.3+0+2[4.9+4.6+3.9+2.3+1.2])
\end{aligned}
\] \\
M2 with 1 error, M1 with 2 errors. \\
Or M3 for 6 correct trapezia.
\end{tabular} & 4 \\
\hline 3 & 1.45 o.e. & 2 & M1 for \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\) oe & 2 \\
\hline 4 & 105 and 165 & 3 & B1 for one of these or M1 for \(2 x=210\) or 330 & 3 \\
\hline 5 & \begin{tabular}{l}
(i) graph along \(y=2\) with \(V\) at \((3,2)(4,1) \&(5,2)\) \\
(ii) graph along \(y=6\) with V at \((1,6)(2,3) \&(3,6)\)
\end{tabular} & \[
2
\]
\[
2
\] & \begin{tabular}{l}
M1 for correct V , or for \(\mathrm{f}(\mathrm{x}+2)\) \\
B1 for (2,k) with all other elements correct
\end{tabular} & 4 \\
\hline 6 & \begin{tabular}{l}
(i) 54.5 \\
(ii) Correct use of sum of AP formula with \(n=50,20,19\) or 21 with their \(d\) and \(a=7\) eg \(\mathrm{S}_{50}=\) \(3412.5, \mathrm{~S}_{20}=615\) \\
Their \(S_{50}-S_{20}\) dep on use of ap formula \\
2797.5 c.a.o.
\end{tabular} & \begin{tabular}{l}
2 \\
M1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
B1 for \(d=2.5\) \\
or M2 for correct formula for \(\mathrm{S}_{30}\) with their d M1 if one slip
\end{tabular} & 5 \\
\hline 7 & \(8 x-x^{-2}\) o.e. their \(\frac{d y}{d x}=0\) correct step \(x=1 / 2\) c.a.o. & \[
\begin{array}{|l}
\hline 2 \\
\text { M1 } \\
\text { DM1 } \\
\text { A1 }
\end{array}
\] & \begin{tabular}{l}
B1 each term \\
s.o.i. \\
s.o.i.
\end{tabular} & 5 \\
\hline 8 & \begin{tabular}{l}
(i) 48 \\
geometric, or GP \\
(ii) mention of \(|r|<1\) condition o.e.
\[
S=128
\]
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 2
\end{aligned}
\] & \[
\text { M1 for } \frac{192}{1--\frac{1}{2}}
\] & 5 \\
\hline 9 & \begin{tabular}{l}
(i) 1 \\
(ii) (A) \(3.5 \log _{a} x\) \\
(ii) (B) \(-\log _{a} x\)
\end{tabular} & \begin{tabular}{l}
\[
1
\] \\
2
\[
1
\]
\end{tabular} & M1 for correct use of \(1^{\text {st }}\) or \(3^{\text {rd }}\) law & 4 \\
\hline
\end{tabular}

Section B
\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 & i

ii
iii & \begin{tabular}{l}
\[
\begin{aligned}
& 7-2 x \\
& x=2, \text { gradient }=3 \\
& x=2, y=4 \\
& y-\text { their } 4=\text { their } \operatorname{grad}(x-2)
\end{aligned}
\] \\
subst \(y=0\) in their linear eqn completion to \(x=\frac{2}{3}\) (ans given) \(\mathrm{f}(1)=0\) or factorising to \((x-1)(6-x)\) or \((x-1)(x-6)\) 6 www
\[
\frac{7}{2} x^{2}-\frac{1}{3} x^{3}-6 x
\] \\
value at 2 - value at 1 \(2 \frac{1}{6}\) or 2.16 to 2.17 \\
\(\frac{1}{2} \times \frac{4}{3} \times 4\) - their integral 0.5 o.e.
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
M1 \\
A1 \\
1 \\
1 \\
M1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
differentiation must be used or use of \(y=\) their \(m x+c\) and subst (2, their 4), dependent on diffn seen \\
or using quadratic formula correctly to obtain \(x=1\) \\
for two terms correct; ignore \(+c\) \\
ft attempt at integration only
\end{tabular} & \begin{tabular}{|c}
6 \\
2 \\
\\
\\
5
\end{tabular} \\
\hline 11 & \begin{tabular}{l}
i(A) \\
i(B) \\
ii(A) \\
ii(B)
\end{tabular} & \begin{tabular}{l}
\(150(\mathrm{~cm})\) or 1.5 m
\[
\begin{aligned}
& 1 / 2 \times 60^{2} \times 2.5 \text { or } 4500 \\
& 1 / 2 \times 140^{2} \times 2.5 \text { or } 24500
\end{aligned}
\] \\
subtraction of these \(20000\left(\mathrm{~cm}^{2}\right)\) isw \\
attempt at use of cosine rule \\
\(\cos \mathrm{EFP}=\frac{3.5^{2}+2.8^{2}-1.6^{2}}{2 \times 2.8 \times 3.5}\) o.e. \\
26.5 to 26.65 or 27 \\
2.8 sin (their EFP) o.e. \\
1.2 to 1.3 [m]
\end{tabular} & \[
\begin{aligned}
& \hline 2 \\
& \\
& \text { M1 } \\
& \text { M1 } \\
& \text { DM1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & M1 for \(2.5 \times 60\) or \(2.5 \times 0.6\) or for 1.5 with no units or equivalents in \(\mathrm{m}^{2}\) or \(2 \mathrm{~m}^{2}\) condone 1 error in substitution & \begin{tabular}{|c}
2 \\
4 \\
4 \\
3 \\
3
\end{tabular} \\
\hline
\end{tabular}

\section*{4752 (C2) Concepts for Advanced Mathematics}

\section*{Section A}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & using Pythagoras to show that hyp. of right angled isos. triangle with sides \(a\) and \(a\) is \(\sqrt{ } 2 a\) completion using definition of cosine & \begin{tabular}{l}
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
WWW \\
a any letter or a number NB answer given
\end{tabular} & 2 \\
\hline 2 & \[
\begin{aligned}
& 2 x^{6}+5 x \\
& \text { value at } 2 \text { - value at } 1 \\
& 131
\end{aligned}
\] & \[
\begin{aligned}
& \text { M2 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & M1 if one error ft attempt at integration only & 4 \\
\hline 3 & \begin{tabular}{l}
(i) 193 \\
(ii) divergent + difference between terms increasing o.e.
\end{tabular} & \[
2
\]
\[
1
\] & M1 for \(8+15+\ldots+63\) & 3 \\
\hline 4 & \begin{tabular}{l}
(i) 2.4 \\
(ii) 138
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
M1 for \(43.2 \div 18\) \\
M1 for their (i) \(\times \frac{\frac{280}{\pi}}{}\) or \(\theta=\frac{43.2 \times 350}{36 \pi}\) o.e. or for other rot versions of 137.50...
\end{tabular} & 4 \\
\hline 5 & \begin{tabular}{l}
(i)sketch of \(\cos x\); one cycle, sketch of \(\cos 2 x\); two cycles, Both axes scaled correctly \\
(ii) (1-way) stretch parallel to \(y\) axis sf 3
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& \mathrm{D} 1 \\
& 1 \\
& \mathrm{D} 1
\end{aligned}
\] & & 5 \\
\hline 6 & \[
\begin{aligned}
& y^{\prime}=3 x^{2}-12 x-15 \\
& \text { use of } y^{\prime}=0 \text {, s.o.i. } \mathrm{ft} \\
& x=5,-1 \text { c.a.o. } \\
& x<-1 \text { or } x>5 \text { f.t. }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{M} 1 \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1 \\
& \mathrm{~A} 1 \\
& \mathrm{~A} 1
\end{aligned}
\] & for two terms correct & 5 \\
\hline 7 & use of \(\cos ^{2} \theta=1-\sin ^{2} \theta\) at least one correct interim step in obtaining \(4 \sin ^{2} \theta-\sin \theta=0\).
\[
\begin{aligned}
& \theta=0 \text { and } 180, \\
& 14 .(47 \ldots) \\
& 165-166
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { M1 } \\
& \mathrm{M} 1 \\
& \\
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & \begin{tabular}{l}
NB answer given \\
r.o.t to nearest degree or better -1 for extras in range
\end{tabular} & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 8 & \begin{tabular}{l}
attempt to integrate \(3 \sqrt{x}-5\)
\[
[y=] 2 x^{\frac{3}{2}}-5 x+c
\] \\
subst of \((4,6)\) in their integrated eqn
\[
c=10 \text { or }[y=] 2 x^{\frac{3}{2}}-5 x+10
\]
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { M1 } \\
\text { A2 } \\
\text { M1 } \\
\text { A1 }
\end{array}
\] & A1 for two terms correct & 5 \\
\hline 9 & \begin{tabular}{l}
(i) 7 \\
(ii) 5.5 o.e.
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & M1 for at least one of \(5 \log _{10} a\) or \(1 / 2 \log _{10} a\) or \(\log _{10} a^{5.5}\) o.e. & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{Sec} & ion & & & & \\
\hline & \multirow[t]{2}{*}{i} & \[
\begin{aligned}
& 0.6(0 . .), 0.8(45 . .), \text { [1], 1.1(76..) } \\
& 1.3(0 .), 1.6(0 . .) \\
& \text { points plotted correctly f.t. } \\
& \text { ruled line of best fit }
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \text { T } 1 \\
\text { P1 } \\
\text { L1 }
\end{array}
\] & Correct to 2 d.p. Allow 0.6, 1.3 and 1.6 tol. 1 mm & 3 \\
\hline & & \(b=\) their intercept & M1 & & \\
\hline & \multirow{2}{*}{ii} & \(\mathrm{a}=\) their gradient & M1 & & \\
\hline & & \(-11 \leq \mathrm{b} \leq-8\) and \(21 \leq \mathrm{a} \leq 23.5\) & A1 & & 3 \\
\hline & iii & 34 to 35 m & 1 & & 1 \\
\hline & \multirow[t]{3}{*}{iv} & \(29=\) "22"logt - " 9 " & M1 & & \\
\hline & & \(\mathrm{t}=10^{\text {"1.727.." }}\) & M1 & & \\
\hline & & 55 [years] approx & A1 & accept 53 to 59 & 3 \\
\hline & \(v\) & For small \(t\) the model predicts a negative height (or \(\mathrm{h}=0\) at approx 2.75) Hence model is unsuitable & 1
D1 & & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 & \begin{tabular}{l}
iA \\
iB \\
iiA \\
iiB \\
iiC
\end{tabular} & \[
\begin{aligned}
& 10+20+30+40+50+60 \\
& \text { correct use of AP formula with } \\
& a=10 \text { and } d=10 \\
& n(5+5 n) \text { or } 5 n(n+1) \text { or } \\
& 5\left(n^{2}+n\right) \text { or }\left(5 n^{2}+5 n\right) \\
& 10 n^{2}+10 n-20700=0 \\
& 45 \text { c.a.o. } \\
& 4 \\
& £ 2555 \\
& \text { correct use of GP formula with } \\
& a=5, r=2 \\
& 5\left(2^{n}-1\right) \text { o.e. }=2621435 \\
& 2^{n}=524288 \text { www } \\
& 19 \text { c.a.o. }
\end{aligned}
\] & B1
M1
A1
M1
\begin{tabular}{l}
A1 \\
1 \\
2 \\
M1 \\
DM1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
or \(\frac{6}{2}(2 \times 10+5 \times 10)\) or \(\frac{6}{2}(10+60)\) \\
Or better \\
M1 for \(5\left(1+2+\ldots 2^{8}\right)\) or \(5\left(2^{9}-1\right)\) o.e. \\
"S" need not be simplified
\end{tabular} & \begin{tabular}{|l}
1 \\
\\
\\
\\
\\
4 \\
1 \\
2 \\
2 \\
\\
4
\end{tabular} \\
\hline 12 & ii
iii
iv
v & \begin{tabular}{l}
6.1
\[
\frac{\left((3+h)^{2}-7\right)-\left(3^{2}-7\right)}{h} \begin{aligned}
& \text { numerator }=6 h+h^{2} \\
& 6+h
\end{aligned}
\] \\
as \(h\) tends to 0 , grad. tends to 6 o.e. f.t.from " 6 " +h
\[
\begin{aligned}
& y-2=" 6 "(x-3) \text { o.e. } \\
& y=6 x-16
\end{aligned}
\] \\
At \(\mathrm{P}, x=16 / 6\) o.e. or ft \\
At \(\mathrm{Q}, x=\sqrt{7}\) \\
0.021 cao
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
M1 for \(\frac{\left(3.1^{2}-7\right)-\left(3^{2}-7\right)}{3.1-3}\) o.e. s.o.i. \\
6 may be obtained from \(\frac{\partial y}{\partial x}\)
\end{tabular} & 2

3
2
2
3 \\
\hline
\end{tabular}

\section*{4752 (C2) Concepts for Advanced Mathematics}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & & \(1 / 2 x^{2}+3 x^{-1}+c\) o.e. & 3 & 1 for each term & 3 \\
\hline 2 & \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} & 5 with valid method 165 www & \begin{tabular}{l}
\[
1
\] \\
2
\end{tabular} & \begin{tabular}{l}
eg sequence has period of 4 nos. \\
M1 for \(13 \times(1+3+5+3)+1+3+5\) or for \(14 \times(1+3+5+3)-3\)
\end{tabular} & 3 \\
\hline 3 & & \begin{tabular}{l}
rt angled triangle with \(\sqrt{ } 2\) on one side and 3 on hyp \\
Pythag. used to obtain remaining side \(=\sqrt{ } 7\) \\
\(\tan \theta=\frac{o p p}{a d j}=\frac{\sqrt{2}}{\sqrt{7}}\) o.e.
\end{tabular} & \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} & or M1 for \(\cos ^{2} \theta=1-\sin ^{2} \theta\) used A1 for \(\cos \theta=\frac{\sqrt{7}}{\sqrt{9}}\) A1 for \(\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sqrt{2}}{\sqrt{7}}\) o.e. & 3 \\
\hline 4 & & radius \(=6.5[\mathrm{~cm}]\) & 3 & M1 for \(1 / 2 \times r^{2} \times 0.4[=8.45]\) o.e. and M1 for \(r^{2}=\frac{169}{4}\) o.e. [\(=42.25\)] & 3 \\
\hline 5 & \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
sketch of correct shape with P (\(-0.5,2\)) \(\mathrm{Q}(0,4)\) and \(\mathrm{R}(2,2)\) \\
sketch of correct shape with \(P(-1,0.5) \quad Q(0,1)\) and \(R(4,0.5)\)
\end{tabular} & \[
2
\]
\[
2
\] & \begin{tabular}{l}
1 if Q and one other are correct \\
1 if Q and one other are correct
\end{tabular} & 4 \\
\hline 6 & \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
205 \\
\(\frac{25}{3}\) o.e.
\end{tabular} & \[
3
\]
\[
2
\] & M1 for AP identified with \(d=4\) and M1 for \(5+50 d\) used M1 for \(r=\frac{2}{5}\) o.e. & 5 \\
\hline 7 & \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} & \[
\begin{aligned}
& \frac{\sin \mathrm{A}}{5.6}=\frac{\sin 79}{8.4} \text { s.o.i. } \\
& {[\mathrm{A}=] 40.87 \text { to } 41} \\
& {\left[\mathrm{BC}^{2}=\right] 5.6^{2}+7.8^{2}-2 \times 5.6 \times 7.8 \times} \\
& \cos (" 180-79 \text { ") } \\
& =108.8 \text { to } 108.9 \\
& {[\mathrm{BC}=] 10.4(\ldots)}
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & & 5 \\
\hline 8 & & \[
\begin{aligned}
& y^{\prime}=3 x^{-\frac{1}{2}} \\
& 3 / 4 \text { when } x=16 \\
& y=24 \text { when } x=16 \\
& y-\text { their } 24=\text { their } 3 / 4(x-16) \\
& y-24=3 / 4(x-16) \text { o.e. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
condone if unsimplified \\
dependent on \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) used for \(m\)
\end{tabular} & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 & \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} &
\[
\begin{aligned}
& 2 x+1=\frac{\log 10}{\log 3} \text { o.e. } \\
& {[x=] 0.55}
\end{aligned}
\] & \begin{tabular}{l}
G1 \\
DG1 \\
M1 \\
A2
\end{tabular} & \begin{tabular}{l}
for curve of correct shape in both quadrants \\
must go through \((0,1)\) shown \\
or M1 for \(2 x+1=\log _{3} 10\) \\
A1 for other versions of \(0.547 \ldots\) or 0.548
\end{tabular} & 5 \\
\hline 10 & \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} & \begin{tabular}{l}
\[
3 x^{2}-6 x-9
\] \\
use of their \(y^{\prime}=0\)
\[
\begin{aligned}
& x=-1 \\
& x=3
\end{aligned}
\] \\
valid method for determining nature of turning point max at \(x=-1\) and \(\min\) at \(x=3\)
\[
x\left(x^{2}-3 x-9\right)
\]
\[
\frac{3 \pm \sqrt{45}}{2} \text { or }\left(x-\frac{3}{2}\right)^{2}=9+\frac{9}{4}
\]
\[
0, \frac{3}{2} \pm \frac{\sqrt{45}}{2} \text { o.e. }
\] \\
sketch of cubic with two turning points correct way up \(x\)-intercepts - negative, 0 , positive shown
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
G1 \\
DG1
\end{tabular} & c.a.o. & 6

3

2 \\
\hline 11 & \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} & ```
\(47.625\left[\mathrm{~m}^{2}\right]\) to 3 sf or more, with
correct method shown
43.05
\(-0.013 x^{4} / 4+0.16 x^{3} / 3-0.082 x^{2} / 2+\)
\(2.4 x\) o.e.
their integral evaluated at \(x=12\) (and
0) only
47.6 to 47.7
5.30.. found
compared with 5.2 s.o.i.
``` & \begin{tabular}{l}
4 \\
2 \\
M2 \\
M1 \\
A1 \\
1 \\
D1
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \text { M3 for } \frac{1.5}{2} \times(2.3+2+2[2.7+3.3+4+ \\
& 4.8+5.2+5.2+4.4])
\end{aligned}
\] \\
M1 for
\[
1.5 \times(2.3+2.7+3.3+4+4.8+5.2+4.4+2)
\] \\
M1 for three terms correct dep on integration attempted
\end{tabular} & 4

2


4
4 \\
\hline 12 & \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} & \[
\begin{aligned}
& \log P=\log a+b t \quad \text { www } \\
& \text { comparison with } y=m x+c \text { s.o.i. } \\
& \text { intercept }=\log _{10} a \\
& \text { [2.12, 2.21], } 2.32,2.44,2.57,2.69 \\
& \text { plots ft } \\
& \text { ruled line of best fit }
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
must be with correct equation dependent on correct equation \\
Between (10, 2.08) and (10, 2.12)
\end{tabular} & 3

3 \\
\hline
\end{tabular}


\section*{GCE}

\section*{Mathematics (MEI)}

Advanced GCE 4752
Concepts for Advanced Mathematics (C2)

\section*{Mark Scheme for June 2010}

\section*{SECTION A}
\begin{tabular}{|c|c|c|c|}
\hline 1 & [1], \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\) & 2 & B1 for [1], \(\frac{1}{2}, \frac{1}{3}\) \\
\hline 2 (i) & \(2 \frac{1}{12}\) or \(\frac{25}{12}\) or \(2.08(3 \ldots\) ) & 2 & M1 for \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\) \\
\hline 2 (ii) & \[
\sum_{r=2}^{6} r(r+1) \text { o.e. }
\] & 2 & M1 for \([\mathrm{f}(r)=] r(r+1)\) o.e. M1 for [ \(a=\) ] 6 \\
\hline 3 (i) & \(3 x^{2}-12 x-15\) & 2 & M1 if one term incorrect or an extra term is included. \\
\hline 3 (ii) & Their \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0\) s.o.i.
\[
x=5
\]
\[
x=-1
\] & \begin{tabular}{l}
M1 \\
B1 \\
B1
\end{tabular} & \\
\hline 4 & crossing \(x\)-axis at 0 and 2.5 min at (1.25, -6.25) crossing \(x\)-axis at 0 and 5 min at (2.5, -18.75) & \begin{tabular}{l}
1 \\
1 \\
1 \\
1
\end{tabular} & \\
\hline 5 & \begin{tabular}{l}
\[
x-\frac{6 x^{-2}}{-2} \text { o.e. }
\] \\
their \(\left[5+\frac{3}{25}\right]-\left[2+\frac{3}{4}\right]\)
\[
\text { = } 2.37 \text { о.е. с.а.о. }
\]
\end{tabular} & \[
\begin{aligned}
& 2 \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
M1 for 1 term correct \\
Dependent on at least M1 already earned i.s.w.
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
attempt to integrate \(6 x^{2}+12 x^{\frac{1}{2}}\) \([y=] 2 x^{3}+8 x^{1.5}+c\) \\
Substitution of \((4,10)\)
\[
[y=] 2 x^{3}+8 a^{1.5}-182 \text { or } \mathrm{c}=-182
\]
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A2 } \\
& \text { M1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
accept un-simplified; A1 for 2 terms correct \\
dependent on attempted integral with \(+c\) term
\end{tabular} \\
\hline 7 & \(3.5 \log _{a} x\) or \(k=3.5\) & 2 & \[
\begin{aligned}
& \text { B1 for } 3 \log _{a} x \text { or } 1 / 2 \log _{a} x \text { or } \\
& \log _{a} x^{3 / 2} \text { seen }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 8 & \begin{tabular}{l}
Subst. of \(1-\cos ^{2} \theta\) or \(1-\sin ^{2} \theta\)
\[
\begin{aligned}
& 5 \cos ^{2} \theta=1 \text { or } 5 \sin ^{2} \theta=4 \\
& \cos \theta= \pm \sqrt{\text { their } \frac{1}{5}} \text { or } \\
& \sin \theta= \pm \sqrt{\text { their } \frac{4}{5}} \text { o.e. }
\end{aligned}
\] \\
63.4, 116.6, 243.4, 296.6
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
B2
\end{tabular} & Accept to nearest degree or better; B1 for 2 correct (ignore any extra values in range). \\
\hline 9 & \[
\begin{aligned}
& \log 18=\log a+n \log 3 \text { and } \\
& \log 6=\log a+n \log 2 \\
& \log 18-\log 6=n(\log 3-\log 2) \\
& n=2.71 \text { to } 2 \text { d.p. c.a.o. } \\
& \\
& \log 6=\log a+2.70951 \ldots \log 2 \text { о.e. } \\
& a=0.92 \text { to } 2 \text { d.p. c.a.o. }
\end{aligned}
\] & \begin{tabular}{l}
M1* \\
DM1 \\
A1 \\
M1 \\
A1
\end{tabular} & \[
\begin{aligned}
& \text { or } 18=a \times 3^{n} \text { and } \\
& 6=a \times 2^{n} \\
& 3=\left(\frac{3}{2}\right)^{n} \\
& n=\frac{\log 3}{\log 1.5}=2.71 \text { c.a.o. } \\
& 6=\mathrm{a} \times 2^{2.70951} \text { o.e. } \\
& =0.92 \text { c.a.o. }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Section A Total: 36}

SECTION B
\begin{tabular}{|ll|l|l|l|}
\hline \(\mathbf{1 0}\) & (i) & \begin{tabular}{l}
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}\) \\
when \(x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=32\) s.o.i. \\
when \(x=2, y=16\) s.o.i. \\
\(y=32 x-48\) c.a.o.
\end{tabular} & A1 & B1
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 11 (a) & \begin{tabular}{l}
\[
10.6^{2}+9.2^{2}-2 \times 10.6 \times 9.2 \times \cos 68^{\circ}
\] \\
o.e.
\[
\mathrm{QR}=11.1(3 \ldots)
\] \\
\(\frac{\sin 68}{\text { their } \mathrm{QR}}=\frac{\sin \mathrm{Q}}{9.2}\) or \(\frac{\sin \mathrm{R}}{10.6}\) o.e.
\[
\mathrm{Q}=50.01 . .^{\circ} \text { or } \mathrm{R}=61.98 . .^{\circ}
\]
\[
\text { bearing }=174.9 \text { to } 175^{\circ}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1
\end{tabular} & Or correct use of Cosine Rule
\[
2 \text { s.f. or better }
\] \\
\hline \[
\begin{array}{ll}
11 & \begin{array}{l}
\text { (b) } \\
\text { (i) }
\end{array}
\end{array}
\] & \[
\begin{aligned}
& \text { (A) } 1 / 2 \times 80^{2} \times \frac{2 \pi}{3} \\
& =\frac{6400 \pi}{3}
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & 6702.(...) to 2 s.f. or more \\
\hline \begin{tabular}{l}
11 (b) \\
(ii)
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{DC}=80 \sin \left(\frac{\pi}{3}\right)=80 \frac{\sqrt{3}}{2}
\] \\
Area \(=1 / 2 \times\) their DA \(\times 40 \sqrt{ } 3\) or \(1 / 2 \times 40 \sqrt{3} \times 80 \times \sin (\) their \(D C A)\) o.e. \\
area of triangle \(=800 \sqrt{ } 3\) or \(1385.64 \ldots\) to 3 s.f. or more
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} & both steps required
s.o.i. \\
\hline \[
\begin{array}{ll}
\hline 11 & \begin{array}{l}
\text { (b) } \\
\text { (iii) }
\end{array}
\end{array}
\] & \[
\begin{aligned}
& \text { area of } 1 / 4 \text { circle }=1 / 2 \times \frac{\pi}{2} \times(40 \sqrt{ } 3)^{2} \\
& \text { o.e. } \\
& \text { " } 6702 "+" 1385.6 "-\text { " } 3769.9 " \\
& =4300 \text { to } 4320
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
\[
[=3769.9 \ldots]
\] \\
i.e. their(b) (i) + their (b) (ii) - their \(1 / 4\) circle o.e.
\[
9331 / 3 \pi+800 \sqrt{ } 3
\]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
12 (i) \\
(A)
\end{tabular} & 1024 & 2 & M1 for number of buds \(=2^{10}\) s.o.i. \\
\hline \begin{tabular}{ll}
12 & (i) \\
(B)
\end{tabular} & 2047 & 2 & M1 for \(1+2+4+\ldots 2^{10}\) or for \(2^{11}-1\) or (their 1024) \(+512+256+\ldots+1\) \\
\hline \[
\begin{array}{ll}
12 & \text { (ii) } \\
& \text { (A) }
\end{array}
\] & no. of nodes \(=1+2+. .+2^{n-1}\) s.o.i.
\[
\frac{7 \times\left(2^{n}-1\right)}{2-1}
\] & 1
1 & no. of leaves \(=7+14+\ldots+7 \times 2^{\text {n-1 }}\) \\
\hline \begin{tabular}{l}
12 (ii) \\
(B)
\end{tabular} & \begin{tabular}{l}
\[
7\left(2^{n}-1\right)>200000
\]
\[
2^{n}>\frac{200000}{7}+1 \text { or } \frac{200007}{7}
\] \\
\(n \log 2>\log \left(\frac{200007}{7}\right)\) and completion to given ans
\[
\text { [n=] } 15 \text { c.a.o. }
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
B1
\end{tabular} & or \(\log 7+\log 2^{n}>\log 200007\) \\
\hline
\end{tabular}

\footnotetext{
Section B Total: 36
}

\section*{GCE}

\section*{Mathematics (MEI)}

Advanced Subsidiary GCE
Unit 4752: Concepts for Advanced Mathematics

\section*{Mark Scheme for January 2011}

SECTION A
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 11.4 o.e. & 2 & M1 for \(12 / 3+12 / 4+12 / 5+12 / 6\) o.e. & M0 unless four terms summed \\
\hline 2 & \[
\frac{1}{2} x^{6}+4 x^{\frac{1}{2}}+c
\] & 4 & \[
\begin{aligned}
& \mathbf{B 1} \text { for } \frac{1}{2} x^{6}, \mathbf{M 1} \text { for } k x^{\frac{1}{2}}, \mathbf{A 1} \text { for } k=4 \\
& \text { or } \frac{4}{\mathbf{1}}, \mathbf{B 1} \text { for }+c \text { dependent on at least } \\
& \text { one power increased }
\end{aligned}
\] & \[
\text { allow } \frac{\mathbf{3}}{\mathbf{6}} x^{6} \text { isw, }
\] \\
\hline 3 & \[
\begin{aligned}
& 1 / 2 \times 1.5 \times(0.6+0.7+ \\
& 2(2.3+3.1+2.8+1.8)) \\
& =15.975 \text { rounded to } 2 \text { s.f. or more }
\end{aligned}
\] & M2 & M1 if one error or M2 for sum of 5 unsimplified individual trapezia:
\[
2.175,4.05,4.425,3.45,1.875
\] & \begin{tabular}{l}
basic shape of formula must be correct. Must be 5 strips. M0 if pair of brackets omitted or \(h=7.5\) or 1 . allow recovery of brackets omitted to obtain correct answer. \\
M0 for other than 5 trapezia isw only if 15.975 clearly identified as cross-sectional area
\end{tabular} \\
\hline 4 & (i) \((3,15)\) & B2 & B1 for each coordinate & s.c. B0 for (3, 5) \\
\hline 4 & (ii) (1.5, 5) & B2 & B1 for each coordinate & s.c. B0 for (3, 5) \\
\hline 5 & \[
\begin{aligned}
& a r=6 \text { and } a r^{4}=-48 \\
& r=-2 \\
& \text { tenth term }=1536 \\
& \frac{-3\left(1-(-2)^{n}\right)}{1-(-2)} \text { o.e. } \\
& (-2)^{n}-1
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
B2 for \(r=-2 w w w\) \\
B3 for 1536 www \\
allow M1 for \(a=6 \div\) their \(r\) and substitution in GP formula with their \(a\) and \(r\) \\
c.a.o.
\end{tabular} & \begin{tabular}{l}
ignore incorrect lettering such as \(\mathrm{d}=-2\) \\
condone the omission of the brackets round "-2" in the numerator and / or the denominator
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & \[
\begin{aligned}
& a+2 d=24 \text { and } a+9 d=3 \\
& d=-3 ; a=30 \\
& \mathrm{~S}_{50}-\mathrm{S}_{20} \\
& -2205 \text { cao }
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
if M0, B2 for either, B3 for both \\
ft their \(a\) and \(d\); \\
M1 for \(\mathrm{S}_{30}=\frac{30}{2}\left(u_{21}+u_{50}\right)\) o.e. \\
B2 for - 2205 www
\end{tabular} & do not award B2 or B3 if values clearly obtained fortuitously
\[
\begin{aligned}
& \mathrm{S}_{50}=-2175 ; \mathrm{S}_{20}=30 \\
& u_{21}=30-20 \times 3=-30 \\
& u_{50}=30-49 \times 3=-117
\end{aligned}
\] \\
\hline 7 & (i) \(17 \log _{10} x\) or \(\log _{10} x^{17}\) & B2 & M1 for \(5 \log _{10} x\) or \(12 \log _{10} x\) or \(\log _{10} x^{12}\) as part of the first step & condone omission of base \\
\hline 7 & (ii) \(-b\) & B2 & M1 for \(\log _{a} 1=0\) or \(\log _{a} a=1\) soi & allow 0-b \\
\hline 8 & \[
\begin{aligned}
& \text { substitution of } \sin ^{2} \theta=1-\cos ^{2} \theta \\
& -5 \cos ^{2} \theta=\cos \theta \\
& \theta=90 \text { and } 270, \\
& 102 \\
& 258 \\
& \\
& 101 \text { and } 259
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline \text { M1 } \\
\text { A1 } \\
\\
\text { SC } \\
\text { 1 }
\end{array}
\] & \begin{tabular}{l}
soi \\
or better \\
accept 101.5(...) and 258.(46...) \\
rounded to 3 or more sf; \\
if M0, allow B1 for both of 90 and 270 and \(\mathbf{B} 1\) for 102 and \(\mathbf{B 1}\) for 258 (to 3 or more sf)
\end{tabular} & \begin{tabular}{l}
if the 4 correct values are presented, ignore any extra values which are outside the required range, but apply a penalty of minus 1 for extra values in the range \\
if given in radians deduct 1 mark from total awarded (1.57, 1.77, 4.51, 4.71)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline 9 & area sector \(=\frac{1}{2} \times r^{2} \times \frac{\pi}{6}\left[=\frac{\pi r^{2}}{12}\right]\) & M1 & soi & \\
area triangle \(=\frac{1}{2} \times a^{2} \times \sin \frac{\pi}{6}\left[=\frac{a^{2}}{4}\right]\) & M1 & soi & allow sin30 \\
\(1 / 2 a^{2} \times 1 / 2=1 / 2 \times r^{2} \times \frac{\pi}{6} \times 1 / 2\)
\end{tabular}\(\quad\) M1 \begin{tabular}{llll} 
\\
\begin{tabular}{l}
\(\frac{a^{2}}{4}=\frac{\pi r^{2}}{24}\) o.e. and completion to \\
given answer
\end{tabular} & A1 & & no follow through marks available \\
at least one correct intermediate step required, and no \\
wrong working to obtain given answer
\end{tabular}

Section A Total: 36
\begin{tabular}{|c|c|c|c|c|}
\hline 10 & \begin{tabular}{l}
(i) eqn of AB is \(y=3 x+1\) o.e. \\
their " \(3 x+1\) " \(=4 x^{2}\) \\
\((4 x+1)(x-1)=0\) o.e. so \(x=-1 / 4\) \\
at C, \(x=-1 / 4, y=4 \times(-1 / 4)^{2}\) or \(3 \times\) \((-1 / 4)+1[=1 / 4\) as required]
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
or equiv in \(y: y=4\left(\frac{y-1}{3}\right)^{2}\) or rearranging and deriving roots \(y=4\) or \(1 / 4\) condone verification by showing lhs = rhs o.e. \\
or \(y=1 / 4\) implies \(x= \pm 1 / 4\) so at \(\mathrm{C} x=-1 / 4\)
\end{tabular} & \begin{tabular}{l}
SC3 for verifying that A, B and C are collinear and that C also lies on the curve \\
SC2 for verifying that A, B and C are collinear by showing that gradient of \(\mathrm{AB}=\mathrm{AC}\) (for example) or showing \(C\) lies on \(A B\) \\
solely verifying that C lies on the curve scores 0
\end{tabular} \\
\hline 10 & \begin{tabular}{l}
(ii) \(y^{\prime}=8 x\) \\
at A \(y^{\prime}=8\) \\
eqn of tgt at A
\[
\begin{aligned}
& y-4=\text { their" } 8 \text { " }(x-1) \\
& y=8 x-4
\end{aligned}
\] \\
at C \(y^{\prime}=8 \times-1 / 4[=-2]\) \(y-1 / 4=-2(x-(-1 / 4))\) or other unsimplified equivalent to obtain given result. \\
allow correct verification that \((-1 / 4,1 / 4)\) lies on given line
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
ft their gradient \\
NB if \(m=-2\) obtained from given answer or only showing that \((-1 / 4,1 / 4)\) lies on given line \(y=-2 x-1 / 4\) then 0 marks.
\end{tabular} & \begin{tabular}{l}
gradient must follow from evaluation of \(\frac{a y}{\omega x}\) condone unsimplified versions of \(y=8 x-4\) \\
dependent on award of first M1 \\
SC2 if equation of tangent and curve solved simultaneously to correctly show repeated root
\end{tabular} \\
\hline 10 & (iii) their " \(8 x-4\) " \(=-2 x-1 / 4\) \(y=-1 \mathrm{www}\) & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & or \(\frac{y+4}{8}=\frac{y+\frac{1}{4}}{-2}\) & \[
\begin{aligned}
& \hline \text { o.e. } \\
& {[x=3 / 8]}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 11 & \begin{tabular}{l}
(i) \(\frac{x^{4}}{4}-x^{3}-\frac{x^{2}}{2}+3 x\) \\
their integral at 3 - their integral at 1
\[
[=-2.25-1.75]
\] \\
\(=-4\) isw \\
represents area between curve and \(x\) axis between \(x=1\) and 3 \\
negative since below \(x\)-axis
\end{tabular} & \begin{tabular}{l}
M2 \\
M1 \\
A1 \\
B1 \\
B1
\end{tabular} & M1 if at least two terms correct dependent on integration attempted & \begin{tabular}{l}
ignore \(+c\) \\
M0 for evaluation of \(x^{3}-3 x^{2}-x+3\) or of differentiated version \\
B0 for area under or above curve between \(x=1\) and 3
\end{tabular} \\
\hline 11 & \begin{tabular}{l}
(ii) \(y^{\prime}=3 x^{2}-6 x-1\) \\
their \(y^{\prime}=0\) soi
\[
x=\frac{-b \pm \sqrt{D^{2}-4 a \xi}}{2 \Omega} \text { with } a=3, b=-
\] \\
6 and \(c=-1\) isw \\
\(x=\frac{6 \pm \sqrt{48}}{6}\) or better as final answer \\
\(\frac{6-\sqrt{48}}{6}<x<\frac{6+\sqrt{48}}{6}\) or ft their \\
final answer
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
A1 \\
B1
\end{tabular} & \begin{tabular}{l}
dependent on differentiation attempted or \(3(x-1)^{2}-4[=0]\) or better \\
eg A1 for \(1 \pm \frac{2}{3} \sqrt{3}\) \\
allow \(\leq\) instead of \(<\)
\end{tabular} & \begin{tabular}{l}
no follow through; NB \(\frac{6 \pm \sqrt{4}}{6}\) or better stated without working implies use of correct method \\
A0 for incorrect simplification, eg \(1 \pm \sqrt{ } 48\) \\
allow B1 if both inequalities are stated separately and it's clear that both apply \\
allow B1 if the terms and the signs are in reverse order
\end{tabular} \\
\hline 12 & (i) \(50 \%\) of 25000 is 12500 and the population [in 2005] is 12000 [so consistent] & B1 & or 12000 is \(48 \%\) of 25000 so less than 50\%[ so consistent] & \\
\hline 12 & \[
\begin{aligned}
& \text { (ii) } \log _{{ }_{10}} P=\log _{10} a-k t \text { or } \\
& \log _{10} \bar{a}=- \text {-kt o.e. www }
\end{aligned}
\] & B2 & condone omission of base; M1 for \(\log _{{ }_{10}} P=\log _{10} a+\log _{10} 10^{-k t}\) or better www & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 12 & \begin{tabular}{l}
(iii) 4.27, 4.21, 4.13, 4.08 \\
plots \\
ruled line of best fit drawn
\end{tabular} & \[
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & \begin{tabular}{l}
accept 4.273..., 4.2108..., 4.130..., 4.079... rounded to 2 or more dp \\
1 mm tolerance ft their values if at least 4 correct values are correctly plotted
\end{tabular} & f.t. if at least two calculated values correct must have at least one point on or above and at least one point on or below the line and must cover \(0 \leq t \leq 25\) \\
\hline 12 & \[
\begin{aligned}
& \text { (iv) } a=25000 \text { to } 25400 \\
& 0.01 \leq k \leq 0.014 \\
& P=a \times 10^{-k t} \text { or } P=10^{\log a-k t} \text { with } \\
& \text { values in acceptable ranges }
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
B2 \\
B1
\end{tabular} & \begin{tabular}{l}
allow \(10^{\text {4.4. }}\) \\
M1 for \(-k=\frac{\Delta y}{\Delta x}\) using values from table or graph; condone \(+k\) \\
B0 if left in logarithmic form
\end{tabular} & \begin{tabular}{l}
M1 for a correct first step in solving a pair of valid equations in either form \\
A1 for \(k\) \\
A1 for \(a\) \\
A1 for \(P=a \times 10^{-k t}\)
\end{tabular} \\
\hline 12 & \begin{tabular}{l}
(v) \(P=a \times 10^{-35 k}\) \\
8600 to 9000 \\
comparing their value with 9375 o.e. and reaching the correct conclusion for their value
\end{tabular} & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & Their \(a\) and \(k\)
f.t. & allow \(\log P=\log a-35 k\) \\
\hline
\end{tabular}

Section B Total: 36

\section*{GCE}

\title{
Mathematics (MEI)
}

Advanced Subsidiary GCE

\section*{Mark Scheme for June 2011}

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

SECTION A
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \[
\begin{aligned}
& 1 / 2 x^{4}+3 x \\
& F[5]-F[2] \\
& {[=327.5-14]} \\
& =313.5 \text { o.e. }
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} & accept unsimplified at least one term correctly integrated, may be implied by A1 & \begin{tabular}{l}
ignore + c \\
condone omission of brackets \\
313.5 unsupported scores 0
\end{tabular} \\
\hline 2 & \[
\begin{aligned}
& 0.05,2000,1.25 \times 10^{-6} \text { or } \\
& \frac{1}{20}, 2000, \frac{1}{800000} \text { o.e. } \\
& \text { divergent }
\end{aligned}
\] & \begin{tabular}{l}
B2 \\
B1
\end{tabular} & \begin{tabular}{l}
B1 for two correct \\
allow "alternate terms tend to zero and to infinity" o.e.
\end{tabular} & do not allow "oscillating", "getting bigger and smaller", "getting further apart" \\
\hline 3 & \[
\begin{aligned}
& \text { (i) } m= \\
& \quad \frac{\sqrt{1+2 \times 4.1}-\sqrt{1+2 \times 4}}{4.1-4} \text { s.o.i } \\
& \text { grad }=\frac{\sqrt{9.2}-\sqrt{9}}{4.1-4} \text { s.o.i } \\
& 0.3315 \text { cao }
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & & \begin{tabular}{l}
no marks for use of Chain Rule or any other attempt to differentiate \\
SC2 for \(0.33 \ldots\)... appearing only embedded in equation of chord
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
(ii) selection of value in \((4,4.1)\) and 4 or of two values in [3.9, 4.1] centred on 4 \\
answer closer to \(1 / 3\) than \(0.3315(\ldots)\)
\end{tabular} & M1
A1 & & allow selection of 4 and value in (3.9, 4) \\
\hline 4 & \[
6=a b \text { and } 3.6=a b^{2}
\]
\[
a=10, b=0.6 \text { c.a.o. }
\] & M1
A2 & \begin{tabular}{l}
\[
\begin{aligned}
& \log 6=\log a+\log b \text { and } \\
& \log 3.6=\log a+\log b^{2}
\end{aligned}
\] \\
A1 each; if M0 then \(\mathbf{B 3}\) for both, \(\mathbf{B} 1\) for one
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 5 & \begin{tabular}{l}
\[
\left[\frac{d y}{d x}=\right] 32 x^{3} \text { c.a.o. }
\] \\
substitution of \(x=1 / 2\) in their \(\frac{d y}{d x}\)
\[
\text { grad normal }=\frac{-1}{\text { their } 4}
\] \\
when \(x=1 / 2, y=41 / 2\) o.e. \\
\(y-4 \frac{1}{2}=-\frac{1}{4}\left(x-\frac{1}{2}\right)\) i.s.w
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { M1 } \\
\text { M1 } \\
\text { M1 } \\
\text { B1 } \\
\text { A1 } \\
\hline
\end{array}
\] & \[
[=4]
\]
\[
y=-\frac{1}{4} x+4 \frac{5}{8} \text { o.e. }
\] & \begin{tabular}{l}
must see \(k x^{3}\) \\
their 4 must be obtained by calculus
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
\[
\begin{aligned}
& \frac{d y}{d x}=6 x^{\frac{1}{2}}-2 \\
& y=k x^{\frac{3}{2}}-2 x+c \quad \text { o.e. } \\
& y=4 x^{\frac{3}{2}}-2 x+c \text { o.e. }
\end{aligned}
\] \\
correct substitution of \(x=9\) and \(y=4\) in their equation of curve
\[
y=4 x^{\frac{3}{2}}-2 x-86
\]
\end{tabular} & \begin{tabular}{l}
M2 \\
A1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
M1 for \(k x^{\frac{3}{2}}\) and \(\mathbf{M 1}\) for \(-2 x+c\) \\
dependent on at least M1 already awarded \\
allow A1 for \(c=-86\) i.s.w. if simplified equation for \(y\) seen earlier
\end{tabular} & \begin{tabular}{l}
\(x^{\frac{1}{6}}\) is a mistake, not a misread \\
" \(y=\) " need not be stated at this point, but must be seen at some point for full marks \\
must see " \(+c\) "
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 7 & \begin{tabular}{l}
\[
\begin{aligned}
& \frac{\sin \theta}{\cos \theta}=2 \sin \theta \\
& 2 \cos \theta-1=0 \text { and } \sin \theta=0 \\
& {[\theta=] 0,180,360,} \\
& {[\theta=] 60,300}
\end{aligned}
\] \\
if 4 marks awarded, lose 1 mark for extra values in the range, ignore extra values outside the range
\end{tabular} & \[
\begin{aligned}
& \hline \text { M1 } \\
& \\
& \text { A1 } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & may be implied by \(2 \cos \theta-1=0\) or better & \begin{tabular}{l}
or, if to advantage of candidate \\
B4 for all 5 correct \\
B3 for 4 correct \\
B2 for 3 correct \\
B1 for 2 correct \\
if extra value(s) in range, deduct one mark from total do not award if values embedded in trial and improvement approach
\end{tabular} \\
\hline 8 & \begin{tabular}{l}
\[
\log p=\log s+\log t^{n}
\]
\[
\log p=\log s+n \log t
\]
\[
[n=] \frac{\log p-\log s}{\log t} \text { or } \frac{\log \left(\frac{p}{s}\right)}{\log t}
\] \\
[base not required]
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \text { or } \frac{p}{s}=t^{n} \\
& n \log t=\log \left(\frac{p}{s}\right)
\end{aligned}
\] \\
as final answer (i.e. penalise further incorrect simplification)
\end{tabular} & or A2 for [ \(n=] \log _{t}\left(\frac{p}{s}\right)\) [base \(t\) needed ] following first M1 \\
\hline 9 & \[
\begin{aligned}
& \log 16^{1 / 2} \text { or }[-] \log 5^{2} \text { s.o.i. } \\
& \log (4 \times 75) \text { or } \log \frac{75}{25} \text { s.o.i. } \\
& x=12 \mathrm{www}
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \[
x=\frac{4 \times 75}{25} \text { implies M1M1 }
\] & if \(a=10\) assumed, \(x=12\) c.a.o. scores \(\mathbf{B 3}\) www no follow through \\
\hline 10 & \[
\begin{aligned}
& t_{1}=-\sin \theta \\
& t_{2}=\sin \theta
\end{aligned}
\] & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & WWW WWW & e.g. \(\sin (\theta+360)=\sin \theta+\sin 360=\sin \theta \mathbf{B 0}\) \\
\hline
\end{tabular}

Section A Total: 36

SECTION B
\begin{tabular}{|c|c|c|c|c|}
\hline 11 & \begin{tabular}{l}
(i) \(200-2 \pi r^{2}=2 \pi r h\) \(h=\frac{200-2 \pi r^{2}}{2 \pi r}\) o.e. \\
substitution of correct \(h\) into \(V=\pi r^{2} h\) \\
\(V=100 r-\pi r^{3}\) convincingly obtained
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& 100=\pi r^{2}+\pi r h \\
& 100 r=\pi r^{3}+\pi r^{2} h \\
& 100 r=\pi r^{3}+V \\
& V=100 r-\pi r^{3}
\end{aligned}
\] \\
or \\
M1 for \(h=\frac{V}{\pi r^{2}}\) \\
M1 for \(200=2 \pi r^{2}+2 \pi r \times \frac{V}{\pi r^{2}}\) \\
M1 for \(200=2 \pi r^{2}+2 \frac{V}{r}\) \\
A1 for \(V=100 r-\pi r^{3}\) convincingly obtained
\end{tabular} & \begin{tabular}{l}
sc3 for complete argument working backwards:
\[
\begin{aligned}
& V=100 r-\pi r^{3} \\
& \pi r^{2} h=100 r-\pi r^{3} \\
& \pi r h=100-\pi r^{2} \\
& 100=\pi r h+\pi r^{2} \\
& 200=A=2 \pi r h+2 \pi r^{2}
\end{aligned}
\] \\
sc0 \(\mathbf{0}\) if argument is incomplete
\end{tabular} \\
\hline 11 & \[
\begin{aligned}
& \text { (ii) } \frac{d V}{d r}=100-3 \pi r^{2} \\
& \frac{d^{2} V}{d r^{2}}=-6 \pi r
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { B2 } \\
& \text { B1 }
\end{aligned}
\] & B1 for each term & allow 9.42(....) \(r^{2}\) or better if decimalised \(-18.8(\ldots) r\) or better if decimalised \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline 11 & \begin{tabular}{l} 
(iii) their \(\frac{d V}{d r}=0\) s.o.i. \\
\(r=3.26\) c.a.o.
\end{tabular} & M1 & \begin{tabular}{l} 
must contain \(r\) as the only variable \\
A1 for \(r=( \pm) \sqrt{\frac{100}{3 \pi}} ;\) may be implied \\
by \(3.25 \ldots\)
\end{tabular} \\
\(V=217\) c.a.o. & A1 & \begin{tabular}{l} 
deduct 1 mark only in this part if \\
answers not given to 3 sf,
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 12 & (i)(A) 390 & B2 & M1 for \(500-11 \times 10\) & \\
\hline 12 & \begin{tabular}{l}
(i)(B)
\[
S_{24}=\frac{24}{2}(2 \times 500+(24-1) \times-10) \text { o.e. }
\] \\
i.s.w. \\
or \(S_{24}=\frac{24}{2}(500+270)\) o.e. i.s.w. [=9240] (answer given)
\end{tabular} & B2 & \begin{tabular}{l}
nothing simpler than
\[
12(1000+23 \times-10) \text { or } \frac{24}{2}(1000-230)
\] \\
or \(12(2 \times 500-230)\) \\
if \(\mathbf{B} 2\) not awarded, then \\
M1 for use of a.p. formula for \(\mathrm{S}_{24}\) with \(n=24, a=500\) and \(d=-10\) \\
or \(\mathbf{M 1}\) for \(l=270\) s.o.i.
\end{tabular} & \begin{tabular}{l}
condone omission of final bracket or "(23)-10" if recovered in later work \\
if they write the sum out, all the terms must be listed for 2 marks \\
\(12 \times(1000-230)\) or \(12 \times 770\) on its own do not score
\end{tabular} \\
\hline 12 & (ii)(A) 368.33(...) or 368.34 & B2 & M1 for \(460 \times 0.98{ }^{\text {11 }}\) & \\
\hline 12 & \[
\begin{aligned}
& \text { (ii)(B) } \\
& J_{20}=310 \\
& \mathrm{M}_{20}=313.36(\ldots), 313.4,313.3, \\
& \quad 313.37 \text { or } 313 \\
& \mathrm{~J}_{19}=320 \\
& \mathrm{M}_{19}=319.76(\ldots), 319.8 \text { or } 319.7
\end{aligned}
\] & B3 & B3 for all 4 values correct or B2 for 3 values correct or B1 for 2 values correct & values which are clearly wrongly attributed do not score \\
\hline 12 & (ii)(C) 8837 to 8837.06 & B2 & M1 for \(S_{24}=\frac{460\left(1-0.98^{24}\right)}{1-0.98}\) o.e. & \\
\hline 12 & (ii)(D) \(\frac{a\left(1-0.98^{24}\right)}{(1-0.98)}=9240\) o.e. 480.97 to 480.98 & \[
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
\] & f.t. their power of 24 from (ii)C & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 13 & \[
\begin{aligned}
& \text { (i) arc } \mathrm{AC}=2.1 \times 1.8 \\
& =3.78 \text { c.a.o. } \\
& \text { area }=\text { their } 3.78 \times 5.5 \\
& =20.79 \text { or } 20.8 \text { i.s.w. }
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
dep* \\
A1
\end{tabular} & \begin{tabular}{l}
\[
\frac{103}{360} \times 2 \pi \times 2.1
\] \\
dependent on first M1
\end{tabular} & \begin{tabular}{l}
\(103^{\circ}\) or better \\
3.78 must be seen but may be embedded in area formula
\end{tabular} \\
\hline 13 & (ii) \(\mathrm{BD}=2.1 \cos (\pi-1.8)\) or 2.1cos1.3(4159.....) or \(2.1 \sin 0.2(292 \ldots)\) r.o.t to 1 d.p. or more
\[
=0.48
\] & \begin{tabular}{l}
M2 \\
A1
\end{tabular} & \begin{tabular}{l}
M1 for \(\cos (\pi-1.8)=\frac{\mathrm{BD}}{2.1}\) o.e. \\
allow any answer which rounds to 0.48
\end{tabular} & \begin{tabular}{l}
M2 for \(\mathrm{BD}=2.1 \cos 76.8675 \ldots{ }^{\circ}\) or 2.1sin13.1324...rounded to 2 or more sf \\
or M2 for \(\mathrm{CD}=2.045 \ldots\).. r.o.t. to 3 s.f. or better and \(B D=\sqrt{ }\left(2.1^{2}-2.045^{2}\right)\)
\end{tabular} \\
\hline 13 & \begin{tabular}{l}
(iii) sector area \(=3.969\) \\
triangle area \(=0.487\) to 0.491 \\
24.5
\end{tabular} & \begin{tabular}{l}
M2 \\
M2 \\
A1
\end{tabular} & \begin{tabular}{l}
M1 for \(1 / 2 \times 2.1^{2} \times 1.8\) \\
M1 for \(1 / 2 \times 2.1 \times\) their \(0.48 \times \sin (\pi-1.8)\) or \(1 / 2 \times\) their \(0.48 \times 2.045\).. r.o.t. to 3 s.f. or better \\
allow any answer which rounds to 24.5
\end{tabular} & \begin{tabular}{l}
or equivalent with degrees for first two Ms N.B. \(5.5 \times 3.969=21.8295\) so allow M2 for 21.8295 may be sin 1.8 instead of \(\sin (\pi-1.8)\) \\
N.B. \(5.5 \times\) area \(=2.6785\) to 2.7005 so allow M2 for a value in this range
\end{tabular} \\
\hline
\end{tabular}

Section B Total: 36
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|c|}{Guidance} \\
\hline 1 & & \(\frac{1}{2} x^{-\frac{1}{2}}-3 x^{-2}\) oe; isw & B3
[3] & need not be simplified B2 for one term correct ignore \(+c\) & if B0 allow M1 for either \(x^{1 / 2}\) or \(x^{-1}\) seen before differentiation deduct one mark for extra term in \(x\) \\
\hline 2 & & \[
\begin{aligned}
& \text { (5), } 8,11,(14), \ldots \text { isw } \\
& a=5 \text { and } d=3 \text { soi } \\
& S_{50}=\frac{50}{2}(2 \times 5+(50-1) \times 3) \text { oe } \\
& 3925
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
[4]
\end{tabular} & if M0, SC1 for use of \(a=8\) and obtaining 4075 & if M0, award B2 if 3925 is obtained from summing individual terms or if unsupported \\
\hline 3 & (i) & \begin{tabular}{l}
\[
\begin{aligned}
& 9.8^{2}+6.4^{2}-2 \times 9.8 \times 6.4 \times \cos 53.4 \\
& 9.8^{2}+6.4^{2}-74.79 \ldots[=62.2 \ldots]
\end{aligned}
\] \\
\(7.887 \ldots\) or 7.89 or 7.9
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
for evidence of correct order of operations used; may be implied by correct answer \\
if M0, B3 for 7.89 or more precise www
\end{tabular} & \begin{tabular}{l}
6.89 implies M0 \\
262.4368 implies M1 (calc in radian \\
mode), (NB \(\sqrt{ } 262.436 . .=16.199 \ldots\)..) \\
NB 9.8sin53.4 \(=7.87\)
\end{tabular} \\
\hline 3 & (ii) & \(1 / 2 \times 9.8 \times 7.3 \times \sin (180-53.4)\) oe seen \(28.716 \ldots\). or 28.72 or 28.7 or 29 isw & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & or \(\sin 53.4\) used; may be embedded if M0, B2 for 28.7 or more precise www & may be split into height \(=9.8 \times \sin 53.4\) then Area \(=1 / 2 \times 7.3 \times\) height \\
\hline 4 & (i) & \((6,9)\) & \[
\begin{gathered}
2 \\
{[2]}
\end{gathered}
\] & 1 for each co-ordinate & SC0 for (6, 3) \\
\hline 4 & (ii) & \((1.5,3)\) & \[
\begin{gathered}
2 \\
{[2]}
\end{gathered}
\] & 1 for each co-ordinate & SC0 for (6, 3) \\
\hline 5 & & \[
\begin{aligned}
& 45=1 / 2 r^{2} \times 1.6 \text { oe } \\
& r^{2}=90 / 1.6 \text { oe } \\
& r=7.5 \text { or exact equivalent cao } \\
& \text { (their } 7.5 \text { ) } \times 1.6 \\
& 27
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1 \\
[5]
\end{tabular} & \begin{tabular}{l}
\[
45=\pi r^{2} \times \frac{91.673 \ldots}{360}
\] \\
or B3 www
\[
2 \pi \times(\text { their } r) \times \frac{91.673 \ldots}{360}
\] or B2 www
\end{tabular} & \begin{tabular}{l}
allow recovery to 7.5 if working in degrees, but A0 for (eg) 7.49 \\
12 implies M1
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} & Answer & \multirow[t]{2}{*}{\begin{tabular}{l}
Marks \\
M3
\end{tabular}} & \multicolumn{2}{|c|}{Guidance} \\
\hline 9 & (i) & & ```
\[
1 / 2 \times 0.2(0+0+2(0.5+0.7+0.75+0.7+
\]
\[
0.5) \text { ) }
\]
\[
[=0.63]
\]
\[
\text { (their } 0.63) \times 50
\]
\[
31.5
\]
``` & & \begin{tabular}{l}
M2 if one error, M1 if two errors condone omission of zeros or M3 for
\[
0.05+0.12+0.145+0.145+0.12+0.05
\] \\
may be unsimplified, must be summed
\end{tabular} & basic shape of formula must be correct must be 6 strips M0 if brackets omitted, but allow recovery M0 if \(h=1\) or 1.2 Area \(=6.3\) and 0.53 imply M0 \\
\hline 9 & (ii) & (A) & \begin{tabular}{l}
\[
3.8 \times 0.2^{4}-6.8 \times 0.2^{3}+7.7 \times 0.2^{2}-4.2 \times 0.2
\] \\
0.01968 cao isw
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & \begin{tabular}{l}
\(\pm 0.58032\) implies M1 \\
or B2 if unsupported
\end{tabular} & condone one sign error allow - 0.01968 \\
\hline 9 & (ii) & (B) & \[
\begin{aligned}
& \frac{3.8 x^{5}}{5}-\frac{6.8 x^{4}}{4}+\frac{7.7 x^{3}}{3}-\frac{4.2 x^{2}}{2}+c \\
& \mathrm{~F}(0.9)[-\mathrm{F}(0)] \\
& 50 \times \text { their } \pm \mathrm{F}(0.9) \\
& 24.8 \text { to } 24.9 \text { cao }
\end{aligned}
\] & \[
\begin{gathered}
\text { M2 } \\
\\
\text { M1* } \\
\text { M1dep* } \\
\text { A1 } \\
\text { [5] }
\end{gathered}
\] & M1 for two terms correct excluding \(c\) condone omission of \(c\) as long as at least M1 awarded & \begin{tabular}{l}
accept 2.56 to 2.57 for coefficient of \(x^{3}\) allow M1 if all signs reversed \\
NB \(F(0.9)=-0.496 \ldots\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|c|}{Guidance} \\
\hline 10 & (i) & \[
\begin{aligned}
& y^{\prime}=3 x^{2}-5 \\
& \text { their } y^{\prime}=0 \\
& (1.3,-4.3) \text { cao } \\
& (-1.3,4.3) \text { cao }
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
[4]
\end{tabular} & or A1 for \(x= \pm \sqrt{\frac{5}{3}}\) oe soi allow if not written as co-ordinates if pairing is clear & ignore any work relating to second derivative \\
\hline 10 & (ii) & \begin{tabular}{l}
crosses axes at \((0,0)\) \\
and \((\pm \sqrt{5}, 0)\) \\
sketch of cubic with turning points in correct quadrants and of correct orientation and passing through origin \\
\(x\)-intercepts \(\pm \sqrt{ } 5\) marked
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
[4]
\end{tabular} & \begin{tabular}{l}
condone \(x\) and \(y\) intercepts not written as co-ordinates; may be on graph \(\pm(2.23\) to 2.24\()\) implies \(\pm \sqrt{ } 5\) \\
may be in decimal form (\(\pm 2.2 \ldots\))
\end{tabular} & \begin{tabular}{l}
See examples in Appendix \\
must meet the \(x\)-axis three times B0 eg if more than 1 point of inflection
\end{tabular} \\
\hline 10 & (iii) & \[
\begin{aligned}
& \text { substitution of } x=1 \text { in } \mathrm{f}^{\prime}(x)=3 x^{2}-5 \\
& -2 \\
& \left.y--4=\text { (their } \mathrm{f}^{\prime}(1)\right) \times(x-1) \text { oe } \\
& -2 x-2=x^{3}-5 x \text { and completion to given } \\
& \text { result www } \\
& \text { use of Factor theorem in } x^{3}-3 x+2 \text { with } \\
& -1 \text { or } \pm 2 \\
& x=-2 \text { obtained correctly }
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { M1 } \\
\\
\text { A1 } \\
\text { M1* } \\
\text { M1dep* } \\
\text { M1 } \\
\\
\text { A1 } \\
\text { [6] } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\[
\text { or }-4=-2 \times(1)+c
\] \\
or any other valid method; must be shown
\end{tabular} & \begin{tabular}{l}
sight of -2 does not necessarily imply M1: check \(\mathrm{f}^{\prime}(x)=3 x^{2}-5\) is correct in part (i) \\
eg long division or comparing coefficients to find \((x-1)\left(x^{2}+x-2\right)\) or \((x+2)\left(x^{2}-2 x+1\right)\) is enough for M1 with both factors correct NB MOA0 for \(x\left(x^{2}-3\right)=-2\) so \(x=-2\) or \(x^{2}-3=-2\) oe
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & \multirow[t]{2}{*}{Answer
\[
\begin{aligned}
& a r=6 \text { oe } \\
& \frac{a}{1-r}=25 \text { oe } \\
& 25=\frac{a}{1-6 / a} \\
& a^{2}-25 a+150[=0] \\
& a=10 \text { obtained from formula, factorising, } \\
& \text { Factor theorem or completing the square } \\
& a=15 \\
& r=0.4 \text { and } 0.6
\end{aligned}
\]} & & \multicolumn{2}{|c|}{Guidance} \\
\hline 11 & (i) & & \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
A1 \\
A1 \\
A1 \\
[7]
\end{tabular} & \begin{tabular}{l}
must be in \(a\) and \(r\) must be in \(a\) and \(r\) \\
or \(\frac{6}{r}=25(1-r)\) \\
or \(25 r^{2}-25 r+6[=0]\) \\
\(r=0.4\) and \(r=0.6\)
\[
\begin{aligned}
& a=15 \\
& a=\frac{6}{0.6}=10 \text { oе }
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
NB assuming \(a=10\) earns M0 \\
All signs may be reversed \\
if M0, B1 for \(r=0.4\) and 0.6 and B1 for \(a=15\) by trial and improvement mark to benefit of candidate
\end{tabular} \\
\hline 11 & (ii) & \[
\begin{aligned}
& 10 \times(3 / 5)^{n-1} \text { and } 15 \times(2 / 5)^{n-1} \text { seen } \\
& 15 \times 2^{n-1}: 10 \times 3^{n-1} \text { or } 3 \times \frac{2^{n-1}}{5^{n-1}}: 2 \times \frac{3^{n-1}}{5^{n-1}} \\
& 3 \times 2^{n-1}: 2 \times 3^{n-1}
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
may be implied by \(3 \times 2^{n-1}: 2 \times 3^{n-1}\) \\
and completion to given answer www
\end{tabular} & \begin{tabular}{l}
condone ratio reversed \\
condone ratio reversed
\end{tabular} \\
\hline
\end{tabular}

Appendix: examples for Question 10(ii)
Example 1

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|c|}{Guidance} \\
\hline 1 & & \[
\begin{aligned}
& k x^{\frac{5}{2}} \\
& k=12 \\
& +c
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
[3]
\end{tabular} & & \\
\hline 2 & (i) & converging + valid reason & \[
1
\]
[1] & & eg converges to \(0, r=1 / 2\), difference between terms decreasing, sum of terms converges to 6, G.P. with \(|r|<1\) \\
\hline 2 & (ii) & neither + valid reason & \[
1
\]
[1] & & eg divergent oe, A.P., \(d=4\) oe, convergent and periodic ruled out with correct reasons \\
\hline 2 & (iii) & periodic + valid reason & \[
1
\]
[1] & & eg repeating cycle of terms \\
\hline 3 & (i) & \((0.8,-2)\) ое & \begin{tabular}{l}
2 \\
[2]
\end{tabular} & B1 each coordinate & SC0 for (4, -2) \\
\hline 3 & (ii) & Translation \(\binom{90}{0}\) oe & B1 B1 [2] & or eg 270 to left & allow \(\mathbf{B} 2\) for rotation through \(180^{\circ}\) about \((45,0)\) oe \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|c|}{Guidance} \\
\hline 4 & (i) & \[
\begin{aligned}
& 1.2 r=4.2 \\
& 3.5 \text { сао }
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & or \(\frac{68.7549 \ldots}{360} \times 2 \pi r=4.2\) with \(\theta\) to 3 sf or better & B2 if correct answer unsupported \\
\hline 4 & (ii) & \[
\begin{aligned}
& \cos 0.6=\frac{d}{\text { their3.5 }} \\
& \text { 2.888.. to } 2.9
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & or \(\cos 34.377 . .=\frac{d}{\text { their3.5 }}\) with \(\theta\) to 3 sf or better & ```
or correct use of Sine Rule with 0.9708
(55.623*)
or area = 5.709 = 0.5 <h\times3.952,
or 3.5 }\mp@subsup{5}{}{2}-1.976\mp@subsup{6}{}{2}=\mp@subsup{d}{}{2
``` \\
\hline 5 & & \[
\begin{aligned}
& \text { gradient }=\frac{4 \sqrt{9.5}-12}{9.5-9} \\
& 0.6577 \text { to } 0.66 \\
& 9<x_{\mathrm{C}}<9.5
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
[3]
\end{tabular} & or 0.657656...isw & \begin{tabular}{l}
\[
4 \sqrt{38}-244 \sqrt{ } 38-24
\] \\
allow \(8.53 \leq x_{\mathrm{C}}<9\)
\end{tabular} \\
\hline 6 & & \[
\begin{aligned}
& 6 x^{2}+18 x-24 \\
& \text { their } 6 x^{2}+18 x-24=0 \text { or }>0 \text { or } \geq 0 \\
& -4 \text { and }+1 \text { identified oe } \\
& x<-4 \text { and } x>1 \text { cao }
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1 \\
[4]
\end{tabular} & or \(x \leq-4\) and \(x \geq 1\) & \begin{tabular}{l}
or sketch of \(y=6 x^{2}+18 x-24\) with attempt to find \(x\)-intercepts \\
if B0M0 then SC2 for fully correct answer
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Question } & \multicolumn{1}{c|}{ Answer } & Marks & Guidance \\
\hline 7
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 8 & (ii) & \[
\begin{aligned}
& 5 x-1=\frac{\log _{10} 500000}{\log _{10} 3} \\
& x=\left(\frac{\log _{10} 500000}{\log _{10} 3}+1\right) \div 5 \\
& {[x=] 2.588 \text { to } 2.59}
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
or \(5 x-1=\log _{3} 500000\)
\[
x=\left(\log _{3} 500000+1\right) \div 5
\] \\
oe; or B3 www
\end{tabular} & \begin{tabular}{l}
condone omission of base 10 use of logs in other bases may earn full marks \\
if unsupported, B3 for correct answer to 3 sf or more www
\end{tabular} \\
\hline 9 & (i) & \begin{tabular}{l}
\[
\left(\frac{\sin \theta}{\frac{\cos \theta}{\cos \theta}}\right)=1 \text { ое }
\] \\
\(\sin \theta=\cos ^{2} \theta\) and completion to given result
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & WWW & \\
\hline 9 & (ii) & \begin{tabular}{l}
\[
\sin ^{2} \theta+\sin \theta-1[=0]
\] \\
\([\sin \theta=] \frac{-1 \pm \sqrt{5}}{2}\) oe may be implied by correct answers \\
[ \(\theta=\) ] 38.17... ,or 38.2 and \(141.83 \ldots, 141.8\) or 142
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
allow 1 on RHS if attempt to complete square \\
may be implied by correct answers \\
ignore extra values outside range, A0 if extra values in range or in radians \\
NB 0.6662 and 2.4754 if working in radian mode earns M1A1A0
\end{tabular} & \begin{tabular}{l}
condone \(y^{2}+y-1=0\) \\
mark to benefit of candidate \\
ignore any work with negative root \& condone omission of negative root with no comment eg M1 for 0.618... \\
if unsupported, B1 for one of these, B2 for both. If both values correct with extra values in range, then B1. \\
NB 0.6662 and 2.4754 to 3sf or more
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guid & \\
\hline 10 & (i) & \begin{tabular}{l}
\[
\begin{aligned}
& \text { at A } y=3 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x-4 \\
& \text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 4-4 \\
& \text { grad of normal }=-1 / \text { their } 4 \\
& y-3=(-1 / 4) \times(x-4) \text { oe isw }
\end{aligned}
\] \\
substitution of \(y=0\) and completion to given result with at least 1 correct interim step www
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
M1* \\
M1dep* \\
A1 \\
A1 \\
[6]
\end{tabular} & \begin{tabular}{l}
must follow from attempt at differentiation \\
or substitution of \(x=16\) to obtain \(y=0\)
\end{tabular} & correct interim step may occur before substitution \\
\hline 10 & (ii) & \begin{tabular}{l}
at B, \(x=3\)
\[
\mathrm{F}[x]=\frac{x^{3}}{3}-\frac{4 x^{2}}{2}+3 x
\] \\
F[ 4] - F[their 3] \\
area of triangle \(=18\) soi \\
area of region \(=19 \frac{1}{3}\) oe isw
\end{tabular} & \begin{tabular}{l}
B1 \\
M1* \\
M1* dep \\
B1 \\
A1 \\
[5]
\end{tabular} & \begin{tabular}{l}
may be embedded \\
condone one error, must be three terms, ignore \(+c\) \\
dependent on integration attempted \\
19.3 or better
\end{tabular} & may be embedded in final answer \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} & Answer & \multirow[t]{2}{*}{\begin{tabular}{l}
Marks \\
B1 \\
B1 \\
B1 \\
B1 \\
[4]
\end{tabular}} & \multicolumn{2}{|c|}{Guidance} \\
\hline 11 & (i) & (A) & \[
\begin{aligned}
& 2 A+D=25 \text { oe } \\
& 4 A+6 D=250 \text { oe } \\
& D=50, \\
& A=-12.5 \text { oe }
\end{aligned}
\] & & & condone lower-case \(a\) and \(d\) \\
\hline 11 & (i) & (B) & \[
\begin{aligned}
& \frac{50}{2}(2 \times \text { their } A+49 \times \text { their } D)[=60625] \text { or } \\
& \frac{20}{2}(2 \times \text { their } A+19 \times \text { their } D)[=9250] \\
& \text { their " } \mathrm{S}_{50}-\mathrm{S}_{20} \text { " } \\
& 51375 \text { cao }
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
or \(a=\) their \(A+20 D\) \\
\(S_{30}=\frac{30}{2}(a+l)\) oe with \(l=\) their \(A+49 D\)
\end{tabular} & \[
S_{30}=\frac{30}{2}(2 \times \text { their } 987.5+29 \times \text { their } 50)
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 11 & (ii) & \begin{tabular}{l}
\[
\begin{aligned}
\frac{a\left(r^{2}-1\right)}{r-1}= & 25 \text { or } \frac{a\left(r^{4}-1\right)}{r-1}=250 \\
& \frac{a \frac{\left(r^{4}-1\right)}{r-1}}{a \frac{\left(r^{2}-1\right)}{(r-1)}}=\frac{250}{25} \text { oe }
\end{aligned}
\] \\
and completion to given result www \\
use of \(r^{4}-1=\left(r^{2}-1\right)\left(r^{2}+1\right)\) to obtain \(r^{2}+1=10 \mathrm{www}\)
\[
r= \pm 3
\] \\
\(a=6.25\) or -12.5 oe
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 \\
A1 \\
[5]
\end{tabular} & \begin{tabular}{l}
at least one correct interim step required or multiplication and rearrangement of quadratic to obtain \(r^{4}-10 r^{2}+9=0\) oe with all three terms on one side \\
or A1 for one correct pair of values of \(r\) and a
\end{tabular} & \begin{tabular}{l}
allow \(a(1+r)\) as the denominator in the quadruple- decker fraction \\
\(r^{2}=x\) oe may be used or M1 for valid alternative algebraic approaches eg using \(a(1+r)=25\) and \(a r^{2}+a r^{3}=a r^{2}(1+r)=225\) \\
or \(\mathbf{B} 2\) for all four values correct, \(\mathbf{B 1}\) for both \(r\) values or both \(a\) values or one pair of correct values if second \(\mathbf{M}\) mark not earned
\end{tabular} \\
\hline 12 & (i) & \[
\begin{aligned}
& \log _{10} p=\log _{10} a+\log _{10} 10^{k t} \\
& \log _{10} p=\log _{10} a+k t \mathrm{WWW}
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & condone omission of base; & if unsupported, B2 for correct equation \\
\hline 12 & (ii) & \begin{tabular}{l}
\[
2.02,2.13,2.23
\] \\
plots correct ruled line of best fit
\end{tabular} & \begin{tabular}{l}
B1 \\
B1f.t. \\
B1 \\
[3]
\end{tabular} & \begin{tabular}{l}
allow given to more sig figs \\
to nearest half square \\
\(y\)-intercept between 1.65 and 1.7 and at least one point on or above the line and at least one point on or below the line
\end{tabular} & \[
\begin{aligned}
& \text { 2.022304623..., 2.129657673, } \\
& 2.229707433 \\
& \text { ft their plots } \\
& \text { must cover range from } x=9 \text { to } 49
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|c|}{Guidance} \\
\hline 12 & (iii) & \begin{tabular}{l}
0.0105 to 0.0125 for \(k\) \\
1.66 to 1.69 for \(\log _{10} a\) or 45.7 to 49.0 for \(a\)
\end{tabular} & \begin{tabular}{l}
B1 \\
B1
\end{tabular} & & must be connected to \(k\) must be connected to \(a\) \\
\hline & & \[
\log _{10} p=\text { their } k t+\text { their } \log _{10} a
\]
\[
p=\text { their " } 47.9 \times 10^{0.0115 t ، " \text { or } 10^{1.6785+0.0115 t ~ " ~}}
\] & \begin{tabular}{l}
B1 \\
B1 \\
[4]
\end{tabular} & must be a correct form for equation of line and with their \(y\)-intercept and their gradient (may be found from graph or from table, must be correct method) as above, " 47.9 " and " 0.0115 " must follow from correct method & \\
\hline 12 & (iv) & 45.7 to 49.0 million &  & 'million' needed, not just the value of \(p\) & \\
\hline 12 & (v) & \begin{tabular}{l}
reading from graph at 2.301.. \\
their 54
\[
2014 \text { сао }
\]
\end{tabular} & \begin{tabular}{l}
M1* \\
M1dep* \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
or \(\log _{10} 200={ }^{\prime} \log _{10} a+k t "\) \\
eg for their \(t=\frac{\log 200-1.68}{0.0115}\) \\
if unsupported, allow B3 only if consistent with graph
\end{tabular} & or \(200=" 10^{\log a+k t "}\) oe or M1 for their \(t=\frac{\log \frac{200}{47.9}}{0.0115}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|c|}{Guidance} \\
\hline 1 & (i) & \(-10 x^{-6}\) isw & \begin{tabular}{l}
B1 \\
B1 \\
[2]
\end{tabular} & \[
\begin{aligned}
& \text { for }-10 \\
& \text { for } x^{-6} \\
& \text { ignore }+c \text { and } y=
\end{aligned}
\] & if B0B0 then \(\mathbf{S C 1}\) for \(-5 \times 2 x^{-5-1}\) or better soi \\
\hline 1 & (ii) & \[
\begin{aligned}
& y=x^{1 / 3} \text { soi } \\
& k x^{n-1} \\
& \frac{1}{3} x^{-\frac{2}{3}} \text { isw }
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M1 \\
A1
[3]
\end{tabular} & condone \(y^{\prime}=x^{1 / 3}\) if differentiation follows ft their fractional \(n\) ignore \(+c\) and \(y=\) & allow 0.333 or better \\
\hline 2 & (i) & 11.5, 11 and 10.5 oe arithmetic and/or divergent & \begin{tabular}{l}
B1 \\
B1 \\
[2]
\end{tabular} & \begin{tabular}{l}
allow AP \\
ignore references to \(a, d\) or \(n\)
\end{tabular} & ignore labelling incorrect embellishments such as converging arithmetic..., diverging geometric... do not score. B0 if a choice is given eg AP/GP. \\
\hline 2 & (ii) & \begin{tabular}{l}
\(n=30\) identified as number of terms in relevant AP
\[
S_{30}=\frac{30}{2}(2 \times 11.5+(30-1) \times-0.5)
\] \\
127.5 oe
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
or \(S_{30}=\frac{30}{2}(11.5+-3)\) \\
allow recovery from slip in working (eg omission of minus sign)
\end{tabular} & \begin{tabular}{l}
eg \(1+2+3+\ldots+30\) is not a relevant AP \\
condone one error in \(a, d\) or \(n\) but do not condone \(l=-1 / 2\) \\
SC3 if each term calculated and summed to correct answer or for 127.5 unsupported
\end{tabular} \\
\hline 3 & & \begin{tabular}{l}
\[
\begin{aligned}
& k x^{-2} \\
& -9 x^{-2} \\
& +2 x+c
\end{aligned}
\] \\
substitution of \(x=3\) and \(y=6\) in their expression following integration
\[
c=1
\]
\end{tabular} & \begin{tabular}{l}
M1* \\
A1 \\
M1* \\
M1dep \\
A1 \\
[5]
\end{tabular} & \begin{tabular}{l}
may be awarded later \\
c may appear at substitution stage \\
on award of either of previous M1s \\
A0 if spoiled by further working
\end{tabular} & \begin{tabular}{l}
\[
k \neq 0
\] \\
no marks at all for responses based on
\[
" m x+c \text { " }
\]
\[
\text { eg } 6=k 3^{-2}+2 \times 3+c
\] \\
for full marks, must see " \(y=\) " at some stage
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 4 & (i) & \begin{tabular}{l}
clear diagram or explanation starting with equilateral triangle correctly showing 30 as half angle and sides 1 and 2 or multiples of these lengths \\
correct use of Pythagoras and adjacent and hypotenuse correctly identified to obtain given result \(\cos 30^{\circ}=\frac{\sqrt{3}}{2}\)
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
[2]
\end{tabular} & adjacent and hypotenuse may be identified on diagram & \begin{tabular}{l}
units for sides and angle not required \\
condone abbreviations
\end{tabular} \\
\hline 4 & (ii) & \[
\begin{aligned}
& \pm \frac{\pi}{6} \text { or }-\frac{5 \pi}{6} \text { soi } \\
& \frac{11 \pi}{6} \\
& \frac{7 \pi}{6}
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
may be implied by correct answer or \(\pm 0.523598775 \ldots\), or may appear on quadrant diagram or graph \\
if A0A0, SC1 for \(1.8333333 \pi\) and \(1.16666666 \pi\) to 3 or more sf or SC1 for \(330^{\circ}\) and \(210^{\circ} \mathrm{www}\)
\end{tabular} & \begin{tabular}{l}
condone \(\pm 30^{\circ}\) or \(-150^{\circ}\) \\
ignore extra values outside the range \\
if full marks or SC1 awarded, subtract 1 for extra values in the range
\end{tabular} \\
\hline 5 & (i) & ruled line touching curve at \(x=2\) their \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\) from their tangent answer in range 2.5 to 3.0 inclusive & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
[3]
\end{tabular} & may be on graph or in working; must use correct points from their line their tangent may be at another point both M1s must be awarded & \begin{tabular}{l}
intent to touch, but must not clearly cut curve \\
M0 for reciprocal, \\
( value is approx 2.773)
\end{tabular} \\
\hline 5 & (ii) & \begin{tabular}{l}
3.482202253... and 4.59479342... rot to 3 or more sf \\
2.78 to 2.7815 or 2.8
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
[2]
\end{tabular} & mark the final answer & 2.781477917.. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 6 & (i) & 2S cao & \[
\begin{aligned}
& \text { B1 } \\
& {[1]}
\end{aligned}
\] & & \\
\hline 6 & (ii) & \[
\begin{aligned}
& \frac{a}{1-r^{2}} \\
& \frac{S}{1+r} \text { or } \frac{1}{1+r} S
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & if \(\mathbf{M 0}, \mathbf{S C} \mathbf{1}\) for \(\frac{1-r}{1-r^{2}} \times S\) oe & \\
\hline 7 & & \begin{tabular}{l}
\[
\begin{aligned}
& h=1.5 \\
& \frac{1.5}{2} \times(2.3+2(2.9+4+4.6+4.2+3)+0)
\end{aligned}
\] \\
all \(y\)-values correct and correctly placed in formula \\
29.775 to 3 sf or better; isw
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
B1 \\
A1 \\
[4]
\end{tabular} & \begin{tabular}{l}
\[
h=1.5
\] \\
basic shape of formula correct, omission of brackets may be recovered later \\
condone omission of outer brackets and/or omission of 0 \\
answer only does not score
\end{tabular} & \begin{tabular}{l}
allow if used with 6 separate trapezia at least \(4 y\)-values in middle bracket, eg
\[
\frac{1.5}{2} \times(2.3+2(2.9+4+4.6+4.2)+3)
\] \\
M0 if any \(x\) values used \\
or B1 \(+\mathbf{B} 3\) if 6 separate trapezia calculated to give correct answer
\end{tabular} \\
\hline 8 & (i) & graph from \((-1,1)\) to \((1,1)\) to \((2,2)\) to \((3,0)\) & \[
2
\]
[2] & B1 for three points correct or for all four points correct but clearly not joined & points must be joined, but not always easy to see, so BOD if in doubt. Accept freehand drawing. \\
\hline 8 & (ii) & graph from \((-2,3)\) to \((2,3)\) to \((4,6)\) to \((6,0)\) & \[
2
\]
[2] & B1 for three points correct or for all four points correct but clearly not joined & points must be joined, but not always easy to see, so BOD if in doubt. Accept freehand drawing. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline \multirow[t]{8}{*}{10} & \multirow[t]{8}{*}{(i)} & \multirow[t]{8}{*}{(A)} & \(A C^{2}=12.8^{2}+7.5^{2}\) oe & M1 & allow correct application of cosine rule or from finding relevant angle and using trig & \\
\hline & & & \(A C=14.83543056 .\). & A1 & rot to 3 or more sf , or 15 & B2 for 14.8 or better unsupported \\
\hline & & & \[
\tan C=12.8 / 7.5
\] & M1 & or \(\sin C=12.8 /\) their14.8 & or \(\frac{\sin C}{12.8}=\frac{\sin 90}{\text { their } 14.8}\) \\
\hline & & & or \(C=90-\tan ^{-1}(7.5 / 12.8)\) oe & & or \(\cos C=7.5 /\) their14.8 & or \(\cos C=\frac{\text { their } 14.8^{2}+7.5^{2}-12.8^{2}}{2 \times 7.5 \times \text { their } 14.8}\) \\
\hline & & & 59.6 to 59.64 & A1 & & \\
\hline & & & \[
\frac{A D}{\sin (155-\text { their } 59.6)}=\frac{\text { their } 14.8}{\sin 35} \text { ое }
\] & M1 & & \\
\hline & & & 25.69 to 25.8 & A1 & allow \(\mathbf{B 2}\) for \(25.69 \leq A D<25.8\) unsupported.....but B0 for 25.8 unsupported & M0A0 for \(14.8 /{ }_{\text {cos } 55}=25.803 \ldots\) \\
\hline & & & & [6] & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & \multirow[t]{2}{*}{Answer
\[
\begin{aligned}
& \text { area of } A B C=48 \text { soi } \\
& 1 / 2 \times \text { their } 14.8 \ldots \times \text { their } 25.7 \ldots \times \sin (\text { their } 59.6 \\
& -10) \\
& 192.8 \text { to } 194\left[\mathrm{~m}^{2}\right]
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
\begin{tabular}{c|}
\hline Marks \\
\hline B1 \\
M1
\end{tabular} \\
A1 \\
[3]
\end{tabular}} & \multicolumn{2}{|l|}{Guidance} \\
\hline 10 & (i) & (B) & & & may be implied by correct final answer in range or by sight of \(1 / 2 \times 12.8 \times 7.5\) oe may be implied by 144.8 to 146 & \begin{tabular}{l}
condone 48.0... \\
B3 for correct answer in range if unsupported
\end{tabular} \\
\hline 10 & (ii) & & \[
\begin{aligned}
& \text { angle } H M G=\frac{\pi-1.1}{2} \\
& \text { or } M H G=0.55 \quad\left(31.5126^{\circ}\right) \\
& H M=1.7176 \text { to } 1.7225 \\
& 1 / 2 \times 1.1 \times \text { their } H M^{2} \\
& \text { or } \frac{\theta}{360} \times \pi \times \text { theirHM }{ }^{2} \\
& \text { area of triangle } E M F=0.652 \text { to } 0.662 \\
& 2.95 \text { to } 2.952\left[\mathrm{~m}^{2}\right] \text { cao }
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
B1 \\
A1 \\
[5]
\end{tabular} & \begin{tabular}{l}
or angle EMF or angle MEF
1.63(0661924...)
\[
\theta=63(.025357 \ldots)
\] \\
or \(M G H\)
\end{tabular} & \begin{tabular}{l}
allow 1.02 to 1.021 or \(58.487^{\circ}\) to \(58.5^{\circ}\) \\
may be implied by final answer \\
check arithmetic if necessary their \(H M \neq 0.9\) or 1.8 \\
may be implied by final answer or in double this (1.304 to 1.324) \\
full marks may be awarded for final answer in correct range ie allow recovery of accuracy
\end{tabular} \\
\hline 11 & (i) & & \begin{tabular}{l}
\(65 \times(1-0.017)^{3}\) oe \\
61.7410... showing more than 3 sf
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & may be longer method finding decrease year by year etc answer 61.7 given & NB use of \(3 \times 0.017\) leads to 61.685 , which doesn't score \\
\hline 11 & (ii) & & [d=] \(65 \times 0.983^{n}\) oe & \[
\begin{aligned}
& \text { B1 } \\
& {[1]}
\end{aligned}
\] & eg \(63.895 \times 0.983^{n-1}\) or \(61.7 \times 0.983^{n-3}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 11 & (iii) & \[
\begin{aligned}
& 65 \times 0.983^{n}<3 \text { or } \\
& \log _{10}\left(65 \times 0.983^{n}\right)<\log _{10} 3 \text { oe } \\
& \log _{10} 65+\log _{10} 0.983^{n}<\log _{10} 3 \mathrm{WWW} \\
& {\left[\log _{10} 65+n \log _{10} 0.983<\log _{10} 3\right]} \\
& n \log _{10} 0.983<\log _{10} 3-\log _{10} 65 \text { and } \\
& \text { completion to } n>\frac{\log _{10} 3-\log _{10} 65}{\log _{10} 0.983} \text { AG wWw } \\
& n=180 \text { cao }
\end{aligned}
\] & \begin{tabular}{l}
M1* \\
M1dep \\
A1 \\
B1 \\
[4]
\end{tabular} & \begin{tabular}{l}
may be implied by \\
eg \(\log _{10} 65+n \log _{10} 0.983<\log _{10} 3\) \\
or \(\left[\log _{10} 0.983^{n}<\log _{10} 3-\log _{10} 65\right]\) \\
inequality signs must be correct throughout \\
B0 for \(n>180\)
\end{tabular} & \begin{tabular}{l}
condone omission of base 10 throughout \\
if M0M0, SC1 for \(\log _{10} 65+n \log _{10} 0.983<\log _{10} 3\) even if \(<\) is replaced by eg \(=\) or \(>\) with no prior incorrect log moves \\
NB watch for correct inequality sign at each step \\
reason for change of inequality sign not required
\[
n>179.38 \ldots
\]
\end{tabular} \\
\hline 11 & (iv) & \[
\begin{aligned}
& 63.895=65 \times 10^{-k} \text { soi } \\
& \log _{10}(\text { their } 63.895)=\log _{10} 65-k \\
& \text { or }-k=\log _{10} \text { (their } 0.983 \text { ) } \\
& {[k=] 7.4 \times 10^{-3} \text { to } 7.45 \times 10^{-3}} \\
& {[d=] 42.1 \ldots \text { to } 42.123\left[{ }^{\circ} \mathrm{C}\right] \text { isw }}
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1 \\
[4]
\end{tabular} & \begin{tabular}{l}
or \(65 \times 0.983=65 \times 10^{-k}\) \\
their 63.895 must be from attempt to reduce 65 by \(1.7 \%\) at least once
\[
[k=]-\log _{10} 0.983 \text { isw }
\]
\end{tabular} & \begin{tabular}{l}
accept 63.895 rot to 3 or 4 sf ; B1 may be awarded for substitution of \(t=1\) after manipulation \\
M1A1A1 may be awarded if other value of \(t\) with correct \(d\) is used \\
NB B1M1A0A1 is possible; unsupported answers for \(k\) and/or \(d\) do not score
\end{tabular} \\
\hline
\end{tabular}```

