# OCR Maths C2 

Mark Scheme Pack

2005-2014

| (i)(ii) | $u_{1}=2, u_{2}=5, u_{3}=8$ <br> The sequence is an Arithmetic Progression | $\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$ | For the correct value of $u_{1}$ For both correct values of $u_{2}$ and $u_{3}$ For a correct statement (any mention of arithmetic) |
| :---: | :---: | :---: | :---: |
|  | $\frac{1}{2} \times 100 \times(2 \times 2+99 \times 3)=15050$ | $\begin{array}{\|cc\|} \hline \text { M1 } & \\ & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \\ & 6 \\ \hline \end{array}$ | For correct interpretation of Sigma notationie finding the sum of an AP or GP For use of correct $\frac{1}{2} n(2 a+(n-1) d)$, or equiv, with $n=100$ and $a \& d$ not both $=1$ For correct value 15050 |
| $\begin{array}{rr}2 & \text { (i) } \\ & \text { (ii) } \\ & \text { (iif) }\end{array}$ | $r \theta=12, \frac{1}{2} r^{2} \theta=36$ | $\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | For $r \theta=12$ stated correctly at any point For $\frac{1}{2} r^{2} \theta=36$ stated correctly at any point |
|  | $\frac{1}{2} r \times 12=36 \Rightarrow r=6$ <br> Hence $\theta=2$ | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | For showing given value correctly For correct value 2 (or $0.637 \pi$ ) |
|  | Segment area is $36-\frac{1}{2} \times 6^{2} \times \sin 2=19.6 \mathrm{~cm}^{2}$ | M1* <br> M1dep* $\begin{array}{\|ll} \text { A1 } & 3 \\ & 7 \\ \hline \end{array}$ | For use of $\Delta=\frac{1}{2} a b \sin C$, or equivalent <br> For attempt at $36-\Delta$ <br> For correct value (rounding to) 19.6 |
|  | $\begin{aligned} & \int\left(2 x^{2}+7 x+3\right) \mathrm{d} x \\ & =\frac{2}{3} x^{3}+\frac{7}{2} x^{2}+3 x+c \end{aligned}$ | M1 <br> A1 <br> A1 <br> B1 4 | For expanding and integration attempt For at least one term correct For all three terms correct For addition of arbitrary constant, and no $\int$ or $\mathrm{d} x$ |
|  | $\begin{aligned} & {\left[2 x^{\frac{1}{2}}\right]^{6}} \\ & =6 \end{aligned}$ | M1 <br> M1 <br> A1 $\quad 3$ | For integral of the form $k x^{\frac{1}{2}}$ <br> For evaluating at least $\mathrm{F}(9)$, following attempt at integration <br> For final answer of 6 only |
| $\begin{array}{ll}4 & \text { (i) } \\ & \\ \\ & \\ \text { (ii) }\end{array}$ | $\cos B C A=\frac{5^{2}+6^{2}-9^{2}}{2 \times 5 \times 6}=-\frac{1}{3}$ <br> So $\sin B C A=\frac{2}{3} \sqrt{2} \approx 0.9428 \ldots$ | M1 <br> M1 <br> A1 <br> B1 <br> M1 <br> M1 <br> A1 <br> B1 4 | For relevant use of the correct cosine formula For attempt to rearrange correct formula For obtaining the given value correctly For correct answer for sin BCA in any form OR <br> For substituting $\cos B C A=-1 / 3$ <br> For attempt at evaluation <br> For full verification <br> For correct answer for sin BCA in any form |
|  | Angles $B C A$ and $C A D$ are equal $\begin{aligned} & \text { So }_{\sin } A D C=\frac{5}{15} \sin C A D=\frac{1}{3} \times \frac{1}{3} \sqrt{8}=\frac{2}{9} \sqrt{2} \\ & \Rightarrow A D C=18.3^{\circ} \end{aligned}$ | $\begin{array}{\|lll} \hline \text { B1 } & \\ \text { M1 } & \\ & & \\ \text { A1 } \sqrt{ } & \\ \text { A1 } & 4 \\ & \mathbf{8} \\ \hline \end{array}$ | For stating, using or implying the equal angles <br> For correct use of the sine rule in $\Delta$ ADC (sides must be numerical, angles may still be in letters) <br> For a correct equation from their value in (i) <br> For correct answer, from correct working |
| 5 (i) | $\begin{aligned} & \mathrm{f}(-1)=0 \Rightarrow-1-a+b=0 \\ & \mathrm{f}(3)=16 \Rightarrow 27+3 a+b=16 \end{aligned}$ <br> Hence $a=-3, b=-2$ | M1  <br> A1  <br> M1  <br> A1  <br> A1 5 | For equating their attempt at $\mathrm{f}(-1)$ to 0 , or equiv <br> For the correct (unsimplified) equation For equating their attempt at $f(3)$ to 16 , or equiv <br> For the correct (unsimplified) equation For both correct values - must follow two correct equations |
|  | $\mathrm{f}(2)=8-6-2=0$ | B1 |  |




| 1 | (i) | $a+19 d=10, \quad a+49 d=70$ <br> Hence $30 d=60 \Rightarrow d=2$ $a+(19 \times 2)=10 \text { or } a+(49 \times 2)=70$ <br> Hence $a=-28$ | M1 <br> A1 <br> M1 <br> A1 | 4 | Attempt to find $d$ from simultaneous equations involving $a+(n-1) d$ or equiv method Obtain $d=2$ <br> Attempt to find $a$ from $a+(n-1) d$ or equiv <br> Obtain $a=-28$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $S=\frac{29}{2}(2 \times-28+(29-1) \times 2)=0$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | For relevant use of $\frac{1}{2} n(2 a+(n-1) d)$ <br> For showing the given result correctly AG |
| 2 | (i) | $\Delta=\frac{1}{2} \times 10 \times 7 \times \sin 80=34.5 \mathrm{~cm}^{2}$ | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$ | 2 | For use of $\frac{1}{2} c a \sin B$ or complete equiv. <br> For correct value 34.5 |
|  | (ii) | $b^{2}=10^{2}+7^{2}-2 \times 10 \times 7 \times \cos 80$ <br> Hence length of $C A$ is 11.2 cm | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | For attempted use of the correct cosine formula <br> For correct value 11.2 |
|  | (iii) | $\sin C=\frac{10 \sin 80}{11.166 \ldots}=0.8819 \ldots$ <br> Hence angle $C$ is $61.9^{\circ}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | For use of the sine rule to find $C$, or equivalent <br> For correct value 61.9 |
| 3 | (i) | $(1-2 x)^{12}=1-24 x+264 x^{2}$ | B1 M1 <br> M1 <br> A1 | 3 | Obtain 1 and $-24 x \ldots$ <br> Attempt $x^{2}$ term, including attempt at binomial coeff. <br> Obtain ... $264 x^{2}$ |
|  | (ii) | $(1 \times 264)+(3 \times-24)=192$ | M1 <br> A1 $\sqrt{ }$ <br> A1 | 3 | Attempt coefficient of $x^{2}$ from two pairs of terms <br> Obtain correct unsimplified expression Obtain 192 |
| 4 | (i) | $\begin{aligned} \text { perimeter } & =(15 \times 1.8)+(20 \times 1.8)+5+5 \\ & =73 \mathrm{~cm} \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$ | 3 | Use $r \theta$ at least once Obtain at least one of 27 cm or 36 cm Obtain 73 |
|  | (ii) | $\begin{aligned} \text { area } & =\left(\frac{1}{2} \times 20^{2} \times 1.8\right)-\left(\frac{1}{2} \times 15^{2} \times 1.8\right) \\ & =157.5 \mathrm{~cm}^{2} \end{aligned}$ | M1 <br> M1 <br> A1 | 3 | Attempt area of sector using $k r^{2} \theta$ Find difference between attempts at two sectors <br> Obtain 157.5 / 158 |


| 5 | (i) | $r=\frac{4.8}{5}=0.96 \Rightarrow S_{\infty}=\frac{5}{0.04}=125$ | B1* <br> B1 dep* | 2 | For correct value of $r$ used For correct use of $\frac{a}{1-r}$ to show given answer AG |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $S_{n}=\frac{5\left(1-0.96^{n}\right)}{1-0.96}$ <br> Hence $1-0.96^{n}>0.992 \Rightarrow 0.96^{n}<0.008$ | B1 <br> M1 <br> A1 <br> B1 <br> M1 |  | For correct, unsimplified, $\mathrm{S}_{n}$ <br> For linking $\mathrm{S}_{\mathrm{n}}$ to 124 (> or =) and multiplying through by 0.04 , or equiv. <br> For showing the given result correctly, with correct inequality throughout AG <br> For correct log statement seen or implied (ignore sign) For dividing both sides by $\log 0.96$ <br> For correct (integer) value 119 |
|  |  | $n \log 0.96<\log 0.008$ <br> Hence $n>\frac{\log 0.008}{\log 0.96} \approx 118.3$ <br> Least value of $n$ is 119 | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | $\begin{array}{\|l\|} 6 \\ \hline 8 \end{array}$ |  |
| 6 | (a) | $\frac{2}{3} x^{\frac{3}{2}}+4 x+c$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | 4 | For $k x^{\frac{3}{2}}$ <br> For correct first term $\frac{2}{3} x^{\frac{3}{2}}$, or equiv <br> For correct second term $4 x$ <br> For $+c$ |
|  | (b)(i) | $\begin{aligned} & \int_{1}^{a} 4 x^{-2} \mathrm{~d} x=\left[-4 x^{-1}\right]_{1}^{a} \\ & =4-\frac{4}{a} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 3 | Obtain integral of the form $k x^{-1}$ <br> Use limits $x=a$ and $x=1$ <br> Obtain $=4-\frac{4}{a}$, or equivalent |
|  |  | 4 | B1V | 1 | State 4, or legitimate conclusion from their (b)(i) |
| 7 | (i)(a) (b) | $\begin{aligned} & \log _{10} x-\log _{10} y \\ & 1+2 \log _{10} x+\log _{10} y \end{aligned}$ | $\begin{array}{\|l} \hline \text { B1 } \\ \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$ | 1 | For the correct answer Sum of three log terms involving 10 , $x^{2}, y$ <br> For correct term $2 \log _{10} x$ <br> For both correct terms 1 and $\log _{10} y$ |
|  | (ii) | $2 \log _{10} x-2 \log _{10} y=2+2 \log _{10} x+\log _{10} y$ Hence $3 \log _{10} y=-2$ <br> So $y=10^{-\frac{2}{3}} \approx 0.215$ | M1 <br> A1 <br> M1 <br> A1 | 4 <br> 8 | For relevant use of results from (i) For a correct, unsimplified, equation in $\log _{10} y$ only <br> For correct use of $a=\log _{10} c \Leftrightarrow c=10^{a}$ <br> For the correct value 0.215 |


| 8 | (i) | $-2+k+1+6=0 \Rightarrow k=-5$ <br> OR <br> OR <br> EITHER: $(x+1)\left(2 x^{2}-7 x+6\right)$ $=(x+1)(x-2)(2 x-3)$ <br> OR: $\mathrm{f}(2)=16-20-2+6=0$ <br> Hence $(x-2)$ is a factor <br> Third factor is $(2 x-3)$ <br> Hence $\mathrm{f}(x)=(x+1)(x-2)(2 x-3)$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B2 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 6 | For attempting $\mathrm{f}(-1)$ <br> For equating $\mathrm{f}(-1)$ to 0 and deducing the <br> correct value of $k \quad$ AG <br> Match coefficients and attempt $k$ <br> Show $k=-5$ <br> Following division, state remainder is 0 , <br> hence $(x+1)$ is a factor, hence $k=-5$ <br> For correct leading term $2 x^{2}$ <br> For attempt at complete division by $\mathrm{f}(x)$ by $(x+1)$ or equiv. <br> For completely correct quadratic factor <br> For all three factors correct <br> For further relevant use of the factor theorem <br> For correct identification of factor ( $x-2$ ) For any method for the remaining factor For all three factors correct |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $\begin{aligned} \int_{-1}^{2} \mathrm{f}(x) \mathrm{d} x & =\left[\frac{1}{2} x^{4}-\frac{5}{3} x^{3}-\frac{1}{2} x^{2}+6 x\right]_{-1}^{2} \\ & =\left(8-\frac{40}{3}-2+12\right)-\left(\frac{1}{2}+\frac{5}{3}-\frac{1}{2}-6\right) \\ & =9 \end{aligned}$ | Biv <br> B1 $\sqrt{ }$ <br> M1 <br> A1 | 4 | For any two terms integrated correctly For all four terms integrated correctly <br> For evaluation of $\mathrm{F}(2)-\mathrm{F}(-1)$ <br> For correct value 9 |
|  | (iii) |  | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | 2 <br>  <br> 1 <br> 2 | For sketch of positive cubic, with three distinct, non-zero, roots <br> For correct explanation that some of the area is below the axis |
| 9 | (i) |  | B1 <br> B1 <br> B1 | 3 | For correct sketch of one curve <br> For correct shape and location of second curve, on same diagram <br> For intercept 4 on $y$-axis |
|  | (ii) | (See diagram above) $\beta=180-\alpha$ | $\begin{aligned} & \mathrm{B} 1 \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 3 | For correct identification of intersections in correct order <br> For attempt to use symmetry of the graphs For the correct (explicit) answer for $\beta$ |
|  | (iii) | $\sin x=4 \cos ^{2} x=4\left(1-\sin ^{2} x\right)$ <br> Hence $4 \sin ^{2} x+\sin x-4=0$ $\sin x=\frac{-1 \pm \sqrt{65}}{8}$ <br> Hence $\beta-\alpha=118.02 \ldots-61.97 \ldots \approx 56^{\circ}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 6 6 | For use of $\tan x=\frac{\sin x}{\cos x}$ <br> For use of $\cos ^{2} x=1-\sin ^{2} x$ <br> For showing the given equation correctly <br> For correct solution of quadratic <br> Attempt value for $x$ from their solutions For the correct value 56 |


| 1 |  | $(3 x-2)^{4}=81 x^{4}-216 x^{3}+216 x^{2}-96 x+16$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ | 4 | Attempt binomial expansion, including attempt at coeffs. <br> Obtain one correct, simplified, term Obtain a further two, simplified, terms Obtain a completely correct expansion |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (i) | $u_{2}=-1, u_{3}=2, u_{4}=-1$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$ | 2 | For correct value -1 for $u_{2}$ For correct values for both $u_{3}$ and $u_{4}$ |
|  | (ii) | Sum is $(2+(-1))+(2+(-1))+\ldots+(2+(-1))$ i.e. $50 \times(2+(-1))=50$ | $\begin{aligned} & \mathrm{M} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | $\underline{5}$ | For correct interpretation of $\Sigma$ notation <br> For pairing, or $50 \times 2-50 \times 1$ <br> For correct answer 50 |
| 3 |  | $y=4 x^{\frac{1}{2}}+c$ <br> Hence $5=4 \times 4^{\frac{1}{2}}+c \Rightarrow c=-3$ <br> So equation of the curve is $y=4 x^{\frac{1}{2}}-3$ | M1 <br> A1 <br> A1 <br> M1 <br> A1 $\sqrt{ }$ <br> A1 | 6 | For attempt to integrate <br> For integral of the form $k x^{\frac{1}{2}}$ <br> For $4 x^{\frac{1}{2}}$, with or without $+c$ <br> For relevant use of $(4,5)$ to evaluate $c$ <br> For correct value -3 (or follow through on integral of form $k x^{\frac{1}{2}}$ ) <br> For correct statement of the equation in full (aef) |
| 4 | (i) | Intersect where $x^{2}+x-2=0 \Rightarrow x=-2,1$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | For finding $x$ at both intersections For both values correct |
|  | (ii) | Area under curve is $\left[4 x-\frac{1}{3} x^{3}\right]_{-2}^{1}$ <br> i.e. $\left(4-\frac{1}{3}\right)-\left(-8+\frac{8}{3}\right)=9$ <br> Area of triangle is $41 / 2$ <br> Hence shaded area is $9-41 / 2=41 / 2$ <br> OR <br> Area under curve is $\int_{-2}^{1}\left(2-x-x^{2}\right) d x$ $\begin{aligned} & =\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+2 x\right]_{-2}^{1} \\ & =\left(-\frac{1}{3}-\frac{1}{2}+2\right)-\left(\frac{8}{3}-2-4\right) \\ & =4 \frac{1}{2} \end{aligned}$ | M1 <br> M1 <br> A1 <br> M1 <br> A1 <br> A1 <br> M1 <br> M1 <br> A1 <br> M1 <br> A1 <br> A1 | 8 | For integration attempt with any one term correct For use of limits - subtraction and correct order <br> For correct area of 9 <br> Attempt area of triangle ( $1 / 2 b h$ or integration) <br> Obtain area of triangle as $41 / 2$ <br> Obtain correct final area of $41 / 2$ <br> Attempt subtraction - either order <br> For integration attempt with any one term correct <br> Obtain $\pm\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+2 x\right]$ <br> For use of limits - subtraction and correct order Obtain $\pm 41 / 2$ - consistent with their order of subtraction <br> Obtain $41 / 2$ only, following correct method only |




| 9 | (i) |  | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$ | 3 | Attempt sketch of any exponential graph, in at least first quadrant <br> Correct graph - must be in both quadrants For identification of $(0,1)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $\begin{aligned} A & \approx \frac{1}{2} \times 0.5 \times\left\{1+2\left(0.5^{\frac{1}{2}}+0.5+0.5^{\frac{3}{2}}\right)+0.5^{2}\right\} \\ & \approx 1.09 \end{aligned}$ | B1 <br> M1 <br> A1 <br> A1 | 4 | State, or imply, at least three correct $y$-values For correct use of trapezium rule, inc correct $h$ For correct unsimplified expression For the correct value 1.09 , or better |
|  | (iii) | $\begin{aligned} \left(\frac{1}{2}\right)^{x}=\frac{1}{6} & \Rightarrow x \log _{10} \frac{1}{2}=\log _{10} \frac{1}{6} \\ x & =\frac{\log _{10} \frac{1}{6}}{\log _{10} \frac{1}{2}}=\frac{-\log _{10} 6}{-\log _{10} 2} \\ \text { Hence } & =\frac{\log _{10} 2+\log _{10} 3}{\log _{10} 2} \\ & =1+\frac{\log _{10} 3}{\log _{10} 2} \end{aligned}$ <br> OR $\begin{aligned} \left(\frac{1}{2}\right)^{x}=\frac{1}{6} & \Rightarrow 2^{x}=6 \\ & \Rightarrow x \log _{10} 2=\log _{10} 6 \\ x & =\frac{\log _{10} 6}{\log _{10} 2} \\ & =\frac{\log _{10} 2+\log _{10} 3}{\log _{10} 2} \\ & =1+\frac{\log _{10} 3}{\log _{10} 2} \end{aligned}$ <br> OR $\begin{aligned} \left(\frac{1}{2}\right)^{x}= & \frac{1}{6} \Rightarrow \\ & 2^{x}=6 \\ & 2^{x-1}=3 \\ & (x-1) \log _{10} 2=\log _{10} 3 \end{aligned}$ <br> Hence $x=1+\frac{\log _{10} 3}{\log _{10} 2}$ $\begin{aligned} & \text { OR } \\ & x=\frac{\log _{10} 2+\log _{10} 3}{\log _{10} 2} \\ & =\frac{\log _{10} 6}{\log _{10} 2} \\ & x \log _{10} 2=\log _{10} 6 \\ & \log _{10} 2^{x}=\log _{10} 6 \\ & 2^{x}=6 \\ & \left(\frac{1}{2}\right)^{x}=\frac{1}{6} \end{aligned}$ | M1 |  | For equation $\left(\frac{1}{2}\right)^{x}=\frac{1}{6}$ and attempt at logs Obtain $x \log \left(\frac{1}{2}\right)=\log \left(\frac{1}{6}\right)$, or equivalent |
|  |  |  | M1 | 4 | For use of $\log 6=\log 2+\log 3$ |
|  |  |  | A1 |  | For showing the given answer correctly |
|  |  |  |  |  |  |
|  |  |  | M1 |  | For equation $2^{x}=6$ and attempt at logs |
|  |  |  | A1 |  | Obtain $x \log 2=\log 6$, or equivalent |
|  |  |  | M1 |  | For use of $\log 6=\log 2+\log 3$ |
|  |  |  | A1 |  | For showing the given answer correctly |
|  |  |  |  |  |  |
|  |  |  | M1 |  | Attempt to rearrange equation to $2^{n}=3$ |
|  |  |  | A1 |  | Obtain $2^{x-1}=3$ |
|  |  |  | M1 |  | For attempt at logs |
|  |  |  | A1 |  | For showing the given answer correctly |
|  |  |  |  |  |  |
|  |  |  | M1 |  | Use $\log 2+\log 3=\log 6$ |
|  |  |  | A1 |  | Obtain $\times \log 2=\log 6$ |
|  |  |  |  |  | Obtain $\times \log 2=\log 6$ |
|  |  |  | M1 |  | Attempt to remove logarithms |
|  |  |  |  |  |  |
|  |  |  | A1 |  | Show $\left(\frac{1}{2}\right)^{x}=\frac{1}{6}$ correctly |
|  |  |  |  | 11 |  |


| $\begin{array}{ll} 1 & 15+19 d=72 \\ & \text { Hence } d=3 \\ & S_{n}=100 / 2\{(2 \times 15)+(99 \times 3)\} \\ & =16350 \end{array}$ | M1 <br> A1 <br> M1 <br> A1 4 <br> 4 | Attempt to find $d$, from $a+(n-1) d$ or $a+n d$ Obtain $d=3$ <br> Use correct formula for sum of $n$ terms Obtain 16350 |
| :---: | :---: | :---: |
| 2 <br> (i) $46 \times \frac{\pi}{180}=0.802 / 0.803$ 360) <br> (ii) $8 \times 0.803=6.4 \mathrm{~cm}$ <br> (iii) $1 / 2 \times 8^{2} \times 0.803=25.6 / 25.7 \mathrm{~cm}^{2}$ radians | M1 <br> A1 2 <br> B1 $\quad 1$ <br> M1 <br> A1 2 | Attempt to convert to radians using $\pi$ and 180 (or $2 \pi \&$ <br> Obtain 0.802 / 0.803 , or better <br> State 6.4, or better <br> Attempt area of sector using $1 / 2 r^{2} \theta$ or $r^{2} \theta$, with $\theta$ in <br> Obtain 25.6 / 25.7, or better |
| 3 <br> (i) $\int(4 x-5) \mathrm{d} x=2 x^{2}-5 x+c$ <br> (ii) $\begin{aligned} & y=2 x^{2}-5 x+c \\ & 7=2 \times 3^{2}-5 \times 3+c \Rightarrow c=4 \end{aligned}$ <br> So equation is $y=2 x^{2}-5 x+4$ | M1 <br> A1 2 <br> B1 $\sqrt{ }$ <br> M1 <br> A1 3 | Obtain at least one correct term <br> Obtain at least $2 x^{2}-5 x$ <br> State or imply $y=$ their integral from (i) <br> Use $(3,7)$ to evaluate $c$ <br> Correct final equation |
| $4 \quad$ (i) $\begin{aligned} \text { area } & =\frac{1}{2} \times 5 \sqrt{2} \times 8 \times \sin 60^{\circ} \\ & =\frac{1}{2} \times 5 \sqrt{2} \times 8 \times \frac{\sqrt{3}}{2} \\ & =10 \sqrt{6} \end{aligned}$ <br> (ii) $\begin{aligned} & A C^{2}=(5 \sqrt{2})^{2}+8^{2}-2 \times 5 \sqrt{2} \times 8 \times \cos 60^{\circ} \\ & A C=7.58 \mathrm{~cm} \end{aligned}$ | B1 <br> M1 <br> A1 3 <br> M1 <br> A1 <br> A1 3 <br> 6 | State or imply that $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$ or exact equiv <br> Use $\frac{1}{2} a c \sin B$ <br> Obtain $10 \sqrt{6}$ only, from working in surds <br> Attempt to use the correct cosine formula <br> Correct unsimplified expression for $A C^{2}$ Obtain $A C=7.58$, or better |
| 5 (a) (i) $\log _{3} \frac{4 x+7}{x}$ $\text { (ii) } \begin{aligned} & \log _{3} \frac{4 x+7}{x}=2 \\ & \\ & \frac{4 x+7}{x}=9 \\ & \\ & 4 x+7=9 x \\ & \\ & x=1.4 \end{aligned}$ $\text { (b) } \begin{aligned} \int_{3}^{9} \log _{10} x \mathrm{~d} x & \approx \frac{1}{2} \times 3 \times\left(\log _{10} 3+2 \log _{10} 6+\log _{10} 9\right) \\ & \approx 4.48 \end{aligned}$ | B1 $\quad 1$ <br> B1 <br> M1 <br> A1 3 <br> B1 <br> M1 <br> A1 <br> A1 4 | Correct single logarithm, as final answer, from correct working only <br> State or imply $2=\log _{3} 9$ <br> Attempt to solve equation of form $\mathrm{f}(x)=8$ or 9 <br> Obtain $x=1.4$, or exact equiv <br> State, or imply, the 3 correct $y$-values only <br> Attempt to use correct trapezium rule Obtain correct unsimplified expression Obtain 4.48, or better |


| 6 (i) $(1+4 x)^{7}=1+28 x+336 x^{2}+2240 x^{3}$ <br> (ii) $28 a+1008=1001$ <br> Hence $a=-1 / 4$ |  | Obtain $1+28 x$ <br> Attempt binomial expansion of at least 1 more term, with each term the product of binomial coeff and power of $4 x$ Obtain $336 x^{2}$ <br> Obtain 2240x ${ }^{3}$ <br> Multiply together two relevant pairs of terms <br> Obtain $28 a+1008=1001$ <br> Obtain $a=-1 / 4$ |
| :---: | :---: | :---: |
| $7 \quad$ (i) (a) <br> (b) $\begin{aligned} & \cos x=0.4 \\ & x=66.4^{\circ}, 294^{\circ} \end{aligned}$ <br> (ii) $\begin{aligned} & \tan x=2 \\ & x=63.4^{\circ},-117^{\circ} \end{aligned}$ | $\begin{array}{lr} \text { B1 } & \\ \text { B1 } & \mathbf{2} \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } \sqrt{2} & \mathbf{3} \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } \sqrt{2} & \mathbf{3} \\ 8 & 8 \\ \hline \end{array}$ | Correct shape of $k \cos x$ graph <br> $(90,0),(270,0)$ and $(0,2)$ stated or implied <br> Divide by 2 , and attempt to solve for $x$ <br> Correct answer of $66.4^{\circ} / 1.16$ rads <br> Second correct answer only, in degrees, following their $x$ <br> Use of $\tan x=\frac{\sin x}{\cos x} \quad$ (or square and use $\sin ^{2} x+\cos ^{2} x \equiv 1$ ) <br> Correct answer of $63.4^{\circ} / 1.56$ rads <br> Second correct answer only, in degrees, following their $x$ |
| 8 <br> (i) $-8-36-14+33=-25$ <br> (ii) $27-81+21+33=0 \quad$ A.G. <br> (iii) $\begin{aligned} & x=3 \\ & \mathrm{f}(x)=(x-3)\left(x^{2}-6 x-11\right) \\ & x=\frac{6 \pm \sqrt{36+44}}{2} \\ & \\ & =3 \pm 2 \sqrt{5} \text { or } 3 \pm \sqrt{ } 20 \end{aligned}$ | M1 <br> A1 2 <br> B1 1 <br> B1 <br> M1 <br> A1 <br> A1 <br> M1 <br> A1 6 | Substitute $x=-2$, or attempt complete division by $(x+2)$ Obtain - 25 , as final answer <br> Confirm $f(3)=0$, or equiv using division <br> State $x=3$ as a root at any point <br> Attempt complete division by $(x-3)$ or equiv <br> Obtain $x^{2}-6 x+k$ <br> Obtain completely correct quotient <br> Attempt use of quadratic formula, or equiv, to find roots <br> Obtain $3 \pm 2 \sqrt{ } 5$ or $3 \pm \sqrt{20}$ |
| 9 <br> (i) $\begin{aligned} u_{5} & =1.5 \times 1.02^{4} \\ & =1.624 \text { tonnes A.G. } \end{aligned}$ <br> (ii) $\frac{1.5\left(1.02^{N}-1\right)}{1.02-1} \leq 39$ $\begin{aligned} & \left(1.02^{N}-1\right) \leq(39 \times 0.02 \div 1.5) \\ & \left(1.02^{N}-1\right) \leq 0.52 \\ & \text { Hence } 1.02^{N} \leq 1.52 \end{aligned}$ <br> (iii) $\begin{aligned} & \log 1.02^{N} \leq \log 1.52 \\ & N \log .02 \leq \log 1.52 \\ & N \leq 21.144 . . \\ & N=21 \text { trips } \end{aligned}$ | M1  <br> A1 $\mathbf{2}$ <br> M1  <br> A1  <br> M1  <br> A1 4 <br> M1  <br> A1  <br> M1  <br> A1 4 <br>   | Use $1.5 r^{4}$, or find $u_{2}, u_{3}, u_{4}$ <br> Obtain 1.624 or better <br> Use correct formula for $S_{N}$ <br> Correct unsimplified expressions for $S_{N}$ Link $S_{N}$ to 39 and attempt to rearrange <br> Obtain given inequality convincingly, with no sign errors <br> Introduce logarithms on both sides and use $\log a^{b}=b \log$ Obtain $N \log 1.02 \leq \log 1.52$ (ignore linking sign) <br> Attempt to solve for $N$ <br> Obtain $N=21$ only |

(i) $0=1-\frac{3}{\sqrt{9}}$
(ii) $\int_{9}^{a} 1-3 x^{-\frac{1}{2}} \mathrm{dx}=[x-6 \sqrt{x}]_{9}^{a}$
$=(a-6 \sqrt{a})-(9-6 \sqrt{9})$
$=a-6 \sqrt{a}+9$
$a-6 \sqrt{a}+9=4$
$a-6 \sqrt{a}+5=0$
$(\sqrt{a}-1)(\sqrt{a}-5)=0$
$\sqrt{a}=1, \sqrt{a}=5$
$a=1, a=25$
but $a>9$, so $a=25$

|  | 1 | Verification of (9, 0), with at least one step shown |
| :---: | :---: | :---: |
| M1 |  | Attempt integration - increase in power for at least 1 term |
| A1 |  | For second term of form $\mathrm{kx}^{1 / 2}$ |
| A1 |  | For correct integral |
| M1 |  | Attempt F(a) - F 9 ) |
| A1 |  | Obtain $a-6 \sqrt{a}+9$ |
| M1 |  | Equate expression for area to 4 |
| M1 |  | Attempt to solve 'disguised' quadratic |
| A1 |  | Obtain at least $\sqrt{a}=5$ |
| A1 | 9 | Obtain $a=25$ only |
|  |  |  |

1 (i) $u_{2}=12$
$u_{3}=9.6, u_{4}=7.68$ (or any exact equivs)
(ii) $\quad S_{20}=\frac{15\left(1-0.8^{20}\right)}{1-0.8}$

$$
=74.1
$$

$\left|\begin{array}{ll}\text { B1 } & \\ \text { B1 } \sqrt{ } & 2 \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \\ \text { M1 } & \\ \text { A2 } & \\ & \boxed{5}\end{array}\right|$

State $u_{2}=12$
Correct $u_{3}$ and $u_{4}$ from their $u_{2}$
Attempt use of $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$, with $n=20$ or 19
Obtain correct unsimplified expression
Obtain 74.1 or better

List all 20 terms of GP
Obtain 74.1

$$
=x^{4}+8 x^{2}+24+\frac{32}{x^{2}}+\frac{16}{x^{4}} \text { (or equiv) }
$$

| OR | M1* <br> M1* <br> A1dep* <br> A1 <br> A1 | Attempt expansion using all four brackets Obtain expansion containing the correct 5 powers only (could be unsimplified powers eg $x^{3} \cdot x^{-1}$ ) <br> Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion |
| :---: | :---: | :---: |
| $3 \quad \begin{aligned} & \log 3^{(2 x+1)}=\log 5^{200} \\ & \\ & (2 x+1) \log 3=200 \log 5 \end{aligned}$ | $\begin{array}{\|l} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$ | Introduce logarithms throughout <br> Drop power on at least one side <br> Obtain correct linear equation (now containing no powers) |
| $\begin{aligned} & 2 x+1=\frac{200 \log 5}{\log 3} \\ & x=146 \end{aligned}$ | $\left\lvert\, \begin{array}{ll} \text { M1 } & \\ \text { A1 } & 5 \end{array}\right.$ | Attempt solution of linear equation <br> Obtain $x=146$, or better |
| OR $\begin{aligned} & (2 x+1)=\log _{3} 5^{200} \\ & 2 x+1=200 \log _{3} 5 \end{aligned}$ | M1 <br> M1 <br> A1 <br> M1 <br> A1 | Intoduce $\log _{3}$ on right-hand side <br> Drop power of 200 <br> Obtain correct equation <br> Attempt solution of linear equation <br> Obtain $x=146$, or better |
| 4 <br> (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times\{\sqrt{5}+2(\sqrt{7}+\sqrt{9}+\sqrt{11})+\sqrt{13}\}$ $\begin{aligned} & \approx 0.25 \times 23.766 \ldots \\ & \approx 5.94 \end{aligned}$ <br> (ii) This is an underestimate...... ....as the tops of the trapezia are below the curve | M1  <br> M1  <br> A1  <br>   <br> A1 4 <br> *B1  <br> B1dep*B1 <br> 2  <br> $r$ 6 | Attempt $y$-values for at least 4 of the $x=1,1.5,2$, 2.5, 3 only <br> Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times\{\sqrt{5}+2(\sqrt{7}+\sqrt{9}+\sqrt{11})+\sqrt{13}\}$, or decimal equiv <br> Obtain 5.94 or better (answer only is $0 / 4$ ) <br> State underestimate <br> Correct statement or sketch |


$8 \quad$ (i) $\quad \frac{1}{2} \times A B^{2} \times 0.9=16.2$

$$
A B^{2}=36 \Rightarrow A B=6
$$

(ii) $\frac{1}{2} \times 6 \times A C \times \sin 0.9=32.4$
$A C=13.8 \mathrm{~cm}$
(iii) $B C^{2}=6^{2}+13.8^{2}-2 \times 6 \times 13.8 \times \cos 0.9$

Hence $B C=11.1 \mathrm{~cm}$
$B D=6 \times 0.9=5.4 \mathrm{~cm}$
Hence perimeter $=11.1+5.4+(13.8-6)$

$$
=24.3 \mathrm{~cm}
$$

9
(i) (a) $\mathrm{f}(-1)=-1+6-1-4=0$
(b) $x=-1$
$\mathrm{f}(x)=(x+1)\left(x^{2}+5 x-4\right)$
$x=\frac{-5 \pm \sqrt{25+16}}{2}$
$x=\frac{1}{2}(-5 \pm \sqrt{41})$
(ii) (a) $\log _{2}(x+3)^{2}+\log _{2} x-\log _{2}(4 x+2)=1$
$\log _{2}\left(\frac{(x+3)^{2} x}{4 x+2}\right)=1$
$\frac{(x+3)^{2} x}{4 x+2}=2$
$\left(x^{2}+6 x+9\right) x=8 x+4$
$x^{3}+6 x^{2}+x-4=0$
(b) $x>0$, otherwise $\log _{2} x$ is undefined $x=\frac{1}{2}(-5+\sqrt{41})$


Use $\left(\frac{1}{2}\right) r^{2} \theta=16.2$
Confirm $A B=6 \mathrm{~cm}$ (or verify $1 / 2 \times 6^{2} \times 0.9=$

Use $\Delta=\frac{1}{2} b c \sin A$, or equiv
Equate attempt at area to 32.4
Obtain AC = 13.8 cm , or better
Attempt use of correct cosine formula in $\triangle A B C$
Correct unsimplified equation, from their $A C$
Obtain $B C=11.1 \mathrm{~cm}$, or anything that rounds to this
State $B D=5.4 \mathrm{~cm}$ (seen anywhere in question)
Attempt perimeter of region $B C D$
Obtain 24.3 cm , or anything that rounds to this

B1 1

Confirm $\mathrm{f}(-1)=0$, through any method

State $x=-1$ at any point
Attempt complete division by ( $x+1$ ), or equiv
Obtain $x^{2}+5 x+k$
Obtain completely correct quotient
Attempt use of quadratic formula, or equiv, find
roots
Obtain $\frac{1}{2}(-5 \pm \sqrt{41})$

State or imply that $2 \log (x+3)=\log (x+3)^{2}$
Add or subtract two, or more, of their algebraic logs correctly

Obtain correct equation (or any equivalent, with single term on each side)

Use $\log _{2} a=1 \Rightarrow a=2$ at any point

Confirm given equation correctly
State or imply that $\log x$ only defined for $x>0$
State $x=\frac{1}{2}(-5+\sqrt{41})$ (or $\mathrm{x}=0.7$ ) only, following their
single positive root in (i)(b)

## 4722 Core Mathematics 2

|  | Mark Total |  |
| :---: | :---: | :---: |
| 1 $\begin{aligned} \text { area of sector } & =1 / 2 \times 11^{2} \times 0.7 \\ & =42.35 \end{aligned} \quad \begin{aligned} \text { area of triangle } & =1 / 2 \times 11^{2} \times \sin 0.7=38.98 \\ \text { hence area of segment } & =42.35-38.98 \\ & =3.37 \end{aligned}$ | $\begin{array}{\|ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \\ & 4 \end{array}$ | Attempt sector area using (1/2) $r^{2} \theta$ Obtain 42.35, or unsimplified equiv, soi Attempt triangle area using $1 / 2 a b s i n C$ or equiv, and subtract from attempt at sector Obtain 3.37, or better |
| $\begin{aligned} 2 \quad \text { area } & \approx \frac{1}{2} \end{aligned} \times 2 \times\{2+2(\sqrt{12}+\sqrt{28})+\sqrt{52}\},$ | M1  <br> M1  <br> M1  <br> A1 4 <br>  4 <br>  4 | Attempt $y$-values at $x=1,3,5,7$ only <br> Correct trapezium rule, any $h$, for their $y$ values to find area between $x=1$ and $x=7$ <br> Correct $h$ (soi) for their $y$ values Obtain 26.7 or better (correct working only) |
| $3 \quad$ (i) $\log _{a} 6$ <br> (ii) $\begin{gathered} 2 \log _{10} x-3 \log _{0} y=\log _{00} x^{2}-\log _{10} y^{3} \\ =\log _{10} \frac{x^{2}}{y^{3}} \end{gathered}$ | B1 $\mathbf{1}$ <br> M1*  <br> M1dep*  <br> A1 3 <br>  4 <br>  4 | State $\log _{a} 6$ cwo <br> Use $b \log a=\log a^{b}$ at least once <br> Use $\log a-\log b=\log a / b$ <br> Obtain $\log _{10} \frac{x^{2}}{y^{3}} \quad$ cwo |
| 4 $\text { (i) } \quad \begin{gathered} \frac{B D}{\sin 62}=\frac{16}{\sin 50} \\ B D=18.4 \mathrm{~cm} \end{gathered}$ <br> (ii) $\begin{aligned} & 18.4^{2}=10^{2}+20^{2}-2 \times 10 \times 20 \times \cos \theta \\ & \cos \theta=0.3998 \\ & \theta=66.4^{0} \end{aligned}$ | M1 <br> A1 2 <br> M1 <br> M1 <br> A1 3 | Attempt to use correct sine rule in $\triangle B C D$, or equiv. <br> Obtain 18.4 cm <br> Attempt to use correct cosine rule in $\triangle A B D$ <br> Attempt to rearrange equation to find $\cos B A D$ <br> (from $a^{2}=b^{2}+c^{2} \pm(2) b c \cos A$ ) <br> Obtain 66.4 ${ }^{0}$ |
| $5 \quad \int 12 x^{\frac{1}{2}} \mathrm{~d} x=8 x^{\frac{3}{2}}$ $\begin{aligned} & y=8 x^{\frac{3}{2}}+c \Rightarrow 50=8 \times 4^{\frac{3}{2}}+c \\ & \Rightarrow c=-14 \end{aligned}$ <br> Hence $y=8 x^{\frac{3}{2}}-14$ | M1 <br> A1 $\sqrt{ }$ <br> A1 <br> M1 <br> A1 $\sqrt{ }$ <br> A1 6 | Attempt to integrate <br> Obtain correct, unsimplified, integral following their $\mathrm{f}(x)$ Obtain $8 x^{\frac{3}{2}}$, with or without $+c$ <br> Use $(4,50)$ to find $c$ <br> Obtain $c=-14$, following $k x^{\frac{3}{2}}$ only <br> State $y=8 x^{\frac{3}{2}}-14$ aef, as long as single power of $x$ |
|  |  |  |




## 4722 Core Mathematics 2

1

$$
(2-3 x)^{6}=2^{6}+6 \cdot 2^{5} \cdot(-3 x)+15 \cdot 2^{4} \cdot(-3 x)^{2}
$$

M1 Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-
)3x

$$
=64-576 x+2160 x^{2}
$$

OR
A1 Obtain 64-576x
M1 Attempt third term - binomial coefficient and powers of 2 and $(-) 3 x$
A1 Obtain 2160x ${ }^{2}$

M1 Attempt expansion involving all 6 brackets
A1 Obtain 64
A1 Obtain - 576x
A1 Obtain 2160x ${ }^{2}$
SR if the expansion is attempted in descending order, and the required terms are never seen, then $\mathbf{B 1} \mathbf{B 1} \mathbf{B 1}$ for $4860 x^{4},-2916 x^{5}, 729 x^{6}$


| $\begin{array}{lll} \hline 2 \text { (i) } \quad \begin{array}{l} u_{2} \end{array}=\frac{2 / 3}{} \\ & u_{3}=-1 / 2 \\ & u_{4}=3 \end{array}$ | $\begin{gathered} \hline \text { B1 } \\ \text { B1 } \sqrt{ } \\ 3 \end{gathered}$ | Obtain correct $u_{2}$ B1 $\sqrt{ }$ Obtain correct $u_{3}$ from their $u_{2}$ Obtain correct $u_{4}$ from their $u_{3}$ |
| :---: | :---: | :---: |
| (ii) sequence is periodic / cyclic / repeating | $\begin{gathered} \text { B1 } \\ \hline \mathbf{1} \\ \hline \end{gathered}$ | Any equivalent comment |
| 3 (i) $\quad 1 / 2 \times 8^{2} \times \theta=48$ <br> Hence $\theta=1.5$ radians | $\begin{array}{r} \text { M1 } \\ \text { A1 } \\ \hline 2 \\ \hline \end{array}$ | State or imply ( $1 / 2$ ) $8^{2} \theta=48$ Obtain $\theta=1.5$ (or $0.477 \pi$ ), or equiv |
| $\text { (ii) } \begin{aligned} \text { area } & =48-1 / 2 \times 8^{2} \times \sin 1.5 \\ & =48-31.9 \\ & =16.1 \end{aligned}$ | $\begin{aligned} & \text { M1 }^{*} \\ & \text { M1d } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline 3 \\ & \hline \end{aligned}$ | Attempt area of $\Delta$ using $(1 / 2) 8^{2} \sin \theta$ Attempt 48 - area of $\Delta$ Obtain $16.1 \mathrm{~cm}^{2}$ |
| $\begin{gathered} 4 \text { (i) } \mathrm{f}(3)=27 a-36-21 a+12=0 \\ 6 a=24 \\ a=4 \end{gathered}$ | $\begin{aligned} & \text { M1* } \\ & \text { M1d* } \\ & \text { A1 } \end{aligned}$ | Attempt f(3) <br> Equate attempt at $f(3)$ to 0 and attempt to solve <br> Obtain $a=4$ |
| OR | $\begin{aligned} & \text { M1* } \\ & \text { M1d* } \\ & \text { A1 } \\ & \hline 3 \\ & \hline \end{aligned}$ | Attempt complete division / matching coeffs Equate remainder to 0 Obtain $a=4$ |
| $\text { (ii) } \begin{aligned} \mathrm{f}(-2) & =-32-16+56+12 \\ & =20 \end{aligned}$ | M1 <br> A1 $\sqrt{ }$ <br> 2 | Attempt f(-2) <br> Obtain 20 (or $6 a-4$, following their $a$ ) |


| $5 \text { (i) }$ | $\begin{aligned} & \int x \mathrm{~d} y=\int\left((y-3)^{2}-2\right) \mathrm{d} y \\ &=\int\left(y^{2}-6 y+7\right) \mathrm{d} y \quad \text { A.G. } \\ & 3+\sqrt{(2+2)}=5, \quad 3+\sqrt{(14+2)}=7 \end{aligned}$ | $\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \hline 3 \\ \hline \end{gathered}$ | Show $x=y^{2}-6 y+7$ convincingly <br> State or imply that required area $=\int x \mathrm{~d} y$ <br> Use $x=2,14$ to show new limits of $y=5,7$ |
| :---: | :---: | :---: | :---: |
| (ii) <br> term | $\begin{aligned} & {\left[\frac{1}{3} y^{3}-3 y^{2}+7 y\right]_{5}^{7}} \\ & =\left({ }^{343} / 3-147+49\right)-\left({ }^{125} / 3-75+35\right) \\ & =16^{1} / 3-1^{2} / 3 \\ & =14^{2} / 3 \end{aligned}$ | M1 <br> A1 <br> M1 <br> $\begin{array}{r}\text { A1 } \\ \hline 4\end{array}$ | Integration attempt, with at least one <br> correct <br> All three terms correct <br> Attempt F(7) - F(5) <br> Obtain $14 \frac{2}{3}$, or exact equiv |
| 6 (i) | $A B C=360-(150+110)=100^{\circ}$ A.G. | $\begin{array}{r} \mathrm{B} 1 \\ 1 \\ \hline \end{array}$ | Show convincingly that angle $A B C$ is $100^{\circ}$ |
| (ii) | $\begin{aligned} C A^{2} & =15^{2}+27^{2}-2 \times 15 \times 27 \times \cos 100^{0} \\ & =1094.655 \ldots \\ C A & =33.1 \end{aligned}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \hline 2 \\ \hline \end{gathered}$ | Attempt use of correct cosine rule <br> Obtain 33.1 km |
|  | $\frac{\sin C}{15}=\frac{\sin 100}{33.1} \quad \text { or } \quad \frac{\sin A}{27}=\frac{\sin 100}{33.1}$ $C=26.5^{\circ} \quad A=53.5^{\circ}$ <br> Hence bearing is $263^{\circ}$ | M1 <br> A1 $\sqrt{ }$ <br> A1 <br> A1 $\sqrt{ }$ <br> 4 | Attempt use of sine rule to find angle $C$ or $A$ <br> (or equiv using cosine rule) <br> Correct unsimplified eqn, following their $C A$ <br> Obtain $C=26.5^{\circ}$ or $A=53.5^{\circ}$ (allow $53.4^{\circ}$ ) <br> Obtain 263 or 264 (or $290^{\circ}$ - their angle $C$ / <br> 210 + their angle $A$ ) |
| 7 (a) | $\begin{aligned} & \int\left(x^{5}-x^{4}+5 x^{3}\right) \mathrm{d} x \\ = & \frac{1}{6} x^{6}-\frac{1}{5} x^{5}+\frac{5}{4} x^{4}(+c) \end{aligned}$ | M1 <br> A1 <br> A1 <br> B1 <br> 4 | Expand brackets and attempt integration, or other valid integration attempt <br> Obtain at least one correct term <br> Obtain a fully correct expression <br> For $+c$, and no $\int$ or $\mathrm{d} x$ (can be given in <br> (b)(i) if not given here) |
|  | (i) $-6 x^{-3}(+c)$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline 2 \\ & \hline \end{aligned}$ | Obtain integral of the form $k x^{-3}$ Obtain $-6 x^{-3}(+c)$ |
|  | $\text { (ii) } \begin{aligned} & {\left[-6 x^{-3}\right]_{2}^{\infty}} \\ & =3 / 4 \end{aligned}$ | $\begin{aligned} & \text { B1* }^{*} \\ & \text { B1d }^{*} \\ & \hline 2 \\ & \hline \end{aligned}$ | State or imply that $\mathrm{F}(\infty)=0\left(\right.$ for $\left.k x^{n}, n-1\right)$ Obtain $3 / 4$ (or equiv) |


| 8 (i) | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \hline 3 \\ & \hline \end{aligned}$ | Attempt sketch of exponential graph ( $1^{\text {st }}$ quad) - if seen in $2^{\text {nd }}$ quad must be approx correct Correct graph in both quadrants State or imply $(0,2)$ only |
| :---: | :---: | :---: |
|  | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Form equation in $x$ and take logs (to any consistent base, or no base) - could use $\log _{8}$ Use $\log a^{b}=b \log a$ <br> Use $\log a b=\log a+\log b$,or equiv with $\log a / b$ Use $\log _{2} 8=3$ <br> Show given answer correctly |
| OR $\quad 8^{x}=2 \times 3^{x}$ $\begin{align*} & 2^{3 x}=2 \times 3^{x} \\ & 2^{(3 x-1)}=3^{x} \\ & \log _{2} 2^{(3 x-1)}=\log _{2} 3^{x} \\ & (3 x-1) \log _{2} 2=x \log _{2} 3 \\ & x\left(3-\log _{2} 3\right)=1 \text {, hence } x=\frac{1}{3-\log _{2} 3} \end{align*}$ | M1 <br> M1 <br> M1 <br> M1 <br> A1 <br> 5 | Use $8^{x}=2^{3 x}$ <br> Attempt to rearrange equation to $2^{k}=3^{x}$ <br> Take logs (to any base) <br> Use $\log a^{b}=b \log a$ <br> Show given answer correctly |
|  | $\begin{aligned} & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \\ & \hline \end{aligned}$ | Use $\tan x \equiv \frac{\sin x}{\cos X}$ <br> Use $\sin ^{2} x \equiv 1-\cos ^{2} x$ <br> Show given equation convincingly |
| $\text { (ii) } \begin{aligned} & (3 \cos x-1)(\cos x+2)=0 \\ & \\ & \cos x=1 / 3 \\ & x=1.23 \mathrm{rad} \\ & x=5.05 \mathrm{rad} \end{aligned}$ | M1 <br> M1 <br> A1 <br> A1 $\sqrt{ }$ <br> 4 | Attempt to solve quadratic in $\cos x$ Attempt to find $x$ from root(s) of quadratic Obtain 1.23 rad or $70.5^{\circ}$ <br> Obtain 5.05 rad or $289^{\circ}$ (or $2 \pi / 360^{\circ}$ - their solution) <br> SR: B1 B1 for answer(s) only |
| (b) $0.5 \times 0.25 \times\{\cos 0+2(\cos 0.25+\cos 0.5+\cos 0.75)+\cos 1\}$ | M1 <br> M1 <br> M1 <br> M1 <br> A1 <br> 4 | Attempt $y$-coords for at least 4 of the correct 5 $x$-coords <br> Use correct trapezium rule, any $h$, for their $y$ values to find area between $x=0$ and $x=1$ Correct $h$ (soi) for their $y$ values Obtain 0.837 |


| 10 (i) | $\begin{aligned} u_{15} & =2+14 \times 0.5 \\ & =9 \mathrm{~km} \end{aligned}$ | $\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \hline 2 \\ \hline \end{gathered}$ | Attempt use of $a+(n-1) d$ Obtain 9 km |
| :---: | :---: | :---: | :---: |
| (ii) | $u_{20}=2 \times 1.1^{19}=12.2$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$ | State, or imply, $r=1.1$ <br> Attempt $u_{20}$, using $\operatorname{ar}^{n-1}$ |
|  | $u_{19}=2 \times 1.1^{18}=11.1$ |  | Obtain $u_{20}=12.2$, and obtain $u_{19}=11.1$ |
| OR |  |  |  |
|  |  | B1 | State, or imply, $r=1.1$ |
|  |  | M1 | Attempt to solve $a r^{n-1}=12$ |
|  |  | $\begin{gathered} \mathbf{A 1} \\ \hline \mathbf{3} \end{gathered}$ | Obtain $n=20$ (allow $n \geq 20$ ) |
| (iii) | $\frac{2\left(1.1^{n}-1\right)}{(1.1-1)}>200$ | B1 | State or imply $S_{N}=\frac{2\left(1.1^{n}-1\right)}{(1.1-1)}$ |
|  | $1.1^{n}>11$ | M1 | Link (any sign) their attempt at $S_{N}$ (of a GP) to 200 and attempt to solve |
|  | $n>\frac{\log 11}{\log 1.1}$ | A1 | Obtain 26, or 25.2 or better |
|  | $n>25.2$ ie Day 26 | A1 <br> 4 | Conclude $n=26$ only, or equiv eg Day 26 |
| (iv) | swum $=2 \times 30=60 \mathrm{~km}$ | B1 | Obtain 60 km , or $2 \times 30 \mathrm{~km}$ |
|  | $\begin{aligned} \text { run } & =1 / 2 \times 30 \times(4+29 \times 0.5) \\ & =277.5 \mathrm{~km} \end{aligned}$ | M1 | Attempt sum of AP, $d=0.5, a=2, n=30$ |
|  | cycle $=\underline{2\left(1.1^{30}-1\right)}$ | M1 | Attempt sum of GP, $r=1.1, a=2, n=30$ |
|  | (1.1-1) |  |  |
|  | $\begin{gathered} =329.0 \mathrm{~km} \\ \text { total }=666 \mathrm{~km} \end{gathered}$ | A1 <br> 4 | Obtain 666 or 667 km |

## 4722 Core Mathematics 2

1 (i) $\int\left(x^{3}+8 x-5\right) \mathrm{d} x=\frac{1}{4} x^{4}+4 x^{2}-5 x+c$
M1 Attempt integration - increase in power for at least 2 terms
A1 Obtain at least 2 correct terms
A1 3 Obtain $\frac{1}{4} x^{4}+4 x^{2}-5 x+c$ (and no integral sign or $\mathrm{d} x$ )
(ii) $\int 12 x^{\frac{1}{2}} \mathrm{~d} x=8 x^{\frac{3}{2}}+c$

B1 State or imply $\sqrt{x}=x^{\frac{1}{2}}$
M1 Obtain $k x^{\frac{3}{2}}$
A1 3 Obtain $8 x^{\frac{3}{2}}+c$ (and no integral sign or $\mathrm{d} x$ )
(only penalise lack of $+c$, or integral sign or $d x$ once)

## 6

2 (i) $140^{\circ}=140 \times \frac{\pi}{180} \quad$ M1

$$
=\frac{7}{9} \pi
$$

A1 2 Obtain $\frac{7}{9} \pi$, or exact equiv
(ii) $\operatorname{arc} A B=7 \times \frac{7}{9} \pi$

$$
=17.1
$$

chord $A B=2 \times 7 \sin \frac{7}{18} \pi=13.2$
hence perimeter $=30.3 \mathrm{~cm}$

## M1

A1 $\sqrt{ }$
M1
A1 4

Attempt arc length using $r \theta$ or equiv method
Obtain 17.1, $\frac{49}{9} \pi$ or unsimplified equiv
Attempt chord using trig. or cosine or sine rules
4 Obtain 30.3, or answer that rounds to this

## 6

3 (i) $u_{1}=23^{1 / 3}$
B1 State $u_{1}=23^{1} / 3$
$u_{2}=22^{2} / 3, u_{3}=22$
B1
2 State $u_{2}=22^{2} / 3$ and $u_{3}=22$
(ii) $24-2 k / 3=0$
M1
Equate $u_{k}$ to 0
2 Obtain 36
(iii) $S_{20}=\frac{20}{2}\left(2 \times 23 \frac{1}{3}+19 \times \frac{-2}{3}\right)$

$$
=340
$$

M1
A1 A1

Attempt sum of AP with $n=20$
Correct unsimplified $S_{20}$
3 Obtain 340

## 7

$$
\begin{aligned}
& 4 \int_{-2}^{2}\left(x^{4}+3\right) d x=\left[\frac{1}{5} x^{5}+3 x\right]_{-2}^{2} \\
& =\left(\frac{32}{5}+6\right)-\left(\frac{-32}{5}-6\right) \\
& =24 \frac{4}{5} \\
& \text { area of rectangle }=19 \times 4 \\
& \text { hence shaded area }=76-24 \frac{4}{5} \\
& =51 \frac{1}{5} \\
& \text { OR } \\
& \text { Area }=19-\left(x^{4}+3\right) \\
& =16-x^{4} \\
& \int_{-2}^{2}\left(16-x^{4}\right) \mathrm{d} x=\left[16 x-\frac{1}{5} x^{5}\right]_{-2}^{2}
\end{aligned}
$$

Attempt integration - increase of power for at least 1 term
Obtain correct $\frac{1}{5} x^{5}+3 x$
Use limits (any two of $-2,0,2$ ), correct order/subtraction
Obtain $24 \frac{4}{5}$
State or imply correct area of rectangle
Attempt correct method for shaded area
7 Obtain $51 \frac{1}{5}$ aef such as $51.2, \frac{256}{5}$
Attempt subtraction, either order
Obtain $16-x^{4}$ (not from $\left.x^{4}+3=19\right)$
Attempt integration
Obtain $\pm\left(16 x-\frac{1}{5} x^{5}\right)$

$$
\begin{array}{lll}
=\left(32-\frac{32}{5}\right)-\left(-32-\frac{-32}{5}\right) & \text { M1 } & \text { Use limits }- \text { correct order / subtraction } \\
=51 \frac{1}{5} & \text { A1 } & \text { Obtain } \pm 51 \frac{1}{5} \\
& \text { A1 } & \text { Obtain } 51 \frac{1}{5} \text { only, no wrong working }
\end{array}
$$

M1 Attempt use of correct sine rule to find $T A$, or equiv
A1 2 Obtain 914, or better

5 (i) $\frac{T A}{\sin 107}=\frac{50}{\sin 3}$
$T A=914 \mathrm{~m}$
(ii) $T C=\sqrt{914^{2}+150^{2}-2 \times 914 \times 150 \times \cos 70}$

$$
=874 \mathrm{~m}
$$

(iii) dist from $A=914 \mathrm{x} \cos 70=313 \mathrm{~m}$ beyond $C$, hence 874 m is shortest dist
OR
perp dist $=914 \times \sin 70=859 \mathrm{~m}$

M1 Attempt use of correct cosine rule, or equiv, to find TC
A1 $\sqrt{ } \quad$ Correct unsimplified expression for TC, following their (i)
A1 3 Obtain 874, or better
M1 Attempt to locate point of closest approach
A1 2 Convincing argument that the point is beyond $C$, or obtain 859 , or better
SR B1 for 874 stated with no method shown

6 (i) $\quad \begin{aligned} S_{\infty} & =\frac{20}{1-0.9} \\ & =200\end{aligned}$
M1 Attempt use of $S_{\infty}=\frac{a}{1-r}$
A1 2 Obtain 200
(ii) $S_{30}=\frac{20\left(1-0.9^{30}\right)}{1-0.9}$

$$
=192
$$

M1 Attempt use of correct sum formula for a GP, with $n=30$
A1 2 Obtain 192, or better

(iii) \begin{tabular}{lll}
$20 \times 0.9^{p-1}<0.4$ \& B1 \& Correct $20 \times 0.9^{p-1}$ seen or implied <br>
$0.9^{p-1}<0.02$ \& \& <br>
$(p-1) \log 0.9<\log 0.02$ \& M1 \& Link to 0.4, rearrange to $0.9^{k}=c$ (or $>,<$ ), introduce <br>
$p-1>\frac{\log 0.02}{\log 0.9}$ \& \& logarithms, and drop power, or equiv correct method <br>

$p>38.1$ \& M1 \& | Correct method for solving their (in)equation |
| :--- | <br>

hence $p=39$ \& A1 \& 4 <br>
State 39 (not inequality), no wrong working seen
\end{tabular}

## 8

(ii) $4 k^{3} a=128$
$4 k^{3}\left(\frac{2}{k}\right)=128$
$k^{2}=16$
$k=4, a=\frac{1}{2}$

M1* Obtain at least two of $6, k^{2}, a^{2}$
M1dep* Equate $6 k^{m} a^{n}$ to 24
A1 3 Show $a k=2$ convincingly - no errors allowed

B1 State or imply coeff of $x$ is $4 k^{3} a$
M1 Equate to 128 and attempt to eliminate $a$ or $k$
A1 $\quad$ Obtain $k=4$
A1 4 Obtain $a=1 / 2$
SR B1 for $k= \pm 4, a= \pm \frac{1}{2}$
(iii) $4 \times 4 \times\left(\frac{1}{2}\right)^{3}=2$

M1 Attempt $4 \times k \times a^{3}$, following their $a$ and $k$ (allow if still in terms of $a, k$ )
A1 2 Obtain 2 (allow $2 x^{3}$ )
8 (a)(i) $\log _{a} x y=p+q$
B1 $1 \quad$ State $p+q$ cwo
(ii) $\log _{a}\left(\frac{a^{2} x^{3}}{y}\right)=2+3 p-q$

M1 Use $\log a^{b}=b \log a$ correctly at least once
M1 Use $\log \frac{a}{b}=\log a-\log b$ correctly
A1 3 Obtain $2+3 p-q$
(b)(i) $\log _{10} \frac{x^{2}-10}{x}$

B1 $1 \quad$ State $\log _{10} \frac{x^{2}-10}{x}$ (with or without base 10)
(ii) $\log _{10} \frac{x^{2}-10}{x}=\log _{10} 9$
$x^{2}-9 x-10=0$
$(x-10)(x+1)=0$
$x=10$
$\frac{x^{2}-10}{x}=9 \quad$ M1
A1
B1 State or imply that $2 \log _{10} 3=\log _{10} 3^{2}$
M1 Attempt correct method to remove logs
A1 Obtain correct $x^{2}-9 x-10=0$ aef, no fractions
A1
Attempt to solve three term quadratic
5 Obtain $x=10$ only

9 (i) $\mathrm{f}(1)=1-1-3+3=0 \quad$ A.G.
$\mathrm{f}(x)=(x-1)\left(x^{2}-3\right)$
$x^{2}=3$
$x= \pm \sqrt{3}$

$$
\text { (ii) } \begin{aligned}
\tan x & =1, \sqrt{3},-\sqrt{3} \\
\tan x & =\sqrt{3} \Rightarrow x=\pi / 3,4 \pi / 3 \\
\tan x & =-\sqrt{3} \Rightarrow x=2 \pi / 3,5 \pi / 3 \\
\tan x & =1 \Rightarrow x=\pi / 4,5 \pi / 4
\end{aligned}
$$

B1 Confirm $f(1)=0$, or division with no remainder shown, or matching coeffs with $R=0$
M1 Attempt complete division by $(x-1)$, or equiv
A1 Obtain $x^{2}+k$
A1 Obtain completely correct quotient (allow $x^{2}+0 x-3$ )
M1
Attempt to solve $x^{2}=3$
6 Obtain $x= \pm \sqrt{3}$ only

B1 $\sqrt{ }$

M1
A1
A1
B1
B1

State or imply $\tan x=1$ or $\tan x=$ at least one of their roots from (i)
Attempt to solve $\tan x=k$ at least once
Obtain at least 2 of $\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3$ (allow degs/decimals)
Obtain all 4 of $\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3$ (exact radians only)
Obtain $\pi / 4$ (allow degs / decimals)
6 Obtain $5 \pi / 4$ (exact radians only)
SR answer only is B1 per root, max of B4 if degs / decimals

## 4722 Core Mathematics 2

1 (i) $\begin{aligned} \cos \theta & =\frac{6.4^{2}+7.0^{2}-11.3^{2}}{2 \times 6.4 \times 7.0} \\ & =-0.4211 \\ \theta & =115^{\circ} \text { or } 2.01 \text { rads }\end{aligned}$
(ii) area $=\frac{1}{2} \times 7 \times 6.4 \times \sin 115$

$$
=20.3 \mathrm{~cm}^{2}
$$

A1 2 Obtain 20.3 (cao)

2 (i) $a+9 d=2(a+3 d)$

$$
\begin{aligned}
& a=3 d \\
& a+19 d=44 \Rightarrow 22 d=44
\end{aligned}
$$

$$
d=2, a=6
$$

M1 Attempt use of cosine rule (any angle)
A1 Obtain one of $115^{\circ}, 34.2^{\circ}, 30.9^{\circ}, 2.01,0.597,0.539$
A1 3 Obtain $115^{\circ}$ or 2.01 rads, or better
(ii) $S_{50}=\frac{50}{2}(2 \times 6+49 \times 2)$

$$
=2750
$$

M1* Attempt use of $a+(n-1) d$ or $a+n d$ at least once for $u_{4}$, $u_{10}$ or $u_{20}$
A1 Obtain $a=3 d$ (or unsimplified equiv) and $a+19 d=44$
M1dep* Attempt to eliminate one variable from two simultaneous equations in $a$ and $d$, from $u_{4}, u_{10}, u_{20}$ and no others
A1 4 Obtain $d=2, a=6$

M1 Attempt $S_{50}$ of AP, using correct formula, with $n=50$, allow 25(2a $+24 d)$
A1 2 Obtain 2750

$$
3 \begin{aligned}
& \log 7^{x}=\log 2^{x+1} \\
& x \log 7=(x+1) \log 2 \\
& \\
& x(\log 7-\log 2)=\log 2 \\
& x=0.553
\end{aligned}
$$

A1 5 Obtain $x=0.55$, or rounding to this, with no errors seen

4 (i) $\left(x^{2}-5\right)^{3}=\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}(-5)+3\left(x^{2}\right)(-5)^{2}+(-5)^{3}$ M1* Attempt expansion, with product of powers of $x^{2}$ and $\pm 5$,

$$
=x^{6}-15 x^{4}+75 x^{2}-125
$$

OR
$\left(x^{2}-5\right)^{3}=\left(x^{2}-5\right)\left(x^{4}-10 x^{2}+25\right)$

$$
=x^{6}-15 x^{4}+75 x^{2}-125
$$

at least 3 terms
M1* Use at least 3 of binomial coeffs of 1, 3, 3, 1
A1dep* Obtain at least two correct terms, coeffs simplified
A1 4 Obtain fully correct expansion, coeffs simplified
M2 Attempt full expansion of all 3 brackets
A1 Obtain at least two correct terms
A1 Obtain full correct expansion
(ii) $\int\left(x^{2}-5\right)^{3} \mathrm{~d} x=\frac{1}{7} x^{7}-3 x^{5}+25 x^{3}-125 x+c$

M1 Attempt integration of terms of form $k x^{n}$
A1 $\sqrt{ } \quad$ Obtain at least two correct terms, allow unsimplified coeffs
A1 Obtain $\frac{1}{7} x^{7}-3 x^{5}+25 x^{3}-125 x$
B1 $\quad 4+c$, and no $\mathrm{d} x$ or $\int \operatorname{sign}$

5 (i) $\begin{aligned} & 2 x=30^{\circ}, 150^{\circ} \\ & x=15^{\circ}, 75^{\circ}\end{aligned}$
(ii) $2\left(1-\cos ^{2} x\right)=2-\sqrt{ } 3 \cos x$
$2 \cos ^{2} x-\sqrt{ } 3 \cos x=0$
$\cos x(2 \cos x-\sqrt{ } 3)=0$
$\cos x=0, \cos x=1 / 2 \sqrt{ } 3$
range
$x=90^{\circ}, x=30^{\circ}$

M1 Use $\sin ^{2} x=1-\cos ^{2} x$
A1 Obtain $2 \cos ^{2} x-\sqrt{ } 3 \cos x=0$ or equiv (no constant terms)
M1

Attempt $\sin ^{-1} 0.5$, then divide or multiply by 2
Obtain $15^{\circ}$ (allow $\pi / 12$ or 0.262 )
3 Obtain $75^{\circ}$ (not radians), and no extra solutions in range


SR answer only
B1 one correct solution
B1 second correct solution, and no others

## 8

| $6 \int\left(3 x^{2}+a\right) \mathrm{d} x=x^{3}+a x+c$ |  | M1 |  | Attempt to integrate |
| :---: | :---: | :---: | :---: | :---: |
|  |  | A1 |  | Obtain at least one correct term, allow unsimplified |
|  |  | A1 |  | Obtain $x^{3}+a x$ |
| $(-1,2) \Rightarrow-1-a+c=2$ |  | M1 |  | Substitute at least one of $(-1,2)$ or $(2,17)$ into integration attempt involving $a$ and $c$ |
| $(2,17) \Rightarrow 8+2 a+c=17$ |  | A1 |  | Obtain two correct equations, allow unsimplified |
|  |  | M1 |  | Attempt to eliminate one variable from two equations in $a$ and $c$ |
| $\begin{aligned} & a=2, c=5 \\ & \text { Hence } y=x^{3}+2 x+5 \end{aligned}$ |  | A1 |  | Obtain $a=2, c=5$, from correct equations |
|  |  | A1 | 8 | State $y=x^{3}+2 x+5$ |
|  |  |  |  |  |
| 7 | (i) $\mathrm{f}(-2)=-16+36-22-8$ | M1 |  | Attempt $\mathrm{f}(-2)$, or equiv |
|  | $=-10$ | A1 | 2 | Obtain -10 |
| (ii) $\mathrm{f}(1 / 2)=1 / 4+21 / 4+51 / 2-8=0 \mathrm{AG}$ |  | M1 |  | Attempt f(1⁄2) (no other method allowed) |
|  |  | A1 | 2 | Confirm $f(1 / 2)=0$, extra line of working required |
| (iii) $\mathrm{f}(x)=(2 x-1)\left(x^{2}+5 x+8\right)$ |  | M1 |  | Attempt complete division by ( $2 x-1$ ) or ( $x-1 / 2$ ) or equiv |
|  |  | A1 |  | Obtain $x^{2}+5 x+c$ or $2 x^{2}+10 x+c$ |
|  |  | A1 | 3 | State $(2 x-1)\left(x^{2}+5 x+8\right)$ or $(x-1 / 2)\left(2 x^{2}+10 x+16\right)$ |
|  | (iv) $\mathrm{f}(x)$ has one real root $(x=1 / 2)$because $b^{2}-4 a c=25-32=-7$hence quadratic has no real roots as $-7<0$, | B1 $\sqrt{ }$ |  | State 1 root, following their quotient, ignore reason |
|  |  |  |  |  |
|  |  | B1 $\sqrt{ }$ | 2 | Correct calculation, eg discriminant or quadratic formula, following their quotient, or cubic has max at (-2.15, -9.9) |

8 (i) $1 / 2 \times r^{2} \times 1.2=60$
$r=10$

$$
r \theta=10 \times 1.2=12
$$

perimeter $=10+10+12=32 \mathrm{~cm}$
(ii)(a) $u_{5}=60 \times 0.6^{4}$
$=7.78$
(b) $\quad S_{10}=\frac{60\left(1-0.6^{10}\right)}{1-0.6}$

$$
=149
$$

A1 2 Obtain 149, or better (allow 149.0-149.2 inclusive)
B1 series is convergent or $-1<r<1$ (allow $r<1$ ) or reference
mon ratio is less than 1 , so series is convergent and hence sum to infinity exists

$$
\begin{aligned}
& S_{\infty}=\frac{60}{1-0.6} \\
& =150
\end{aligned}
$$

M1 Attempt $(1 / 2) r^{2} \theta=60$
A1 Obtain $r=10$
B1 $\sqrt{ } \quad$ State or imply arc length is $1.2 r$, following their $r$ 4 Obtain 32

M1 Attempt $u_{5}$ using $a r^{4}$, or list terms
A1 2 Obtain 7.78, or better

M1 Attempt use of correct sum formula for a GP, or sum terms to areas getting smaller / adding on less each time

M1 Attempt $S_{\infty}$ using $\frac{a}{1-r}$
A1 3 Obtain $S_{\infty}=150$

SR B1 only for 150 with no method shown

## 11

9 (i)

B1 Sketch graph showing exponential growth (both quadrants)
B1 2 State or imply $(0,4)$
(ii) $4 k^{x}=20 k^{2}$
$k^{x}=5 k^{2} \quad$ M1 Equate $4 k^{x}$ to $20 k^{2}$ and take logs (any, or no, base)
$x=\log _{k} 5 k^{2}$
$x=\log _{k} 5+\log _{k} k^{2} \quad$ M1 Use $\log a b=\log a+\log b$
$x=2 \log _{k} k+\log _{k} 5$
M1 Use $\log a^{b}=b \log a$
$x=2+\log _{k} 5 \quad$ AG
A1 4 Show given answer correctly
OR $4 k^{x}=20 k^{2}$
$k^{x}=5 k^{2} \quad$ M1 Attempt to rewrite as single index
$k^{x-2}=5$
A1 Obtain $k^{X-2}=5$ or equiv eg $4 k^{K-2}=20$
$x-2=\log _{k} 5$
$x=2+\log _{k} 5 \quad$ AG
M1 Take logs (to any base)
A1 Show given answer correctly
(iii) (a) area $\approx \frac{1}{2} \times \frac{1}{2} \times\left(4 k^{0}+8 k^{\frac{1}{2}}+4 k^{1}\right)$

M1 Attempt $y$-values at $x=0,1 / 2$ and 1 , and no others
M1 Attempt to use correct trapezium rule, $3 y$-values, $h=1 / 2$
$\approx 1+2 k^{\frac{1}{2}}+k \quad$ A1 3 Obtain a correct expression, allow unsimplified
(b) $1+2 k^{\frac{1}{2}}+k=16$

M1 $\quad$ Equate attempt at area to 16
$\left(k^{\frac{1}{2}}+1\right)^{2}=16$
M1 Attempt to solve 'disguised' 3 term quadratic
$k^{\frac{1}{2}}=3$
$k=9$

## A1 3 Obtain $k=9$ only

## 4722 Core Mathematics 2

1
(i) $\quad 2\left(1-\cos ^{2} x\right)=5 \cos x-1$ $2 \cos ^{2} x+5 \cos x-3=0$ A.G.
M1 Use $\sin ^{2} x=1-\cos ^{2} x$
A1 2 Show given equation correctly
(ii) $(2 \cos x-1)(\cos x+3)=0$

M1
$\cos x=1 / 2 \quad$ M1
$x=60^{\circ}$
$x=300^{\circ}$

Recognise equation as quadratic in $\cos x$ and attempt recognisable method to solve

A1 Obtain $60^{\circ}$ or $\pi / 3$ or 1.05 rad
A1 $\sqrt{ } 4$ Obtain $300^{\circ}$ only (or $360^{\circ}$ - their $x$ ) and no extra in range
$\mathbf{S R}$ answer only is B1 B1

2 (i) $\int(6 x-4) \mathrm{d} x=3 x^{2}-4 x+c$
$y=3 x^{2}-4 x+c \Rightarrow 5=12-8+c$

$$
\Rightarrow c=1
$$

Hence $y=3 x^{2}-4 x+1$
(ii) $3 p^{2}-4 p+1=5$
$3 p^{2}-4 p-4=0$
$(p-2)(3 p+2)=0$
$p=-2 / 3$

M1* Attempt integration (inc. in power for at least one term)

A1 Obtain $3 x^{2}-4 x$ (or unsimplified equiv), with or without $+c$
M1dep* Use $(2,5)$ to find $c$
A1 4 Obtain $y=3 x^{2}-4 x+1$

M1* Equate their $y$ (from integration attempt) to 5
M1dep* Attempt to solve three term quadratic
A1 3 Obtain $p=-2 / 3$ (allow any variable) from correct working; condone $p=2$ still present, but A0 if extra incorrect solution

## 7

3
(i) $(2-x)^{7}=128-448 x+672 x^{2}-560 x^{3}$

M1 Attempt (at least) two relevant terms product of binomial coeff, 2 and $x$ (or expansion attempt that considers all 7 brackets)
A1 Obtain 128-448x
A1 Obtain 672 $x^{2}$
A1 4 Obtain $-560 x^{3}$
(ii) $-560 \times(1 / 4)^{3}=-35 / 4$
M1
Attempt to use coeff of $x^{3}$ from (i), with clear intention to cube $1 / 4$
A1 2 Obtain ${ }^{-35} / 4\left(w^{6}\right)$,
(allow ${ }^{35} / 4$ from $+560 x^{3}$ in (i))

4 (i) $\int_{3}^{5} \log _{10}(2+x) \mathrm{d} x \approx \frac{1}{2} \times \frac{1}{2} \times(\log 5+2 \log 5.5+$ $2 \log 6+2 \log 6.5+\log 7)$

M1

A1 4 Obtain 1.55
(ii) $\int_{3}^{5} \log _{10}(2+x)^{\frac{1}{2}} \mathrm{~d} x=\frac{1}{2} \int_{3}^{5} \log _{10}(2+x) \mathrm{d} x$

$$
\approx 1 / 2 \times 1.55
$$

$$
\approx 0.78
$$

M1 Attempt $y$-coords for at least 4 of the correct $5 x$-coords only
Use correct trapezium rule, any $h$, to find area between $x=3$ and $x=5$ Correct $h$ (soi) for their $y$-values

B1 $\sqrt{ } \quad$ Divide by 2 , or equiv, at any stage to obtain 0.78 or 0.77 ,
following their answer to (i)
B1 2 Explicitly use $\log \sqrt{ } a=1 / 2 \log a$ on a single term

## 6

| $5 \int_{1}^{3}\left\{\left(11-9 x^{-2}\right)-\left(x^{2}+1\right)\right\} d x=\left[9 x^{-1}-\frac{1}{3} x^{3}+10 x\right]_{1}^{3}$ | M1 |  | Attempt subtraction (correct order) at any point |
| :---: | :---: | :---: | :---: |
| $=(3-9+30)-(9-1 / 3+10)$ | M1 |  | Attempt integration - inc. in power for at least one term |
| $=24-18^{2} / 3$ | A1 |  | Obtain $\pm\left(-1 / 3 x^{3}+10 x\right)$ or $11 x$ and $1 / 3 x^{3}+x$ |
| $=5^{1} / 3$ | M1 |  | Obtain remaining term of form $k x^{-1}$ |
| OR | A1 |  | Obtain $\pm 9 x^{-1}$ or any unsimplified equiv |
| $\left[11 x+9 x^{-1}\right]_{1}^{3}-\left[\frac{1}{3} x^{3}+x\right]_{1}^{3}$ | M1 |  | Use limits $x=1,3-$ correct order $\&$ subtraction |
| $\begin{aligned} & =[(33+3)-(11+9)]-[(9+3)-(1 / 3+1)] \\ & =16-10^{2} / 3 \\ & =5^{1} / 3 \end{aligned}$ | A1 | 7 | Obtain $5 \frac{1}{3}$, or exact equiv |

6

(ii) $\mathrm{f}(x)=(x+3)\left(2 x^{2}-3 x+5\right)$
ie quotient is $\left(2 x^{2}-3 x+5\right)$

M1 Attempt complete division by ( $x+3$ ), or equiv
A1 Obtain $2 x^{2}-3 x+c$ or $2 x^{2}+b x+5$, from correct $\mathrm{f}(x)$
A1 3 Obtain $2 x^{2}-3 x+5$ (state or imply as quotient)

7 (i) $13^{2}=10^{2}+14^{2}-2 \times 10 \times 14 \times \cos \theta$
$\cos \theta=0.4536$
$\theta=1.10$ A.G.
M1
Attempt to use correct cosine rule in

## $\triangle A B C$

A1 2 Obtain 1.10 radians (allow 1.1 radians)
SR B1 only for verification of 1.10, unless complete method
(ii) $\operatorname{arc} E F=4 \times 1.10=4.4$

$$
\text { perimeter }=4.4+10+13+6
$$

$$
=33.4 \text { cm }
$$

B1 State or imply $E F=4.4 \mathrm{~cm}$ (allow $4 \times 1.10$ )
M1 Attempt perimeter of region - sum of arc and three sides with attempt to subtract 4 from at least one relevant side
A1 3 Obtain 33.4 cm
(iii) area $A E F=1 / 2 \times 4^{2} \times 1.1$

$$
\begin{aligned}
& =8.8 \\
\text { area } A B C & =1 / 2 \times 10 \times 14 \times \sin 1.1 \\
& =62.4
\end{aligned}
$$

hence total area $=53.6 \mathrm{~cm}^{2}$

M1 Attempt use of $(1 / 2) r^{2} \theta$, with $r=4$ and $\theta=1.10$
A1 Obtain 8.8
M1 Attempt use of $(1 / 2) a b s i n \theta$, sides consistent with angle used
A1 Obtain 62.4 or better (allow 62.38 or 62.39)

A1 5 Obtain total area as $53.6 \mathrm{~cm}^{2}$ 10
$8 \quad$ (i) $\quad u_{5}=8+4 \times 3$
M1 Attempt $a+(n-1) d$ or equiv inc list of terms
A1 2 Obtain 20
(ii) $u_{n}=3 n+5$ ie $p=3, q=5$

B1 Obtain correct expression, poss unsimplified, eg $8+3(n-1)$
B1 2 Obtain correct $3 n+5$, or $p=3, q=5$ stated
(iii) arithmetic progression

B1 1 Any mention of arithmetic
(iv) $\frac{2 N}{2}(16+(2 N-1) 3)-\frac{N}{2}(16+(N-1) 3)=1256 \quad$ M1 $\quad$ Attempt $S_{N}$, using any correct formula (inc $\sum(3 n+5)$ )
$26 N+12 N^{2}-13 N-3 N^{2}=2512$
$9 N^{2}+13 N-2512=0$
$(9 N+157)(N-16)=0$
$N=16$
M1 Attempt $S_{2 N}$, using any correct formula, with $2 N$ consistent (inc $\sum(3 n+5)$ )
M1* Attempt subtraction (correct order) and equate to 1256
M1dep* Attempt to solve quadratic in $N$
A1 5 Obtain $N=16$ only, from correct working
OR: alternative method is to use $n / 2(a+l)=1256$
M1 Attempt given difference as single summation with $N$ terms
M1 $\quad$ Attempt $a=u_{N+1}$
M1 $\quad$ Attempt $l=u_{2 N}$
M1 Equate to 1256 and attempt to solve quadratic
A1 Obtain $N=16$ only, from correct working

9 (i)


M1 Reasonable graph in both quadrants
A1 Correct graph in both quadrants
B1 3 State or imply ( 0,6 )
(ii) $9^{x}=150$

M1 Introduce logarithms throughout, or equiv with $\log _{9}$
$x \log 9=\log 150$
M1 Use $\log a^{b}=b \log a$ and attempt correct method to find $x$
$x=2.28$
A1 3 Obtain $x=2.28$
(iii) $6 \times 5^{x}=9^{x}$

M1
$\log _{3}\left(6 \times 5^{x}\right)=\log _{3} 9^{x}$
$\log _{3} 6+x \log _{3} 5=x \log _{3} 9$
$\log _{3} 3+\log _{3} 2+x \log _{3} 5=2 x$
$x\left(2-\log _{3} 5\right)=1+\log _{3} 2$
$x=\frac{1+\log _{3} 2}{2-\log _{3} 5} \quad$ A.G.

Form eqn in $x$ and take logs throughout (any base)
M1 Use $\log a^{b}=b \log a$ correctly on $\log 5^{x}$ or $\log 9^{x}$ or legitimate combination of these two
M1 Use $\log a b=\log a+\log b$ correctly on $\log$ ( $6 \times 5^{x}$ ) or $\log 6$
M1 Use $\log _{3} 9=2$ or equiv (need base 3 throughout that line)

A1 5 Obtain $x=\frac{1+\log _{3} 2}{2-\log _{3} 5}$ convincingly
(inc base 3 throughout)


4 (i) $u_{1}=6, u_{2}=11, u_{3}=16$
B1 1 State 6, 11, 16
(ii) $\begin{aligned} S_{40} & =40 / 2(2 \times 6+39 \times 5) \\ & =4140\end{aligned}$

M1 Show intention to sum the first 40 terms of a sequence

M1 Attempt sum of their AP from (i), with $n$ $=40, a=$ their $u_{1}$ and $d=$ their $u_{2}-u_{1}$

A1 3 Obtain 4140
(iii) $\quad w_{3}=56$
$5 p+1=56$ or $6+(p-1) \times 5=56$
$p=11$

B1 State or imply $w_{3}=56$
M1 Attempt to solve $u_{p}=k$
A1 3 Obtain $p=11$
7

| $\mathbf{5}$ (i) $\frac{\sin \theta}{8}=\frac{\sin 65}{11}$ | M1 | Attempt use of correct sine rule |  |
| :--- | :--- | :--- | :--- |
| $\theta=41.2^{\circ}$ | A1 | 2 | Obtain 41.2 ${ }^{\circ}$, or better |

(ii) a $\quad 180-(2 \times 65)=50^{\circ} \quad$ or $65 \times \pi / 180=1.134 \quad$ M1 $\quad$ Use conversion factor of $\pi / 180$ $50 \times \pi / 180=0.873$ A.G. $\quad \pi-(2 \times 1.134)=0.873$

A1 2 Show 0.873 radians convincingly (AG)

| (ii) b | $\begin{aligned} & \text { area sector }=1 / 2 \times 8^{2} \times 0.873=27.9 \\ & \text { area triangle }=1 / 2 \times 8^{2} \times \sin 0.873=24.5 \\ & \text { area segment } \end{aligned} \begin{aligned} & =27.9-24.5 \\ & =3.41 \end{aligned}$ | M1 |  | Attempt area of sector, using (1/2) $r^{2} \theta$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | M1 |  | Attempt area of triangle using (1/2) $r^{2} \sin \theta$ |
|  |  | M1 |  | Subtract area of triangle from area of sector |
|  |  | A1 | 4 | Obtain 3.41or 3.42 |
|  |  |  | 8 |  |


| 6 a $\quad$ | $\int_{3}^{5}\left(x^{2}+4 x\right) d x=\left[\frac{1}{3} x^{3}+2 x^{2}\right]_{3}^{5}$ |
| ---: | :--- |
|  | $=(125 / 3+50)-(9+18)$ |
| $=$ | $64 \frac{2}{3} 3$ |

M1 Attempt integration
A1 Obtain $\frac{1}{3} x^{3}+2 x^{2}$
M1 Use limits $x=3,5-$ correct order \& subtraction

A1 $\quad 4$ Obtain $64^{2} / 3$ or any exact equiv
b $\quad \int(2-6 \sqrt{y}) \mathrm{d} y=2 y-4 y^{\frac{3}{2}}+c$
B1 State $2 y$
M1 Obtain $\mathrm{ky}^{\frac{3}{2}}$
A1 3 Obtain $-4 y^{\frac{3}{2}}$ (condone absence of $+c$ )

c $\quad$| $\int_{1}^{\infty} 8 x^{-3} \mathrm{~d} x$ | $=\left[\frac{-4}{x^{2}}\right]_{1}^{\infty}$ |
| ---: | :--- |
|  | $=(0)-(-4)$ |
|  | $=4$ |

B1 State or imply $\frac{1}{x^{3}}=x^{-3}$
M1 Attempt integration of $k x^{n}$
A1 Obtain correct $-4 x^{-2}(+c)$

A1 ft 4 Obtain 4 (or $-k$ following their $k x^{-2}$ )
11

$$
7 \text { (i) } \begin{aligned}
\frac{\sin ^{2} x-\cos ^{2} x}{1-\sin ^{2} x} & =\frac{\sin ^{2} x-\cos ^{2} x}{\cos ^{2} x} \\
& =\frac{\sin ^{2} x}{\cos ^{2} x}-\frac{\cos ^{2} x}{\cos ^{2} x}
\end{aligned}
$$

Use either $\sin ^{2} x+\cos ^{2} x=1$, or $\tan x=\sin x / \cos x$ convincingly.

$$
=\tan ^{2} x-1 \quad \text { A1 } \quad 2 \quad \text { Use other identity to obtain given answer }
$$

B1
M1
3) $=0$
$\tan x=2, \tan x=-3$
$x=63.4^{\circ}, 243^{\circ} \quad x=108^{\circ}, 288^{\circ}$

State correct equation
Attempt to solve three term quadratic in $\tan x$

Obtain 2 and -3 as roots of their quadratic

## M1

A1ft
Attempt to solve $\tan x=k$ (at least one root)

A1

Obtain at least 2 correct roots
Obtain all 4 correct roots


\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 (i) \& $(1+2 x)^{7}=1+14 x+84 x^{2}$ \& B1

M1

A1 \& 3 \& Obtain $1+14 x$
Attempt third term

Obtain $84 x^{2}$ \& | Needs to be simplified, so 1 not $1^{7}$ and $14 x$ not $7 \times 2 x$. |
| :--- |
| B0 if other constant and/or $x$ terms (from terms being sums not products). |
| Must be linked by + sign, so $1,14 x$ is B0, but can still get M1A1 for third term. |
| Needs to be product of 21 and an attempt at squaring $2 x$ - allow even if brackets never seen, so $42 x^{2}$ gets M1. |
| No need to see powers of 1 explicitly. |
| Coefficient needs to be simplified. |
| Ignore any further terms, right or wrong. |
| Can isw if they subsequently attempt ‘simplification’ eg dividing by 14 , but they won't then get the ft mark in part (ii). |
| If manually expanding brackets they need to consider all 7, but may not necessarily show irrelevant terms. |
| If the expansion is attempted in descending powers, only giving the first three will gain no credit in (i), unless they subsequently attempt the relevant terms in (ii) when we will then give appropriate credit for the marks in (i). This only applies if no attempt at the required terms is made in (i). |
| A full expansion with the required terms at the end is marked as per original scheme. | <br>

\hline (ii) \& \[
$$
\begin{array}{r}
(2-5 x)\left(1+14 x+84 x^{2}\right) \\
\text { coeff of } x^{2}=-70+168 \\
=98
\end{array}
$$

\] \& M1 \& \& Attempt at least one relevant product \& | Could be just a single term, or part of a fuller expansion considering terms other than $x^{2}$ as well. |
| :--- |
| Allow M1 even if second $x^{2}$ term isn't from a relevant product eg $-70+84$ gets M1 A0. | <br>


\hline \& \& A1ft \& \& Obtain two correct unsimplified terms (not necessarily summed) - either coefficients or still with powers of $x$ involved \& | Needs to come from two terms only, and can be awarded for unsimplified terms eg $-5 x \times 14 x \ldots$ |
| :--- |
| If fuller expansion then A 0 if other $x^{2}$ terms, but ignore any irrelevant terms. |
| If expansion is incorrect in (i) and candidate only gives a single final answer in (ii) then examiners need to check and award either M1 A1ft or M0. | <br>

\hline \& \& A1 \& 3

6 \& Obtain 98 \& | Allow $98 x^{2}$. |
| :--- |
| Allow if part of a fuller expansion and not explicitly picked out. If clearly finding coefficient of $x$, allow as misread. | <br>

\hline
\end{tabular}

2 (i) $\quad u_{1}=5, u_{2}=8, u_{3}=11$

Ignore extra terms beyond $u_{3}$.
(ii) arithmetic progression B1

B1 1 Any mention of arithmetic
Allow AP, but not description eg constant difference.
Ignore extra description eg diverging as long as not wrong or contradictory.
(iii) $S={ }^{100} / 2(305+602)$ or ${ }^{100} / 2(2 x 305+99 \times 3) \quad$ M1 $\quad$ Attempt relevant $S_{n}$ using correct formula
$=45,350$
$\left(\right.$ or $\left.S_{200}-S_{100}=60,700-15,350\right)$

M1 Attempt correct method to find required sum

Must use correct formula to sum an AP - only exception is using $(1 / 2 n-1) d$ rather than $(n-1) d$.
Must use $d=3$ (or their $d$ from (i) as long as constant difference).
If (i) is incorrect they can still get full marks in (iii) as
independent.
They need to be finding the sum of $99,100,101$ or 200 terms and make a reasonable attempt at a value of $a$ consistent with their $n-$ if $n=99$ then $a=305 /$ if $n=100$ then $a=5$ or $a=305 /$ if $n=101$ then $a=5$ / if $n=200$ then $a=5$. Allow slips on $a=305$ as long as clearly intending to find $u_{101}$.
If using $1 / 2 n(a+l)$ then there also needs to be a reasonable attempt at $l$.
Attempting to sum from $n=101$ to $n=200$ gets both method marks together (assuming that the attempt satisfies above conditions).
$S_{200}-S_{101}$ is M0.
M0 M1 is possible for correct method but with incorrect formula for $S_{N}$ (but must be recognisable as attempt at sum of AP) Need to show subtraction to gain M1, just calculating two relevant sums is not yet enough
Still need $a=5$ and $d=3$

Answer only gets full marks.
SR: if candidates attempt to manually add terms...
M1 Attempt to sum all terms from $u_{101}$ to $u_{200}$
A2 Obtain 45,350

3 (i) $0.5 \times 0.5 \times\{\sqrt{0}+2(\sqrt{0.5}+\sqrt{1}+\sqrt{1.5})+\sqrt{2}\}$
$=1.82$

Attempt at least 4 correct $y$-coords, and no others

Use correct $h$ (soi) for their $y$-values must be at equal intervals

If first term of 0 not explicit then other 4 terms need to be seen. Could be implied by eg $\sqrt{ }(4-3)$, or implied by a table with correct $x$-coords in one column and attempts at $y$-coords in second column.
Allow rounded or truncated decimals.
Allow an error in rearrangement eg $\sqrt{ } x-\sqrt{ } 3$.
Correct structure ie 0.5 x (any $h$ ) x (first + last +2 x middles) - no omissions allowed.
The first $y$-coord should correspond to attempt when $x=3$ (though may not be shown explicitly), and last to $x=5$. It could be implied by using $y_{0}$ etc in rule, when these have already been attempted elsewhere and clearly labelled.
It could use other than 4 strips, but these must be at equal widths. Using just one strip is M0.
The 'big brackets' must be seen, or implied by later working (omission of these can lead to 3.41 or 1.91 or $6.21 \ldots$.).

If $1 / 2 \times k$ seen at start of rule then assume that $1 / 2$ is part of a correct rule and the $k$ is an incorrect strip width.

Must be in attempt at the trapezium rule, not Simpson's rule. Allow if muddle over placing $y$-values.
Allow if one $y$-value missing (including first or last) or extra.
Allow if $1 / 2$ missing.
Using $h=2$ with only one strip is M0.
More accurate solution is $1.819479 .$. .

Answer only is $0 / 4$.
Using integration is $0 / 4$.
Using trapezium rule on the result of an integration attempt is $0 / 4$. Using 4 separate trapezia can get full marks. If other than 4 trapezia, mark as above.
(ii) Underestimate as tops of trapezia are below curve

B1*

B1d* 2 Convincing reason referring to trapezia being below curve

Ignore any reasons given.
Referring to gaps between curve and trapezia can get B1.
Could use sketch with brief explanation (but sketch alone is B0) must show more than one trapezium (but not nec 4) or imply this in the text. Trapezia must show clear intention to have top vertices on the curve. Sketching rectangles is B0. Triangle is B0.
Explanation that refers to calculated area from integration is B 0 . Only referring to concave / convex is B0.
Can get B1 for 'rate of change of gradient (or second derivative) is negative', but not for 'gradient is decreasing'.


| 5 (i) | $4 a=\frac{a}{1-r}$ | M1 |  | Equate $\frac{a}{1-r}$ to $4 a$, or substitute $r=\frac{3}{4}$ into $S_{\infty}$ | $S_{\infty}$ must be quoted correctly. <br> Allow $4 a{ }^{0}$ for $4 a$. <br> Initially using a numerical value for $a$ is M0. <br> Once equation in $a$ is seen ie $4 a=\frac{a}{1-r}$ assume that $a$ has been <br> cancelled if this subsequently becomes $4=\frac{1}{1-r}$. If initial equation in $a$ is never seen then assume that $a=1$ is being used and mark accordingly. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1-r=\frac{1}{4}$ | M1 |  | Attempt to find value for $r$ or evaluate $S_{\infty}$ | Need to get as far as attempting $r$. <br> Need to see at least one extra line of working between initial statement and given answer. <br> Substituting numerical value for $a$ is M0 (so M1 M0 possible depending at what stage the substitution happens). |
|  | $r=\frac{3}{4}$ | A1 | 3 | Obtain $r=\frac{3}{4}$ (or show $\left.S_{\infty}=4 a\right)$ | Allow $r=0.75$. |
| (ii) | $\left(\frac{3}{4}\right)^{2} a=9$ | M1* |  | Attempt use of $a r^{2}$ | Must use $r=3 / 4$ not their incorrect value from (i). <br> Must be clearly intended as rr $^{2}$, so $(3 a / 4)^{2}=9$ is M0, unless correct expression previously seen. <br> Can use equivalent method with ratio of $4 / 3$ ie $9 \times(4 / 3)^{2}$. |
|  | $a=16$ | M1d* |  | Equate to 9 and attempt to find $a$ | Must get as far as attempting value for $a$. |
|  |  | A1 | 3 | Obtain $a=16$ | Answer only gets full credit. |
| (iii) | $S_{20}=\frac{16\left(1-\frac{3}{4}^{20}\right)}{1-\frac{3}{4}}$ | M1 |  | Attempt use of correct sum formula for a GP | Must be correct formula, with $a=$ their (ii), $r=3 / 4$ and $n=20$. |
|  | $=63.8$ | A1 | 2 8 | Obtain 63.8, or better | More accurate answer is 63.79704... <br> NB using $n-1$ rather than $n$ in the formula gives 63.729 (M0), and using $n+1$ gives 63.848 (M0). <br> Must be decimal, rather than exact answer with power of $3 / 4$. |



| 7(i) | $\begin{aligned} & \tan 2 x=1 / 3 \\ & 2 x=18.4^{\circ}, 198.4^{\circ} \\ & x=9.22^{\circ}, 99.2^{\circ} \end{aligned}$ | M1 A1 A1ft | 3 | Attempt correct solution method Obtain one of $9.22^{\circ}$ or $99.2^{\circ}$, or better Obtain second correct angle | Attempt $\tan ^{-1}(1 / 3)$ and then halve answer. <br> Allow radian equiv ( 0.161 or 1.73 ). <br> Maximum of 2 marks if angles not in degrees. <br> A0 if extra solutions in given range, but ignore extra outside range If M1 A0 given, award A1ft for adding $90^{\circ}$ or $\pi / 2$ to their angle. <br> SR: if no working shown then allow B1 for each correct solution. Maximum of B1 if in radians, or extra solutions in given range. <br> SR: if using $\tan 2 x$ identity then... <br> M1 Attempt to find $x$ from solving quadratic equation in $\tan 2 x$, derived from correct $\tan 2 x$ identity. <br> A1 Obtain at least one of $9.22^{\circ}$ or $99.2^{\circ}$, or better (or radian equiv) <br> A1 Obtain second correct angle |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & 3\left(1-\sin ^{2} x\right)+2 \sin x-3=0 \\ & 3 \sin ^{2} x-2 \sin x=0 \\ & \sin x(3 \sin x-2)=0 \\ & \sin x=0, \sin x=2 / 3 \\ & x=0^{\circ}, 180^{\circ} \quad x=41.8^{\circ}, 138^{\circ} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \end{aligned}$ |  | Use $\cos ^{2} x=1-\sin ^{2} x$, aef $\text { Obtain } 3 \sin ^{2} x-2 \sin x=0$ <br> Attempt to solve equation to find solutions for $x$ | Must be used not just stated. <br> Must be used correctly, so $1-3 \sin ^{2} x$ is M0. <br> Allow aef, but must be simplified (ie no constant term; allow 0). <br> Not dependent on first M1 so could get M0 M1 if $\cos ^{2} x=\sin ^{2} x-1$ previously used. <br> Must be quadratic in $\sin x$ (must have $\sin x$ term), but can still get M1 if constant term in their quadratic as well. <br> Candidates need to be solving for $x$, so need to $\sin ^{-1}$ at least one of the solutions to their quadratic. <br> Must be acceptable method - if factorising then it must give correct lead term and one other on expansion (inc $c=0$ ), if using formula then allow sign slips but no other errors. <br> SR If solving the quadratic involves cancelling by $\sin x$ rather than factorising then M0, but give B1 if both $41.8^{\circ}$ and $138^{\circ}$ found (or radian equivs) |
|  |  | A1 |  | Obtain two of $0^{\circ}, 180^{\circ}, 41.8^{\circ}, 138^{\circ}$ | Must come from correct factorisation of correct quadratic equation ie $\sin x(3 \sin x+2)=0$ leading to $\sin x=0$ and hence $x=0^{\circ}, 180^{\circ}$ is A0. <br> Allow radian equivs $-0, \pi$ (or 3.14), $0.73,2.41$. |
|  |  | A1 | 5 8 | Obtain all four angles | Must now all be in degrees, with no extra in given range (ignore any outside range). <br> SR If no working out seen, then allow B1 for each of $41.8^{\circ}$ and $138^{\circ}$, and B1 for both $0^{\circ}$ and $180^{\circ}$. Maximum of B2 if in radians or extra solutions in given range. |



9(i) $\mathrm{f}(3)=-108+81+30-3=0$
hence $(x-3)$ is a factor

2 State $(x-3)$ as factor (allow ( $3-x$ ) as the factor)

Substitute $x=3$ and confirm $\mathrm{f}(3)=0$ - must show detail of
substitution rather than just state $f(3)=0$.
Allow $f(3)=-4 \times 3^{3}+9 \times 3^{2}+10 \times 3-3=0$ for B1.
Not dependent on first B1.
Must be seen in (i) so no back credit from (ii).
Allow if not explicitly stated as factor (and allow $\mathrm{f}(x)=x-3$ ). Ignore other factors if also given at this stage.
(ii) $\mathrm{f}(x)=(x-3)\left(-4 x^{2}-3 x+1\right)$
or
$\mathrm{f}(\mathrm{x})=(3-x)\left(4 x^{2}+3 x-1\right)$
or
$\mathrm{f}(x)=(x+1)\left(-4 x^{2}+13 x-3\right)$
or
$f(x)=(-x-1)\left(4 x^{2}-13 x+3\right)$
or
$f(x)=(1-4 x)\left(x^{2}-2 x-3\right)$
$f(x)=(4 x-1)\left(-x^{2}+2 x+3\right)$

M1
Attempt complete division by $(x-3)$, or
equiv
(allow division by $(3-x)$ )

Must be a full attempt to find three term quadratic. Can use inspection, but must be a reasonable attempt at middle term, with first and last correct.
Can use coefficient matching, but must be full method with reasonable attempts at all 3 coefficients.
Allow M1 if actually factorising $-\mathrm{f}(x)$.
Obtain $-4 x^{2}-3 x+c$ or $-4 x^{2}+b x+1$
(or the negative of these if dividing by $(3-x)$ )

A1
3 Obtain $(x-3)\left(-4 x^{2}-3 x+1\right)$
(or $(3-x)\left(4 x^{2}+3 x-1\right)$ )
$c, b$ non-zero constants.
First option is likely to come from division, second option from inspection. Coefficient matching could lead to either. Allow A1 for negative of either of these from factorising $-\mathrm{f}(x)$.

Needs to be written as a product as per request in question paper. Allow $-(x-3)\left(4 x^{2}+3 x-1\right)$, but $(x-3)\left(4 x^{2}+3 x-1\right)$ is A0. A0 if now 3 linear factors and product of linear and quadratic never seen.

If using one of the other two correct factors then all three marks are available, and apply mark scheme as above ie M1 for full attempt at division or equiv, A1 for lead term plus one other correct and A1 for product of linear and quadratic.

SR: If candidates initially state three linear factors and then expand to get the product of a linear and quadratic as requested award B3 if fully correct and simplified otherwise B0.
(iii) $\begin{aligned} & -4 x^{2}-3 x+1=0 \\ & (1-4 x)(x+1)=0 \\ & x=1 / 4, x=-1\end{aligned}$ expanded. If using formula allow sign slips only - need to substitute and attempt one further step. If completing the square must get to $(x+p)= \pm \sqrt{ } q$, with reasonable attempts at $p$ and $q$.

Condone only $x$ values given rather than coordinates. Allow if $x=3$ is still present as well.
(iv) $\int \mathrm{f}(\mathrm{x}) \mathrm{d} x=-x^{4}+3 x^{3}+5 x^{2}-3 x$

$$
\begin{aligned}
& F(3)-F(1 / 4)=(36)-(-101 / 256)=36^{101} / 256 \\
& F(1 / 4)-F(-1)=(-101 / 256)-(4)=-4^{101} / 256
\end{aligned}
$$

Hence area $=36^{101} / 256+4^{101} / 256=40^{101} / 128$

Obtain $-x^{4}+3 x^{3}+5 x^{2}-3 x$

Attempt F(3) - F 1 1/4 or $F(1 / 4)-F(-1)$

Obtain at least one correct area, including decimal equivs

Attempt full method to find total area including dealing correctly with negative area

5 Obtain $40^{101} / 128$ or $5221 / 128$ or 40.8

Allow unsimplified coefficients.
Condone $+c$.

Allow use of incorrect limits from their (iii).
Limits need to be in correct order, and subtraction.
Allow slips when evaluating but clear subtraction attempt must be seen or implied at least once.
If minimal method shown then it must appear to be a plausible attempt eg $F(3)=198$ or even $F(3)-F(1 / 4)=198.4$.

Obtain $36^{101} / 256$ or $9317 / 256$ or 36.4
or $-4^{101} / 256$ or $-1125 / 256$ or -4.4
Can get A1 if both areas attempted and one is correct but the other isn't.

Need to see modulus of negative integral from attempt at $F(1 / 4)-F(-1)$ (just changing sign from $-v e$ to + ve is sufficient). If values incorrect in (iii) then can only get this mark if their integral gives negative value.
Need to have positive integral from $F(3)-F(1 / 4)$.
Allow exact fraction (including unsimplified ie ${ }^{10442} / 256$ ), or decimal answer to 3 dp or better (rounding to 40.8 with no errors seen)

SR: If candidate attempts $F(3)-F(1 / 4)$ and $F(-1)-F(1 / 4)$ as an alternative method for dealing with negative area then mark as B1 correct integral
M2 complete method
A1 obtain one correct area
A1 obtain correct total area
Any attempts using this method must be fully supported by evidence of intention, especially -1 as top limit and $1 / 4$ as bottom limit used consistently throughout integration attempt. It should not be awarded if candidate appears to have simply confused their order of subtraction.

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 (i) \& $$
\begin{aligned}
& B C^{2}=9^{2}+17^{2}-2 \times 9 \times 17 \times \cos 40^{\circ} \\
& B C=11.6 \mathrm{~cm}
\end{aligned}
$$ \& M1

A1 \& 2 \& Attempt use of correct cosine rule

Obtain 11.6, or better \& | Must be correct formula seen or implied, but allow a slip when evaluating eg omission of 2 , or incorrect use of an additional big bracket. |
| :--- |
| Allow M1 even if subsequently evaluated in radian mode (23.96). Allow M1 if expression is not square rooted, as long as it is clear that correct formula was used ie either $B C^{2}=\ldots$ or even just $a^{2}=$ ... if the power disappears from $B C$. |
| Actual answer is $11.644329 \ldots$ so allow more accurate answer as long as it rounds to 11.64 | <br>

\hline (ii) \& \[
$$
\begin{aligned}
\text { area } & =\frac{1}{2} \times 9 \times 17 \times \sin 40 \\
& =49.2 \mathrm{~cm}^{2}
\end{aligned}
$$

\] \& M1 \& 2 \& | Attempt triangle area using ( $1 / 2$ )absinC, or equiv |
| :--- |
| Obtain 49.2, or better | \& | Condone omission of $1 / 2$ from this formula, but no other errors allowed. If using right-angled triangle, must use $1 / 2 b h$ with reasonable attempt at perpendicular sides. |
| :--- |
| Allow M1 if subsequently evaluated in radian mode (57.00). If using $40^{\circ}$, must be using sides of 9 and 17 , not 11.6 from (i). If using another angle, can still get M1 as long as sides used are consistent with this angle. |
| Actual answer is $49.17325 \ldots$ so allow more accurate answer as long as it rounds to 49.17 |
| Must come from correct working only. | <br>

\hline \multirow[t]{3}{*}{(iii)} \& \[
$$
\begin{aligned}
& \frac{B D}{\sin 40}=\frac{9}{\sin 63} \\
& B D=6.49 \mathrm{~cm}
\end{aligned}
$$

\] \& M1 \& \& Attempt use of correct sine rule, or equiv, to find length $B D$ \& | No further rearrangement required. |
| :--- |
| Could have both fractions the other way up. Must be angles of $40^{\circ}$ and $63^{\circ}$ if finding $B D$ directly. Must be attempting $B D$, so using $77^{\circ}$ to find $A D$ is M0 unless attempt is then made to find $B D$ by any valid method. Placing $D$ on $B C$ is M0. | <br>

\hline \& \& A1 \& \& Obtain correct unsimplified expression involving $B D$ as the only unknown \& Can still get A1 even if evaluated in radians (40.07). If using a multi-step method (eg use $77^{\circ}$ to find $A D$ and then use cosine rule to find $B D$ ) then this A mark is only given when a correct (unsimplified) expression involving $B D$ as the only unknown is obtained. <br>
\hline \& \& A1 \& 3

7 \& Obtain 6.49, or better \& | Actual answer is 6.492756... so allow more accurate answer as long as it rounds to 6.493 |
| :--- |
| Must come from correct working only not eg sin 117. | <br>

\hline
\end{tabular}

|  | $\int\left(6 x^{\frac{1}{2}}-1\right) \mathrm{d} x=4 x^{\frac{3}{2}}-x+c$ | M1 |  | Obtain $k x^{\frac{3}{2}}$ | Any $k$, as long as numerical. Allow both M1 and A1 for equiv eg $x \sqrt{V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A1 |  | Obtain $4 x^{\frac{3}{2}}$ | Allow for unsimplified coefficient as well (ie ${ }^{6} / 1.5$ ). |
|  |  | B1 | 3 | Obtain - $x$ (don't penalise lack of $+c$ ) | Allow -1x. |
|  |  |  |  |  | Maximum of 2 marks if $\int$ or $\mathrm{d} x$ still present in final answer. Maximum of 2 marks if not given as one expression - eg the two terms are integrated separately and never combined. |
| (ii) | $\begin{aligned} & y=4 x^{\frac{3}{2}}-x+c \\ & 17=32-4+c \Rightarrow c=-11 \\ & \text { hence } y=4 x^{\frac{3}{2}}-x-11 \end{aligned}$ | M1* |  | State or imply $y=$ their integral from (i) | Must have come from integration attempt ie increase in power by 1 for at least one term, but allow if -1 disappeared in part (i) ie at least one of the M1 and the B1 must have been awarded in part (i). Can still get this M1 if no $+c$. <br> The $y$ does not have to be explicit - it could be implied by eg $17=F(4)$. <br> M0 if they start with $y=$ their integral from (i), but then attempt to use $y-17=m(x-4)$. This is a re-start and gains no credit. |
|  |  | M1d* |  | Attempt to find c using (4, 17) | $\begin{aligned} & \text { M0 if no }+c \text {. } \\ & \text { M0 if using } x=17, y=4 \text {. } \end{aligned}$ |
|  |  | A1 | 3 | Obtain $y=4 x^{\frac{3}{2}}-x-11$ | Coefficients now need to be simplified, so $-1 x$ is A0. <br> Allow A1 for equiv eg $x V_{X}$ <br> Must be an equation ie $y=\ldots$, so A0 for 'equation $=\ldots$ ' or ' $\mathrm{f}(\mathrm{x})=\ldots$, |
|  |  |  | 6 |  |  |



\begin{tabular}{|c|c|c|c|c|c|}
\hline \& $$
\begin{aligned}
& x+4=(y+1)^{2} \\
& x+4=y^{2}+2 y+1 \\
& x=y^{2}+2 y-3 \quad \text { A.G. }
\end{aligned}
$$ \& M1

A1 \& \& Attempt to make $x$ the subject

Verify $x=y^{2}+2 y-3$ \& | Allow M1 for $x=(y \pm 1)^{2} \pm 4$ only. |
| :--- |
| Allow M1 if $(y+1)^{2}$ becomes $y^{2}+1$, but only if clearly attempting to square the entire bracket - squaring term by term is M0. |
| Must be from correct algebra, so M0 if eg $\sqrt{ }(x+4)=\sqrt{ } x+\sqrt{ } 4$ is used. |
| Need to see an extra step from $(y+1)^{2}-4$ to given answer ie explicit expansion of bracket. |
| No errors seen. |
| SR B1 for verification, using $y=-1+\sqrt{ }\left(y^{2}+2 y-3+4\right)$, and confirming relationship convincingly, or for rearranging $x=\mathrm{f}(y)$ to obtain given $y=\mathrm{f}(x)$. | <br>

\hline \multirow[t]{6}{*}{(ii)} \& \multirow[t]{6}{*}{\[
$$
\begin{aligned}
\int_{1}^{3}\left(y^{2}+2 y-3\right) \mathrm{d} y & =\left[\frac{1}{3} y^{3}+y^{2}-3 y\right]_{1}^{3} \\
& =(9+9-9)-(1 / 3+1-3) \\
= & (9)-\left(-1^{2} / 3\right) \\
& =10^{2} / 3
\end{aligned}
$$

\]} \& B1 \& \& State or imply that the required area is given by $\int_{1}^{3}\left(y^{2}+2 y-3\right) \mathrm{d} y$ \& | No further work required beyond stating this. Allow if $3 x$ appears in integral. |
| :--- |
| Any further consideration of other areas is B0. | <br>

\hline \& \& M1 \& \& Attempt integration \& Increase in power of $y$ by 1 for at least two of the three terms. Can still get M1 if the -3 disappears, or becomes $3 x$. Allow M1 for integrating a function of $y$ that is no longer the given one, eg subtracted from 3 , or using their incorrect rearrangement from part (i). <br>
\hline \& \& A1ft \& \& Obtain at least two correct terms \& Allow for unsimplified coefficients. Allow follow-through on any function of $y$ as long as at least 2 terms and related to the area required. Condone $\int, \mathrm{d} y$ or $+c$ present. <br>

\hline \& \& M1 \& \& Attempt F(3)-F(1) for their integral \& | Must be correct order and subtraction. |
| :--- |
| This is independent of first M1 so can be given for substituting into any expression other than $y^{2}+2 y-3$, including $2 y+2$. If last term is $3 x$ allow M1 for using 3 and 1 throughout integral, but M0 if $x$ value is used instead. | <br>


\hline \& \& A1 \& | 5 |
| ---: |
| 7 | \& Obtain $10^{2 / 3}$ aef \& | Must be an exact equiv so $10 . \dot{6}$ is fine (but $9^{5} / 3$ is A0). 10.7, $10.66 \ldots$ or $10^{2} / 3+c$ are A0. |
| :--- |
| Must come from correct integral, so A0 if from $3 x$. Must be given as final answer, so further work eg subtracting another area is A0 rather than ISW. | <br>

\hline \& \& \& \& \& Answer only is $0 / 5$, as no evidence is provided of integration. SR Finding the shaded area by direct integration with respect to $x$ (ie a C3 technique) can have 5 if done correctly, 4 if non-exact decimal given as final answer but no other partial credit. <br>
\hline
\end{tabular}

5 Throughout this question, candidates may do valid work in the incorrect answer space. This can be marked and given credit wherever it occurs, as long as it does not contradict the working and final answer given in the designated space.
(i) 243 B1 1 State 243 or $3^{5}$

B0 if other terms still present eg ${ }^{5} \mathrm{C}_{0}$ or $3^{0}$.
Could be part of a longer expansion, in which case ignore all other terms unless also solely numerical.
(ii) $2^{\text {nd }}$ term $=5 \times 3^{4} \times(k x)=405 k x$
$3^{\text {rd }}$ term $=10 \times 3^{3} \times(k x)^{2}=270 k^{2} x^{2}$
$405 k=270 k^{2} \Rightarrow k=1.5$

B1
Obtain 405k as coeff of $x$

Obtain 270k ${ }^{2}$

M1 Equate coefficients and attempt to solve for $k$

Either stated, or written as 405kx.
Allow unsimplified expression ie $5 \times 3^{4} \times k$ or $5 \times 3^{4} \times(k x)$, even if subsequently incorrectly evaluated.
B 0 if still ${ }^{5} \mathrm{C}_{1}$ unless later clearly used as 5 .
Needs to be an attempt at a product involving the relevant binomial coefficient (not just ${ }^{5} \mathrm{C}_{2}$ unless later seen as 10), $3^{3}$ and an intention to square the final term (but allow for $k x^{2}$ ). $67.5 k^{2}$ is M0 (from $5 / 2 \times 3^{3}$ ).

Allow unsimplified ie $10 \times 3^{3} \times k^{2}$ or $10 \times 3^{3} \times(k x)^{2}$ even if subsequently incorrectly evaluated.
Allow $270 k^{2}$ following $10 \times 3^{3} \mathrm{x} k x^{2}$ ie an invisible bracket was used.

Must be one linear and one quadratic term in $k$, and must be appropriate method to solve this two term quadratic eg factorise or cancel common factor of $k$.
Condone powers of $x$ still present when equated, as long as not actually used in solution method.
Could still gain M1 if incorrect, or no, binomial coefficients used - each term must be product of powers of 3 (poss incorrect), correct powers of $k$ and any binomial coefficient used.

Any exact equivalent, including unsimplified fraction. Could be implied by writing $(3+1.5 x)^{5}$.

NB If expansion is given as $405 k x+270 k x^{2}$, and candidate then concludes that $k={ }^{405} / 270$ this is B1 M1 only as $k^{2}$ never seen.

Need to see 10 so just ${ }^{5} \mathrm{C}_{3}$ is not good enough for M1.
Need to see correct powers intended, even if incorrectly evaluated This includes a clear intention to cube 1.5 (or their $k$ ), so $10 \times 9 \mathrm{x}$ $1.5 x^{3}=135 x^{3}$ is M0.
Can get M1 if using their incorrect $k$, including 0 , but M0 if the value of $k$ used is different to that obtained in (ii).
For incorrect numerical answer (following incorrect $k$ ), we need to see evidence of method - it cannot be implied by answer only. If $k=-1,0$ or 1 we still need to see evidence of cubing.
If $90 k^{3}$ is seen in part (ii) (or even (i)) then this is sufficient for M1 unless contradicted by their work in part (iii)
Allow if still $k$ rather than numerical.

Or any exact equivalent.
Ignore if subsequently rounded eg to 304 as long as exact value seen.
If 1.5 obtained incorrectly in part (ii), full credit can still be gained in part (iii).

\begin{tabular}{|c|c|c|c|c|c|}
\hline 6(i) \& $$
\begin{aligned}
& \mathrm{f}(1)=1 \quad \mathrm{f}(-1)=21 \\
& \mathrm{f}(2)=0 \text {, hence }(x-2) \text { is a factor }
\end{aligned}
$$ \& M1

A1 \& 2 \& \begin{tabular}{l}
Attempt use of factor theorem at least once <br>
Obtain factor of $(x-2)$

 \& 

Just substituting at least one value for $x$ is enough for M1, showing either the working or the result, or both. <br>
Just stating $\mathrm{f}(a)=k$ is enough - don't need to see term by term evaluation. If result is inconsistent with the $\mathrm{f}(a)$ being attempted, then we do need to see evidence of method used. <br>
No conclusion required. <br>
M0 A0 for division attempts, even if considering remainder. <br>
Allow A1 for sight of $(x-2)$, even if $x=2$ also present. <br>
No words required, but penalise if used incorrectly ie A0 if explicitly labelled as 'root'. <br>
A0 if $(x-2)$ not seen in this part, even if subsequently used in (ii). <br>
SR B1 for $(x-2)$ stated with no justification, and no incorrect terminology.
\end{tabular} <br>

\hline \multirow[t]{5}{*}{(ii)} \& \multirow[t]{5}{*}{\[
$$
\begin{aligned}
& \mathrm{f}(x)=(x-2)\left(x^{2}+3 x-5\right) \\
& x=\frac{-3 \pm \sqrt{29}}{2} \text { or } x=2
\end{aligned}
$$

\]} \& M1 \& \& Attempt complete division by a linear factor, or equivalent ie inspection or coefficient matching \& | Need linear factor of form $(x \pm a), a \neq 0$. |
| :--- |
| Allow if factor different to their answer to (i), inc no answer to (i). Must be complete attempt at all three terms. If long division then need to be subtracting lower line; if coefficient matching then need to be considering all possible terms from their expansion to equate to relevant coefficient from cubic; if inspection then expansion must give at least one correct coefficient for the two middle terms in the cubic. | <br>

\hline \& \& A1 \& \& Obtain $x^{2}+3 x+c$ or $x^{2}+b x-5$ \& Obtain $x^{2}$ and one other correct term. Just having two correct terms does not imply M1 - need to look at method used for third term. If coefficient matching allow for stating values eg $a=1$ etc. If quadratic factor given with minimal working in (ii), there may be more evidence of method shown in (i). <br>
\hline \& \& A1 \& \& Obtain $x^{2}+3 x-5$ \& Could appear as quotient in long division, or as part of product if inspection. If coefficient matching, must now be explicitly stated rather than just $a=1, b=3, c=-5$. <br>
\hline \& \& M1 \& \& Attempt to solve quadratic equation \& Using quadratic formula or completing the square - see extra guidance sheet. Quadratic must come from division attempt, even if this was not good enough for first M1. <br>

\hline \& \& A1 \& \& Obtain $11 / 2(-3 \pm \sqrt{ } 29)$ \& | Or $-3 / 2 \pm \sqrt{ }{ }^{29} / 4$ from completing the square. |
| :--- |
| Ignore terminology and ignore if subsequently given as factors, as long as seen fully simplified as roots. | <br>

\hline
\end{tabular}

| $7(a)$(i) | $\begin{aligned} u_{9} & =7 \times(-2)^{8} \\ & =1792 \end{aligned}$ | M1 |  | Attempt $u_{9}$ using $a r^{8}$ | Allow for $7 \times-2^{8}$. <br> Using $r=2$ will be marked as a misread. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A1 | 2 | Obtain 1792 | Condone brackets not being shown explicitly in working. <br> SR B2 for listing terms, as long as signs change. Need to stop at $u_{9}$ or draw attention to it in a longer list. |
| (ii) | $\begin{aligned} S_{15} & =\frac{7\left(1-(-2)^{15}\right)}{1-(-2)} \\ & =76,461 \end{aligned}$ | M1 |  | Attempt sum of GP using correct formula | Must be using correct formula, so denominator of $1-2$ is M0 unless $1-r$ clearly seen previously. <br> If $n=14$ used, then only mark as misread if no contradictory evidence seen - starting with $S_{15}=\ldots$ implies error in using in formula so M0. |
|  |  | A1 | 2 | Obtain 76,461 | Condone brackets not being shown explicitly in working. <br> SR B2 for listing terms and then manually adding them. |
| (b) | $\begin{aligned} & N / 2(2 \times 7+(N-1) \mathrm{x}-2)=-2900 \\ & N(16-2 N)=-5800 \\ & N^{2}-8 N-2900=0 \\ & (N-58)(N+50)=0 \\ & N=58 \end{aligned}$ | B1 M1 |  | State correct unsimplified $S_{N}$ <br> Equate attempt at $S_{N}$ to -2900 and rearrange to $\mathrm{f}(N)=0$ | If $(n-1) d$ is written as $(N-1)-2$, then give benefit of doubt and allow B1, even if misused in subsequent work (eg becomes $N-3$ ), unless there is clearly an error in the formula used. <br> Must be attempt at $S_{N}$ for an AP, so using $u_{N}$ or GP formulae will be M0. <br> M0 if $(N-1)-2$ becomes $N-3$. To give M1 at least one of the two terms in the bracket must have been multiplied by -2 . <br> Can still get M1 if incorrect formula as long as recognisable, and is quadratic in $N$. <br> Expand brackets and collect all terms on one side of equation. Allow slips eg not dividing all terms in bracket by 2 . |
|  |  | A1 |  | Obtain $N^{2}-8 N-2900=0$ | Any equivalent form as long as $\mathrm{f}(\mathrm{N})=0$ (but condone 0 not being explicit). |
|  |  | M1 |  | Attempt to solve 3 term quadratic | Any valid method - as long as it has come from equating an attempt at $S_{N}$ of an AP to -2900.. |
|  |  | A1 | 5 | Obtain 58 only | 58 must clearly be intended as only final answer - could be through underlining, circling or deleting other value for $N$. No need to see other value for $N$ - if seen, allow slips as long as factorisation / substitution into formula is correct. |
|  |  |  |  |  | 58 from answer only or trial and improvement can get $5 / 5$. 58 and -50 with no working is $4 / 5$. |


| 8(i) | translation of 3 units in negative $y$-direction | B1 B1 | 2 | State translation <br> State or imply 3 units in negative $y$ direction | Not shift, move etc. <br> Independent of first B1. <br> Statement needs to clearly intend a vertical downwards move of 3, without ambiguity or contradiction, such as ' 3 down', ' -3 in the $y$ direction' etc or vector notation. <br> B0 if direction unclear, such as 'in the $y$-axis' (could be along or towards) or 'along the $y$-axis' (unless direction made clear). <br> Allow ' 3 ’ or ' 3 units' but not ‘ 3 places', ‘ 3 spaces', ' 3 squares', ‘ 3 coordinates' or mention of (scale) factor of 3. <br> If both a valid statement and an ambiguous statement are made eg ' 3 units down on the $y$-axis' then still award B1. <br> Ignore irrelevant statements, such as where the $y$-intercept is, whether correct or incorrect. <br> Give BOD on double negatives eg 'down the $y$-axis by -3 units' unless clearly wrong or contradictory eg 'negative $y$-direction by $\binom{-3}{0}$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (ii) | $y=-2$ | B1 | 1 | State or imply $y=-2$ | Just stating -2 is enough. <br> B0 for final answer of $2^{0}-3$ or $1-3$. <br> $(-2,0)$ is B0 unless -2 already seen or implied as $y$-coordinate. |
| (iii) | $\begin{aligned} & 2^{x}=3 \\ & x=\log _{2} 3 \end{aligned}$ | M1 |  | Attempt to solve $2^{x}-3=0$ | Rearrange to $2^{x}=3$, introduce logarithms (could be no base or any base as long as consistent) and then attempt expression for $x$. <br> M0 for $x=\log _{3} 2$. <br> M1 A0 for alternative, correct, log expressions such as $\log 3 / \log 2$ or $1 / \log _{3} 2$. <br> Decimal equivalent of 1.58 can get M1 A0. $x=\log _{2}(y+3)$ is M0 (unless $y$ then becomes 0 ). |
|  |  | A1 | 2 | State $\log _{2} 3$ | Doesn't need to be $x=\ldots$ <br> Change of base is not on the specification, but is a valid method and can gain both marks. <br> Allow if base not initially specified, but then both logs become base 2. <br> NB $x-\log _{2} 3=0$ leading to correct answer, can get full marks as there is no incorrect statement seen. |


| (iv) | $\begin{aligned} & 2^{p}=65 \\ & \log 2^{p}=\log 65 \\ & p \log 2=\log 65 \\ & p=6.02 \end{aligned}$ | M1* |  | Rearrange equation and introduce logs (or $\log _{2}$ ) | Must first rearrange to $2^{p}=k$, with $k$ from attempt at $62 \pm 3$, before introducing logs. <br> Can use logs to any base, as long as consistent, or equiv with $\log _{2}$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | M1d* |  | Drop power and attempt to solve | Dependent on first M1. <br> $p=\log _{2} k$ will gain both M marks in one step. If taking logs to any other base, or no base, or $\log _{2}$ on both sides then need to drop power of $p$ and attempt to solve using a sound algebraic method ie $p=\log ^{\log } / \log 2$. |
|  |  | A1 | 3 | Obtain 6.02, or better | Decimal answer reqd, if more than 3sf it must be in range [6.022, 6.023]. |
|  |  |  |  |  | Answer only, or trial and improvement, is $0 / 3$ as no evidence of using logs as requested. |
| (v) | $\begin{aligned} & 0.5 \times 0.5 \times\left\{2^{3}-3+2\left(2^{3.5}-3\right)+2^{4}-3\right\} \\ & =8.66 \end{aligned}$ | M1 |  | Attempt $y$-values at $x=3,3.5,4$ | M0 if other $y$-values also found (unless not used in trap rule). Allow M1 for using incorrect function as long as still clearly $y$ values that are intended to be the original function eg $2 x-3$ or $2^{(x-3)}$. |
|  |  | M1 |  | Attempt correct trapezium rule | Must be correct structure ie $0.5 \times 0.5 \times\left(y_{0}+2 y_{1}+y_{2}\right)$. <br> Must be finding area from 3 to 4 , so using eg $x=0,0.5,1$ is M0. <br> Allow if still in terms of $y_{0}$ etc as long as these have been clearly defined elsewhere. <br> Using $x$-values in trapezium rule is M0, even if labelled $y$-values. Allow a different number of strips (except 1 ) as long as their $h$ is consistent with this, and the limits are still 3 and 4. |
|  |  | A1 | 3 | Obtain 8.66, or better | If final answer given to more than 3sf, allow answers in range [8.655, 8.657]. |
|  |  |  | 11 |  | Exact answer from integrating $\mathrm{e}^{\mathrm{xln} 2}-3$ is $0 / 3$. <br> Answer only is $0 / 3$. <br> Attempting integration before using trapezium rule is $0 / 3$. Using two separate trapezia is fine. |


| $\begin{array}{r} \hline 9(\mathbf{a}) \\ \text { (i) } \end{array}$ | $\pi$ radians | B1 | 1 | State $\pi$ | $\begin{aligned} & \text { Allow } 3.14 \text { radians or } 180^{\circ} \text {. } \\ & \text { B0 for } 0 \leq x \leq \pi \text {. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (ii) | $(\pi / 2,-1)$ | B1 |  | State $x=\pi / 2$ | Allow 1.57 radians, or better. <br> Allow $A=\pi / 2$. <br> B0 for $90^{\circ}$. |
|  |  | B1 | 2 | State $y=-1$ | Allow $\cos 2 A=-1$. <br> SR Award B1 for ( $-1, \pi / 2$ ) |
| (iii) | $\begin{aligned} & \cos 2 x=0.5 \\ & 2 x=\pi / 3,5 \pi / 3 \\ & x=\pi / 6,5 \pi / 6 \\ & \text { hence } \pi / 6 \leq x \leq 5 \pi / 6 \end{aligned}$ | M1 A1 A1 |  | Attempt correct solution method <br> Obtain $\pi / 6$ (allow 0.524 or $30^{\circ}$ ) <br> Obtain ${ }^{5 \pi / 6}$ (allow 2.62 or $150^{\circ}$ ) | Inverse cos and then divide by 2 , to find at least one angle. <br> Just mark angle, ignore any (in)equality signs. <br> Needs to be single term so $\pi-\pi / 6$ is A0. <br> Just mark angle, ignore any (in)equality signs. <br> A0 if any other angles in range $0 \leq x \leq \pi$. |
|  |  | A1 | 4 | Obtain $\pi / 6 \leq x \leq 5 \pi / 6$ (exact radians only) | Allow two separate inequalities as long as both correct and linked by 'and' (not 'or', a comma or no link). <br> Mark final answer and condone incorrect inequality signs elsewhere in solution. <br> SR If alternative methods (eg double angle formulae) or inspection are used (or no method shown at all) then mark as <br> B2 Obtain one correct angle (degrees or radians) <br> A1 Obtain second correct angle - and no others <br> A1 Obtain correct inequality (exact radians only) |


|  | $\begin{aligned} & 2 x=\pi / 6,7 \pi / 6 \\ & x=\pi / 12,7 \pi / 12 \end{aligned}$ | B1 |  | Obtain $\tan 2 x=1 / \sqrt{3}$ | Allow for decimal equiv ie $\tan 2 x=0.577$ Allow for $\sqrt{3} \tan 2 x=1$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | M1 |  | Attempt correct solution method of $\tan 2 x=k$ | Inverse tan and then divide by 2 , to find at least one angle. Could follow error eg $\tan 2 x=\sqrt{3}$, even if $\tan 2 x=\cos 2 x / \sin 2 x$ clearly used. |
|  |  | A1 |  | Obtain one correct angle | Could be exact $\left(\frac{\pi}{12}\right.$ or $\left.7 \pi / 12\right)$, decimals ( 0.262 or 1.83 ) or degrees ( $15^{\mathrm{o}}$ or $105^{\circ}$ ). <br> Must come from correct working only. |
|  |  | A1 | 4 | Obtain both correct angles | Must now both be in exact radians. A0 if any other angles in range $0 \leq x \leq \pi$. |
| 11 |  |  |  |  |  |
|  |  | OR $\begin{aligned} & \cos ^{2} 2 x=3 \sin ^{2} 2 x \\ & 4 \sin ^{2} 2 x=1 \quad 4 \cos ^{2} 2 x=3 \end{aligned}$ | B1 |  | Obtain correct equation in either $\sin ^{2} 2 x$ or $\cos ^{2} 2 x$ | Square both sides and use $\sin ^{2} 2 x+\cos ^{2} 2 x=1$ to obtain $4 \sin ^{2} 2 x=1$ or $4 \cos ^{2} 2 x=3$, or any equiv, including unsimplified eg $1-\sin ^{2} 2 x=3 \sin ^{2} 2 x$. |
|  | $\begin{aligned} 2 x & =\pi / 6,5 \pi / 6,7 \pi / 6,11 \pi / 6 \\ x & =\pi / 12,5 \pi / 12,7 \pi / 12,11 \pi / 12 \end{aligned}$ | M1 |  | Attempt correct solution of $\sin 2 x=k$ or $\cos 2 x=k$ | Inverse sin or cos and then divide by 2 , to find at least one angle. |
| $x=\pi / 12,7 \pi / 12$ |  | A1 |  | Obtain one correct angle | Could be exact ( $\pi / 12$ or $7 \pi / 12$ ), decimals ( 0.262 or 1.83 ) or degrees ( $15^{\circ}$ or $105^{\circ}$ ). <br> Must come from correct working only. |
|  |  | A1 |  | Obtain both correct angles | Must now both be in exact radians. A0 if any other angles in range $0 \leq x \leq \pi$. |
|  |  |  | SR If using alternative methods, such as more advanced trig identities, or no method at all shown, then mark as <br> B3 Obtain one correct angle, (degrees or radians)with no errors seen |  |
|  |  |  | B1 Obtain second correct angle, now both in radians |  |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (i) | $\begin{aligned} \text { perimeter } & =(4.2 \times 12)+(2 \times 12) \\ & =74.4 \mathrm{~cm} \end{aligned}$ | M1* <br> M1d* <br> A1 <br> [3] | Use $s=12 \theta$ <br> Attempt perimeter of sector <br> Obtain 74.4 | Allow equiv method using fractions of a circle <br> If working in degrees, must use 180 and $\pi$ (or 360 and $2 \pi$ ) to find angle <br> M0 if $12 \theta$ used with $\theta$ in degrees <br> M0 if $4.2 \pi$ used instead of 4.2 <br> M1 if attempting arc of minor sector ( $12 \times 2.1$ (or better)) <br> Add 24 to their attempt at $12 \theta$ <br> M0 if using minor sector <br> Units not required <br> Allow a more accurate answer that rounds to 74.4 , with no errors seen (poss resulting from working in degrees) |
| 1 | (ii) | $\begin{aligned} \text { area } & =\frac{1}{2} \times 12^{2} \times 4.2 \\ & =302.45 \mathrm{~cm}^{2} \end{aligned}$ | M1 <br> A1 <br> [2] | Use $A=\left(\frac{1}{2}\right) 12^{2} \theta$ <br> Obtain 302, or better | Condone omission of $\frac{1}{2}$, but no other error <br> Allow equiv method using fractions of a circle <br> M0 if $\left(\frac{1}{2}\right) 12^{2} \theta$ used with $\theta$ in degrees <br> M0 if $4.2 \pi$ used instead of 4.2 <br> M1 if attempting area of minor sector <br> Units not required <br> Allow 302 or a more accurate answer that rounds to 302.4, with no errors seen (could be slight inaccuracy if using fractions of a circle) |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (i) | $\begin{aligned} & 0.5 \times 1.5 \times\{\lg 9+2(\lg 12+\lg 15+ \\ & \lg 18)+\lg 21\} \\ & =6.97 \end{aligned}$ | B1 <br> M1 | State, or use, $y$-values of $\lg 9$, $\lg 12, \lg 15, \lg 18$ and $\lg 21$ <br> Attempt correct trapezium rule, any $h$, to find area between $x=4$ and $x=10$ | B0 if other $y$-values also found (unless not used in trap rule) Allow decimal equivs ( $0.95,1.08,1.18,1.26,1.32$ or better) <br> Correct structure required, including correct placing of $y$ values <br> The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of $y_{0}$ etc, as long as these have been attempted elsewhere and clearly labelled <br> Could use other than 4 strips as long as of equal width Using $x$-values is M0 <br> Can give M1, even if error in $y$-values eg using $9,12,15$, 18,21 or using now incorrect function eg $\log (2 x)+1$ <br> Allow BoD if first or last $y$-value incorrect, unless clearly from an incorrect $x$-value (eg $y_{0}=\lg 7$, but $x=4$ not seen) |
|  |  |  | M1 | Use correct $h$ in recognisable attempt at trap rule | Must be in attempt at trap rule, not Simpson's rule Allow if muddle over placing $y$-values (but M0 for $x$-values) Allow if $\frac{1}{2}$ missing <br> Allow other than 4 strips, as long as $h$ is consistent Allow slips which result in $x$-values not equally spaced |
|  |  |  | A1 <br> [4] | Obtain 6.97, or better | Allow answers in the range [6.970, 6.975] if $>3$ sf <br> Answer only is $0 / 4$ <br> Using the trap rule on result of an integration attempt is $0 / 4$ Using 4 separate trapezia can get full marks - if other than 4 trapezia then mark as above <br> However, using only one trapezium is $0 / 4$ |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (ii) | tops of trapezia are below curve | B1 <br> [1] | Convincing reason referring to the top of a trapezium being below the curve, or the gap between a trapezium and the curve - explanation must be sufficient and fully correct | B0 for 'the trapezium is below the curve' (ie 'top’ not used) Sketch with explanation is fine, even if just arrow and 'gap' Sketching rectangles / triangles is B0, as is a trapezium that doesn't have both top vertices intended to be on curve Concave / convex is B 0 , as is comparing to exact area B1 for reference to decreasing gradient |
| 3 | (i) | $\begin{aligned} & 20 \times 4^{3} \times a^{3}=160 \\ & 1280 a^{3}=160 \\ & a^{3}=\frac{1}{8} \\ & a=\frac{1}{2} \end{aligned}$ | M1 | Attempt relevant term | Must be an attempt at a product involving a binomial coeff of 20 (not just ${ }^{6} \mathrm{C}_{3}$ unless later seen as 20), $4^{3}$ and an intention to cube $a x$ (but allow for $a x^{3}$ ) Could come from $4^{6}\left(1+{ }^{a x} / 4\right)^{6}$ as long as done correctly Ignore any other terms if fuller expansion attempted |
|  |  |  | A1 | Obtain correct $1280 a^{3}$, or unsimplified equiv | Allow $1280 a^{3} x^{3}$, or $1280(a x)^{3}$, but not $1280 a x^{3}$ unless $a^{3}$ subsequently seen, or implied by working |
|  |  |  | M1 | Equate to 160 and attempt to solve for $a$ | Must be equating coeffs - allow if $x^{3}$ present on both sides (but not just one) as long as they both go at same point Allow for their coeff of $x^{3}$, as long as two, or more, parts of product are attempted eg 20ax ${ }^{3} / 64 a x^{3}$ Allow M1 for $1280 a=160$ (giving $a=0.125$ ) M0 for incorrect division (eg giving $a^{3}=8$ ) |
|  |  |  | A1 [4] | Obtain $a=\frac{1}{2}$ | Allow 0.5, but not an unsimplified fraction Answer only gets full credit, as does T\&I SR: max of 3 marks for $a=0.5$ from incorrect algebra, eg $1280 a x^{3}=160$, so $a=0.5$ would get M1A1(implied)B1 |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (ii) | $4^{6}+6 \times 4^{5} \times \frac{1}{2}=4096+3072 x$ | B1 <br> B1FT <br> [2] | State 4096 <br> State $3072 x$, or $(6144 \times$ their $a) x$ | Allow $4^{6}$ if given as final answer Mark final answer - so do not isw if a constant term is subsequently added to 4096 from an incorrect attempt at second term eg using sum rather than product <br> Must follow a numerical value of $a$, from attempt in part (i) Must be of form $k x$ so just stating coeff of $x$ is B0 Mark final answer <br> B2 can still be awarded if two terms are not linked by a '+' sign - could be a comma, 'and', or just two separate terms <br> SR: B1 can be awarded if both terms seen as correct, but then 'cancelled' by a common factor |
| 4 | (i) | $\begin{aligned} & b^{2}=2.4^{2}+2^{2}-2 \times 2.4 \times 2 \times \cos \\ & 40^{\circ} \\ & b=1.55 \mathrm{~km} \end{aligned}$ | M1 <br> A1 <br> [2] | Attempt use of correct cosine rule <br> Obtain 1.55, or better | Must be correct formula seen or implied, but allow slip when evaluating eg omission of 2 , incorrect extra 'big bracket' Allow M1 even if subsequently evaluated in rad mode (4.02) Allow M1 if expression is not square rooted, as long as LHS was intended to be correct ie $b^{2}=\ldots$ or $A C^{2}=\ldots$ <br> Actual answer is $1.55112003 . .$. so allow more accurate answer as long as it rounds to 1.551 Units not required |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | (ii) | $\begin{array}{ll} \frac{\sin A}{2}=\frac{\sin 40}{1.55} & \frac{\sin C}{2.4}=\frac{\sin 40}{1.55} \\ A=56^{\circ} & C=84^{\circ} \end{array}$ <br> hence bearing is $124^{\circ}$ | M1 <br> A1 <br> A1ft <br> [3] | Attempt to find one of the other two angles in triangle <br> Obtain $A=56^{\circ}$, or $C=84^{\circ}$ <br> Obtain $124^{\circ}$, following their angle $A$ or $C$ | Could use sine rule or cosine rule, but must be correct rule attempted <br> Need to substitute in and rearrange as far as $\sin A=\ldots / \cos$ $A=\ldots$ etc, but may not actually attempt angle <br> Any angle rounding to $56^{\circ}$ or $84^{\circ}$, and no errors seen <br> Allow any answer rounding to 124 <br> Finding bearing of $A$ from $C$ is A 0 - ie not a MR |
| 4 | (iii) | $\begin{aligned} d & =2 \times \sin 40^{\circ} \\ & =1.29 \mathrm{~km} \end{aligned}$ | M1 <br> A1 <br> [2] | Attempt perpendicular distance <br> Obtain 1.29, or better | Any valid method, but must attempt required distance Can still get M1 if using incorrect or inaccurate sides / angles found earlier in question <br> Allow M1 if evaluated in rad mode (1.49) <br> Allow more accurate final answers in range [1.285, 1.286] A0 for inaccurate answers due to PA elsewhere in question (typically $C=84.4$, so $A=55.6$, so $d=1.28$ ) <br> Units not required |
| 5 | (i) | $\begin{aligned} f(3) & =54+27-51+6 \\ & =36 \end{aligned}$ | M1 <br> A1 <br> [2] | Attempt f(3) <br> Obtain 36 | Allow equiv methods as long as remainder is attempted A0 if answer subsequently stated as -36 ie do not isw |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (ii) | $\mathrm{f}(x)=(x-2)\left(2 x^{2}+7 x-3\right)$ | B1 <br> M1 <br> A1 <br> A1 <br> [4] | State or imply that $(x-2)$ is a factor <br> Attempt full division, or equiv, by ( $x \pm 2$ ) <br> Obtain $2 x^{2}$ and at least one other correct term <br> Obtain $(x-2)\left(2 x^{2}+7 x-3\right)$ | Just stating this is enough for B1, even if not used Could be implied by attempting division, or equiv, by $(x-2)$ <br> Must be complete method - ie all three terms attempted If long division then must subtract lower line (allow one slip); if inspection then expansion must give correct first and last terms and also one of the two middle terms of the cubic; if coefficient matching then must be valid attempt at all 3 quadratic coeffs, considering all relevant terms each time Allow M1 for valid division attempt by $(x+2)$ <br> If coeff matching then allow for stating values eg $A=2$ etc <br> Must be stated as a product |
| 5 | (iii) | $\begin{aligned} & b^{2}-4 a c=73 \\ & >0 \text { hence } 3 \text { roots } \end{aligned}$ | M1 <br> A1ft <br> [2] | Attempt explicit numerical calculation to find number of roots of quadratic <br> State 3 roots ( $\sqrt{ }$ their quotient) Condone no explicit check for repeated roots | Could attempt discriminant (allow $b^{2} \pm 4 a c$ ), or could use full quadratic formula to attempt to find the roots themselves (implied by stating decimal roots); M0 for factorising unless their incorrect quotient could be factorised <br> M0 for ' 3 roots as positive discriminant' but no evidence <br> Sufficient working must be shown, and all values shown must be correct <br> Discriminant needs to be 73 (allow $7^{2}-4(2)(-3)$ ) <br> Quadratic formula must be correct, though may not necessarily be simplified as far as $\frac{1}{4}(-7 \pm \sqrt{ } 73)$ <br> Need to state no. of roots - just listing them is not enough SR: if a conclusion is given in part (iii) then allow evidence from part (ii) eg finding actual roots |


| Question |  | Answer | Marks | Guidance |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | (i) | $u_{1}=80$ <br> $u_{2}=75, u_{3}=70$ | B1 <br> B1 <br> [2] | State 80 <br> State 75 and 70 | Just a list of numbers is fine, no need for labels |
| (ii) | $S_{20}=\frac{20}{2}(2 \times 80+19 \times-5)$ <br> $=650$ | M1 | Show intention to sum $1^{\text {st }} 20$ <br> terms of an arithmetic sequence | Any recognisable attempt at the sum of an AP, including <br> manual addition of terms - no need to list all of the terms, <br> but intention (inc no of terms) must be clear |  |
| M1 | Attempt use of correct sum <br> formula for an AP, with $n=20, a$ <br> $=80, d= \pm 5$ <br> Obtain 650 | Must use correct formula - only exception is $10(2 a+9 d)$ <br> If using $\frac{1}{2} n(a+l)$, must be a valid attempt at $l$, either from $a$ <br> $+19 d$ or from $u_{20}$ |  |  |  |
| Answer only gets full marks, as does manual addition |  |  |  |  |  |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (iii) | $\begin{aligned} & r=\frac{60}{80}=0.75 \\ & u_{p}=80 \times 0.75^{2}=45 \\ & 85-5 p=45 \\ & p=8 \end{aligned}$ | M1* <br> A1 <br> M1d* <br> A1 <br> [4] | Attempt to find $u_{p}$ <br> Obtain 45 <br> Attempt to solve $85-5 p=k$ <br> Obtain $p=8$ | Allow any valid method, inc informal <br> Allow if first and/or second terms of their GP are incorrect Allow ratio of $\frac{4}{3}$ if used correctly to find $3^{\text {rd }}$ term ( $60 \div \frac{4}{3}$ ) <br> Seen or implied <br> SR: M1* A0 if 45 results from using $u_{n}=a r^{n}$. <br> The following M1A1 are still available. <br> $k$ must be from attempt at third term of GP <br> LHS could be $80+(p-1)(-5)$, from $p^{\text {th }}$ term of the AP, but M0 if incorrect eg $80+(p-1)(5)$ <br> Allow full credit for answer only Any variable, including $n$ |
| 6 | (iv) | $\begin{aligned} S_{\infty} & =\frac{80}{1-0.75} \\ & =320 \end{aligned}$ | M1 <br> A1 <br> [2] | Use correct formula for sum to infinity <br> Obtain 320 | Must be from attempt at $r$ for their GP <br> A0 for 'tends to 320', 'approximately 320' etc |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | (a) | $\begin{aligned} & \int\left(x^{3}-6 x^{2}+4 x-24\right) d x \\ & \quad=\frac{1}{4} x^{4}-2 x^{3}+2 x^{2}-24 x+c \end{aligned}$ | M1 <br> A1ft <br> A1 <br> [3] | Expand and attempt in <br> Obtain at least two correct (algebraic) terms <br> Obtain fully correct expression, inc $+c$ | Must attempt to expand brackets first Increase in power by 1 for the majority of their terms Allow if the constant term disappears <br> At least two correct from their expansion Allow for unsimplified coefficients <br> All coefficients now simplified <br> A0 if integral sign or $\mathrm{d} x$ still present in their answer (but allow $\int=\ldots$ ) |
| 7 | (b) | $\left\{\begin{array}{l} \int 6 x^{\frac{3}{2}} \mathrm{~d} x=\frac{12}{5} x^{\frac{5}{2}} \\ \int\left(8 x^{-2}-2\right) \mathrm{d} x=-8 x^{-1}-2 x \\ {\left[\frac{12}{5} x^{\frac{5}{2}}\right]_{0}^{1}=\frac{12}{5}} \\ {\left[-8 x^{-1}-2 x\right]_{1}^{2}=(-8)-(-10)=2} \\ \text { hence total area }=\frac{22}{5} \end{array}\right.$ | M1 <br> A1 <br> M1 <br> A1 <br> B1 <br> M1 | Obtain $k x^{\frac{5}{2}}$ <br> Obtain $\frac{12}{5} x^{\frac{5}{2}}$, or any exact equiv <br> Obtain at least one of $-8 x^{-1}$ and $-2 x$ <br> Obtain $-8 x^{-1}-2 x$ <br> State or imply that pt of intersection is $(2,0)$ <br> Use limits correctly at least once | Any exact equiv for the index <br> Including unsimplified coefficient <br> Allow M1 even if -2 disappears <br> Could be part of a sum or difference; with consistent signs <br> Allow unsimplified expressions <br> If subtraction from other curve attempted before integration then allow for $8 x^{-1}+2 x$ <br> Could imply by using it as a limit <br> Must be using correct $x$ limits, and subtracting, with the appropriate function (allow implicit use of $x=0$ ); the only error allowed is an incorrect $(2,0)$ <br> Allow use in any function other than the original, inc from differentiation |


| 7 | (b) con |  | M1 | Attempt fully correct process to find required area | Use both pairs of limits correctly (allow an incorrect $(2,0)$ ), in appropriate functions and sum the two areas |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A1 | Obtain $\frac{22}{5}$, or any exact equiv |  |
|  |  |  | [8] |  | Answer only is $0 / 8$, as no evidence is provided of integration |
|  |  | Alternative scheme for those who | M1 | $\text { Obtain } k y^{\frac{5}{3}}$ |  |
|  |  | integrate between the curves and | A1 | Obtain $6^{\frac{-2}{3}} \times \frac{3}{5} \times y^{\frac{5}{3}}$ |  |
|  |  | Some solutions may involve both | M1 | $\text { Obtain } k \sqrt{2+y}$ |  |
|  |  | so you may need to combine aspects of both schemes | A1 | Obtain $2 \sqrt{8} \sqrt{2+y}$ |  |
|  |  |  | M1 | Use limits of 6 (and 0 ) correctly at least once |  |
|  |  |  | M1 | Attempt correct method to find required area - correct use of limits required |  |
|  |  |  | A2 | Obtain 4.4 |  |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | (a) | $\begin{aligned} & \log 7^{w-3}=\log 184 \\ & (w-3) \log 7=\log 184 \\ & w-3=2.68 \\ & w=5.68 \end{aligned}$ | M1* | Rearrange, introduce logs and use $\log a^{b}=b \log a$ | Must first rearrange to $7^{w-3}=k$, with $k$ from attempt at $180 \pm 4$, before introducing logs <br> Can use logs to any base, as long as consistent on both sides If taking $\log _{7}$ then base must be explicit |
|  |  |  | A1 | Obtain $(w-3) \log 7=\log 184$, or equiv eg $w-3=\log _{7} 184$ | Condone lack of brackets ie $w-3 \log 7=\log 184$, as long clearly implied by later working |
|  |  |  | M1d* | Attempt to solve linear equation | Attempt at correct process ie $w={ }^{\log k} / \log 7 \pm 3$, or equiv following expanding bracket first |
|  |  |  | A1 | Obtain 5.68, or better | More accurate final answer must round to 5.680 |
|  |  |  | [4] |  | Answer only, or T\&I, is 0/4 |



| Question |  | Answer |  | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{9}$ | (i) | B1 | Correct shape for $y=k \cos \left(\frac{1}{2} x\right)$ | Must show intention to pass through $(-\pi, 0)$ and $(\pi, 0)$ <br> Should be roughly symmetrical in the $y$-axis, but condone <br> slightly different $y$-values at $-2 \pi$ and $2 \pi$ <br> Ignore graph outside of given range |  |
| Must show intention to pass through ( $-2 \pi, 0),(0,0),(2 \pi, 0)$ |  |  |  |  |  |
| Asymptotes need not be marked, but there should be no clear |  |  |  |  |  |
| overlap of the limbs, nor significant gaps between them |  |  |  |  |  |
| Ignore graph outside of given range |  |  |  |  |  |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (ii) | $\begin{aligned} & \frac{\sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}=3 \cos \left(\frac{1}{2} x\right) \\ & \sin \left(\frac{1}{2} x\right)=3 \cos ^{2}\left(\frac{1}{2} x\right) \\ & \sin \left(\frac{1}{2} x\right)=3\left(1-\sin ^{2}\left(\frac{1}{2} x\right)\right) \end{aligned}$ | M1 | Attempt use of relevant identities to show given equation | Must attempt use of both identities; these must be correct but allow poor notation eg using $\frac{\sin }{\cos }\left(\frac{1}{2} x\right)$ and/or $3\left(1-\sin ^{2}\right)\left(\frac{1}{2} x\right)$ could get M1A0 |
|  |  | $3 \sin ^{2}\left(\frac{1}{2} x\right)+\sin \left(\frac{1}{2} x\right)-3=0 \quad \text { AG }$ | A1 | Obtain given equation, with no errors seen | Use both identities correctly, to obtain given equation Brackets around the $\frac{1}{2} x$ not required |
|  |  | $\begin{aligned} & \sin \left(\frac{1}{2} x\right)=0.847,-1.18 \\ & \frac{1}{2} x=1.01,2.13 \\ & x=2.02,4.26 \end{aligned}$ | M1 | Attempt to solve given quadratic to find solution(s) for $\sin \left(\frac{1}{2} x\right)$ | Must use quadratic formula (or completing the square) - M0 if attempting to factorise <br> Allow variables other than $\sin \left(\frac{1}{2} x\right)$, eg $y=$, or even $x=$ Allow -1.18 to be discarded at any stage |
|  |  |  | M1 | Attempt to solve $\sin \left(\frac{1}{2} x\right)=k$ | Attempt $\sin ^{-1}$ (their root) and then double the answer |
|  |  |  | A1 | Obtain one correct angle | Allow in degrees ( $116^{\circ}$ and $244^{\circ}$ ) |
|  |  |  | A1 | Obtain both correct angles, and no others in given range | Must both be in radians (allow equivs as multiples of $\pi$ ) A0 if extra, incorrect, angles in given range of $[-2 \pi, 2 \pi]$ but ignore any outside of given range <br> SR: if no working shown then allow B1 for each correct solution (max of B1if in degrees, or extra solns in range) |
|  |  |  | [6] |  |  |


| Question |  | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (ii) | $\begin{aligned} & (3+2 x)^{5}+(3-2 x)^{5} \\ & \quad=486+2160 x^{2}+480 x^{4} \end{aligned}$ | M1 | Attempt to change signs of relevant terms | Must change the sign on all of the relevant terms from their expansion, and no others. <br> Expansion in part (i) must have at least 5 terms. Allow M1 even if no attempt to then combine expansions, or if difference rather than sum found. If expanding $(3-2 x)^{5}$, then it must be a reasonable attempt, involving the product of correct binomial coeffs, powers of 2 and powers of $-3 x$, and each term must be of the correct sign. |
|  |  |  | A1 FT | Obtain $486+2160 x^{2}+480 x^{4}$, from their (i) | Must have been a 6 term quintic in (i) to get FT mark. A0 if subsequent division by a common factor, so not isw. |




|  | Question | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 |  | $4\left(1-\sin ^{2} x\right)+7 \sin x-7=0$ | M1 | Use $\cos ^{2} x=1-\sin ^{2} x$ | Must be used and not just stated Must be used correctly, so M0 for $1-4 \sin ^{2} x$. |
|  |  | $4 \sin ^{2} x-7 \sin x+3=0$ | A1 | Obtain correct quadratic | aef, as long as three term quadratic with all the terms on one side of the equation. <br> Condone $4 \sin ^{2} x-7 \sin x+3$ ie no $=0$. |
|  |  | $(\sin x-1)(4 \sin x-3)=0$ | M1 | Attempt to solve quadratic in $\sin x$ | Not dependent on previous M1, so could get M0M1 if $\cos ^{2} x=\sin ^{2} x-1$ used. <br> This M mark is just for solving a 3 term quadratic (see guidance sheet for acceptable methods). <br> Condone any substitution used, inc $x=\sin x$. |
|  |  | $\sin x=1, \quad \sin x=\frac{3}{4}$ | M1 | Attempt to find $x$ from roots of quadratic | Attempt $\sin ^{-1}$ of at least one of their roots. Allow for just stating $\sin ^{-1}$ (their root) inc if $\|\sin x\|>1$. Not dependent on previous marks so M0M0M1 poss. If going straight from $\sin x=k$ to $x=\ldots$, then award M1 only if their angle is consistent with their $k$. |
|  |  | $x=90^{\circ} \quad x=48.6^{\circ}, 131^{\circ}$ | A1 | Obtain two correct solutions | Allow 3sf or better. <br> Must come from a correct solution of the correct quadratic - if the second bracket was correct but the first was $(\sin x$ +1 ) then A0 even though 2 solutions will be as required. Allow radian equivs $-\pi / 2$ or $1.57 / 0.848 / 2.29$. |
|  |  |  | A1 | Obtain all 3 correct solutions, and no others | Must now all be in degrees. <br> Allow 3sf or better. <br> A0 if other incorrect solutions in range $0^{\circ}-360^{\circ}$ (but ignore any outside this range). |
|  |  |  | [6] |  | SR If no working shown then allow B1 for each correct solution (max of $\mathbf{B} 2$ if in radians, or if extra solns in range). |


| Question |  |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (a) | (i) | $\begin{aligned} & u_{2}=1 / 2 \\ & u_{3}=4 \end{aligned}$ | B1 <br> B1 FT <br> [2] | State $1 / 2$ <br> State 4, following their $u_{2}$ | Allow 0.5 or $2 / 4$. <br> Follow through on their $u_{2}$ (simplifying if possible). B0 for $2 / 0.5,2 / 1 / 2$ etc. |
| 5 | (a) | (ii) | periodic / alternating / repeating / oscillating / cyclic | B1 | Any correct description | Allow associated words eg 'repetitive'. <br> Must be a mathematical term rather than a description such as 'it changes between 4 and $1 / 2$ ' or 'odd terms are 4 , even terms are $1 / 2$. <br> Mark independently of any values given in part (i). Ignore irrelevant terms (eg 'recursive'), but B0 if additional incorrect terms (eg 'geometric’). |
| 5 | (b) |  | $a+8 d=18$ | B1 | State $a+8 d=18$ | Allow any equivalent, including unsimplified. Must be correct when seen - can't be implied by eg being stated but with incorrect $a$ substituted. |
|  |  |  | $9 / 2(2 a+8 d)=72$ | B1 | State $9 / 2(2 a+8 d)=72$ | Allow any equivalent, including unsimplified. <br> Must be correct when seen - as above. |
|  |  |  | $a+8 d=18$ and $2 a+8 d=16$ | M1 | Attempt to solve simultaneously | M1 is awarded for eliminating a variable from two linear equations in $a$ and $d$, from attempt at $u_{9}=18$ and attempt at $S_{9}=72$ (formulas must be recognisable, and for APs, but not necessarily correct). Don't need to actually solve. If balancing equations, then there must be intention to subtract (but allow $a=2$ ). <br> If substituting then allow sign errors (eg $a=8 d-18$ ), but not operational errors ( $\mathrm{eg} a={ }^{18} / 8 d$ ). |
|  |  |  | $a=-2, d=5 / 2$ | A1 | Obtain either $a=-2$ or $d=5 / 2$ | A1 is given for the first correct value, from 2 correct eqns. Allow $d=21 / 2$ or 2.5 , but not unsimplified fractions. |
|  |  |  |  | A1 <br> [5] | Obtain both $a=-2, d=5 / 2$ | A1 is given for obtaining second correct value. Allow $d=21 / 2$ or 2.5 , but not unsimplified fractions. |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :--- | :--- | :--- | :--- |



| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (iii) | $\int_{1}^{9} 4 x^{\frac{1}{2}} \mathrm{~d} x=\left[\frac{8}{3} x^{\frac{3}{2}}\right]_{1}^{9}$ | M1 | Obtain $k x^{\frac{3}{2}}$ | Any numerical $k$, including 4. <br> Any exact equiv for the index. |
|  |  | $=72-\frac{8}{3}$ | A1 | Obtain $\frac{8}{3} x^{\frac{3}{2}}$ | Allow unsimplified coefficient, inc $\frac{4}{1.5}$ or $\frac{2}{3} \times 4$. Allow non exact decimal ie 2.7, 2.67 etc. Allow $+c$. |
|  |  | $=69^{1} / 3$ | M1 | Attempt correct use of limits | Must be $F(9)-F(1)$ ie subtraction with limits in the correct order. <br> Allow use in any function other than the original, including from differentiation. <br> Allow processing errors eg $\left(\frac{8}{3} \times 9\right)^{1.5}$. |
|  |  |  | A1 <br> [4] | Obtain $691 / 3$, or any exact equiv | Allow improper fraction, or recurring decimal. <br> A0 for 69.333.... <br> A0 for $69 \frac{1}{3}+c$. <br> Answer only is $0 / 4$. |


| Question |  |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | (a) | (i) | $\cos \alpha=5 / \sqrt{29}$ | M1 <br> A1 <br> [2] | Attempt $\cos \alpha$ $\text { Obtain }{ }^{5} / \sqrt{29}$ | Could draw triangle and use Pythagoras to find the hypotenuse, or use trig identities. <br> Must get as far as attempting $\cos \alpha$. <br> Must be working in exact values for M1. <br> Must be using correct ratios for $\tan \alpha$ and $\cos \alpha$. <br> Allow any exact equiv, including rationalised surd or $\sqrt{ }\left({ }^{25} /{ }_{29}\right)$ <br> isw if decimal equiv subsequently given. <br> Answer only gets full credit. <br> SR B1 for exact answer following decimal working. |
| 7 | (a) | (ii) | $\cos \beta=-\sqrt{40} / 7$ | M1 <br> A1 <br> A1 FT <br> [3] | Attempt $\cos \beta$ <br> Obtain $\sqrt{\sqrt{40} / 7}$ <br> Obtain ${ }^{-\sqrt{ } 40} / 7$, or - ve of their exact numerical value for $\cos \beta$ | Could draw triangle and use Pythagoras to find the adjacent, or use trig identities. <br> Must get as far as attempting $\cos \beta$. <br> Must be working in exact values for M1. <br> Must be using correct ratios for $\sin \alpha$ and $\cos \alpha$. <br> Allow any exact equiv, including $\sqrt{ }\left({ }^{40} / 49\right)$. <br> Allow $\pm{ }^{\sqrt{40}} / 7$ (from using $\cos ^{2} x=1-\sin ^{2} x$ ). <br> isw if decimal equiv subsequently given. <br> Answer only gets M1A1. <br> A1 FT can only be awarded following M1. isw if decimal equiv subsequently given. Answer only gets full credit. <br> SR B1 for $\sqrt{ } \sqrt{ } / \frac{1}{7}$, or equiv, following decimal working SR B2 for ${ }^{-\sqrt{ } 40} / 7$, or equiv, following decimal working SR B1 for decimal answer in range [-0.904, -0.903] |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer \& Marks \& Guidance \& <br>
\hline \multirow[t]{3}{*}{7} \& (b) \& $$
\frac{\sin \gamma}{6}=\frac{\sin 60}{8}
$$ \& M1* \& Attempt use of correct sine rule \& Must be correct sine rule, either way up (just need to substitute values in - no rearrangement needed). <br>
\hline \& \& \& M1d* \& Use $\sin 60^{\circ}=\sqrt{3} / 2$ \& Could be implied eg $\frac{6}{\sin \gamma}=\frac{16}{3} \sqrt{3}$ <br>
\hline \& \& $$
\sin \gamma=\frac{3 \sqrt{3}}{8}
$$ \& A1

[3] \& Obtain $\sin \gamma$ as $\frac{3 \sqrt{3}}{8}$ \& | Must be seen simplified to this, or $0.375 \sqrt{ } 3$ or $\frac{9}{8 \sqrt{3}}$, but isw if decimal equiv subsequently given. isw any attempt to find the angle. |
| :--- |
| A0 if only ever seen as $\sin ^{-1} \frac{3 \sqrt{3}}{8}$ | <br>

\hline
\end{tabular}

| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | (i) | $\begin{aligned} & \mathrm{f}(2)=8+2 a-6+2 b=0 \\ & \mathrm{~g}(2)=24+4+10 a+4 b=0 \end{aligned}$ | M1 | Attempt at least one of $f(2), g(2)$ | Allow for substituting $x=2$ into either equation - no need to simplify at this stage. <br> Division - complete attempt to divide by $(x-2)$. <br> Coeff matching - attempt all 3 coeffs of quadratic factor. |
|  |  |  | M1 | Equate at least one of $f(2)$ and $g(2)$ to 0 | Just need to equate their substitution attempt to 0 (but just writing eg $f(2)=0$ is not enough). <br> It could be implied by later working, even after attempt to solve equations. <br> Division - equating their remainder to 0 . <br> Coeff matching - equate constant terms. |
|  |  | $2 a+2 b=-2,5 a+2 b=-14$ | A1 | Obtain two correct equations in $a$ and $b$ | Could be unsimplified equations. Could be $8 a+2 b=-26$ (from $f(2)=g(2)$ ). |
|  |  | hence $3 a=-12$ | M1 | Attempt to find $a$ (or $b$ ) from two simultaneous eqns | Equations must come from attempts at two of $f(2)=0$, $g(2)=0, f(2)=g(2)$. <br> M1 is awarded for eliminating $a$ or $b$ from 2 sim eqns allow sign slips only. <br> Most will attempt $a$ first, but they can also gain M1 for finding $b$ from their simultaneous equations. |
|  |  | so $a=-4 \quad \mathbf{A G}$ | A1 | Obtain $a=-4$, with necessary working shown | If finding $b$ first, then must show at least one line of working to find $a$ (unless earlier shown explicitly $\operatorname{eg} a=-1-b)$. |
|  |  | $b=3$ | A1 | Obtain $b=3$ | Correct working only |
|  |  |  | [6] |  | SR Assuming $a=-4$ <br> Either use this scheme, or the original, but don't mix elements from both <br> M1 Attempt either $f(2)$ or $g(2)$ <br> M1 Equate $f(2)$ or $g(2)$ to 0 (also allow $f(2)=g(2)$ ) <br> A1 Obtain $b=3$ <br> A1 Use second equation to confirm $a=-4, b=3$ |



| Question |  |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (a) | (i) | $\begin{aligned} & u_{4}=\log _{2} 27+3 \log _{2} x \\ &=\log _{2} 27+\log _{2} x^{3} \\ & \\ &=\log _{2}\left(27 x^{3}\right) \mathbf{A G}\end{aligned}$ | M1 | Use $u_{4}=a+3 d$ | Allow missing / incorrect / inconsistent log bases. Starting with $\log _{2} 27+\log _{2} x^{3}$ is M0M0. Starting with $\log _{2} 27 \mathrm{x} 3 \log _{2} x$ is M0 (but can get M1 below). <br> Starting with $\log _{2} 27+\log _{2} x+\log _{2} x+\log _{2} x$ can get full credit. |
|  |  |  |  | M1 | Use $b \log a=\log a^{b}$ on $3 \log _{2} X$ | $u_{4}$ must still be shown as two terms. <br> Could get M1 if using $a+4 d$. <br> Could get M1 for $\log _{2} 27 \mathrm{x} 3 \log _{2} x=\log _{2} 27 \mathrm{x} \log _{2} x^{3}$ or for $\log _{2} 27 \mathrm{x} 3 \log _{2} x=\log _{2} 27+\log _{2} x^{3}$. <br> Allow missing / incorrect / inconsistent log bases. |
|  |  |  |  | A1 | Show $\log _{2}\left(27 x^{3}\right)$ convincingly | Can go straight from $\log _{2} 27+\log _{2} x^{3}$ to final answer. CWO, including using base 2 throughout. |
|  |  |  |  |  |  | SR - finding consecutive terms (each step must be explicit) <br> B1 for $u_{2}=\log _{2} 27+\log _{2} x=\log _{2} 27 x$ <br> B1 for $u_{3}=\log _{2} 27 x+\log _{2} x=\log _{2} 27 x^{2}$ <br> B1 for $u_{4}=\log _{2} 27 x^{2}+\log _{2} x=\log _{2} 27 x^{3}$ |
| 9 | (a) | (ii) | $27 x^{3}=2^{6}$ | B1* | State correct equation no longer involving $\log _{2} X$ | Equation could still involve constant terms such as $\log _{2} 27$ or $\log _{2} 3$. <br> Allow truncated or rounded decimals. |
|  |  |  | $x=4 / 3$ | B1d* | Obtain 4/3 | Must be $4 / 3,1 \frac{1}{3}$ or an exact recurring decimal only (not 1.333....). <br> A0 if cube root still present. <br> Working must be exact, so sight of decimals in method used is B0, even if final answer is exact. <br> Answer only gets full credit. |
|  |  |  |  | [2] |  |  |


| Question |  |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (b) | (i) | $1 / 2<y<2$ | M1 <br> A1 <br> [2] | Identify at least one of $1 / 2$ and 2 as endpoints <br> Obtain $1 / 2<y<2$ | Only one end-point required. <br> Ignore if additional incorrect end-point also given. <br> Ignore any signs used. <br> Not two separate inequalities, unless linked by 'and'. A0 for $1 / 2 \leq y \leq 2$. |
| 9 | (b) | (ii) | $\begin{aligned} & \frac{\log _{2} 27}{1-\log _{2} y}=3 \\ & \log _{2} 27=3-3 \log _{2} y \\ & \log _{2} 27=3-\log _{2} y^{3} \\ & \log _{2}\left(27 y^{3}\right)=3 \end{aligned}$ | B1 M1* | State $\frac{\log _{2} 27}{1-\log _{2} y}=3$ <br> Attempt to rearrange equation to $\log _{2} f(y)=k$ | Allow B1 if no base stated, but B0 if incorrect base. Must be equated to 3 for B1. <br> Must be using $\frac{\log _{2} 27}{ \pm 1 \pm \log _{2} y}$ (but allow for no bases). <br> Allow at most 2 manipulation errors (eg $+/-$ or $\mathrm{x} / \div$ muddles, or slips when expanding brackets) but M0 if other errors (eg incorrect use of logs). |
|  |  |  | $27 y^{3}=8$ | M1d* | Use $\mathrm{f}(y)=2^{k}$ as inverse of $\log _{2} \mathrm{f}(y)=k$ | Must have first been arranged to $\log _{2} \mathrm{f}(\mathrm{y})=k$. No need to go any further than stating their $f(y)=2^{k}$. |
|  |  |  |  | A1* | Obtain correct exact equation no longer involving $\log _{2} y$ | Equation could still involve constant terms such as $\log _{2} 27$ or $\log _{2} 3$. <br> Sight of decimals used is A0, even if answer is exact. |
|  |  |  | $\begin{aligned} & y^{3}=8 / 27 \\ & y=2 / 3 \end{aligned}$ | A1d* | Obtain 2/3 | Allow equiv recurring decimal, but not $0.666 \ldots$ A0 if still cube root present. |
|  |  |  |  | [5] |  | $\mathbf{S R}$ answer only is $\mathbf{B 3}$ <br> Correct $S_{\infty}=3$, then answer with no further working is $\mathbf{B} 3$. |




| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (i) | $\begin{aligned} & 2 k \times 3=9 \\ & k=1.5 \end{aligned}$ | M1 <br> A1 <br> [2] | Attempt to find $k$ <br> Obtain $k=1.5$ | Substitute $x=2$ and $^{\mathrm{dy}} / \mathrm{dx}=9$ into given differential equation and attempt to find $k$ <br> Allow any exact equiv. including $9 / 6$ |
| 3 | (ii) | $\begin{aligned} & y=x^{3}-0.75 x^{2}+c \\ & 7=8-3+c \text { hence } c=2 \\ & y=x^{3}-0.75 x^{2}+2 \end{aligned}$ | M1 | Expand bracket and attempt integration | M0 if bracket not expanded first M1 can still be gained for integrating an incorrect expansion as long as there are two terms For an 'integration attempt' there must be an increase in power by 1 for both terms |
|  |  |  | A1ft | Obtain at least one correct term (allow still in terms of $k$ ) | Follow through on their value of $k$ (but not on an incorrect expansion at start of part (ii)) Can also get A1 if still in terms of $k$ Allow unsimplified coefficients |
|  |  |  | A1 | Obtain $x^{3}-0.75 x^{2}$ (condone no $+c$ ) | Must now be numerical, and no f-t <br> Allow unsimplified coefficients A0 if integral sign or $\mathrm{d} x$ still present, unless it later disappears |
|  |  |  | M1 | Attempt to find c using (2, 7) | There must have been an attempt at integration, but can follow M0 eg if the bracket was not expanded first Need to get as far as actually attempting $c$ M1 could be implied by eg 7=8-3 followed by an attempt to include a constant to balance the equation M0 if no $+c$ seen or implied M0 if using $x=7, y=2$ |
|  |  |  | A1 [5] | Obtain $y=x^{3}-0.75 x^{2}+2$ | Coefficients now need to be simplified ( 0.75 or $3 / 4$ ) <br> Must be an equation ie $y=\ldots$, so A0 for ' $\mathrm{f}(x)=\ldots$... or 'equation = ...' <br> Allow aef, such as $4 y=4 x^{3}-3 x^{2}+8$ |






| Question |  |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (ii) | (b) | $\begin{aligned} & (2 x-7) /(x+4)={ }^{(x+4)} / 2 x \\ & 4 x^{2}-14 x=x^{2}+8 x+16 \end{aligned}$ <br> OR $\begin{aligned} & 2 x r=x+4 \quad 2 x r^{2}=2 x-7 \\ & 3 x^{2}-22 x-16=0 \\ & (3 x+2)(x-8)=0 \\ & x=-2 / 3, x=8 \end{aligned}$ |  | Attempt to eliminate $r$ to obtain equation in $x$ only <br> Obtain $3 x^{2}-22 x-16=0$ <br> Attempt to solve quadratic <br> Obtain $x=-2 / 3$ | Equate two expressions for $r$, both in terms of $x$ Could use $a r^{n-1}$ twice, and then eliminate $r$ from simultaneous eqns <br> Allow $6 x^{2}-44 x-32=0$ <br> Allow $3 x^{3}-22 x^{2}-16 x=0$, or a multiple of this <br> Allow any equivalent form, as long as no brackets and <br> like terms have been combined <br> Condone no $=0$, as long as implied by subsequent work <br> Dependent on first M1 for valid method to eliminate $r$ <br> See guidance sheet for acceptable methods <br> Allow recurring decimal, but not rounded or truncated Condone $x=8$ also given <br> Allow from no working or T\&I |
| 7 | (i) |  | $\cos ^{-16} / 7=0.5411 \quad$ AG | M1 <br> A1 <br> [2] | Attempt correct method to find angle $C A B$ <br> Obtain 0.5411 | Either use cosine rule or right-angled trigonometry Allow M1 for $\cos A=6 / 7$ or equiv from cosine rule If first finding another angle, they must get as far as attempting angle $C A B$ for the M1 <br> Allow in degrees or radians <br> Must be given to exactly 4sf, as per question <br> If angle found as $31^{\circ}$ then conversion to radians must be shown explicitly |



| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | (iii) |  | M1* | Attempt area of one sector using $(1 / 2) \times 7^{2} \times \theta$, or equiv | Allow if using $\theta=0.5411$ not 1.0822 <br> Allow M1 if 13.3 or 26.5 seen with no method <br> M0 if using angle other than 0.5411 or 1.0822 (inc M0 for $1.0822 \pi$ ) unless clearly intended as correct angle Allow equivalent method using fractions of the circle Allow valid method with degrees, but M0 for $(1 / 2) r^{2} \theta$ with $\theta$ in degrees <br> Condone omission of $1 / 2$, but no other error <br> May be seen explicitly or implied in method eg as part of $1 / 2 r^{2}(\theta-\sin \theta)$ |
|  |  |  | M1* | Attempt area of relevant triangle or area of rhombus | Condone omission of $1 / 2$ from $1 / 2 a b \sin \theta$ <br> Allow if using $\theta=0.5411$ not 1.0822 in $(1 / 2) \times 7^{2} \times \sin \theta$ <br> Allow if attempting area of triangle $A B C$ <br> Could be using radians or degrees <br> Allow even if evaluated in incorrect mode <br> If using a right-angled triangle, it must be $1 / 2 b h$, and valid use of trig to find $b$ or $h$ |
|  |  |  | A1 | Obtain 4.88, or better, either as final answer or soi in method | Could come from finding area of segment but omitting to double it <br> Allow inaccuracy - values in range [4.85, 4.9] <br> Allow even if value not seen explicitly - could be implied by part of a calculation or even by final answer |
|  |  |  | M1d* | Attempt correct method to find required area | Must be full and valid method - including attempted use of correct angle and subtraction in correct order Could find area of one segment and double it Other methods are possible eg 2 x sector minus rhombus |
|  |  |  | A1 <br> [5] | Obtain 9.76, or better | Allow answer rounding to 9.76, no errors seen |





| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (ii) | $\begin{aligned} & \mathrm{f}(1)=3-5+2=0 \quad \text { AG } \\ & \mathrm{f}(a)=(a-1)\left(3 a^{2}-2 a-2\right) \\ & a=\frac{2 \pm \sqrt{4+24}}{6}=\frac{2 \pm 2 \sqrt{7}}{6}=\frac{1 \pm \sqrt{7}}{3} \\ & \text { hence } a=1 / 3(1+\sqrt{7}) \end{aligned}$ | B1 | Confirm $f(1)=0-$ detail required | Allow working in $\boldsymbol{x}$ not $\boldsymbol{a}$ throughout <br> $3(1)^{3}-5(1)^{2}+2=0$ is enough <br> B0 for just $f(1)=0$ <br> If using division must show '0' on last line <br> If using coefficient matching must show ' $\mathrm{R}=0$ ' <br> If using inspection then there must be some indication of no remainder eg expand to show correct cubic |
|  |  |  | M1 | Attempt full division by ( $a-1$ ), or equiv method | Must be complete method - ie all 3 terms attempted Long division - must subtract lower line (allow one slip) Inspection - expansion must give at least three correct terms of the cubic Coefficient matching - must be valid attempt at all coeffs of quadratic, considering all relevant terms each time |
|  |  |  | A1 | Obtain $3 a^{2}$ and one other correct term | Could be middle or final term depending on method Must be correctly obtained Coeff matching - allow for $A=3$ etc |
|  |  |  | A1 | Obtain fully correct quotient | Could appear as quotient in long division, or as part of a product if using inspection. For coeff matching it must now be explicit not just $A=3, B=-2, C=-2$ |
|  |  |  | M1 | Attempt to solve quadratic | Using the quadratic formula, or completing the square (see guidance sheet) though negative root may be lost at any point <br> M0 if factorising attempt as expected root is a surd Quadratic must come from division attempt, even if this was not good enough for first M1 |
|  |  |  | A1 [6] | Obtain ${ }^{1 / 3}(1+\sqrt{ } 7)$ only | Must give the positive root only, so A0 if negative root still present (but condone $a=1$ also given) Allow aef but must be a simplified surd as per request on question paper (ie simplify $\sqrt{ } 28$ ) |



| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (i) | $1 / 2 x=53.1^{\circ}, 126.9^{\circ}$ $x=106^{\circ}, 254^{\circ}$ | B1 <br> M1 <br> A1 <br> [3] | Obtain $106^{\circ}$, or better <br> Attempt correct solution method to find second angle <br> Obtain $254^{\circ}$, or better | Allow answers in the range [106.2, 106.3] Ignore any other solutions for this mark Must be in degrees, so 1.85 rad is B 0 <br> Could be $2\left(180^{\circ}-\right.$ their $\left.53.1^{\circ}\right)$ or $\left(360^{\circ}\right.$ - their $\left.106^{\circ}\right)$ <br> Allow valid method in radians, but M0 for eg (360-1.85) <br> Allow answers in the range [253.7 ${ }^{\circ}$, $254^{\circ}$ ] <br> A0 if in radians (4.43) <br> A0 if extra incorrect solutions in range <br> SR If no working shown then allow B1 for $106^{\circ}$ and B2 for $254^{\circ}$ (max B2 if additional incorrect angles) |
| 2 | (ii) | $\tan x=3$ $x=71.6^{\circ}, 252^{\circ}$ | B1 <br> M1 <br> A1 <br> [3] | State $\tan x=3$ <br> Attempt to solve $\tan x=k$ <br> Obtain $71.6^{\circ}$ and $252^{\circ}$, or better | Allow B1 for correct equation even if no, or an incorrect, attempt to solve <br>  equation is seen or implied at some stage <br> Not dep on B1, so could gain M1 for solving eg $\tan x=1 / 3$ Could be implied by a correct solution <br> A0 if extra incorrect solutions in range <br> Alt method: <br> B1 Obtain $10 \sin ^{2} x=9$ or $10 \cos ^{2} x=1$ <br> M1 Attempt to solve $\sin ^{2} x=k$ or $\cos ^{2} x=k$ (allow M1 if just the positive square root used) <br> A1 Obtain $71.6^{\circ}$ and $252^{\circ}$, with no extra incorrect solutions in range <br> SR If no working shown at all then allow B1 for each correct angle (max B1 if additional incorrect angles), but allow full credit if $\tan x=3$ seen first |


| Question |  | Answer$(2+5 x)^{6}=64+960 x+6000 x^{2}$ | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (i) |  | M1 | Attempt at least first 2 termsproducts of binomial coeff and correct powers of 2 and $5 x$ | Must be clear intention to use correct powers of 2 and $5 x$ Binomial coeff must be 6 soi; ${ }^{6} \mathrm{C}_{1}$ is not yet enough Allow BOD if 6 results from $6 / 1$ Allow M1 if expanding $k\left(1+\frac{5}{2} x\right)^{6}$, any $k$ |
|  |  |  | A1 | Obtain $64+960 x$ | Allow $2^{6}$ for 64 <br> Allow if terms given as list rather than linked by ' + ' |
|  |  |  | M1 | Attempt 3rd term - product of binomial coeff and correct powers of 2 and $5 x$ | Allow M1 for $5 x^{2}$ rather than $(5 x)^{2}$ <br> Binomial coeff must be $15 \mathrm{soi} ;{ }^{6} \mathrm{C}_{2}$ is not yet enough Allow M1 if expanding $k\left(1+\frac{5}{2} x\right)^{6}$, any $k$ $1200 x^{2}$ implies M1, as long as no errors seen (including no working shown) |
|  |  |  | A1 [4] | Obtain 6000x ${ }^{2}$ | A0 if an otherwise correct expansion is subsequently spoiled by attempt to simplify eg $4+60 x+375 x^{2}$ <br> If expanding brackets: <br> Mark as above, but must consider all 6 brackets for the M marks (allow irrelevant terms to be discarded) |
| 3 | (ii) | $(9+6 c x \ldots)(64+960 x+\ldots)$ | M1* | Expand first bracket and attempt at least one relevant product | Expansion of first bracket does not have to be correct, but must be attempted so M0 if using $(3+c x)(64+960 x . .$. No need to see third term in expansion of first bracket Must then consider a product and not just use $6 c+960$ Expansion could include irrelevant / incorrect terms Using an incorrect expansion associated with part (i) can get M1 M1 |
|  |  | $\begin{aligned} & (9 \times 960)+(6 c \times 64)=4416 \\ & 8640+384 c=4416 \\ & 384 c=-4224 \end{aligned}$ | M1d* | Equate sum of the two relevant terms to 4416 and attempt to solve for $c$ | Must now consider just the two relevant terms M0 if additional terms, even if error has resulted in $k x$ BOD if presence of $x$ is inconsistent within equation |
|  |  | $c=-11$ | $\begin{aligned} & \text { A1 } \\ & \text { [3] } \end{aligned}$ | Obtain $c=-11$ | A 0 for $c=-11 x$ |

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Answer \& Marks \& \multicolumn{2}{|r|}{Guidance} <br>
\hline \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{(a)} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{$5 / 4 x^{4}-3 x^{2}+x+c$} \& M1 \& Attempt integration \& Increase in power by 1 for at least two of the three terms Allow M1 if the +1 disappears <br>
\hline \& \& \& \& A1 \& Obtain at least 2 correct (algebraic) terms \& Integral must be of form $a x^{4}+b x^{2}+c x$ Allow for unsimplified $\frac{6}{2} x^{2}$ and/or $1 x$ <br>
\hline \& \& \& \& A1
[3] \& Obtain a fully correct integral, including $+c$ \& Coeff of $x^{2}$ must now be simplified, as well as $x$ not $1 x$ A0 if integral sign or $\mathrm{d} x$ still present in final answer Ignore notation on LHS such as $\int=\ldots, y=\ldots,{ }^{\mathrm{d} y} / \mathrm{d} x=\ldots$ <br>
\hline \multirow[t]{2}{*}{4} \& \multirow[t]{2}{*}{(b)} \& \multirow[t]{2}{*}{(i)} \& \multirow[t]{2}{*}{$-12 x^{-2}+c$} \& M1 \& Obtain integral of form $k x^{-2}$ \& Any $k$, including unsimplified <br>
\hline \& \& \& \& A1

[2] \& Obtain fully correct integral, including $+c$ \& Coeff must now be simplified A0 if integral sign or $\mathrm{d} x$ still present in final answer Do not penalise again if already penalised in part (a), even if different error including omission of $+c$ Ignore notation on LHS such as $\int=\ldots, y=\ldots,{ }^{\text {dy }} / \mathrm{d} x=\ldots$ <br>
\hline \multirow[t]{4}{*}{4} \& \multirow[t]{4}{*}{(b)} \& \multirow[t]{4}{*}{(ii)} \& $(0)-\left(-12 a^{-2}\right)=3$ \& M1* \& Attempt $\mathrm{F}(\infty)-\mathrm{F}(a)$ and use or imply that $\mathrm{F}(\infty)=0$ \& Must be subtraction and correct order Could use a symbol for the upper limit, eg $s$, and then consider $s \rightarrow \infty$ $0-12 a^{-2}$, with no other supporting method, is M0 as this implies addition Allow BOD for $-12 \times(0)^{-2}$ as long as it then becomes 0 Allow M1 for using incorrect integral from (b)(i) as long as it is of the form $k x^{-n}$ with $n \neq 3$ <br>

\hline \& \& \& $$
a^{2}=4
$$ \& M1d* \& Equate to 3 and attempt to find $a$ \& Dependent on first M1 soi Allow muddle with fractions eg $a^{2}=1 / 4$ <br>

\hline \& \& \& $a=2$ \& A1 \& Obtain $a=2$ only \& A0 if -2 still present as well <br>

\hline \& \& \& \& [3] \& \& | Answer only is $0 / 3$ |
| :--- |
| NB watch for $a=2$ as a result of solving $24 a^{-3}=3$, which gets no credit | <br>

\hline
\end{tabular}

| Question |  |  | $\begin{array}{\|c\|} \hline \text { Marks } \\ \hline \text { M1* } \end{array}$ | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (i) | $\begin{aligned} \text { sector area } & =1 / 2 \times 16^{2} \times 0.8 \\ & =102.4 \end{aligned}$ | M1* | Attempt area of sector using $(1 / 2) r^{2} \theta$, or equiv | Condone omission of $1 / 2$, but no other errors <br> Must have $r=16$, not 7 <br> M0 if $0.8 \pi$ used not 0.8 <br> M0 if $(1 / 2) r^{2} \theta$ used with $\theta$ in degrees <br> Allow equiv method using fractions of a circle |
|  |  | $\begin{aligned} \text { triangle area } & =1 / 2 \times 16 \times 7 \times \sin 0.8 \\ & =40.2 \end{aligned}$ | M1* | Attempt area of triangle using ( $1 / 2$ ) $a b s i n C$ or equiv | Condone omission of $1 / 2$, but no other errors <br> Angle could be in radians ( 0.8 not $0.8 \pi$ ) or degrees ( $45.8^{\circ}$ ) Must have sides of 16 and 7 <br> Allow even if evaluated in incorrect mode (gives 0.78 ) If using $1 / 2 \times b \times h$, then must be valid use of trig to find $b$ and $h$ |
|  |  |  | M1d* | Attempt area of sector - area of triangle | Using $1 / 2 \times 16^{2} \times(0.8-\sin 0.8)$ will get M1 M0 M0 |
|  |  | area $B D C=62.2 \mathrm{~cm}^{2}$ | $\begin{aligned} & \text { A1 } \\ & \text { [4] } \end{aligned}$ | Obtain 62.2, or better | Allow answers in range [62.20, 62.25] if > 3sf |
| 5 | (ii) | $\begin{aligned} & B D^{2}=\left(16^{2}+7^{2}-2 \times 16 \times 7 \times \cos 0.8\right) \\ & B D=12.2 \end{aligned}$ | M1 | Attempt length of $B D$ using correct cosine rule | Must be correct cosine rule <br> Allow M1 if not square rooted, as long as $B D^{2}$ seen <br> M0 if $0.8 \pi$ used not 0.8 <br> Allow if evaluated in degree mode (gives 9.00) <br> Allow if incorrectly evaluated - using $\left(16^{2}+7^{2}-2 \times 16 \times 7\right) \times \cos 0.8 \text { gives } 7.51$ <br> Allow any equiv method, as long as valid use of trig Attempting the cosine rule in part (i) will only get credit if result appears in part (ii) |
|  |  |  | A1 | Obtain 12.2, or better | Allow any answer rounding to 12.2, with no errors seen Could be implied in method rather than explicit |
|  |  | $\operatorname{arc} B C=16 \times 0.8=12.8$ | B1 | State or imply that arc $B C$ is 12.8 | Allow if $16 \times 0.8$ seen, even if incorrectly evaluated |
|  |  | per $=12.2+12.8+9=34.0 \mathrm{~cm}$ | $\begin{aligned} & \text { A1 } \\ & {[4]} \end{aligned}$ | Obtain 34, or better | Accept 34 or 34.0 , or any answer rounding to 34.0 if $>3$ sf |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (i) | $\begin{aligned} & S_{30}=3 / 2(2 \times 6+29 \times 1.8) \\ & \\ &=963\end{aligned}$ | A1 | Use $d=1.8$ in AP formula | Could be attempting $S_{30}$ or $u_{30}$ <br> Formula must be recognisable, though not necessarily fully correct, so allow M1 for eg $15(6+29 \times 1.8)$, $15(12+14 \times 1.8)$ or even $15(12+19 \times 1.8)$ <br> Must have $d=1.8$ (not 1.3), $n=30$ and $a=6$ |
|  |  | $=963$ |  | Correct unsimplified $S_{30}$ | Formula must now be fully correct Allow for any unsimplified correct expression If using $\frac{1}{2} n(a+l)$ then $l$ must be correct when substituted |
|  |  |  | A1 <br> [3] | Obtain 963 | Units not required |
| 6 | (ii) | $r=7.8 /{ }_{6}=1.3$ | M1 | Use $r=1.3$ in GP formula | Could be attempting $S_{N}, u_{N}$ or even $S_{\infty}$ <br> Formula must be recognisable, though not necessarily <br> fully correct <br> Must have $r=1.3$ (not 1.8) and $a=6$ |
|  |  | $\frac{6\left(1-1.3^{N}\right)}{1-1.3} \leq 1800$ | A1 | Correct unsimplified $S_{N}$ | Formula must now be fully correct <br> Allow for any unsimplified correct expression |
|  |  | $1-1.3^{N} \geq-90$ | M1 | Link sum of GP to 1800 and attempt to rearrange to $1.3^{N} \leq k$ | Must have used correct formula for $S_{N}$ of GP <br> Allow $=, \geq$ or $\leq$ <br> Allow slips when rearranging, including with indices, so rearranging to $7.8^{N} \leq k$ could get M1 |
|  |  | $1.3^{N} \leq 91 \quad$ AG | A1 | Obtain given inequality | Must have correct inequality signs throughout Correct working only, so A0 if $6 \times 1.3^{N}$ becomes $7.8^{N}$, even if subsequently corrected |


| Question | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | $N \log 1.3 \leq \log 91$ | M1 | Introduce logs throughout and attempt to solve equation / inequality | Must be using $1.3^{N} \leq 91,1.3^{N}=91$ or $1.3^{N} \geq 91$ <br> This M1 (and then A1) is independent of previous marks <br> Must get as far as attempting $N$ <br> M0 if no evidence of use of logarithms <br> M0 if invalid use of logarithms in attempt to solve |
|  | $N \leq 17.19$ hence $N=17$ | A1 | Conclude $N=17$ | Must come from solving $1.3^{N} \leq 91$ or $1.3^{N}=91$ (ie not incorrect inequality sign) <br> Answer must be integer value <br> Answer must be equality, so A0 for $N \leq 17$ |
|  |  |  |  | SR <br> Candidates who use numerical value(s) for $N$ can get <br> M1 Use $r=1.3$ in a recognisable GP formula (M0 if $N$ is not an integer value) <br> A1 Obtain a correct unsimplified $S_{N}$ |
|  |  |  |  | Candidates who solve $1.3^{N} \leq 91$ and then use a value associated with their $N$ (usually 17 and/or 18) in a GP formula will be eligible for the M1A1 for solving the inequality and also the M1A1 in the SR above |
|  |  | [6] |  |  |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | (i) | $\int_{1}^{4}\left(x^{\frac{3}{2}}-1\right) \mathrm{d} x=\left[\frac{2}{5} x^{\frac{5}{2}}-x\right]_{1}^{4}$ | M1 | Attempt integration | Increase in power by 1 for at least one term - allow the -1 to disappear |
|  |  |  | A1 | Obtain fully correct integral | Coeff could be unsimplified eg $1 / 2.5$ Could have $+c$ present |
|  |  |  | M1 | Attempt correct use of limits | Must be explicitly attempting $F(4)-F(1)$, either by clear substitution of 4 and 1 or by showing at least (8.8) - ( -0.6 ) Allow M1 if $+c$ still present in both $F(4)$ and $F(1)$, but M0 if their $c$ is now numerical Allow use in any function other than the original |
|  |  |  | A1 [4] | Obtain $9^{2} / 5$ | AG, so check method carefully Allow $47 / 5$ or 9.4 |
| 7 | (ii) | $\begin{aligned} & m=\frac{3}{2} \times \sqrt{4}=3 \\ & y=3 x-5 \end{aligned}$ <br> tangent crosses $x$-axis at $\left(\frac{5}{3}, 0\right)$ $\begin{aligned} \text { area of triangle } & =1 / 2 \times\left(4-\frac{5}{3}\right) \times 7 \\ & =8^{1 / 6} \end{aligned}$ <br> shaded area $=9^{2} /{ }_{5}-8^{1} /{ }_{6}=1^{7} / 30$ | M1* | Attempt to find gradient at (4, 7) using differentiation | Must be reasonable attempt at differentiation ie decrease the power by 1 <br> Need to actually evaluate derivative at $x=4$ |
|  |  |  | M1d* | Attempt to find point of intersection of tangent with $x$-axis or attempt to find base of triangle | Could attempt equation of tangent and use $y=0$ <br> Could use equiv method with gradient eg $3={ }^{7} /{ }_{4-x}$ <br> Could just find base of triangle using gradient eg $3={ }^{7} / b$ |
|  |  |  | A1 | Obtain $x=\frac{5}{3}$ as pt of intersection or obtain ${ }^{7} / 3$ as base of triangle | Allow decimal equiv, such as $1.7,1.67$ or even 1.6 www Allow M1M1A1 for $x=5 / 3$ with no method shown |
|  |  |  | M1d** | Attempt complete method to find shaded area | Dependent on both previous M marks <br> Find area of triangle and subtract from $9^{2} / 5$ <br> Must have $1<$ their $x<4$, and area of triangle $<9^{2} / 5$ If using $\int(3 x-5) \mathrm{d} x$ then limits must be 4 and their $x$ M1 for area of trapezium - area between curve and $y$-axis |
|  |  |  | A1 <br> [5] | Obtain $1^{7} / 30$, or exact equiv | A0 for decimal answer (1.23), unless clearly a recurring decimal (but not eg 1.2333...) |


| Question |  |  | Answer | Marks B1 | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | (i) | (a) | $(0,1)$ |  | State (0, 1) | Allow no brackets <br> B1 for $x=0, y=1$ - must have $x=0$ stated explicitly <br> B0 for $y=a^{0}=1$ (as $x=0$ is implicit) |
|  |  | (b) | $(0,4)$ | B1 [1] | State (0, 4) | Allow no brackets <br> B1 for $x=0, y=4$ - must have $x=0$ stated explicitly <br> B0 for $y=4 b^{0}=4$ (as $x=0$ is implicit) |
|  |  | (c) | State a possible value for $a$ | B1 | Must satisfy $a>1$ | Must be a single value Could be irrational eg $e$ Must be fully correct so B0 for eg 'any positive number such as 3' |
|  |  |  | State a possible value for $b$ | B1 <br> [2] | Must satisfy $0<b<1$ | Must be a single value <br> Could be irrational eg $e^{-1}$ <br> Must be fully correct <br> SR allow B1 if both $a$ and $b$ given correctly as a range of values |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer \& Marks \& \multicolumn{2}{|r|}{Guidance} \\
\hline 8 \& (ii) \& \(\log _{2} a^{x}=\log _{2}\left(4 b^{x}\right)\) \& M1 \& Equate \(a^{x}\) and \(4 b^{x}\) and introduce logarithms at some stage \& Could either use the two given equations, or \(b\) could have already been eliminated so using two eqns in \(a\) only Must take logs of each side soi so M0 for \(4 \log _{2}\left(b^{x}\right)\) Allow just log, with no base specified, or \(\log _{2}\) Allow logs to any base, or no base, as long as consistent \\
\hline \& \& \(\log _{2} a^{x}=\log _{2} 4+\log _{2} b^{x}\) \& M1 \& Use \(\log a b=\log a+\log b\) correctly \& \begin{tabular}{l}
Or correct use of \(\log \frac{a}{b}=\log a-\log b\) \\
Used on a correct expression eg \(\log _{2}\left(4 b^{x}\right)\) or \(\log _{2} 4\left({ }^{2} / a\right)^{x}\) \\
Equation could either have both \(a\) and \(b\) or just \(a\) \\
Must be used on an expression associated with \(a^{x}=4 b^{x}\), \\
either before or after substitution, so M0 for \(\log _{2}(a b)=1\) \\
hence \(\log _{2} a+\log _{2} b=1\) \\
Could be an equiv method with indices before using logs eg \(a^{2 x}=4 \times 2^{x}\) hence \(a^{2 x}=2^{2+x}\)
\end{tabular} \\
\hline \& \& \[
x \log _{2} a=\log _{2} 4+x \log _{2} b
\] \& M1 \& Use \(\log a^{b}=b \log a\) correctly at least once \& Allow if used on an expression that is possibly incorrect Allow M1 for \(x \log _{2} a=x \log _{2} 4 b\) as one use is correct Equation could either have both \(a\) and \(b\) or just \(a\) \\
\hline \& \& \(x \log _{2} a=\log _{2} 4+x \log _{2}(2 / a)\) \& B1 \& Use \(b={ }^{2} / a\) to produce a correct equation in \(a\) and \(x\) only \& \begin{tabular}{l}
Can be gained at any stage, including before use of logs If logs involved then allow for no, or incorrect, base as long as equation is fully correct - ie if \(\log 2^{k}=k\) used then base must be 2 throughout equation Could be an equiv method eg \((a \times a)^{x}=4(a \times b)^{x}\) hence \(a^{2 x}=4 \times 2^{x}\) \\
Must be eliminating \(b\), so \((2 / b)^{x}=4 b^{x}\) is B0 unless the equation is later changed to being in terms of \(a\)
\end{tabular} \\
\hline \& \& \[
\begin{aligned}
\& x \log _{2} a=2+x \log _{2} 2-x \log _{2} a \\
\& x\left(2 \log _{2} a-1\right)=2 \\
\& x=\frac{2}{2 \log _{2} a-1} \text { AG }
\end{aligned}
\] \& A1

[5] \& Obtain given relationship with no wrong working \& | Proof must be fully correct with enough detail to be convincing |
| :--- |
| Must use $\log _{2}$ throughout proof for A1 - allow 1 slip |
| Using numerical values for $a$ and $b$ will gain no credit Working with equation(s) involving $y$ is M0 unless $y$ is subsequently eliminated | <br>

\hline
\end{tabular}

| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (i) | $f(2)=32-14-3=15$ | M1 <br> A1 <br> [2] | Attempt f(2) or equiv <br> Obtain 15 | M0 for using $x=-2$ (even if stated to be $\mathrm{f}(2)$ ) <br> At least one of the first two terms must be of the correct sign <br> Must be evaluated and not just substituted Allow any other valid method as long as remainder is attempted (see guidance in part (ii) for acceptable methods) <br> Do not ISW if subsequently given as -15 If using division, just seeing 15 on bottom line is fine unless subsequently contradicted by eg -15 or ${ }^{15} / x-2$ |
| 9 | (ii) | $\mathrm{f}\left(\mathrm{f}^{-1} / 2\right)={ }^{-1} / 2+7 / 2-3=0 \quad \text { AG }$ $\mathrm{f}(x)=(2 x+1)\left(2 x^{2}-x-3\right)$ | B1 | Confirm $f\left({ }^{-1} / 2\right)=0$, with at least one line of working <br> Attempt complete division by ( $2 x+1$ ), or another correct factor | $4\left({ }^{-1} / 2\right)^{3}-7\left({ }^{-1} / 2\right)-3=0$ is enough <br> B0 for just $f\left({ }^{-1} / 2\right)=0$ <br> If, and only if, $\mathrm{f}^{-1 / 2}$ ) is not attempted then allow B1 for other evidence such as division / coeff matching etc If using division must show '0' on last line or make equiv comment such as 'no remainder' If using coefficient matching must show ' $\mathrm{R}=0$ ' Just writing $\mathrm{f}(x)$ as the product of the three correct factors is not enough evidence on its own for B1 <br> Could divide by $(x+1),(x+1 / 2),(2 x-3),\left(x-\frac{3}{2}\right)$ Must be complete method - ie all 3 terms attempted Long division - must subtract lower line (allow one slip) Inspection - expansion must give at least three correct terms of the cubic <br> Coefficient matching - must be valid attempt at all coeffs of quadratic, considering all relevant terms each time |


| Question | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :--- | :--- |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (iii) | $\begin{aligned} & 2 \cos \theta+1=0 \quad \cos \theta+1=0 \\ & 2 \cos \theta-3=0 \end{aligned}$ | M1* | Identify relationship between factors of $\mathrm{f}(\cos \theta)$ and factors of $\mathrm{f}(x)$ | Replace $x$ with $\cos \theta$ in at least one of their factors (could be implied by later working, inc their solutions) |
|  |  | $\begin{array}{ll} \cos \theta=-1 / 2 \\ \cos \theta=3 / 2 \end{array} \quad \cos \theta=-1$ | M1d* | Attempt to solve $\cos \theta=k$ at least once | Must actually attempt $\theta$, with $-1 \leq k \leq 1$ |
|  |  | $\theta=2 \pi / 3,4 \pi / 3 \quad \theta=\pi$ | A1 | Obtain at least 2 correct angles | Allow angles in degrees $\left(120^{\circ}, 240^{\circ}, 180^{\circ}\right)$ <br> Allow decimal equivs ( $2.09,4.19,3.14$ ) <br> Allow if $2 \cos \theta+1=0$ is the only factor used, or if other incorrect factors are also used <br> Allow M1M1A1 for 2 correct angles with no working shown |
|  |  |  | A1 | Obtain all 3 correct angles | Must be exact and in radians <br> A0 if additional incorrect angles in range <br> Allow full credit if no working shown <br> Angles must come from 3 correct roots of $\mathrm{f}(x)$, but allow if a factor was eg $\left(x-\frac{3}{2}\right)$ not $(2 x-3)$ <br> A0 if incorrect root, even if it doesn't affect the three solutions eg one of their factors was $(2 x+3)$ not $(2 x-3)$ |
|  |  |  | [4] |  |  |


| Question |  | Answer | Marks |  | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | (i) | $\begin{aligned} & \tan x(\sin x-\cos x)=6 \cos x \\ & \tan x(\sin x / \cos x-1)=6 \\ & \tan x(\tan x-1)=6 \\ & \tan ^{2} x-\tan x=6 \\ & \tan ^{2} x-\tan x-6=0 \quad \text { AG } \end{aligned}$ | M1 <br> A1 <br> [2] | Use $\tan x=\frac{\sin x}{\cos x}$ correctly once <br> Obtain $\tan ^{2} x-\tan x-6=0$ | Must be used clearly at least once - either explicitly or by writing eg 'divide by $\cos x$ ' at side of solution <br> Allow M1 for any equiv eg $\sin x=\cos x \tan x$ Allow poor notation eg writing just tan rather than $\tan x$ <br> Correct equation in given form, including $=0$ Correct notation throughout so A0 if eg tan rather than $\tan x$ seen in solution |
|  | (ii) | $\begin{aligned} & (\tan x-3)(\tan x+2)=0 \\ & \tan x=3, \tan x=-2 \end{aligned}$$x=\tan ^{-1}(3), x=\tan ^{-1}(-2)$ | M1 | Attempt to solve quadratic in tan $x$ | This M mark is just for solving a 3 term quadratic (see guidance sheet for acceptable methods) Condone any substitution used, inc $x=\tan x$ |
|  |  |  | M1 | Attempt to solve $\tan x=k$ at least once | Attempt $\tan ^{-1} k$ at least once <br> Not dependent on previous mark so M0M1 possible If going straight from $\tan x=k$ to $x=\ldots$, then award M1 only if their angle is consistent with their $k$ |
|  |  | $x=71.6^{\circ}, 252^{\circ}, 117^{\circ}, 297^{\circ}$ | A1 | Obtain two correct solutions | Allow 3sf or better <br> Must come from a correct method to solve the quadratic (as far as correct factorisation or substitution into formula) <br> Allow radian equivs ie 1.25 / 4.39 / 2.03 / 5.18 |
|  |  |  | A1 | Obtain all 4 correct solutions, and no others in range | Must now all be in degrees <br> Allow 3sf or better <br> A0 if other incorrect solutions in range $0^{\circ}-360^{\circ}$ (but ignore any outside this range) <br> SR If no working shown then allow $\mathbf{B 1}$ for each correct solution <br> (max of B3 if in radians, or if extra solns in range). |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer \& Marks \& \& Guidance \\
\hline \multirow[t]{6}{*}{5} \& \& \multirow[t]{2}{*}{\((4 x-1) \log _{10} 2=(5-2 x) \log _{10} 3\)} \& M1* \& Introduce logs throughout and drop power(s) \& \begin{tabular}{l}
Allow no base or base other than 10 as long as consistent, including \(\log _{3}\) on LHS or \(\log _{2}\) on RHS \\
Drop single power if \(\log _{3}\) or \(\log _{2}\) or both powers if any other base
\end{tabular} \\
\hline \& \& \& A1 \& \[
\begin{aligned}
\& \text { Obtain }(4 x-1) \log _{10} 2= \\
\& (5-2 x) \log _{10} 3
\end{aligned}
\] \& Brackets must be seen, or implied by later working Allow no base, or base other than 10 if consistent Any correct linear equation ie \(4 x-1=(5-2 x) \log _{2} 3\) or \((4 x-1) \log _{3} 2=5-2 x\) \\
\hline \& \& \[
x\left(4 \log _{10} 2+2 \log _{10} 3\right)=
\] \& M1* \& Attempt to make \(x\) the subject \& \begin{tabular}{l}
Expand bracket(s) and collect like terms - as far as their \(4 x \log _{10} 2+2 x \log _{10} 3=\log _{10} 2+5 \log _{10} 3\) \\
Expressions could include \(\log _{2} 3\) or \(\log _{3} 2\) \\
Must be working exactly, so M0 if \(\log (\mathrm{s})\) now decimal equivs
\end{tabular} \\
\hline \& \& \& A1 \& Obtain a correct equation in which \(x\) only appears once \& \begin{tabular}{l}
LHS could be \(x\left(4 \log _{10} 2+2 \log _{10} 3\right), x \log _{10} 144\) or even \(\log _{10} 144^{x}\) \\
Expressions could include \(\log _{2} 3\) or \(\log _{3} 2\) \\
RHS may be two terms or single term
\end{tabular} \\
\hline \& \& \(x \log _{10} 144=\log _{10} 486\) \& M1d* \& Attempt correct processes to combine logs \& \begin{tabular}{l}
Use \(b \log a=\log a^{b}\), then \(\log a+\log b=\log a b\) correctly on at least one side of equation (or \(\log a-\log b\) ) \\
Dependent on previous M1 but not the A1 so \(\log _{10} 486\) will get this M1 irrespective of the LHS
\end{tabular} \\
\hline \& \& \[
x=\frac{\log _{10} 486}{\log _{10} 144}
\] \& A1

[6] \& Obtain correct final expression \& | Base 10 required in final answer - allow A1 if no base earlier, or if base 10 omitted at times, but A0 if different base seen previously (unless legitimate working to change base seen) |
| :--- |
| Do not isw subsequent incorrect $\log$ work eg $x={ }^{\log 27} / \log 8$ | <br>

\hline
\end{tabular}



| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (i) | $\begin{aligned} & \left(x^{3}\right)^{4}+4\left(x^{3}\right)^{3}\left(2 x^{-2}\right)+6\left(x^{3}\right)^{2}\left(2 x^{-2}\right)^{2}+ \\ & 4\left(x^{3}\right)\left(2 x^{-2}\right)^{3}+\left(2 x^{-2}\right)^{4} \\ & =x^{12}+8 x^{7}+24 x^{2}+32 x^{-3}+16 x^{-8} \end{aligned}$ | M1* | Attempt expansion - products of powers of $x^{3}$ and $2 x^{-2}$ | Must attempt at least 4 terms Each term must be an attempt at a product, including binomial coeffs if used Allow M1 if no longer $2 x^{-2}$ due to index errors Allow M1 for no, or incorrect, binomial coeffs Powers of $x^{3}$ and $2 x^{-2}$ must be intended to sum to 4 within each term (allow slips if intention correct) Allow M1 even if powers used incorrectly with $2 x^{-2}$ ie only applied to $x^{-2}$ and not to 2 as well Allow M1 for expansion of bracket in $x^{k}\left(1+2 x^{-5}\right)^{4}$ with $k=3$ or 12 only, or $x^{k}\left(x^{5}+2\right)^{4}$ with $k=-2$ or -8 only, oe |
|  |  |  | M1d* | Attempt to use correct binomial coeffs | At least 4 correct from 1, 4, 6, 4, 1 - allow missing or incorrect (but not if raised to a power) <br> May be implied rather than explicit Must be numerical eg ${ }^{4} \mathrm{C}_{1}$ is not enough They must be part of a product within each term The coefficient must be used in an attempt at the relevant term ie $6\left(x^{3}\right)^{3}\left(2 x^{-2}\right)$ is M0 Allow M1 for correct coefficients when expanding the bracket in $x^{k}\left(1+2 x^{-5}\right)^{4}$ or $x^{k}\left(x^{5}+2\right)^{4}$ $x^{12}+8 x^{7}+12 x^{2}+8 x^{-3}+2 x^{-8}$ gets M1 M1 implied (even if no method seen) - will also get the first A1 as well |
|  |  |  | A1 | Obtain two correct simplified terms | Either linked by ' + ' or as part of a list Powers and coefficients must be simplified |
|  |  |  | A1 | Obtain a further two correct terms | Either linked by ' + ' or as part of a list Powers and coefficients must be simplified |
|  |  |  | A1 [5] | Obtain a fully correct expansion | Terms must be linked by '+' and not just commas Powers and coefficients must be simplified A0 if subsequent attempt to simplify indices (eg x by $x^{8}$ ) |



| Quest | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 7 (i) | $\begin{aligned} & \mathrm{f}(-2)=12-22(-2)+9(-2)^{2}-(-2)^{3} \\ &=12+44+36+8 \\ & \\ & \\ &=100 \end{aligned}$ | M1 <br> A1 <br> [2] | Attempt $f(-2)$ or equiv <br> Obtain 100 | M0 for using $x=2$ (even if stated to be $\mathrm{f}(-2)$ ) Allow slips in evaluation as long as intention is clear At least one of the second or fourth terms must be of the correct sign <br> Allow any other valid method to divide by $(x+2)$ as long as remainder is attempted (see guidance in part (iii) for acceptable methods) <br> Do not ISW if subsequently given as -100 <br> If using division, just seeing 100 on bottom line is fine unless subsequently contradicted by eg -100 or ${ }^{100} / x+2$ |
| (ii) | $f(3)=12-66+81-27=0$ | B1 | Attempt f(3), and show $=0$ | $12-22(3)+9(3)^{2}-(3)^{3}=0$ is enough <br> B0 for just stating $f(3)=0$ <br> If using division must show ' 0 ' on last line or make equiv comment such as 'no remainder' <br> If using coefficient matching must show ' $\mathrm{R}=0$ ' <br> Just writing $\mathrm{f}(x)$ as the product of the linear factor and the correct quadratic factor is not enough evidence - need to show that the expansion would give $\mathrm{f}(x)$ Ignore incorrect terminology eg ' $x=3$ is a factor' or '(3-x) is a root' |


| Questi | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| (iii) | $f(x)=(3-x)\left(x^{2}-6 x+4\right)$ | M1 <br> A1 <br> A1 <br> [3] | Attempt complete division by $(3-x)$ or $(x-3)$, or equiv <br> Obtain $x^{2}-6 x+4$ or $-x^{2}+6 x-$ 4 <br> Obtain $(3-x)\left(x^{2}-6 x+4\right)$ or $(x-3)\left(-x^{2}+6 x-4\right)$ | Must be complete method - ie all 3 terms attempted Allow M1 if dividing $x^{3}-9 x^{2}+22 x-12$ by $(3-x)$ oe Long division - must subtract lower line (allow one slip) Inspection - expansion must give at least three correct terms of the cubic <br> Coefficient matching - must be valid attempt at all coeffs of quadratic, considering all relevant terms each time Synthetic division - must be using 3 (not -3 ) and adding within each column (allow one slip); expect to see <br> Allow A1 even if division is inconsistent eg dividing $\mathrm{f}(x)$ by $(x-3)$ or $-\mathrm{f}(x)$ by $(3-x)$ <br> Must be explicit and not implied ie $A=1$ etc in coeff matching method or just the bottom line in the synthetic division method is not enough <br> Must be written as a product, just stating the quadratic quotient by itself is not enough <br> Must come from a method with consistent signs in the divisor and dividend |
| (iv) | $x=3$ $x=3 \pm \sqrt{ } 5$ | B1 <br> M1 <br> A1 <br> [3] | State $x=3$ <br> Attempt to find roots of quadratic quotient <br> Obtain $x=3 \pm \sqrt{5}$ | At any point <br> Can gain M1 if using an incorrect quotient from (iii), as long as it is a three term quadratic and comes from a division attempt by $(3-x)$ or $(x-3)$ <br> See Appendix 1 for acceptable methods <br> Must be in simplified surd form Allow A1 if from $-\mathrm{f}(x)=0$ eg $(x-3)\left(x^{2}-6 x+4\right)=0$ |


| Question |  | Answer | Marks |  | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | (a) | $u_{k}=50 \times 0.8^{k-1}$ | B1 | State correct $50 \times 0.8^{k-1}$ | Allow B1 even if it subsequently becomes $40^{k-}$ Could be implied by a later (in)equation eg $0.8^{k-1}<$ 0.003 <br> Must be seen correct numerically so stating $a=50$, $r=$ $0.8, u_{k}=a r^{k-1}$ is not enough |
|  |  | $\begin{aligned} & 50 \times 0.8 \mathrm{P}^{k-1}<0.15 \\ & 0.8^{k-1}<0.003 \\ & \log 0.8^{k-1}<\log 0.003 \end{aligned}$ | M1 | Link to 0.15 , rearrange and introduce logs or equiv | Allow any sign, equality or inequality <br> Allow no, or consistent, log base on both sides or $\log 0.8$ on RHS <br> If starting with $\log \left(50 \times 0.8^{k-1}\right)<\log 0.15$ then the LHS must be correctly split to $\log 50+\log 0.8^{k-1}$ for M1 <br> M0 if solving $40^{k-1}<0.15$ <br> Allow M1 if using $50 \times 0.8^{k}$ <br> M0 if using $S_{k}$ |
|  |  | $(k-1) \log 0.8<\log 0.003$ | A1 | Obtain correct linear (in)equation | Could be $(k-1) \log 0.8<\log 0.003,(k-1)<\log _{0.8} 0.003$ or $\log 50+(k-1) \log 0.8<\log 0.15$ <br> Allow no brackets if implied by later work Allow any linking sign, including > |
|  |  | $\begin{aligned} & k>27.03 \\ & k=28 \end{aligned}$ | A1 | Obtain $k=28$ (equality only) | Must be equality in words or symbols ie $k=28$ or $k$ is 28 , but A0 for $k \geq 28$ or $k$ is at least 28 <br> Allow BOD if inequality sign not correct throughout as long correct final conclusion |
|  |  |  | [4] |  | Answer only, or trial and improvement, is eligible for the first B1 only <br> Allow $n$ not $k$ throughout |



| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (i) | $0.5 \times 2.5 \times(1+2(-3+2 \sqrt{ } 6.5)+3)$$=10.2$ | M1* | Attempt $y$-values at $x=0,2.5,5$ only | M0 if additional $y$-values found, unless not used $y_{1}$ can be exact or decimal (2.1 or better) Allow M1 for using incorrect function as long as still clearly $y$-values that are intended to be the original function eg $-3+2 \sqrt{ } x+4 \quad($ from $\sqrt{ }(x+4)=\sqrt{ } x+\sqrt{ } 4)$ |
|  |  |  | M1d* | Attempt correct trapezium rule, inc $h=2.5$ | Fully correct structure reqd, including placing of $y$-values The 'big brackets' must be seen, or implied by later working <br> Could be implied by stating general rule in terms of $y_{0}$ etc, as long as these have been attempted elsewhere and clearly labelled <br> Using $x$-values is M0 <br> Can give M1, even if error in evaluating $y$-values as long correct intention is clear |
|  |  |  | A1 | Obtain 10.2, or better | Allow answers in the range [10.24, 10.25] if $>3$ sf A0 if exact surd value given as final answer <br> Answer only is $0 / 3$ <br> Using 2 separate trapezia can get full marks Using anything other than 2 strips of width 2.5 is M0 Using the trapezium rule on result of an integration attempt is $0 / 3$ |
|  |  |  | [3] |  |  |
|  | (ii) | $(5 \times 3)-10.2=4.8$ | M1 | Attempt area of rectangle - their <br> (i) | As long as $0<$ their (i) $<15$ |
|  |  |  | A1FT <br> [2] | Obtain 4.8, or better | Allow for exact surd value as well Allow answers in range [4.75, 4.80] if $>2$ sf |




