OCR Maths C3

Mark Scheme Pack

2005-2014

1	(i)	State $f(x) \le 10$	B1	1 [Any equiv but must be or imply ≤]
	(ii)	Attempt correct process for composition of functions	M1	[whether algebraic or numerical]
		Obtain 6 or correct expression for $ff(x)$	A1	
		Obtain – 71	A1	3
2		<u>Either</u> Obtain $x = 0$	B1	[ignoring errors in working]
		Form linear equation with signs of 6 <i>x</i> and <i>x</i> different	M1	[ignoring other sign errors]
		State $6x - 1 = -x + 1$	A1	[or correct equiv with or without brackets]
		Obtain $\frac{2}{7}$ and no other non-zero value	A1	4 [or exact equiv]
	Or	Obtain $36x^2 - 12x + 1 = x^2 - 2x + 1$	B1	[or equiv]
		Attempt to solve quadratic equation	M1	[as far as factorisation or subn into formula]
		Obtain $\frac{2}{7}$ and no other non-zero value	A1	[or exact equiv]
		Obtain 0	B1	(4) [ignoring errors in working]
3	(i)	Attempt solution involving (natural) logarithm	M1	
		Obtain $-0.017t = \ln \frac{25}{180}$	A1	[or equiv]
		Obtain 116	A1	3 [or greater accuracy rounding to 116]
	(ii)	Differentiate to obtain $k e^{-0.017t}$	M1	[any constant <i>k</i> different from 180; solution must involve differentiation]
		Obtain correct $-3.06e^{-0.017t}$	A1	[or unsimplified equiv; accept + or –]
		Obtain 1.2	A1	3 [or greater accuracy; accept + or – answer]
4	(a)	State or imply $\int \pi y^2 dx$	B1	
		Integrate to obtain $k \ln x$	M1	[any constant k, involving π or not; or equiv such as k ln 4x]
		Obtain $4\pi \ln x$ or $4\ln x$	A1	[or equiv]
		Obtain $4\pi \ln 5$	A1	4 [or similarly simplified equiv]

	(b)	Attempt calculation involving attempts at <i>y</i> values	M1	[with each of 1, 4, 2 present at least once as coefficients]
		Attempt $\frac{1}{3} \times 1(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$	M1	[with attempts at five <i>y</i> values]
		Obtain $\frac{1}{3}(\sqrt{2} + 4\sqrt{5} + 2\sqrt{10} + 4\sqrt{17} + \sqrt{26})$	A1	[or exact equiv or decimal equivs]
		Obtain 12.758	A1	4 [or greater accuracy]
5	(i)	Obtain $R = \sqrt{13}$, or 3.6 or 3.61 or greater accuracy	B1	
		Attempt recognisable process for finding α	M1	[allow sine/cosine muddles]
		Obtain $\alpha = 33.7$	A1	3 [or greater accuracy]
	(ii)	Attempt to find at least one value of $\theta + \alpha$	*M1	
		Obtain value rounding to 76 or 104	A 1√	[following their <i>R</i>]
		Subtract their α from at least one value	M1	[dependent on * M]
		Obtain one value rounding to 42 or 43, or to 70	A1	
		Obtain other value 42.4 or 70.2	A1	5 [or greater accuracy; no other answers between 0 and 360; ignore answers outside 0 to 360]
6	(a)	Attempt use of product rule	*M1	
		Obtain $\ln x + 1$	A1	[or unsimplified equiv]
		Equate attempt at first derivative to zero and obtain value involving e	M1	[dependent on * M]
		Obtain e ⁻¹	A1	4 [or exact equiv]
	(b)	Attempt use of quotient rule	M1	[or equiv using product rule or
		Obtain $\frac{(4x-c)4-4(4x+c)}{(4x-c)^2}$	A1] [or equiv]
		Show that first derivative cannot be zero	A1	3 [AG ; derivative must be correct]
7	(i)	State $2\cos^2 x - 1$	B1	1
	(ii)	Attempt to express left hand side in terms of $\cos x$	M1	[using expression of form $a\cos^2 x + b$]
		Identify $\frac{1}{\cos x}$ as $\sec x$	M1	[maybe implied]

		Confirm result	A1	3 [AG; necessary detail
				required]
	(iii)	Use identity $\sec^2 x = 1 + \tan^2 x$	B1	
		Attempt solution of quadratic equation in tan x	M1	[or equiv]
		Obtain $2\tan^2 x + 3\tan x - 9 = 0$ and hence $\tan x = -3$, $\frac{3}{2}$	A1	
		Obtain at least two of 0.983, 4.12, 1.89, 5.03 (or of 0.313π, 1.31π, 0.602π, 1.60π)	A1	[allow answers with only 2 s.f.; allow greater accuracy; allow $0.983 + \pi$, $1.89 + \pi$ allow
		Obtain all four solutions	A1	degrees: 56, 236, 108, 288] 5 [now with at least 3 s.f.; must be radians; no other solutions in the range $0 - 2\pi$; ignore solutions outside range $0 - 2\pi$]
8	(i)	Attempt relevant calculations with 5.2 and 5.3	M1	-
		Obtain correct values	A1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		Conclude appropriately	A1	3 [AG ; comparing <i>y</i> values or noting sign change in difference in <i>y</i> values or equiv]
	(ii)	Equate expressions and attempt rearrangement to $x =$	M1	
		Obtain $x = \frac{5}{3}\ln(3x+8)$	A1	2 [AG; necessary detail required]
	(iii)	Obtain correct first iterate	B1	
		Carry out correct process to find at least two iterates in all	M1	
		Obtain 5.29	A1	3 [must be exactly 2 decimal places;
				$5.2 \rightarrow 5.2687 \rightarrow 5.2832 \rightarrow 5.2863 \rightarrow 5.2869;$ $5.25 \rightarrow 5.2793 \rightarrow 5.2855 \rightarrow 5.2868 \rightarrow 5.2870;$ $5.3 \rightarrow 5.2898 \rightarrow 5.2877 \rightarrow 5.2872 \rightarrow 5.2871]$
	(iv)	Obtain integral of form $k(3x+8)^{\frac{4}{3}}$	M1	
		Obtain integral of form $k e^{\frac{1}{5}x}$	M1	

		Obtain $\frac{1}{4}(3x+8)^{\frac{4}{3}}-5e^{\frac{1}{5}x}$	A1	[or equiv]
		Apply limits 0 and their answer to (iii)	M1	[applied to difference of two integrals]
		Obtain 3.78	A1	5 [or greater accuracy]
9	(i)	Indicate stretch and (at least one) translation	M1	[in general terms]
		State translation by 7 units in negative x direction	A1	[or equiv; using correct terminology]
		State stretch in x direction with factor $1/m$	A1	[must follow the translation by 7; or equiv; using correct terminology]
		Indicate translation by 4 units in negative y direction	B1	4 [or equiv; at any stage; the two translations may be combined]
	(ii)	Refer to each <i>y</i> value being image of unique <i>x</i> value	B1	[or equiv]
		Attempt correct process for finding inverse	M1	
		Obtain expression involving $(x+4)^2$ or	M1	
		$(y+4)^2$		
		Obtain $\frac{(x+4)^2 - 7}{m}$	A1	4 [or equiv]
	(iii)	Refer to fact that curves are reflections of each other in line $y = x$	B1	[or equiv]
		Attempt arrangement of either $f(x) = x$ or $f^{-1}(x) = x$	M1	
		Apply discriminant to resulting quadratic equati on	M1	
		Obtain $(m-2)(m-14) < 0$	A1	[or equiv]
		Obtain $2 < m < 14$	A1	5

4723	Mark Scheme			January 2006		
1	Obtain integral of form $k \ln x$	M1		[any non-zero constant k ; or equiv such as $k \ln 3x$]		
	Obtain $3 \ln 8 - 3 \ln 2$	A1		[or exact equiv]		
	Attempt use of at least one relevant log property	M1		[would be earned by initial $\ln x^3$]		
	Obtain $3 \ln 4$ or $\ln 8^3 - \ln 2^3$ and hence $\ln 64$	A1	4	[AG; with no errors]		
2	Attempt use of identity linking $\sec^2 \theta$,					
	$\tan^2 \theta$ and 1	M1		[to write eqn in terms of tan θ]		
	Obtain $\tan^2 \theta - 4 \tan \theta + 3 = 0$	A1		[or correct unsimplified equiv]		
	Attempt solution of quadratic eqn to find two va					
	of tan θ Obtain at least two correct answers	M1 A1		[any 3 term quadratic eqn in tan θ] [after correct solution of eqn]		
	Obtain all four of 45, 225, 71.6, 251.6		5	[allow greater accuracy or angles		
				to nearest degree – and no other answers between 0 and 360]		
3 (a)	Attempt use of product rule	M1		[involving +]		
	Obtain $2x(x+1)^{6}$	A1				
	Obtain + $6x^2(x+1)^5$	A1	3	[or equivs; ignore subsequent attempt at simplification]		
(b)	Attempt use of quotient rule	M1		[or, with adjustment, product rule; allow <i>u</i> / <i>v</i> confusion]		
	Obtain $\frac{(x^2 - 3)2x - (x^2 + 3)2x}{(x^2 - 3)^2}$	A1		[or equiv]		
	Obtain –3	A1	3	[from correct derivative only]		
4 (i)	State $y \le 2$	B 1	1	[or equiv; allow <; allow any letter or none]		
(ii)	Show correct process for composition of function Obtain 0 and hence 2		2	M1 [numerical or algebraic] [and no other value]		
(iii)	State a range of values with 2 as one end-point State $0 < k \le 2$	M1 A1		[continuous set, not just integers] [with correct < and ≤ now]		
				[any non-zero constant k]		
5	Obtain integral of form $k(1-2x)^6$	M1				
5	Obtain integral of form $k(1-2x)^6$ Obtain correct $-\frac{1}{12}(1-2x)^6$			[or unsimplified equiv: allow $+ c$]		
5	Obtain correct $-\frac{1}{12}(1-2x)^6$	A1		[or unsimplified equiv; allow $+ c$] [or exact (unsimplified) equiv]		
5	Obtain correct $-\frac{1}{12}(1-2x)^6$ Use limits to obtain $\frac{1}{12}$	A1 A1		[or exact (unsimplified) equiv]		
5	Obtain correct $-\frac{1}{12}(1-2x)^6$ Use limits to obtain $\frac{1}{12}$ Obtain integral of form $k e^{2x-1}$	A1 A1 M1		[or exact (unsimplified) equiv] [or equiv; any non-zero constant <i>k</i>]		
5	Obtain correct $-\frac{1}{12}(1-2x)^6$ Use limits to obtain $\frac{1}{12}$ Obtain integral of form $k e^{2x-1}$ Obtain correct $\frac{1}{2}e^{2x-1} - x$	A1 A1 M1 A1		[or exact (unsimplified) equiv] [or equiv; any non-zero constant <i>k</i>] [or equiv; allow + <i>c</i>]		
5	Obtain correct $-\frac{1}{12}(1-2x)^6$ Use limits to obtain $\frac{1}{12}$ Obtain integral of form $k e^{2x-1}$ Obtain correct $\frac{1}{2}e^{2x-1} - x$ Use limits to obtain $-\frac{1}{2}e^{-1}$	A1 A1 M1 A1 A1		<pre>[or exact (unsimplified) equiv] [or equiv; any non-zero constant k] [or equiv; allow + c] [or exact (unsimplified) equiv]</pre>		
5	Obtain correct $-\frac{1}{12}(1-2x)^6$ Use limits to obtain $\frac{1}{12}$ Obtain integral of form $k e^{2x-1}$ Obtain correct $\frac{1}{2}e^{2x-1} - x$	A1 A1 M1 A1		[or exact (unsimplified) equiv] [or equiv; any non-zero constant k] [or equiv; allow + c]		

					-
6 (a)	Either:	State proportion $\frac{440}{275}$	B1		
		Attempt calculation involving			
		proportion	M1		[involving multn and X value]
	-	Obtain 704	A1	-	
	<u>Or</u> :	Use formula of form $275e^{kt}$ or $275a^t$	M1		[or equiv]
		Obtain $k = 0.047$ or $a = \sqrt[10]{1.6}$	A1		[or equiv]
		Obtain 704	A1	(3)	[allow ±0.5]
(b)(i	-	t correct process involving logarithm	M1		[or equiv including systematic trial and improvement attempt]
	Obtain	$\ln \frac{20}{80} = -0.02t$	A1		[or equiv]
	Obtain	69	A1	3	[or greater accuracy; scheme for T&I: M1A2]
(ii)Differe	ntiate to obtain $k e^{-0.02t}$	M1		[any constant k different from 80]
	Obtain	$-1.6e^{-0.02t}$ (or $1.6e^{-0.02t}$)	A1		[or unsimplified equiv]
	Obtain	0.88	A1	3	[or greater accuracy; allow -0.88]
7 (i)	Sketch x direc	curve showing (at least) translation in tion	M1		[either positive or negative]
	Show c	orrect sketch with one of			
	2 and 3	π indicated	A1		
	and	with other one of 2 and 3π indicated	A1	3	
(ii)	Draw st	traight line through O with			
		e gradient	B1	1	[label and explanation not required]
(iii)		t calculations using 1.8 and 1.9 correct values and indicate	M1		[allow here if degrees used]
	change		A1	2	[or equiv; $x = 1.8$: LHS = 1.93, diff = 0.13;

(iv) Obtain correct first iterate 1.79 or 1.78 Attempt correct process to produce at least 3 iterates Obtain 1.82

> Attempt rearrangement of $3\cos^{-1}(x-1) = x$ or of $x = 1 + \cos(\frac{1}{3}x)$ Obtain required formula or equation respectively

B1 [or greater accuracy]

radians needed now]

M1

A1 [answer required to exactly 2 d.p.; $2 \rightarrow 1.7859 \rightarrow 1.8280 \rightarrow 1.8200;$ SR: answer 1.82 only - B2]

x = 1.9: LHS = 1.35, diff = -0.55;

- **M1** [involving at least two steps]
- A1 5

4723

8	(i)	Differentiate to obtain $kx(5-x^2)^{-1}$	M1		[any non-zero constant]
		Obtain correct $-2x(5-x^2)^{-1}$	A1		[or equiv]
		Obtain -4 for value of derivative Attempt equation of straight line through (2, 0) v numerical value of gradient obtained from attempt at derivative	A1 with M1		[not for attempt at eqn of normal]
		Obtain $y = -4x + 8$		5	[or equiv]
	(ii)	State or imply $h = \frac{1}{2}$ Attempt calculation involving attempts	B 1		
		at y values	M1		[addition with each of coefficients 1, 2, 4 occurring at least once]
		Obtain $k(\ln 5 + 4\ln 4.75 + 2\ln 4 + 4\ln 2.75 + \ln 1)$	A1		[or equiv perhaps with decimals; any constant <i>k</i>]
		Obtain 2.44	A1	4	[allow ±0.01]
	(iii)	Attempt difference of two areas	M1		[allow if area of their triangle < area A]
		Obtain $8 - 2.44$ and hence 5.56	A1	2	[following their tangent and area of <i>A</i> providing answer positive]

- 9 (i) State $\sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ Use at least one of $\sin 2\theta = 2 \sin \theta \cos \theta$ and $\cos 2\theta = 1 - 2 \sin^2 \theta$ Attempt complete process to express in terms of $\sin \theta$ Obtain $3 \sin \theta - 4 \sin^3 \theta$
 - (ii) State 3 Obtain expression involving $\sin 10\alpha$ Obtain 9
 - (iii) Recognise cosec 2β as $\frac{1}{\sin 2\beta}$ Attempt to express equation in terms of sin 2β only Attempt to find non-zero value of sin 2β Obtain at least sin $2\beta = \sqrt{\frac{5}{12}}$ Attempt correct process to find two values of β Obtain 20.1, 69.9

B1

B1

M1 A1 4	[using correct identities] [AG; all correctly obtained]
B1 M1 A1 3	[allow θ/α confusion] [and no other value]
B1	[allow θ/β confusion]
M1	[or equiv involving $\cos 2\beta$]
M1	[or of $\cos 2\beta$]
A1	[or equiv, exact or approx]
M1	[provided equation is $\sin 2\beta = k$; or equiv with $\cos 2\beta$]
A1 6	

1		Differe	ntiate to obtain $k(4x+1)^{-\frac{1}{2}}$	M1		any non-zero constant k
		Obtain	$2(4x+1)^{-\frac{1}{2}}$	A1		or equiv, perhaps unsimplified
		Obtain	$\frac{2}{3}$ for value of first derivative	A1		or unsimplified equiv
		Attemp	t equation of tangent through (2, 3)	M1		using numerical value of first derivative provided derivative is of form $k'(4x+1)^n$
		Obtain	$y = \frac{2}{3}x + \frac{5}{3}$ or $2x - 3y + 5 = 0$	A1	5	or equiv involving 3 terms
2		Either:	Attempt to square both sides	M1		producing 3 terms on each side
			Obtain $3x^2 - 14x + 8 = 0$	A1		or inequality involving < or >
			Obtain correct values $\frac{2}{3}$ and 4	A1		
			Attempt valid method for solving inequality	M1		implied by correct answer or plausible incorrect answer
			Obtain $\frac{2}{3} < x < 4$	A1	5	or correctly expressed equiv;
			-			allow ≤ signs
		<u>Or</u> :	Attempt solution of two linear equations or inequalities	M 1		one eqn with signs of 2x and x the same, second eqn with signs different
			Obtain value $\frac{2}{3}$	A1		
			Obtain value 4 Attempt valid method for solving inequality	В1 M1		implied by correct answer or
			Obtain $\frac{2}{3} < x < 4$	A1	(5)	plausible incorrect answer or correctly expressed equiv;
						allow ≤ signs
3	(i)		t evaluation of cubic expression at 2 and 3 –11 and 31	M1 A1		
			de by noting change of sign	A1 ∿	3	or equiv; following any calculated values provided negative then positive
	(ii)		correct first iterate at correct process to obtain at least 3 iterates 2.34		3	using x_1 value such that $2 \le x_1 \le 3$ using any starting value now answer required to 2 d.p. exactly; $2 \rightarrow 2.3811 \rightarrow 2.3354 \rightarrow 2.3410$; $2.5 \rightarrow 2.3208 \rightarrow 2.3428 \rightarrow 2.3401$; $3 \rightarrow 2.2572 \rightarrow 2.3505 \rightarrow 2.3392$

4 (i)	State $\ln y = (x - 1) \ln 5$	B1		whether following $\ln y = \ln 5^{x-1}$ or not; brackets needed
	Obtain $x = 1 + \frac{\ln y}{\ln 5}$	B1	2	AG; correct working needed;
				missing brackets maybe now implied
(ii)	Differentiate to obtain single term of form $\frac{k}{y}$ M1	any	CC	nstant k
	Obtain $\frac{1}{v \ln 5}$	A1	2	or equiv involving y
(iii)	Substitute for <i>y</i> and attempt reciprocal	M1		or equiv method for finding derivative without using part (ii)
	Obtain 25 ln 5	A1	2	or exact equiv
5 (i)	State $\sin 2\theta = 2\sin\theta\cos\theta$	B1	1	or equiv; any letter acceptable here (and in parts (ii) and (iii))
(ii)	Attempt to find exact value of cos a	M 1		using identity attempt or right- angled triangle
	Obtain $\frac{1}{4}\sqrt{15}$	A 1		or exact equiv
	Substitute to confirm $\frac{1}{8}\sqrt{15}$	A1	3	AG
(iii)	State or imply sec $\beta = \frac{1}{\cos \beta}$	B1		
	Use identity to produce equation involving sin β Obtain sin β = 0.3 and hence 17.5	M1 A1	3	and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5
6 (i)	<u>Either</u> : Obtain $f(-3) = -7$ Show correct process for compn of function Obtain -47		3	maybe implied
	<u>Or</u> : Show correct process for compn of function Obtain $2 - (2 - x^2)^2$ Obtain -47	nsM1 A1 A1	(3	using algebraic approach or equiv)
(ii)	Attempt correct process for finding inverse	M1		as far as $x = \dots$ or equiv
	Obtain either one of $x = \pm \sqrt{2-y}$ or both	A1	0	or equiv perhaps involving x
	Obtain correct $-\sqrt{2-x}$	A1	3	or equiv; in terms of <i>x</i> now
(iii)	Draw graph showing attempt at reflection in $y = x$ Draw (more or less) correct graph	M1 A1		with end-point on <i>x</i> -axis and no minimum point in third quadrant
	Indicate coordinates 2 and $-\sqrt{2}$	A 1	3	accept –1.4 in place of $-\sqrt{2}$

June 2006

7 (a) Obtain integral of form $k(4x-1)^{-1}$

4723

M1

any non-zero constant k

	Obtain $-\frac{1}{2}(4x-1)^{-1}$ Substitute limits and attempt evaluation Obtain $\frac{2}{21}$	or equiv; allow + <i>c</i> for any expression of form $k'(4x-1)^n$ 4 or exact equiv	
(b)	Integrate to obtain $\ln x$ Substitute limits to obtain $\ln 2a - \ln a$ Subtract integral attempt from attempt at area of appropriate rectangle Obtain 1 – $(\ln 2a - \ln a)$ Show at least one relevant logarithm property Obtain 1 – $\ln 2$ and hence $\ln(\frac{1}{2}e)$	B1 B1 A1 A1 A1 A1	or equiv or equiv at any stage of solution 6 AG ; full detail required
8 (i)	State $R = 13$ State at least one equation of form $R \cos \alpha = k$, $R \sin \alpha = k'$, $\tan \alpha = k''$ Obtain 67.4	B1 M1 A1 3	or equiv or equiv; allow sin / cos muddles; implied by correct α 3 allow 67 or greater accuracy
(ii)	Refer to translation and stretch	M1	in either order; allow here equiv terms such as 'move', 'shift'; with both transformations involving constants
	State translation in positive x direction by 67.4 State stretch in y direction by factor 13	A1√ A1√	 or equiv; following their α; using correct terminology now 3 or equiv; following their <i>R</i>; using
(iii)	Attempt value of $\cos^{-1}(2 \div R)$ Obtain 81.15 Obtain 148.5 as one solution Add their α value to second value	M1 A1√ A1	correct terminology now following their <i>R</i> ; accept 81 accept 148.5 or 148.6 or value rounding to either of these
	correctly attempted Obtain 346.2	M1 A1 {	5 accept 346.2 or 346.3 or value rounding to either of these; and no other solutions

	Obtain $x = e^{\frac{1}{2}y} + 1$ State or imply volume involves $\int \pi x^2$ Attempt to express x^2 in terms of <i>y</i>
	Obtain $k \int (e^{y} + 2e^{\frac{1}{2}y} + 1) dy$
	Integrate to obtain $k(e^{y} + 4e^{\frac{1}{2}y} + y)$ Use limits 0 and <i>p</i>
	Obtain $\pi(e^{p} + 4e^{\frac{1}{2}p} + p - 5)$
(ii)	State or imply $\frac{dp}{dt} = 0.2$
	Obtain $\pi(e^p + 2e^{\frac{1}{2}p} + 1)$ as derivative of <i>V</i> Attempt multiplication of values or expressions for $\frac{dp}{dt}$ and $\frac{dV}{dp}$
	Obtain $0.2\pi(e^4 + 2e^2 + 1)$
	Obtain 44

A1 B1	or equiv
*M1	dep *M ; expanding to produce at least 3 terms
A1	any constant <i>k</i> including 1; allow if dy absent
A1	
M 1	<pre>dep *M *M; evidence of use of 0 needed</pre>
A1 8	AG; necessary detail required
B1	maybe implied by use of 0.2 in
	product
B1	
M 1	
A1 √	following their $\frac{\mathrm{d}V}{\mathrm{d}p}$ expression
A1 5	or greater accuracy

1	Attempt use of quotient rule to find derivative	M1	allow for numerator 'wrong way round'; or attempt use of product rule
	Obtain $\frac{2(3x-1) - 3(2x+1)}{(3x-1)^2}$	A1	or equiv
	Obtain $-\frac{5}{4}$ for gradient	A1	or equiv
	Attempt eqn of straight line with numerical grad	ient	M1 obtained from their $\frac{dy}{dx}$; tangent not normal
	Obtain 5x + 4y - 11 = 0	A1 5	or similar equiv
2 (i)	Attempt complete method for finding $\cot \theta$ Obtain $\frac{5}{12}$		M1 rt-angled triangle, identities, calculator,A1 2 or exact equiv
(ii)	Attempt relevant identity for $\cos 2\theta$		M1 $\pm 2\cos^2\theta \pm 1$ or $\pm 1 \pm 2\sin^2\theta$ or $\pm (\cos^2\theta - \sin^2\theta)$
	State correct identity with correct value(s) substance $-\frac{119}{169}$	ituted	A1 A1 3 correct answer only earns 3/3
3 (a)	Sketch reasonable attempt at $y = x^5$		*B1 accept non-zero gradient at <i>O</i> but curvature to be correct in first and third quadrants
	Sketch straight line with negative gradient Indicate in some way single point of intersection	nB1 3	*B1 existing at least in (part of) first quadrant dep *B1 *B1
(b)	Obtain correct first iterate		B1 allow if not part of subsequent iteration
	Carry out process to find at least 3 iterates in all Obtain at least 1 correct iterate after the first	M1 A1	allow for recovery after error; showing at least 3 d.p. in iterates
	Conclude 2.175		answer required to precisely 3 d.p.
	$[0 \rightarrow 2.21236 \rightarrow 2.17412 \rightarrow 2.$ $1 \rightarrow 2.19540 \rightarrow 2.17442 \rightarrow 2.$		
	$2 \rightarrow 2.17791 \rightarrow 2.17472 \rightarrow 2.17$		
	$3 \rightarrow 2.15983 \rightarrow 2.17506 \rightarrow 2.17500 \rightarrow $	17479 —	→ 2.17479]
4 (i)	Obtain derivative of form $k(4t+9)^{-\frac{1}{2}}$	M1	any constant k
	Obtain correct $2(4t+9)^{-\frac{1}{2}}$	A1	or (unsimplified) equiv
	Obtain derivative of form $k e^{\frac{1}{2}x+1}$	M1	any constant k different from 6
	Obtain correct $3e^{\frac{1}{2}x+1}$	A1 4	or equiv
(ii)	<u>Either</u> : Form product of two derivatives M1 Substitute for <i>t</i> and <i>x</i> in product M1 Obtain 39.7	using t	cal or algebraic = 4 and calculated value of x allow ± 0.1 ; allow greater accuracy
	<u>Or</u> : Obtain $k(4t+9)^n e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$	M1	differentiating $y = 6e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$
	Obtain correct $6(4t+9)^{-\frac{1}{2}}e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$	A1	or equiv
	Substitute $t = 4$ to obtain 39.7 A1 (3)) allow ±	0.1; allow greater accuracy
5 (i)	Obtain $R = \sqrt{17}$ or 4.12 or 4.1	B1	or greater accuracy
	Attempt recognisable process for finding α Obtain $\alpha = 14$	M1 A1 3	allow for sin/cos confusion or greater accuracy 14.036
			or Scoulor accuracy 17.000
		12	

4753

Jan 2007

(ii)	Attempt to find at least one value of $\theta + \alpha$ Obtain or imply value 61 Obtain 46.9 Show correct process for obtaining second angle Obtain -75	M1 A1√ A1 eM1 A1		following <i>R</i> value; or value rounding to 61 allow ±0.1; allow greater accuracy allow ±0.1; allow greater accuracy; max of 4/5 if extra angles between -180 and 180
6 (i)	Obtain integral of form $k(3x+2)^{\frac{1}{2}}$	M1		any constant k
	Obtain correct $\frac{2}{3}(3x+2)^{\frac{1}{2}}$	A1		or equiv
	Substitute limits 0 and 2 and attempt evaluation	M1		for integral of form $k(3x+2)^n$
	Obtain $\frac{2}{3}(8^{\frac{1}{2}}-2^{\frac{1}{2}})$	A1	4	or exact equiv suitably simplified
(ii)	State or imply $\pi \int \frac{1}{3x+2} dx$ or unsimplified vers	sion		B1 allow if dx absent or wrong
	Obtain integral of form $k \ln(3x + 2)$	M1		any constant k involving π or not
	Obtain $\frac{1}{3}\pi \ln(3x+2)$ or $\frac{1}{3}\ln(3x+2)$	A1		
	Show correct use of $\ln a - \ln b$ property M1 Obtain $\frac{1}{3}\pi \ln 4$	A1	5	or (similarly simplified) equiv
7 (i)	State <i>a</i> in <i>x</i> -direction State factor 2 in <i>x</i> -direction	B1 B1	2	or clear equiv or clear equiv
(ii)	Show (largely) increasing function crossing <i>x</i> -ax Show curve in first and fourth quadrants only	is A1	2	M1 with correct curvature not touching <i>y</i> -axis and with no maximum point; ignore intercept
(iii)	Show attempt at reflecting negative part in <i>x</i> -axis Show (more or less) correct graph	S		M1 A1√ 2 following their graph in (ii) and showing correct curvatures
(iv)	Identify 2 <i>a</i> as asymptote or $2a + 2$ as intercept State $2a < x \le 2a + 2$	B1 B1	2	allow anywhere in question allow $<$ or \leq for each inequality
8 (i)	Obtain $-2xe^{-x^2}$ as derivative of e^{-x^2} Attempt product rule Obtain $8x^7e^{-x^2} - 2x^9e^{-x^2}$	B1 *M1 A1		allow if sign errors or no chain rule or (unsimplified) equiv
	Either:Equate first derivative to zero and attempt solution Confirm 2Or:Substitute 2 into derivative and show attempt at evaluation	M1 A1	5	dep *M; taking at least one step of solution AG
	Obtain 0	A1	(5)	AG; necessary correct detail required

(ii)	Attempt calculation involving attempts at y value	
	Attempt $k(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$	M1 with attempts at five <i>y</i> values corresponding to correct <i>x</i> values
	Obtain $\frac{1}{6}(0+4 \times 0.00304 + 2 \times 0.36788)$	
	$+4 \times 2.70127 + 4.68880)$	A1 or equiv with at least 3 d.p. or exact values
	Obtain 2.707	A1 4 or greater accuracy; allow ± 0.001
(iii)	Attempt $4(y \text{ value}) - 2(\text{part (ii)})$	M1 or equiv
	Obtain 13.3	A1 2 or greater accuracy; allow ± 0.1
9 (i)	State $-2 \le y \le 2$	B1 allow <; any notation
	State $y \le 4$	B1 2 allow <; any notation
(ii)	Show correct process for composition M1	right way round
	Obtain or imply 0.959 and hence 2.16 A1	AG; necessary detail required
	Obtain $g(0.5) = 3.5$ Observe that 3.5 not in domain of f	B1 or (unsimplified) equivB1 4 or equiv
	Observe that 5.5 not in domain of 1	
(iii)	Relate quadratic expression to at least one end	
	of range of f $M1$	or equiv
	Obtain both of $4 - 2x^2 < -2$ and $4 - 2x^2 > 2$	A1 or equiv; allow any sign in each ($< \text{ or } \le \text{ or } >$
	Obtain at least two of the <i>x</i> values $-\sqrt{3}$, -1 , 1 , $\sqrt{3}$	$or \ge or =)$
	Obtain all four of the x values $-\sqrt{3}$, -1 , 1 , $\sqrt{3}$	A1
	Attempt solution involving four <i>x</i> values M1	to produce at least two sets of values
	Obtain $x < -\sqrt{3}$, $-1 < x < 1$, $x > \sqrt{3}$	A1 6 allow \leq instead of $<$ and/or \geq instead of $>$

Jan 2007

1 (i)	Attempt use of product rule	M1		
	Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$	A1		2 or equiv
	[<u>Or</u> : (following complete expansion and differentiation Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$		rm t	•
(**)		B2		allow B1 if one term incorrect]
(ii)	Obtain derivative of form $kx^3(3x^4 + 1)^n$	M1		any constants k and n
	Obtain derivative of form $kx^3(3x^4+1)^{-\frac{1}{2}}$	M1		
	Obtain correct $6x^{3}(3x^{4}+1)^{-\frac{1}{2}}$	A1		3 or (unsimplified) equiv
2	Identify critical value $x = 2$	B1		
	Attempt process for determining both			
	critical values	M1		
	Obtain $\frac{1}{3}$ and 2	A1		
	Attempt process for solving inequality	M1		table, sketch; implied by plausible answer
	Obtain $\frac{1}{3} < x < 2$	A1	5	implied by plausible answer
3 (i)	Attempt correct process for composition	M1		numerical or algebraic
- ()	Obtain (16 and hence) 7	A1	2	
(ii)	Attempt correct process for finding inverse	M1		maybe in terms of <i>y</i> so far
(11)	Obtain $(x-3)^2$	A1	2	•
			_	
(iii)	Sketch (more or less) correct $y = f(x)$	B1		with 3 indicated or clearly implied on y-axis, correct curvature, no maximum point
	Sketch (more or less) correct $y = f^{-1}(x)$ State reflection in line $y = x$	B1 B1	3	right hand half of parabola only
4 (i)	Obtain integral of form $k(2x+1)^{\frac{4}{3}}$	M1		or equiv using substitution; any constant k
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$	A1		or equiv
	Substitute limits in expression of form $(2x+1)^n$			
	and subtract the correct way round	M1		using adjusted limits if subn used
	Obtain 30	A1	4	e e e e e e e e e e e e e e e e e e e
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k
	Identify k as $\frac{1}{3} \times 6.5$	A1		
	Obtain 29.6	A1	3	or greater accuracy (29.554566)
	[SR: (using Simpson's rule with 4 strips)		-	
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$			
	and hence 29.9	B1		or greater accuracy (29.897)]
				- • •

5 (i)	State e	-0.04t = 0.5	B1		or equiv
	Attemp	t solution of equation of form $e^{-0.04t} = k$	M1		using sound process; maybe implied
	Obtain	17	A1	3	or greater accuracy (17.328)
(ii)	Differe	ntiate to obtain form $k e^{-0.04t}$	*M1	L	constant k different from 240
		$(\pm) 9.6e^{-0.04t}$	A1		or (unsimplified) equiv
		attempt at first derivative to (\pm) 2.1 and solution	M1		dep *M; method maybe implied
	Obtain		A1	4	or greater accuracy (37.9956)
6 (i)	Obtain	integral of form $k_1 e^{2x} + k_2 x^2$	M 1		any non-zero constants k_1, k_2
		correct $3e^{2x} + \frac{1}{2}x^2$	A1		
		$3e^{2a} + \frac{1}{2}a^2 - 3$	A1		
		definite integral to 42 and attempt			
	rearra	ngement	M1		using sound processes
	Confirm	n $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$	A1	5	AG; necessary detail required
(ii)		correct first iterate 1.348 t correct process to find at least	B1		
	2 iterate	-	M1		
		at least 3 correct iterates	A1	4	
	Obtain	1.344	A1	4	answer required to exactly 3 d.p.; allow recovery after error
		$[1 \rightarrow 1.34844 \rightarrow 1.3438$	$32 \rightarrow 1$.343	•
7 (i)		orrect general shape (alternating above ow <i>x</i> -axis)	M1		with no branch reaching <i>x</i> -axis
		more or less) correct sketch	A1	2	with at least one of 1 and -1 indicated or clearly implied
(ii)	Attemp				maleated of clearly implied
		t solution of $\cos x = \frac{1}{3}$	M1		maybe implied; or equiv
		1.23 or 0.392π	M1 A1		
		5		3	maybe implied; or equiv
(iii)		1.23 or 0.392π	A1 A1	-	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise
(iii)	Obtain	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$	A1 A1	-	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once
(iii)	Obtain	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1	A1 A1 any	-	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees
(iii)	Obtain	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form	A1 A1 any A1	-	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied
(iii)	Obtain	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$	A1 A1 any A1	-	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater
(iii)	Obtain <u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π)	A1 A1 any A1 M1 A1	con	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage
(iii)	Obtain	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π	A1 A1 any A1 M1 A1	con	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater accuracy
(iii)	Obtain <u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value	A1 A1 any A1 M1 A1	con	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater
(iii)	Obtain <u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value Attempt solution at least to find one	A1 A1 any A1 M1 A1 M1	con	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater accuracy
(iii)	Obtain <u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value	A1 A1 any A1 M1 A1 M1	con	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater accuracy
(iii)	Obtain <u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value Attempt solution at least to find one value in first quadrant and one value	A1 A1 A1 M1 A1 M1 A1	con	maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater accuracy

8 (i)	Attempt use of quotient rule	M1		allow for numerator 'wrong way round'; or equiv
	Obtain $\frac{(4\ln x + 3)\frac{4}{x} - (4\ln x - 3)\frac{4}{x}}{(4\ln x + 3)^2}$	A1		or equiv
	Confirm $\frac{24}{x(4\ln x + 3)^2}$	A1	3	AG; necessary detail required
(ii)	Identify $\ln x = \frac{3}{4}$	B1		or equiv
	State or imply $x = e^{\frac{3}{4}}$	B1		
	Substitute e ^{<i>k</i>} completely in expression for			
	derivative	M1		and deal with $\ln e^k$ term
	Obtain $\frac{2}{3}e^{-\frac{3}{4}}$	A1	4	or exact (single term) equiv
(iii)	State or imply $\int \frac{4\pi}{x(4\ln x + 3)^2} dx$	B1		
	Obtain integral of form $k \frac{4 \ln x - 3}{4 \ln x + 3}$			
	or $k(4\ln x + 3)^{-1}$	*M1		any constant k
	Substitute both limits and subtract right way			
	round	M1	4	dep *M
	Obtain $\frac{4}{21}\pi$	A1	4	or exact equiv
	Attempt use of either of $tan(A \pm B)$ identities	M1		
9 (i)				
9 (i)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$	B1		
9 (i)		B1 A1		or equiv (perhaps with tan 60 $^{\circ}$
9 (i)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$			or equiv (perhaps with tan 60° still involved)
9 (i)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$		4	
9 (i)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$	A1	4	still involved)
9 (i) (ii)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$	A1	4	still involved)
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of	A1 A1 B1	4	still involved) AG
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$	A1 A1 B1 M1	4	still involved) AG or equiv involving $\sec \theta$
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$	A1 A1 B1 M1 A1	4	still involved) AG or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$	 A1 A1 B1 M1 A1 A1 		still involved) AG or equiv involving $\sec \theta$
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$ Obtain 37.2	 A1 A1 B1 M1 A1 A1 A1 A1 A1 A1 		still involved) AG or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$ or greater accuracy or greater accuracy; and no others

iii) Attempt rearrangement of
$$\frac{\tan^2 \theta - 3}{1 - 3\tan^2 \theta} = k^2$$
 to form
 $\tan^2 \theta = \frac{f(k)}{1 - 3\tan^2 \theta}$

$$\tan^2 \theta = \frac{\Gamma(k)}{g(k)}$$
M1
Obtain
$$\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$$
A1

Observe that RHS is positive for all k, giving one value in each quadrant

A1 3 or convincing equiv

1 (i)	Show correct process for composition of functions	M1		numerical or algebraic; the right way round
	Obtain $(-3 \text{ and hence}) -23$	A1	2	
(ii)	<u>Either</u> : State or imply $x^3 + 4 = 12$	B1		
	Attempt solution of equation involving x^3 Obtain 2	M1 A1		as far as $x = \dots$ and no other value
	<u>Or</u> : Attempt expression for f^{-1} Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$	M1		involving x or y ; involving cube root
	Obtain $\sqrt[3]{y} = 4$ of $\sqrt[3]{y} = 4$ Obtain 2	A1 A1	(3)	and no other value
2 (i)	Obtain correct first iterate 2.864	B 1		or greater accuracy 2.864327; condone 2 dp here and in working
	Carry out correct iteration process Obtain 2.877	M1 A1		to find at least 3 iterates in all after at least 4 steps; answer
	$[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow 2.8766]$			required to exactly 3 dp
(ii)	State or imply $x = \sqrt[3]{31 - \frac{5}{2}x}$	B1		
	Attempt rearrangement of equation in x	M1		involving cubing and grouping non-zero terms on LHS
	Obtain equation $2x^3 + 5x - 62 = 0$	A1	3	or equiv with integers
3 (a)	State correct equation involving $\cos \frac{1}{2} \alpha$	B1		such as $\cos \frac{1}{2}\alpha = \frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2}\alpha} = 4$
	Attempt to find value of α Obtain 151	M1 A1		or using correct order for the steps or greater accuracy; and no other values between 0 and 180
(b)	State or imply $\cot \beta = \frac{1}{\tan \beta}$	B1		
	Rearrange to the form $\tan \beta = k$	M1		or equiv involving sin β only or cos β only; allow missing \pm
	Obtain 69.3 Obtain 111	A1 A1	4	or greater accuracy; and no others between 0 and 180
4 (i)	Obtain derivative of form $kh^5(h^6 + 16)^n$	M1		any constant <i>k</i> ; any $n < \frac{1}{2}$; allow if -4 term retained
	Obtain correct $3h^5(h^6 + 16)^{-\frac{1}{2}}$ Substitute to obtain 10.7	A1 A1	2	or (unsimplified) equiv; no -4 now or greater accuracy or exact equiv
(ii)	Attempt multn or divn using 8 and answer from (i) M1	AI	5	or greater accuracy or tract equiv
(II)	Attempt multi of dividual using 8 and answer from (1) MI Attempt 8 divided by answer from (i) Obtain 0.75	M1 A1 ⁻		or greater accuracy; allow 0.75 ± 0.01 ; following their answer from (i)

5 (a)	Obtain integral of form $k(3x+7)^{10}$	M1	any constant k
	Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3} (3x+7)^{10}$	A1	or equiv
	Obtain (simplified) $\frac{1}{30}(3x+7)^{10} + c$	A1 3	
(b)	State $\int \pi (\frac{1}{2\sqrt{x}})^2 dx$	B 1	or equiv involving <i>x</i> ; condone no dx
	Integrate to obtain $k \ln x$	M1	any constant k involving π or not;
			or equiv such as $k \ln 4x$ or $k \ln 2x$
	Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4}\ln 4x$ A1		
	Show use of the log $a - \log b$ property	M1 A1 5	not dependent on earlier marks or similarly simplified equiv
	Obtain $\frac{1}{4}\pi \ln 2$	AI 5	or similarly simplified equiv
6 (i)	Either: Refer to translation and reflection	B1	in either order; allow clear equivs
	State translation by 1 in negative <i>x</i> -direction	B 1	or equiv but now using correct terminology
	State reflection in <i>x</i> -axis	B1 3	using correct terminology
	<u>Or</u> : Refer to translation and reflection	B1	in either order; allow clear equivs
	State reflection in <i>y</i> -axis State translation by 1 in positive <i>x</i> -direction	B1 B1 (3)) with order reflection then translation
	State translation by 1 in positive x-direction	DI (5)	clearly intended
(ii)	Show sketch with attempt at reflection of 'negative'	MI	
	part in <i>x</i> -axis Show (more or less) correct sketch	M1 A1 2	and curve for 0< <i>x</i> <1 unchanged with correct curvature
(iii)	Attempt correct process for finding at least one value	M1	as far as $x =$; accept decimal equivs (degrees or radians) or
			expressions involving $\sin(\frac{1}{3}\pi)$
	Obtain $1 - \frac{1}{2}\sqrt{3}$	A1	or exact equiv
	Obtain $1 + \frac{1}{2}\sqrt{3}$	A1 3	or exact equiv; give A1A0 if extra
	-		incorrect solution(s) provided
7 (i)	Attempt use of product rule for xe^{2x}	M1	obtaining +
, (1)	Obtain $e^{2x} + 2xe^{2x}$	A1	or equiv; maybe within QR attempt
	Attempt use of quotient rule	M1	with or without product rule
	· ·		when or whenout product rate
	Obtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x}) - xe^{2x}}{(x+k)^2}$	A1	
	Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$	A1 5	AG; necessary detail required
(ii)	Attempt use of discriminant	M1	or equiv
	Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$	A1	-
	Attempt solution of $2x^2 + 2kx + k = 0$	M1	using their numerical value of k or
			solving in terms of k using correct formula
	Obtain $x = -1$	A1	
	Obtain $-e^{-2}$	A1 5	or exact equiv

8 (i) State or imply h = 1Attempt calculation involving attempts at *y* values

> Obtain $a(1 + 4 \times 2 + 2 \times 4 + 4 \times 8 + 2 \times 16 + 4 \times 32 + 64)$ A1 Obtain 91

(ii) State $e^{x \ln 2}$ or $k = \ln 2$ Integrate e^{kx} to obtain $\frac{1}{k}e^{kx}$ Obtain $\frac{1}{\ln 2}(e^{6\ln 2} - e^0)$ Simplify to obtain $\frac{63}{\ln 2}$

(iii) Equate answers to (i) and (ii)

Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$

- B1
M1addition with each of coefficients
1, 2, 4 occurring at least once;
involving at least 5 y values
any constant aA14B1
allow decimal equiv such as $e^{0.69x}$
any constant k or in terms of general kA1
or exact equivA14
- M1 provided ln 2 involved other than in power of e
- A1 2 AG; necessary correct detail required

unambiguously stated

9 (i)	State at least one of $\cos\theta \cos 60 - \sin\theta \sin 60$ and $\cos\theta \cos 30 - \sin\theta \sin 30$ Attempt complete multiplication of identities of form	B 1	
	$\pm \cos \cos \pm \sin \sin$	M1	with values $\frac{1}{2}\sqrt{3}$, $\frac{1}{2}$ involved
	Use $\cos^2 \theta + \sin^2 \theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta$	M1	
	Obtain $\sqrt{3} - 2\sin 2\theta$	A1 4	AG; necessary detail required
(ii)	Attempt use of 22.5 in right-hand side	M1	
	Obtain $\sqrt{3} - \sqrt{2}$	A1 2	or exact equiv
(iii)	Obtain 10.7	B 1	or greater accuracy; allow ± 0.1
	Attempt correct process to find two angles	M1	from values of 2θ between 0 and 180
	Obtain 79.3	A1 3	or greater accuracy and no others between 0 and 90; allow ± 0.1
(iv)	Indicate or imply that critical values of		
	$\sin 2\theta$ are -1 and 1	M1	
	Obtain both of $k > \sqrt{3} + 2$, $k < \sqrt{3} - 2$	A1	condoning decimal equivs, $\leq \geq$ signs
	Obtain complete correct solution	A1 3	now with exact values and

1 <u>Eith</u>	her: Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1 4	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
<u>Or</u> :	Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$ Attempt solution of quadratic equation	B1 M1	or equiv at least as far as factorisation or use
	Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	of formula or exact equiv
	Obtain 0	B1	ignoring errors in working
		4	
2 (i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative y-axis and positive x-axis
	Show correct graph with <i>x</i> -coord 2 and <i>y</i> -coord -3 indicated	A1 2	
(ii)	Show graph indicating attempt at reflection in <i>x</i> -axis	M1	with correct curvature and crossing each negative axis
	Show correct graph with <i>x</i> -coord –3 indicated and <i>y</i> -coord –4 indicated	A1 A1	
	[SC: Incorrect curve earning M0 but both correct interce		cated B1]
		3	
3	Attempt use of product rule	M1	+ form
	Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
	Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient	A1 M1	or exact (unsimplified) equiv allowing approx values
	Obtain $y - e^2 = 3e(x - e)$	A1 √	or equiv; following their gradient provided obtained by diffn attempt; allow approx values
	Obtain $y = 3ex - 2e^2$	A1 6	in terms of e now and in requested form
4 (i)	Differentiate to obtain form $kx(2x^2 + 9)^n$	M1	any constant <i>k</i> ; any $n < \frac{5}{2}$
	Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
	Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
(ii)	Attempt relevant calculations with 0.3 and 0.4	M1	
	Obtain at least one correct value	A1	x $f(x) = x - f(x)$ $f'(x)$
	Obtain two correct values and conclude appropriately	A1	0.3 0.3595 -0.0595 83.4 0.4 0.3515 0.0485 113.8 noting sign change or showing 0.3 < f(0.3) and $0.4 > f(0.4)$ or showing gradients either side of 100
		<u></u>	

(iii)	Obtain correct first iterate	B1	
	Carry out correct process Obtain 0.3553	M1 A1	finding at least 3 iterates in all answer required to exactly 4 dp
		3	unswer required to exactly 1 up
	$[0.3 \rightarrow 0.35953 \rightarrow 0.35497 \rightarrow 0.3577 \rightarrow 0.37777 \rightarrow 0.3777 \rightarrow 0.3777 \rightarrow 0.37777 \rightarrow 0.37777 \rightarrow 0.37777 \rightarrow 0.37777 \rightarrow 0.37777 \rightarrow 0.37777 \rightarrow 0.37777777 \rightarrow 0.377777 \rightarrow 0.3777777 \rightarrow 0.3777777777777777777777777777777777777$).35534	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		5.55529	~ 0.35552]
5 (a)	Obtain expression of form $\frac{a \tan \alpha}{b + c \tan^2 \alpha}$	M1	any non-zero constants a, b, c
	State correct $\frac{2 \tan \alpha}{1 - \tan^2 \alpha}$	A1	or equiv
	Attempt to produce polynomial equation in $\tan \alpha$	M1	using sound process
	Obtain at least one correct value of $\tan \alpha$	A1	$\tan \alpha = \pm \sqrt{\frac{4}{5}}$
	Obtain 41.8	A1	allow 42 or greater accuracy; allow 0.73
	Obtain 138.2 and no other values between 0 and 180	A1	allow 138 or greater accuracy
	[SC: Answers only 41.8 or B1; 138.2 or .	and no	b others B1]
(b)(i	i) State $\frac{7}{6}$	 B1	
	0	1	
(ii	i)Attempt use of identity linking $\cot^2 \beta$ and $\csc^2 \beta$	 M1	or equiv retaining exactness; condone sign
			errors
	Obtain $\frac{13}{36}$	A1	or exact equiv
		2	
6	Integrate $k_1 e^{nx}$ to obtain $k_2 e^{nx}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k_1 e^{nx}$	A1	
	Substitute limits to obtain $\frac{1}{6}\pi(e^3-1)$ or $\frac{1}{6}(e^3-1)$	A1	or exact equiv perhaps involving e^0
	Integrate $k(2x-1)^n$ to obtain $k'(2x-1)^{n+1}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k(2x-1)^n$	A1	
	Substitute limits to obtain $\frac{1}{18}\pi$ or $\frac{1}{18}$	A1	or exact equiv
	Apply formula $\int \pi y^2 dx$ at least once	B1	for $y = e^{3x}$ and/or $y = (2x-1)^4$
	Subtract, correct way round, attempts at volumes	M1	allow with π missing but must involve
y^2			
	Obtain $\frac{1}{6}\pi e^3 - \frac{2}{9}\pi$	A1	or similarly simplified exact equiv
		9	
	St. 4, 42	D1	
7 (i)	State $A = 42$ State $k = \frac{1}{9}$	B1 B1	or 0.11 or greater accuracy
	Attempt correct process for finding <i>m</i>	M1	involving logarithms or equiv
	Obtain $\frac{1}{9}\ln 2$ or 0.077	A1	or 0.08 or greater accuracy
		4	of oldo of greater accuracy
(ii)	Attempt solution for <i>t</i> using either formula	 M1	using correct process (log'ms or T&I or)
	Obtain 11.3	<u>A1</u>	or greater accuracy; allow 11.3 ± 0.1
		2	
(Differentiate to obtain form Be^{mt}	M1	where <i>B</i> is different from <i>A</i>
(iii)	0.0774		
(iii)	Obtain 3.235e ^{0.077t} Obtain 47.9	A1√ A1	or equiv; following their <i>A</i> and <i>m</i> allow 48 or greater accuracy

8	(i)	Show at least correct $\cos \theta \cos 60 + \sin \theta \sin 60$ or $\cos \theta \cos 60 - \sin \theta \sin 60$ Attempt expansion of both with exact numerical values attempted Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$	B1 M1 A1	and with $\cos 60 \neq \sin 60$ or exact equiv
			3	or onact equit
	(ii)	Attempt correct process for finding <i>R</i> Attempt recognisable process for finding α Obtain $\sqrt{7} \sin(\theta + 70.9)$	M1 M1 A1 3	whether exact or approx allowing sin / cos muddles allow 2.65 for <i>R</i> ; allow 70.9 \pm 0.1 for α
	(iii)	Attempt correct process to find any value of θ + their α Obtain any correct value for θ + 70.9 Attempt correct process to find θ + their α in 3rd quadrant Obtain 131 [SC for solutions with no working shown: Correct and	M1 A1 M1 A1	-158, -22, 202, 338, or several values including this or greater accuracy and no other hly B4; 131 with other answers B2]
9	(i)	Attempt use of quotient rule Obtain $\frac{75-15x^2}{(x^2+5)^2}$	*M1 A1	or equiv; allow <i>u</i> / <i>v</i> muddles or (unsimplified) equiv; this M1A1 available at any stage of question
		Equate attempt at first derivative to zero and rearrange to solvable form Obtain $x = \sqrt{5}$ or 2.24 Recognise range as values less than <i>y</i> -coord of st pt Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$	M1 A1 M1 A1 6	dep * M or greater accuracy allowing < here any notation; with \leq now; any exact equiv
	(ii)	State $\sqrt{5}$	B1√	following their x-coord of st pt; condone answer $x \ge \sqrt{5}$ but not inequality with k
	(iii)	Equate attempt at first derivative to -1 and attempt simplification Obtain $x^4 - 5x^2 + 100 = 0$ Attempt evaluation of discriminant or equiv Obtain -375 or equiv and conclude appropriately	*M1 A1 M1 A1 4	and dependent on first M in part (i) or equiv involving 3 non-zero terms dep * M

1 (i)	Obtain integral of form ke^{-2x} Obtain $-4e^{-2x}$	M1 A1		any constant <i>k</i> different from 8 or (unsimplified) equiv
(ii)	Obtain integral of form $k(4x+5)^7$ Obtain $\frac{1}{28}(4x+5)^7$ Include + <i>c</i> at least once	M1 A1 B1	5	any constant <i>k</i> in simplified form in either part
2 (i) (ii)	Form expression involving attempts at y values and addition Obtain $k(\ln 4 + 4\ln 6 + 2\ln 8 + 4\ln 10 + \ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27 State 162.7 or 163	A1 A1	1	with coeffs 1, 4 and 2 present at least once any constant k or unsimplified equiv or 16.3 or greater accuracy (16.27164) following their answer to (i), maybe rounded
3 (i)	Attempt use of identity for $\tan^2 \theta$ Replace $\frac{1}{\cos \theta}$ by $\sec \theta$	M1 B1	5	using $\pm \sec^2 \theta \pm 1$; or equiv
 (ii)	Obtain $2(\sec^2 \theta - 1) - \sec \theta$ Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ Obtain 60°, 131.8° Obtain 60°, 131.8°, 228.2°, 300°		3 4 7	or equiv as far as factorisation or substitution in correct formula may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°
4 (i)	Obtain derivative of form $kx(4x^2 + 1)^4$ Obtain $40x(4x^2 + 1)^4$ State $x = 0$	M1 A1 A1v	3	any constant k or (unsimplified) equiv and no other; following their derivative of form $kx(4x^2 + 1)^4$
(ii)	Attempt use of quotient rule Obtain $\frac{2x \ln x - x^2 \cdot \frac{1}{x}}{(\ln x)^2}$ Equate to zero and attempt solution Obtain $e^{\frac{1}{2}}$	M1 A1 M1 A1	4 7	or equiv or equiv as far as solution involving e or exact equiv; and no other; allow from ± (correct numerator of derivative)

5 (i)	State 40 Attempt value of k using 21 and 80 Obtain $40e^{21k} = 80$ and hence 0.033 Attempt value of M for $t = 63$ Obtain 320	B1 M1 A1 M1 A1	5	or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this
(ii)	Differentiate to obtain $ce^{0.033t}$ or $40ke^{kt}$ Obtain $40 \times 0.033e^{0.033t}$ Obtain 2.64	M1 A1v A1	3	any constant <i>c</i> different from 40 following their value of <i>k</i> allow 2.6 or 2.64 ± 0.01 or greater accuracy (2.64056)
6 (i)	Attempt correct process for finding inverse Obtain $2x^3 - 4$ State $\sqrt[3]{2}$ or 1.26	M1 A1 B1	3	maybe in terms of y so far or equiv; in terms of x now
(ii)	State reflection in $y = x$ Refer to intersection of $y = x$ and $y = f(x)$ and hence confirm $x = \sqrt[3]{\frac{1}{2}x + 2}$	B1 B1	2	or clear equiv AG; or equiv
(iii)	Obtain correct first iterate Show correct process for iteration Obtain at least 3 correct iterates in all Obtain 1.39 $[0 \rightarrow 1.259921 \rightarrow 1.380330 \rightarrow 1.3$ $1 \rightarrow 1.357209 \rightarrow 1.380789 \rightarrow 1.3$ $1.26 \rightarrow 1.380337 \rightarrow 1.390784 \rightarrow$ $1.5 \rightarrow 1.401020 \rightarrow 1.392564 \rightarrow 1$ $2 \rightarrow 1.442250 \rightarrow 1.396099 \rightarrow 1.3$	9151 1.391 .3918	4 2 → 1684 337 →	1.391747 $- \rightarrow 1.391761$ $\rightarrow 1.391775$
7 (i)	Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in <i>x</i> direction State translation in negative <i>y</i> direction by <i>a</i> [SC: If M0 but one transformation complete		3	
(ii)	Show attempt to reflect negative part in <i>x</i> -axis Show correct sketch	M1 A1	2	ignoring curvature with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point
(iii)	Attempt method with $x = 0$ to find value of Obtain $a = 14$ Attempt to solve for k Obtain $k = 3$	aM1 A1 M1 A1	4	other than (or in addition to) value -12 and nothing else using any numerical <i>a</i> with sound process

8 (i)	Attempt to express x or x^2 in terms of y	M 1		
	Obtain $x^2 = \frac{1296}{(y+3)^4}$	A1		or (unsimplified) equiv
	Obtain integral of form $k(y+3)^{-3}$	M1		any constant k
	Obtain $-432\pi(y+3)^{-3}$ or $-432(y+3)^{-3}$	A1		or (unsimplified) equiv
	Attempt evaluation using limits 0 and p	M1		for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round
	Confirm $16\pi (1 - \frac{27}{(p+3)^3})$	A1	6	AG; necessary detail required, including
	(r · · ·)			appearance of π prior to final line
(ii)	State or obtain $\frac{\mathrm{d}V}{\mathrm{d}p} = 1296\pi(p+3)^{-4}$	B1		or equiv; perhaps involving y
	Multiply $\frac{dp}{dt}$ and attempt at $\frac{dV}{dp}$	*M1	l	algebraic or numerical
	Substitute $p = 9$ and attempt evaluation Obtain $\frac{1}{4}\pi$ or 0.785	M1 A1	4 10	dep *M or greater accuracy
9 (i)	State $\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	B1		
y (1)	Use at least one of $\cos 2\theta = 2\cos^2 \theta - 1$ and $\sin 2\theta = 2\sin \theta \cos \theta$ Attempt to express in terms of $\cos \theta$ only	B1 M1		using correct identities for $\cos 2\theta$, $\sin 2\theta$ and $\sin^2 \theta$
	Obtain $4\cos^3\theta - 3\cos\theta$	A1	4	AG; necessary detail required
 (ii)	<u>Either</u> : State or imply $\cos 6\theta = 2\cos^2 3\theta - 2\cos^2 \theta$ Use expression for $\cos 3\theta$ and	1B1		
	attempt expansion	M 1		for expression of form $\pm 2\cos^2 3\theta \pm 1$
	Obtain $32c^6 - 48c^4 + 18c^2 - 1$	A1	3	AG; necessary detail required
	<u>Or</u> : State $\cos 6\theta = 4\cos^3 2\theta - 3\cos 2\theta$ Express $\cos 2\theta$ in terms of $\cos \theta$	B1		maybe implied
	and attempt expansion	M1		for expression of form $\pm 2\cos^2\theta \pm 1$
	Obtain $32c^6 - 48c^4 + 18c^2 - 1$	A1	(3)	AG; necessary detail required
(iii)	Substitute for $\cos 6\theta$	*M1		with simplification attempted
	Obtain $32c^6 - 48c^4 = 0$	A1		or equiv
	Attempt solution for <i>c</i> of equation Obtain $c^2 = \frac{3}{2}$ and observe no solutions	M1 A1		dep *M or equiv; correct work only
	Obtain $c = \frac{1}{2}$ and observe no solutions Obtain $c = 0$, give at least three specific	A 1		or equiv, concer work only
	angles and conclude odd multiples of 90	A1	5	AG; or equiv; necessary detail required;
			12	correct work only

1 (i) (ii) (iii)	State $y = \sec x$ State $y = \cot x$ State $y = \sin^{-1} x$		3 3	
2	Either: State or imply $\int \pi (2x-3)^4 dx$	B1		or unsimplified equiv
	Obtain integral of form $k(2x-3)^5$ Obtain $\frac{1}{10}(2x-3)^5$ or $\frac{1}{10}\pi(2x-3)^5$			any constant k involving π or not
	Attempt evaluation using 0 and $\frac{3}{2}$			subtraction correct way round
	$\frac{243}{10}\pi$	A1	5	or exact equiv
	<u>Or</u> : State or imply $\int \pi (2x-3)^4 dx$	B1		or unsimplified equiv
	Expand and obtain integral of order 5	M1		with at least three terms correct
	Ob'n $\frac{16}{5}x^5 - 24x^4 + 72x^3 - 108x^2 + 81x$	A1		with or without π
	Attempt evaluation using (0 and) $\frac{3}{2}$	M1		
	Obtain $\frac{243}{10}\pi$		(5) 5	or exact equiv
3 (i)	Attempt use of identity for $\sec^2 \alpha$	M1		using $\pm \tan^2 \alpha \pm 1$
	Obtain $1 + (m+2)^2 - (1+m^2)$	A1		absent brackets implied by subsequent
	Obtain $4m + 4 = 16$ and hence $m = 3$	A1	3	correct working
(ii)	Attempt subn in identity for $tan(\alpha + \beta)$	M1		using $\frac{\pm \tan \alpha \pm \tan \beta}{1 \pm \tan \alpha \tan \beta}$
	Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$	A1۷	V	following their <i>m</i>
	Obtain $-\frac{4}{7}$	A1	3	or exact equiv
	,	l	6	-
4 (i)	Obtain $\frac{1}{3}e^{3x} + e^x$	B1		
	Substitute to obtain $\frac{1}{3}e^{9a} + e^{3a} - \frac{1}{3}e^{3a} - e^{a}$	B 1		or equiv
	Equate definite integral to 100 and			
	attempt rearrangement	M1		as far as $e^{9a} = \dots$
	Introduce natural logarithm	M1	-	using correct process
	Obtain $a = \frac{1}{9} \ln(300 + 3e^a - 2e^{3a})$	A1	5	AG; necessary detail needed
(ii)	Obtain correct first iterate	B1		allow for 4 dp rounded or truncated
	Show correct iteration process	M1		with at least one more step
	Obtain at least three correct iterates in all Obtain 0.6309	A1 A1	1	allowing recovery after error following at least three correct steps;
	$[0.6 \rightarrow 0.631269 \rightarrow 0.630]$			answer required to exactly 4 dp
			9	

5 (i)	Either: Show correct process for comp'n Obtain $y = 3(3x+7) - 2$	M1 A1		correct way round and in terms of x or equiv
	Obtain $x = -\frac{19}{9}$	A1	3	or exact equiv; condone absence of $y = 0$
	<u>Or</u> : Use $fg(x) = 0$ to obtain $g(x) = \frac{2}{3}$	B1		
	Attempt solution of $g(x) = \frac{2}{3}$	M1		
	Obtain $x = -\frac{19}{9}$	A1	(3)	or exact equiv; condone absence of $y = 0$
(ii)	Attempt formation of one of the equations			
	$3x+7 = \frac{x-7}{3}$ or $3x+7 = x$ or $\frac{x-7}{3} = x$	M1		or equiv
	Obtain $x = -\frac{7}{2}$	A1		or equiv
	Obtain $y = -\frac{7}{2}$	A1٧	3	or equiv; following their value of <i>x</i>
(iii)	Attempt solution of modulus equation	M1		squaring both sides to obtain 3-term quadratics or forming linear equation with signs of 3x different on each side
	Obtain $-12x + 4 = 42x + 49$ or	4.1		
	3x - 2 = -3x - 7	A1 A1		or equiv or exact equiv; as final answer
	Obtain $x = -\frac{5}{6}$		4	•
	Obtain $y = \frac{9}{2}$	A1	4 10	or equiv; and no other pair of answers
6 (i)	Obtain derivative $k(37+10y-2y^2)^{-\frac{1}{2}}f(y)$	M1		any constant k ; any linear function for f
	Obtain $\frac{1}{2}(10-4y)(37+10y-2y^2)^{-\frac{1}{2}}$	A1	2	or equiv
	dr			
(ii)	<u>Either</u> : Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	*M1		
	Take reciprocal of expression/value	*M1		and without change of sign
	Obtain –7 for gradient of tangent	A1		
	Attempt equation of tangent Obtain $y = -7x + 52$	M1 A1	5	dep *M *M and no second equation
	y = -7x + 32	ЛІ	5	
	<u>Or</u> : Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	M1		
	Attempt formation of eq'n $x = m'y + c$	M1		where m' is attempt at $\frac{dx}{dy}$
	Obtain $x - 7 = -\frac{1}{7}(y - 3)$	A1		or equiv
	Attempt rearrangement to required form Obtain $y = -7x + 52$	n M1 A1	(5) 7	and no second equation

7 (i)	State $R = 10$ Attempt to find value of α	B1 M1	or equiv implied by correct answer or its complement; allow sin/cos muddles
	Obtain 36.9 or $\tan^{-1}\frac{3}{4}$	A1 3	or greater accuracy 36.8699
(ii)(a)	Show correct process for finding one angle Obtain (64.16 + 36.87 and hence) 101 Show correct process for finding second	A1	or greater accuracy 101.027
	angle Obtain (115.84 + 36.87 and hence) 153	M1 A1√ 4	following their value of α ; or greater accuracy 152.711; and no other between 0 and 360
(b)	Recognise link with part (i) Use fact that maximum and minimum	M1	signalled by 40 – 20
	values of sine are 1 and -1 Obtain 60	M1 A1	
8 (i)	Refer to translation and stretch	M1	in either order; allow here equiv informal terms such as 'move',
	State translation in <i>x</i> direction by 6 State stretch in <i>y</i> direction by 2 [SC: if M0 but one transformation completed		or equiv; now with correct terminology or equiv; now with correct terminology
(ii)	State $2\ln(x-6) = \ln x$	B1	or $2\ln(a-6) = \ln a$ or equiv
	Show correct use of logarithm property Attempt solution of 3-term quadratic	*M1 M1	dep *M
	Obtain 9 only		4 following correct solution of equation
(iii)	Attempt evaluation of form $k(y_0 + 4y_1 + y_2)$) M1	any constant k; maybe with $y_0 = 0$ implied
	Obtain $\frac{1}{3} \times 1(2 \ln 1 + 8 \ln 2 + 2 \ln 3)$	A1	or equiv
	Obtain 2.58	A1 2	
9 (a)		*M1	or equiv; allow numerator wrong way round and denominator errors
	Obtain $\frac{(kx^2+1)2kx - (kx^2-1)2kx}{(kx^2+1)^2}$	A1	or equiv; with absent brackets implied by
		. 1	subsequent correct working
	Obtain correct simplified numerator $4kx$ Equate numerator of first derivative to zero State $x = 0$ or refer to $4kx$ being linear or		dep *M
	observe that, with $k \neq 0$, only one sol'n	A1√ :	5 AG or equiv; following numerator of form $k'kx = 0$, any constant k'

(b)	Attempt use of product rule	*M1
	Obtain $me^{mx}(x^2 + mx) + e^{mx}(2x + m)$	A1

Equate to zero and either factorise with		
factor e^{mx} or divide through by e^{mx}	M1	dep *M
Obtain $mx^2 + (m^2 + 2)x + m = 0$ or equiv		
and observe that e^{mx} cannot be zero	A1	
Attempt use of discriminant	M1	using cor
Simplify to obtain $m^4 + 4$	A1	or equiv
Observe that this is positive for all m and		
hence two roots	A1 7	or equiv;
	12	

ing correct $b^2 - 4ac$ with their a, b, cequiv

equiv; AG

or equiv

1		Obtain integral of form $k(2x-7)^{-1}$ Obtain correct $-5(2x-7)^{-1}$ Include + <i>c</i>	M1 any constant k A1 or equiv B1 3 at least once; following any integral 3
2	(i)	Use $\sin 2\theta = 2\sin\theta\cos\theta$ Attempt value of $\sin\theta$ from $k\sin\theta\cos\theta = 5\cos\theta$ Obtain $\frac{5}{12}$	 B1 M1 any constant k; or equiv A1 3 or exact equiv; ignore subsequent work
	(ii)	Use $\csc \theta = \frac{1}{\sin \theta}$ or $\csc^2 \theta = 1 + \cot^2 \theta$ Attempt to produce equation involving $\cos \theta$ only Obtain $3\cos^2 \theta + 8\cos \theta - 3 = 0$ Attempt solution of 3-term quadratic equation Obtain $\frac{1}{3}$ as only final value of $\cos \theta$	B1 or equiv M1 using $\sin^2 \theta = \pm 1 \pm \cos^2 \theta$ or equiv A1 or equiv M1 using formula or factorisation or equiv A1 5 or exact equiv; ignore subsequent work
3	(i)	Obtain or clearly imply $60 \ln x$ Obtain ($60 \ln 20 - 60 \ln 10$ and hence) $60 \ln 2$	B1 B1 2 with no error seen
	(ii)	Attempt calculation of form $k(y_0 + 4y_1 + y_2)$ Identify k as $\frac{5}{3}$ Obtain $\frac{5}{3}(6+4\times4+3)$ and hence $\frac{125}{3}$ or 41.7	M1 any constant k; using y-value attempt A1 A1 3 or equiv
	(iii)	Equate answers to parts (i) and (ii) Obtain $60 \ln 2 = \frac{125}{3}$ and hence $\frac{25}{36}$	M1 provided ln 2 involved A1 2 AG; necessary detail required including clear use of an exact value from (ii)
4	(i)	Attempt correct process for composition Obtain (7 and hence) 0	M1 numerical or algebraic A1 2
	(ii)	Attempt to find <i>x</i> -intercept Obtain $x \le 7$	M1 A1 2 or equiv; condone use of <
	(iii)	Attempt correct process for finding inverse Obtain $\pm (2-y)^3 - 1$ or $\pm (2-x)^3 - 1$ Obtain correct $(2-x)^3 - 1$	M1 A1 A1 3 or equiv in terms of x
	(iv)	Refer to reflection in $y = x$	B1 1 or clear equiv 8

5	(i)	Obtain	derivative of form $kx(x^2 + 1)^7$ $16x(x^2 + 1)^7$ first derivative to 0 and confirm $x = 0$ or	M1 A1	any constant <i>k</i> or equiv
			tute $x = 0$ and verify first derivative zero	M1	AG; allow for deriv of form $kx(x^2 + 1)^7$
		Refer, 1	n some way, to $x^2 + 1 = 0$ having no root	AI 4	or equiv
	(ii)	Obtain Obtain	t use of product rule $16(x^2 + 1)^7 +$ $ + 224x^2(x^2 + 1)^6$ ute 0 in attempt at second derivative 16	A1√ A1√ M1	obtaining + form follow their $kx(x^2 + 1)^7$ follow their $kx(x^2 + 1)^7$; or unsimplified equiv dep *M 5 from second derivative which is correct at some point
6		Integra	te e^{3x} to obtain $\frac{1}{3}e^{3x}$ or $e^{-\frac{1}{2}x}$ to obtain $-2e^{-\frac{1}{2}x}$	B1	or both
		Obtain	indefinite integral of form $m_1 e^{3x} + m_2 e^{-\frac{1}{2}x}$	M1	any constants m_1 and m_2
		Obtain	correct $\frac{1}{3}ke^{3x} - 2(k-2)e^{-\frac{1}{2}x}$	A1	or equiv
			$e^{3\ln 4} = 64$ or $e^{-\frac{1}{2}\ln 4} = \frac{1}{2}$ limits and equate to 185	B1 M1	or both including substitution of lower limit
		Obtain Obtain	$\frac{\frac{64}{3}k - (k-2) - \frac{1}{3}k + 2(k-2) = 185$ $\frac{17}{2}$	A1 A1 7	or equiv ' or equiv
			2	7	-
7	(a)	Either:	State or imply either $\frac{dA}{dr} = 2\pi r$ or $\frac{dA}{dt} = 250$ Attempt manipulation of derivatives	B1	or both
			to find $\frac{dr}{dt}$	M1	using multiplication / division
			Obtain correct $\frac{250}{2\pi r}$	A1	or equiv
			Obtain 1.6	A1 4	or equiv; allow greater accuracy
		<u>Or</u> :	Attempt to express r in terms of t	M1	using $A = 250t$
			Obtain $r = \sqrt{\frac{250t}{\pi}}$	A1	or equiv
			Differentiate $kt^{\frac{1}{2}}$ to produce $\frac{1}{2}kt^{-\frac{1}{2}}$	M1	any constant k
			Substitute $t = 7.6$ to obtain 1.6	A1 (4) allow greater accuracy

	(b)	State $\frac{dm}{dt} = -150ke^{-kt}$	B1
		Equate to $(\pm)3$ and attempt value for t	M1 using valid process; condone sign confusion
		Obtain $-\frac{1}{k}\ln(\frac{1}{50k})$ or $\frac{1}{k}\ln(50k)$ or $\frac{\ln 50 + \ln k}{k}$	A1 3 or equiv but with correct treatment of
			signs 7
8	(i)	State scale factor is $\sqrt{2}$ State translation is in negative <i>x</i> -direction by $\frac{3}{2}$ units	 B1 allow 1.4 B1 or clear equiv B1 3
	(ii)	Draw (more or less) correct sketch of $y = \sqrt{2x+3}$	B1 'starting' at point on negative <i>x</i> -axis
		Draw (more or less) correct sketch of $y = \frac{N}{x^3}$	B1 showing both branches
		Indicate one point of intersection [SC: if neither sketch complete or correct but diagram	B1 3 with both sketches correct in correct for both in first quadrant B1]
	(iii)	(a) Substitute 1.9037 into $x = N^{\frac{1}{3}}(2x+3)^{-\frac{1}{6}}$	M1 or into equation $\sqrt{2x+3} = \frac{N}{r^3}$; or equiv
		Obtain 18 or value rounding to 18	A1 2 with no error seen x^{2}
		(b) State or imply $2.6282 = N^{\frac{1}{3}}(2 \times 2.6022 + 3)^{-\frac{1}{6}}$ Attempt solution for N Obtain 52	B1 M1 using correct process A1 3 concluding with integer value 11
9	(i)	Identify $\tan 55^\circ$ as $\tan(45^\circ + 10^\circ)$	B1 or equiv
		Use correct angle sum formula for $tan(A+B)$	M1 or equiv
		Obtain $\frac{1+p}{1-p}$	A1 3 with tan 45° replaced by 1
	(ii)	<u>Either</u> : Attempt use of identity for $\tan 2A$	*M1 linking 10° and 5°
		Obtain $p = \frac{2t}{1-t^2}$	A1
		Attempt solution for t of quadratic equation	M1 dep *M
		Obtain $\frac{-1+\sqrt{1+p^2}}{p}$	A1 4 or equiv; and no second expression
		<u>Or (1)</u> : Attempt expansion of $tan(60^\circ - 55^\circ)$	*M1
		Obtain $\frac{\sqrt{3} - \frac{1+p}{1-p}}{1 + \sqrt{3} \frac{1+p}{1-p}}$	A1 $$ follow their answer from (i)
		Attempt simplification to remove denominators	M1 dep *M
		Obtain $\frac{\sqrt{3}(1-p) - (1+p)}{1-p + \sqrt{3}(1+p)}$	A1 (4) or equiv

<u>Or (2)</u> : State or imply $\tan 15^\circ = 2 - \sqrt{3}$	B1
Attempt expansion of $\tan(15^\circ - 10^\circ)$	M1 with exact attempt for tan15°
Obtain $\frac{2 - \sqrt{3} - p}{1 + p(2 - \sqrt{3})}$	A2 (4)
<u>Or (3)</u> : State or imply $\tan 15^\circ = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ Attempt expansion of $\tan(15^\circ - 10^\circ)$ Obtain $\frac{\sqrt{3}-1-p\sqrt{3}-p}{\sqrt{3}+1+p\sqrt{3}-p}$	 B1 or exact equiv M1 with exact attempt for tan15° A2 (4) or equiv
<u>Or (4)</u> : Attempt expansion of $\tan(10^\circ - 5^\circ)$ Obtain $t = \frac{p-t}{1+pt}$ Attempt solution for t of quadratic equation Obtain $\frac{-2+\sqrt{4+4p^2}}{2p}$	*M1 A1 M1 dep *M A1 (4) or equiv; and no second expression
(iii) Attempt expansion of both sides	M1
Obtain $3\sin\theta\cos 10^\circ + 3\cos\theta\sin 10^\circ =$	A1 or equiv
$7\cos\theta\cos 10^\circ + 7\sin\theta\sin 10^\circ$	M1 or by $\cos\theta$ (or $\cos 10^\circ$) only
Attempt division throughout by $\cos\theta\cos 10^\circ$	A1 or equiv
Obtain $3t + 3p = 7 + 7pt$	A1 5 or equiv
Obtain $\frac{3p-7}{7p-3}$	12

Mark Scheme

1	(i)	Attempt use of product rule Obtain $3x^2e^{2x} + 2x^3e^{2x}$	M1 producing + form A1 2 or equiv
	(ii)	Attempt use of chain rule to produce $\frac{kx}{3+2x^2}$ form	M1 any constant <i>k</i>
		Obtain $\frac{4x}{3+2x^2}$	A1 2
	(iii)	Attempt use of quotient rule 2x + 1 - 2x	M1 or equiv; condone u/v confusions
		Obtain $\frac{2x+1-2x}{(2x+1)^2}$ or $(2x+1)^{-1} - 2x(2x+1)^{-2}$	A1 2 or (unsimplified) equiv
	[If $+c$ included in all three parts and all three parts otherwise correct, award M1A1, M1A1, M1A0; otherwise correct, award M1A1, M1A1, M1A1, M1A0; otherwise correct, award M1A1, M1A1, M1A1, M1A0; otherwise correct, award M1A1, M1A		
	Ig	gnore any inclusion of $\dots + c$.]	6
2	(i)	Obtain one of $\pm \ln(\pm x \pm 4)$	M1
		Obtain correct equation $y = -\ln(x-4)$	A1 2 or equiv; condone use of modulus signs instead of brackets
	(ii)	State, in any order, S, S and T	M1 or equiv such as S^2 , T or 2S, T
		State T, then S, then S	A1 2 or equiv (note that S, S, T^9 and S, T^3, S are alternative correct answers)
			4
		1	
3	(i)	Use $\csc \theta = \frac{1}{\sin \theta}$	B1
		Attempt to express equation in terms of $\sin \theta$	M1 using $\cos 2\theta = \pm 1 \pm 2 \sin^2 \theta$ or equiv
		Obtain or clearly imply $6\sin^2 \theta - 11\sin \theta - 10 = 0$	A1 3 or $-6\sin^2\theta + 11\sin\theta + 10 = 0$
	(ii)	Attempt solution to obtain at least one value of $\sin \theta$	M1 should be $s = -\frac{2}{3}, \frac{5}{2}$
		Obtain -41.8 Obtain -138	 A1 allow -42 or greater accuracy A1 3 or greater accuracy; and no others between -180 and 180
		[Answer(s) only: award 0 out of 3.]	6

4	(i)	Either:	: Integrate to obtain $k \ln x$ Use at least one relevant logarithm property	B1 M1	
			Obtain $k \ln 3 = \ln 81$ and hence $k = 4$	A1 3	AG; accurate work required
		<u>Or 1</u> :	(where solution involves no use of a logarithm pro-	operty)	
			Integrate to obtain $k \ln x$	B 1	
			Obtain correct explicit expression for k and		
			conclude $k = 4$ with no error seen	B2 3	AG; e.g. $k = \frac{\ln 81}{\ln 6 - \ln 2} = 4$
		<u>Or 2</u> :	(where solution involves verification of result by	initial s	ubstitution of 4 for k)
			Integrate to obtain $4 \ln x$	B1	
			Use at least one relevant logarithm property	M 1	
			Obtain ln 81 legitimately with no error seen	A1 3	AG; accurate work required
	(ii)	State v	volume involves $\int \pi (\frac{4}{x})^2 dx$	B1	possibly implied
		Obtain	n integral of form $k_1 x^{-1}$	M1	any constant k_1 including π or not
		Use co	prrect process for finding volume produced from S	M 1	$\int (k_2 2^2 - k_3 y^2) dx$, including π or not with
					correct limits indicated; or equiv
		Obtain	$16\pi - \frac{16}{3}\pi$ and hence $\frac{32}{3}\pi$	A1 4	or exact equiv
				7	

5	(i)	Attempt process for finding both critical values	M1	squaring both sides to obtain 3 terms on each side or considering 2 different linear eqns/inequalities	
		Obtain –4	A1		
		Obtain $\frac{2}{3}$	A1		
		Attempt process for solving inequality	M1	table, sketch,; needs two critical values; implied by plausible answer	
		Obtain $-4 \le x \le \frac{2}{3}$	A1 5	with \leq and not $<$	
	(ii)	Use correct process to find value of $ x+2 $ using any valu Obtain $2\frac{2}{3}$ or $\frac{8}{3}$	A1 2	whether part of answer to (i) or not dependent on 5 marks awarded in part (i)	
			7		

6	(i)	Attempt calculations involving 1.0 and 1.1 Obtain -0.57 and 0.76	M1 A1	using radians or values to 1 dp (rounded or truncated); or equivs (where eqn rearranged) AG; following correct work only
		Refer to sign change (or equiv for rearranged eqn)	AI 3	
	(ii)	Obtain correct first iterate	B1	using value x_1 such that $1.0 \le x_1 \le 1.1$
		Carry out iteration process Obtain at least 3 correct iterates Obtain 1.05083 $[1 \rightarrow 1.047198 \rightarrow 1.050571 \rightarrow 1.050809 -$ $1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827$ $1.1 \rightarrow 1.054268 \rightarrow 1.051070 \rightarrow 1.050844$	$ \begin{array}{r} \rightarrow 1.050826 \\ \rightarrow 1.0508 \end{array} $	827;
	 (iii)	State or imply $\sec^2 2x = 1 + \tan^2 2x$	B1	
	()	Relate to earlier equation	M1	by halving or doubling answer to (ii) or
		Deduce $2x = 1.05083$ and hence 0.525	A1√3	carrying out equivalent iteration processfollowing their answer to (ii); or greater accuracy
		[SC: Rearrange to obtain $x = \frac{1}{2}\cos^{-1}(2x+3)^{-\frac{1}{2}}$	B1	
		Use iterative process to obtain 0.525	B1 2 10	or greater accuracy]
7		Differentiate to obtain $k_1(3x-1)^3$	M1	any constant k_1
		Obtain correct $12(3x-1)^3$	A1	or (unsimplified) equiv
		Substitute 1 to obtain 96	A1	
		Attempt to find <i>x</i> -coordinate of Q	M1	using tangent with $y = 0$ or using gradient
		Obtain $\frac{5}{6}$	A1	or exact equiv
		Integrate to obtain $k_2(3x-1)^5$	M1	any constant k_2
		Obtain correct $\frac{1}{15}(3x-1)^5$	A1	or (unsimplified) equiv
		Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$	A1	
		Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$	M1 A1 10	integral – triangle or equiv or equiv
8	(i)	Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ Attempt to find value of α Obtain $\frac{1}{4}\pi$ or 0.785	B1 M1 A1 3	or equiv condone sin/cos muddles and degrees in radians now
	(ii) a	a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution		
		of $3\cos x + 3\sin x = 0$	M1	condone degrees here
		Obtain $\frac{3}{4}\pi$	A1 2	or, $-\frac{5}{4}\pi$, $-\frac{1}{4}\pi$, $\frac{7}{4}\pi$,; in radians now
	- ł	b Attempt correct process to find value of $3x - \alpha$	*M1	with attempt at rearranging $T(3x) = \frac{8}{9}\sqrt{6}$
		Obtain at least one correct exact value of $3x - \alpha$	A1	$\pm \frac{1}{6}\pi, \pm \frac{11}{6}\pi,$
		Attempt at least one positive value of <i>x</i>	M1	dep *M
		Obtain $\frac{1}{36}\pi$	A1 4	
			9	

9	(i)	Obtain	to find x-coord of staty point or complete square $(\frac{3}{2}, -9)$ or $4(x-\frac{3}{2})^2 - 9$ or -9 $f(x) \ge -9$	M1 A1 A1 3	or equiv using any notation; with \geq
	(ii)		one correct (perhaps general) relevant statement ide with correct evidence related to this f	B1 B1 2	not 1-1, f is many-one,; maybe implied if attempt is specific to this f AG; (more or less) correct sketch; correct relevant calculations,
	· · · · · · · · · · · · · · · · · ·	Either:	Attempt to find expression for g^{-1}	*M1	or equiv
			Obtain $\frac{1}{a}(x-b)$	A1	or equiv
			Compare $\frac{1}{a}(x-b)$ and $ax+b$	M1	dep *M; by equating either coefficients of x
			·		or constant terms (or both); or substituting two non-zero values of <i>x</i> and solving eqns for <i>a</i>
			Obtain at least $-\frac{b}{a} = b$ and hence $a = -1$	A1 4	AG; necessary detail required; or equiv
			[SC1: first two steps as above, then substitute $a =$	-1: ma	ax possible M1A1B1]
			[SC2: substitute $a = -1$ at start: Attempt to find i	nverse	M1 Obtain $-x+b$ and conclude A1 2]
		<u>Or</u> :	State or imply that $y = g^{-1}(x)$ is reflection		
			of $y = g(x)$ in line $y = x$	B1	
			State that line unchanged by this reflection is perpendicular to $y = x$	M2	
			Conclude that <i>a</i> is -1	A1 4	
	(iv)	Attemp Obtain	r imply that $gf(x) = -(4x^2 - 12x) + b$ ot use of discriminant or relate to range of f 64+16b < 0 or $9+b < 5b < -4$	B1 M1 A1 A1 4 13	or equiv or equiv

1	<u>Either</u> : Obtain $\frac{1}{3}a$ Attempt solution of linear eqn	B1 M1		condone $ x = \frac{1}{3}a$ with signs of $3x$ and $5a$ different; allow M1 only if <i>a</i> given particular value and no recovery occurs; allow M1 only if <i>a</i> in terms of <i>x</i> attempted; allow M1 only if double inequality attempted but with no recovery to state actual values of <i>x</i>
	Obtain –3a	A1	3	as final answer
	<u>Or</u> : Obtain $9x^2 + 24ax + 16a^2 = 25a^2$	B1		
	Attempt solution of 3-term quad eqn	M1		as far as substitution into correct quadratic formula or correct factorisation of their quadratic; allow M1 only if <i>a</i> given particular value
	Obtain $-3a$ and $\frac{1}{3}a$	A1	(3) 3	or equivs; as final answers; and no others
2	Draw graph showing reflection in a horizontal axis	M1		
	Draw graph showing translation			parallel to <i>x</i> -axis, in either direction; independent of first M1; not earned if curve still passes through <i>O</i> but ignore other coordinates given at this stage
	Draw (more or less) correct graph which must at least reach the negative <i>x</i> -axis, if not cross it, at left end of curve	A1		but ignoring no or wrong stretch in y-dir'n;
				condone graph existing only for $x < 0$; consider shape of curve and ignore coordinates given
	State $(-5, 24)$ and $(-3, 0)$ wherever located	B1	4	or clearly implied by sketch; allow for coordinates whatever sketch looks like; allow if in solution with no sketch
3	<u>Either:</u> State or imply $8\pi r$ as derivative Attempt to connect 12 and their	B1		or equiv
	derivative	M1		numerical or algebraic; using multiplication or division
	Obtain $8\pi \times 150 \times 12$ and hence 45000 or 14400π or 14000π	A1	3	or equiv; or greater accuracy (45239); condone absence of units or use of wrong units
	<u>Or</u> : Use $r = 12t$ to show $S = 576\pi t^2$	B1		
	Attempt $\frac{dS}{dt}$ and substitute for <i>t</i>	M1		
	Obtain $1152\pi \times \frac{150}{12}$ and hence 45000 or 14400π or 14000π	A1	(3)	or equiv; or greater accuracy (45239); condone absence of units or use of wrong units
			3	units

4	(i)	Obtain $R = 25$ Attempt to find value of α	B1 M1		allow $\sqrt{625}$ or value rounding to 25 implied by correct answer or its complement; allow sin/cos muddles; allow use of radians for this mark; condone sin $\alpha = 7$, cos $\alpha = 24$ in the working
		Obtain 16.3°	A1	3	or greater accuracy 16.260; must be degrees now; allow 16° here
	(ii)	Show correct process for finding one answer Obtain (28.69 – 16.26 and hence) 12.4°	:M1 A1	-	even if leading to answer outside 0 to 360 or greater accuracy 12.425 or anything rounding to 12.4
		Show correct process for finding second answer Obtain (151.31 – 16.26 and hence) 135°	M1		even if further incorrect answers produced
		or 135.1°	A1	4	or greater accuracy 135.054; and no other between 0 and 360
		[SC: No working shown and 2 correct angle	s state	2d -	- BI only in part (ii)]
5		Integrate to obtain form $k(3x-2)^{\frac{1}{2}}$	M1		any non-zero constant k; or equiv involving substitution
		Obtain correct $4(3x-2)^{\frac{1}{2}}$	A1		or (unsimplified) equiv such as $\frac{6(3x-2)^{\frac{1}{2}}}{3 \times \frac{1}{2}}$
		Apply limits and attempt solution for <i>a</i>	M1		assuming integral of form $k(3x-2)^n$;
		Obtain $a = 9$	A1		taking solution as far as removal of root; with subtraction the right way round; if sub'n used, limits must be appropriate (this answer written down with no working scores 0/4 so far but all subsequent marks are available)
		State or imply formula $\int \frac{36\pi}{3x-2} dx$	B1		or (unsimplified) equiv; condone absence of
		Integrate to obtain form $k \ln(3x-2)$	*M1		dx; allow B1 retroactively if π absent here but inserted later any constant <i>k</i> including π or not; condone absence of brackets
		Obtain $12\pi \ln(3x-2)$ or $12\ln(3x-2)$	A1		following their integral of form $\int \frac{k}{3x-2} dx$
		Apply limits the correct way round	M1		dep *M; use of limit 1 is implied by absence of second term; allow use of limit a
		Obtain $12\pi \ln 25$ (or $24\pi \ln 5$)	A1	9 9	or exact equiv but not with $\ln 1$ remaining; condone answers such as $\pi 12 \ln 25$ and $12 \ln 25\pi$

6	(i)	Attempt use of quotient rule	M1		or equiv; allow numerator wrong way round but needs minus sign in numerator; for M1 condone 'minor' errors such as sign slips, absence of square in denominator, and absence of some brackets
		Obtain $\frac{3(x^3 - 4x^2 + 2) - (3x + 4)(3x^2 - 8x)}{(x^3 - 4x^2 + 2)^2}$	A1		or equiv; allow A1 if brackets absent from
		-			$3x+4$ term or from $3x^2-8x$ term but not from both
		Equate numerator to 0 and attempt simplification	M1		at least as far as removing brackets, condoning sign or coeff slips; or equiv
		Obtain $-6x^3 + 32x + 6 = 0$ or equiv and			
		hence $x = \sqrt[3]{\frac{16}{3}x + 1}$	A1	4	AG; necessary detail needed (i.e. at least
		V J			one intermediate step) and following first derivative with correct numerator
	(ii)	Obtain correct first iterate having used			
		initial value 2.4	B1		showing at least 3 dp (2.398 or 2.399 or greater accuracy 2.39861)
		Apply iterative process	M1		to obtain at least 3 iterates in all; implied by plausible, converging sequence of values; having started with any initial non-negative value
		Obtain at least 3 correct iterates from			6
		their starting point	A1		allowing recovery after error
		Obtain 2.398	A1		value required to exactly 3 dp
		Obtain –1.552	A1	5	value required to exactly 3 dp; allow if apparently obtained by substitution of 2.4; answers only with no iterates shown gets 0/5
		$[2.4 \rightarrow 2.3986103 \rightarrow 2.398]$	81808	3 -	
				9	

7	(i)	State $\ln(x^2 + 8) = 8$	B 1		or equiv such as $x^2 + 8 = e^8$			
		Attempt solution involving e ⁸	M1		by valid (exact) method at least as far as $x^2 =$			
		Obtain $\sqrt{e^8 - 8}$	A1	3	or exact equiv; and no other answer			
	(ii)	State f only	B1	-				
		State e^x or e^y Indicate domain is all real numbers	B1 B1	3	or equiv; allow if g, or f and g, chosen however expressed			
	(iii)	Attempt use of chain rule	M1	-	whether applied to gf or fg; or equiv such as use of product rule on $(\ln x)(\ln x) + 8$			
		Obtain $\frac{2\ln x}{x}$	A1		or equiv			
		Obtain 6e ⁻³	A1	3	or exact equiv but not including ln			
	(iv)	Attempt evaluation using <i>y</i> attempts	M1	-	with coeffs 1, 4 and 2 occurring at least once each; whether fg or gf			
		Obn $k(\ln 24 + 4\ln 12 + 2\ln 8 + 4\ln 12 + \ln 24)$	A1		any constant k			
		Use $k = \frac{2}{3}$ and obtain 20.3	A1	3	or greater accuracy (20.26) but must round to 20.3			
		[Note that use of Simpson's rule between 0 and 4 with two strips, coeffs 1, 4, 1, followed by doubling of result is equiv;						
		SC: Use of Simpson's rule between 0 and 4 allow 3/3 - answer is 20.2 (20.2327			ur strips followed by doubling of result -			

8	(a)	(i)	Draw at least two correctly shaped branches, one for $y > 0$, one for $y < 0$ Draw four correct branches Draw (more or less) correct graph	M1 M1 A1	3	otherwise located anywhere including $x < 0$ now (more or less) correctly located; with some indication of horiz scale (perhaps only 4π indicated); with asymptotic behaviour shown (but not too fussy about branch drifting slightly away from asymptotic value nor about branch touching asymptote) but branches must not obviously cross asymptotic value; with -1 and 1 shown (or implied by presence of sine curve or by presence of only one of them on a reasonably accurate sketch); no need for vertical (dotted) lines drawn to indicate asymptotic values
		(ii)	State expression of form $k\pi + \alpha$ or $k\pi - \alpha$ or $\alpha = k\pi + \beta$ or $\alpha = k\pi - \beta$	M1		any non-zero numerical value of <i>k</i> ; M0 if
			State $3\pi - \alpha$	A1	2	degrees used or unsimplified equiv
	(b)	(i)	State $\frac{2 \tan \theta}{1 - \tan^2 \theta}$	B1	1	or equiv such as $\frac{t+t}{1-t\times t}$ or $\frac{2\tan A}{1-\tan^2 A}$
		- (ii)) State or imply $\tan \phi = \frac{1}{4}$	B1		or equiv such as $\frac{1}{\tan\phi} = 4$
			Attempt to evaluate $\tan 2\phi$ or $\cot 2\phi$	M1		perhaps within attempt at complete expression but using correct identity
			Obtain $\tan 2\phi = \frac{8}{15}$ or $\cot 2\phi = \frac{15}{8}$	A1		or (unsimplified) equiv; may be implied
			Attempt to evaluate value of $\tan 4\phi$	M1		perhaps within attempt at complete expression; condone only minor slip(s) in use of relevant identity
			Obtain $\frac{240}{161}$	A1		or (unsimplified) exact equiv; may be implied
			Obtain final answer $\frac{225}{322}$	A1	6	or exact equiv
			[SC – (use of calculator and little or no			-
						$\phi = \frac{8}{15}$ B1; Obtain $\frac{225}{322}$ B1 (max 3/6)
			State or imply $\tan \phi = \frac{1}{4}$ B1; Obta	in $\frac{22}{32}$	12 12 12	7

9	(i)	(a) Differentiate to obtain $k_1 e^{2x} + k_2 e^{-2x}$	M1	1 any constants k_1 and k_2 but derivative must be different from $f(x)$; condone presence of $+ c$
		Obtain $2e^{2x} + 6e^{-2x}$	A1	-
		Refer to $e^{2x} > 0$ and $e^{-2x} > 0$ or to		
		more general comment about exponential functions	A1	1 3 or equiv (which might be sketch of y = f(x) with comment that gradient is positive or might be sketch of y = f'(x) with comment that $y > 0$; AG
		(b) Differentiate to obtain $k_3 e^{2x} + k_4 e^{-2x}$	M1	1 any constants k_3 and k_4 but second derivative must be different from their first derivative; condone presence of $+ c$
		Obtain $4e^{2x} - 12e^{-2x}$ Attempt solution of $f''(x) > 0$ or of	A1	1 or unsimplified equiv; $no + c now$
		f(x) > 0 or of corresponding eqn	M1	1 at least as far as term involving e^{4x} or e^{-4x}
		Obtain $x > \frac{1}{4} \ln 3$	A1	1
		Confirm both give same result	B1	AG; necessary detail needed; either by solving the other or by observing that same inequality involved (just noting that f''(x) = 4f(x) is sufficient)
	 (ii)	Differentiate to obtain $2e^{2x} - 2ke^{-2x}$	B1	or unsimplified equiv
	(11)	Attempt to find <i>x</i> -coordinate of stationary p		
		Obtain $e^{4x} = k$ and hence $\frac{1}{4} \ln k$ or equiv	A1	
		Substitute and attempt simplification	M1	1 using valid processes but allow if only limited progress [note that question can be successfully concluded (without actually finding <i>x</i>) by substitution of $e^{2x} = \sqrt{k}$ and $e^{-2x} = \frac{1}{\sqrt{k}}$]
		Obtain $g(x) \ge 2\sqrt{k}$ or $y \ge 2\sqrt{k}$	A1	1 5 or similarly simplified equiv with \geq not > 13

1 ((i)	Obtain integral of form ke^{2x+1}	M1		any non-zero constant <i>k</i> different from 6; using substitution $u = 2x + 1$ to obtain ke^{u}
					earns M1 (but answer to be in terms of x)
		Obtain correct $3e^{2x+1}$	A1		or equiv such as $\frac{6}{2}e^{2x+1}$
(i	ii)	Obtain integral of form $k_1 \ln(2x+1)$	M1		any non-zero constant k_1 ; allow if brackets
					absent; $k_1 \ln u$ (after sub'n) earns M1
		Obtain correct $5\ln(2x+1)$	A1		or equiv such as $\frac{10}{2}\ln(2x+1)$; condone
		Include $\dots + c$ at least once	B1	5	brackets rather than modulus signs but brackets or modulus signs must be present (so that $5 \ln 2x + 1$ earns A0) anywhere in the whole of question 1; this mark available even if no marks awarded for integration
2		Apply one of the transformations correctly to their equation	B1		
		Obtain correct $-3 \ln x + \ln 4$	B1		or equiv
		Show at least one logarithm property	M1		correctly applied to their equation of resulting curve (even if errors have been made earlier)
		Obtain $y = \ln(4x^{-3})$	A1	4	or equiv of required form; $\ln 4x^{-3}$ earns A1; correct answer only earns 4/4; condone absence of $y =$
				4	
3	(a)	State $14\sin\alpha\cos\alpha = 3\sin\alpha$	B1		or unsimplified equiv such as $7(2 \sin \alpha \cos \alpha) = 3 \sin \alpha$
		Attempt to find value of $\cos \alpha$	M1		by valid process; may be implied
		Obtain $\frac{3}{14}$	A1	3	exact answer required; ignore subsequent work to find angle
	(b)	Attempt use of identity for $\cos 2\beta$	M1		of form $\pm 2\cos^2 \beta \pm 1$; initial use of $\cos^2 \beta - \sin^2 \beta$ needs attempt to express $\sin^2 \beta$ in terms of $\cos^2 \beta$ to earn M1
		Obtain $6\cos^2\beta + 19\cos\beta + 10$	A1		or unsimplified equiv or equiv involving sec β
		Attempt solution of 3-term quadratic eqn	M1		for $\cos \beta$ or (after adjustment) for $\sec \beta$
		Use $\sec \beta = \frac{1}{\cos \beta}$ at some stage	M1		or equiv
		Obtain $-\frac{3}{2}$	A1	5 8	or equiv; and (finally) no other answer

4 (i)	Draw sketch of $y = (x-2)^4$	*B1	touching positive <i>x</i> -axis and extending at least as far as the <i>y</i> -axis; no need for 2 or
	Draw straight line with positive gradient	*B1	16 to be marked; ignore wrong intercepts at least in first quadrant and reaching positive y-axis; assess the two graphs independently of each other
	Indicate two roots	B1 3	 AG; dep *B *B and two correct graphs which meet on the <i>y</i>-axis; indicated in words or by marks on sketch
	[SC: Draw sketch of $y = (x-2)^4 - x - 16$ a	nd indi	cate the two roots : B1 (i.e. max 1 mark)]
(ii)	State 0 or $x = 0$	B1 1	not merely for coordinates (0, 16)
(iii)	Obtain correct first iterate Show correct iteration process	B1 M1	to at least 3 dp; any starting value (>-16) producing at least 3 iterates in all; may be implied by plausible converging values
	Obtain at least 3 correct iterates	A1	allowing recovery after error; iterates given to only 3 d.p. acceptable; values may be rounded or truncated
	Obtain 4.118	A1 4	 answer required to exactly 3 dp; A0 here if number of iterates is not enough to justify 4.118; attempt consisting of answer only
	$[0 \rightarrow 4 \rightarrow 4.114743 \rightarrow 4.117769]$	9 →	earns 0/4 4 117849 ·
	$1 \rightarrow 4.030543 \rightarrow 4.115549 \rightarrow$		
	$2 \rightarrow 4.059767 \rightarrow 4.116321 \rightarrow$		
	$3 \rightarrow 4.087798 \rightarrow 4.117060 \rightarrow$		
	$4 \rightarrow 4.114743 \rightarrow 4.117769 \rightarrow$	4.117	$849 \rightarrow 4.117851;$
	$5 \rightarrow 4.140695 \rightarrow 4.118452 \rightarrow$	4.117	$867 \rightarrow 4.117851]$
			8
5	Attempt use of product rule	*M1	to produce $k_1 x \ln(4x-3) + \frac{k_2 x^2}{4x-3}$ form
	Obtain $2x\ln(4x-3)$	A1	
	Obtain $+\frac{4x^2}{4x-3}$	A1	or equiv
	Attempt second use of product rule Attempt use of quotient (or product) rule Obtain	*M1 *M1	allow numerator the wrong way round
	$2\ln(4x-3) + \frac{8x}{4x-3} + \frac{8x(4x-3) - 16x^2}{(4x-3)^2}$	A1	or equiv
	Substitute 2 into attempt at second deriv Obtain $2 \ln 5 + \frac{96}{25}$	M1 A1	dep *M *M *Mor exact equiv consisting of two terms

<u>Method 1</u>: (Differentiation; assume value $\frac{10}{3}$; eqn of tangent; through origin)

1

6

Differentiate to obtain $k(3x-5)^{-\frac{1}{2}}$	M1	any constant k
Obtain $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$	A1	or equiv
Attempt to find equation of tangent at <i>P</i> and attempt to show tangent passing through origin	M1	assuming value $\frac{10}{3}$; or equiv
Obtain $y = \frac{3}{2\sqrt{5}}x$ and confirm that		
tangent passes through O	A1	AG; necessary detail needed
<u>Method 2</u> : (Differentiation; equate $\frac{y \text{ change}}{x \text{ change}}$	to deriv;	solve for <i>x</i>)
Differentiate to obtain $k(3x-5)^{-\frac{1}{2}}$	M1	any constant k
Obtain $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$	A1	or equiv
Equate $\frac{y \text{ change}}{x \text{ change}}$ to deriv and attempt solution	n M1	
Obtain $\frac{\sqrt{3x-5}}{x} = \frac{3}{2}(3x-5)^{-\frac{1}{2}}$ and solve to		
obtain $\frac{10}{3}$ only	A1	
<u>Method 3</u> : (Differentiation; find x from y	= f'(x) x	and $y = \sqrt{3x-5}$)
Differentiate to obtain $k(3x-5)^{-\frac{1}{2}}$	M1	any constant k
Obtain $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$	A1	or equiv
State $y = \frac{3}{2}(3x-5)^{-\frac{1}{2}}x$, $y = \sqrt{3x-5}$, eliminate y and attempt solution Obtain $\frac{10}{3}$ only	M1 A1	condone this attempt at 'eqn of tangent'

<u>Method 4</u>: (No differentiation; general line through origin to meet curve at one point only) Eliminate *y* from equations y = kx and

$y = \sqrt{3x-5}$ and attempt formation of		
quadratic eqn	M1	
$Obtain k^2 x^2 - 3x + 5 = 0$	A1	or equiv
Equate discriminant to zero to find k	M1	
Obtain $k = \frac{3}{2\sqrt{5}}$ or equiv and confirm $x =$	$=\frac{10}{3}$ A1	

r

<u>Method 5</u>: (No differentiation; use coords of *P* to find eqn of *OP*; confirm meets curve once) Use coordinates $(\frac{10}{3}, \sqrt{5})$ to obtain $y = \frac{3\sqrt{5}}{10}x$ or equiv as equation of *OP* Eliminate *y* from this eqn and eqn of curve and attempt quadratic eqn Attempt solution or attempt discriminant Confirm $\frac{10}{3}$ only or discriminant = 0 A1

|--|

<u>Entiter:</u>	Integrate to obtain $k(3x-5)^{\frac{3}{2}}$	*M	1	any constant k
	Obtain correct $\frac{2}{9}(3x-5)^{\frac{3}{2}}$	A1		
	Apply limits $\frac{5}{3}$ and $\frac{10}{3}$	M1		dep *M; the right way round
	Make sound attempt at triangle area and calculate (triangle area) minus (their area under curve)	M1		or equiv
	Obtain $\frac{10}{6}\sqrt{5} - \frac{10}{9}\sqrt{5}$ and hence $\frac{5}{9}\sqrt{5}$	A1	9	or exact equiv involving single term
	<u>Or</u> : Arrange to $x = \dots$ and integrate to obtain $k_1y^3 + k_2y$ form	*M	1	
	Obtain $\frac{1}{9}y^3 + \frac{5}{3}y$	A1		
	Apply limits 0 and $\sqrt{5}$ Make sound attempt at triangle area and calculate (their area from integration)	M1		dep *M; the right way round
	minus (triangle area)	M1		
	Obtain $\frac{20}{9}\sqrt{5} - \frac{5}{3}\sqrt{5}$ and hence $\frac{5}{9}\sqrt{5}$	A1	(9)	or exact equiv involving single term
			9	
7 (i)	Either: Attempt solution of at least one linear eq'n of form $ax + b = 12$	M1		
	Obtain $\frac{1}{3}$	A2	3	and (finally) no other answer
	<u>Or</u> : Attempt solution of 3-term quadratic eq'n obtained by squaring attempt at $g(x+2)$ on LHS and squaring			
	12 or -12 on RHS	M1	()	
	Obtain $\frac{1}{3}$	A2	(3) and (finally) no other answer
(ii)	Either: Obtain $3(3x+5)+5$ for h	B1		
	Attempt to find inverse function	M1		of function of form $ax + b$
	Obtain $\frac{1}{9}(x-20)$	A1	3	or equiv in terms of <i>x</i>
	<u>Or</u> : State or imply g^{-1} is $\frac{1}{3}(x-5)$	B 1		
	Attempt composition of g^{-1} with g^{-1}	M1		
	Obtain $\frac{1}{9}(x-5) - \frac{5}{3}$	A1	(3)	or more simplified equiv in terms of x
(iii)	State $x \le 0$	B2	2	give B1 for answer $x < 0$

8	(i)	Differentiate to obtain form $ke^{-0.014t}$ Obtain 5.6 $e^{-0.014t}$ or $-5.6e^{-0.014t}$ Obtain 4.9 or -4.9 or 4.87 or -4.87	M1 A1 A1	3	statement seems contradictory; answer
	(ii)	<u>Either</u> : State or imply $M_2 = 75e^{kt}$ Attempt to find formula for M_2	B1 M1		only earns 0/3 – differentiation is needed
		Obtain $M_2 = 75e^{0.047t}$ Equate masses and attempt	A1		or equiv such as $75e^{(\frac{1}{10}\ln\frac{8}{5})t}$
		rearrangement	M1		as far as equation with e appearing once
		Obtain $e^{0.061t} = \frac{16}{3}$	A1	5	or equiv of required form which might involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii
		<u>Or</u> : State or imply $M_2 = 75 \times r^{0.1t}$	B1		for positive value <i>r</i>
		Obtain $75 \times 1.6^{0.1t}$	B 1		
		Attempt to find M_2 in terms of e Equate masses and attempt	M1		
		rearrangement	M1		
		Obtain $e^{0.061t} = \frac{16}{3}$	A1	5	or equiv of required form which might involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii
	(iii)	Attempt solution involving logarithm			
		of any equation of form $e^{mt} = c_1$ Obtain 27.4	M1 A1	2 10	whether the conclusion of part ii or not or greater accuracy 27.4422; correct answer only earns both marks

9 (i)	Use at least one identity correctly Attempt use of relevant identities in	B1		angle-sum or angle-difference identity
	single rational expression	M1		not earned if identities used in expression where step equiv to $\frac{A+B+C}{D+E+F} = \frac{A}{D} + \frac{B}{E} + \frac{C}{F}$ or similar has been carried out; condone (for M1A1) if signs of identities apparently switched (so that, for example, denominator appears as $\cos\theta\cos\alpha - \sin\theta\sin\alpha +$ $3\cos\theta + \cos\theta\cos\alpha + \sin\theta\sin\alpha$)
	Obtain $\frac{2\sin\theta\cos\alpha + 3\sin\theta}{2\cos\theta\cos\alpha + 3\cos\theta}$	A1		or equiv but with the other two terms from
	Attempt factorisation of num'r and den'r	M1		each of num'r and den'r absent
	Obtain $\frac{\sin\theta}{\cos\theta}$ and hence $\tan\theta$	A1	5	AG; necessary detail needed
(ii)	State or imply form $k \tan 150^\circ$	M1		obtained without any wrong method seen
	State or imply $\frac{4}{3}$ tan 150°	A1		or equiv such as $\frac{12\sin 150^\circ}{9\cos 150^\circ}$
	Obtain $-\frac{4}{9}\sqrt{3}$	A1	3	or exact equiv (such as $-\frac{4}{3\sqrt{3}}$); correct answer only earns 3/3
(iii)	State or imply $\tan 6\theta = k$	B1		
	State $\frac{1}{6} \tan^{-1} k$	B1		
	Attempt second value of θ	M1		using $6\theta = \tan^{-1}k + ($ multiple of 180 $)$
	Obtain $\frac{1}{6}$ tan ⁻¹ k + 30°	A1	4 12	and no other value

Questio	on Answer	Marks	Guidance
1	State 2ln x Use both relevant logarithm properties correctly Obtain ln 3	B1 M1 A1 [3]	may be implied by immediate use of limits either or both may be implied, eg by $2\ln\sqrt{6} = \ln 6$ or by $\ln 6 - \ln 2 = \ln 3$ AG; with at least one property shown explicitly
2	State volume is $\int \frac{36\pi}{(2x+1)^4} dx$	B1	or equiv in terms of x; no need for limits; condone absence of dx; condone absence of π here if it appears later in solution (even as part of a wrong answer)
	Obtain integral of form $k(2x+1)^n$	M1	for any $n \le -1$; with or without π ; or ku^n following substitution; allow if $n = -5$; allow M1 if one slight slip occurs in $(2x+1)$
	Obtain $-6\pi(2x+1)^{-3}$ or $-6(2x+1)^{-3}$	A1	or (unsimplified) equiv
	Substitute correct limits and subtract	M1	the correct way round for integral of form $k(2x+1)^{-3}$; allow if one slight slip occurs in $(2x+1)$; not earned if limit 0 leads to0
	Obtain $\frac{52}{9}\pi$	A1 [5]	or similarly simplified exact equiv

Q	uestion	Answer	Marks	Guidance	
3		Attempt use of quotient rule	M1	condone u/v muddles but needs $(x+2)^2$ in denominator; condone numerator back to front; or product rule to produce terms involving $(x+2)^{-1}$ and $(x+2)^{-2}$	
		Obtain $\frac{2x(x+2) - (x^2 + 4)}{(x+2)^2}$	A1	or equiv; brackets may be implied by subsequent recovery	
		Substitute 1 into attempt at first derivative Obtain $\frac{1}{9}$	M1 A1	also allow if sign slip leads to derivative cancelling to 1	
		Use -9 as gradient of normal Attempt to find equation of normal Obtain $27x+3y-32 = 0$	A1ft M1 A1	following their value of first derivative not equation of tangent; needs use of negative reciprocal of their derivative value or equiv of requested form	
			[7]		
4	(i)	State $\tan \alpha = 2$ Use identity $\sec^2 \beta = 1 + \tan^2 \beta$ Attempt solution of quad eqn for $\tan \beta$ Obtain $\tan \beta = 5$	B1 B1 M1 A1 [4]	 ignoring subsequent work to find angle 3 term quad eqn; using reasonable attempt at factorisation to find value or use of quadratic formula (with no more than one slip) ignoring subsequent work to find angle; value 5 must be obtained legitimately 	

	Questio	n	Answer	Marks	Guidance
4	(ii)		Substitute their values of $\tan \alpha$ and $\tan \beta$ in formula Obtain $\frac{2+5}{1-2\times 5}$ Obtain $-\frac{7}{9}$	M1 A1ft A1	of form $\frac{\pm \tan \alpha \pm \tan \beta}{\pm 1 \pm \tan \alpha \tan \beta}$ following their values from part (i) or correct simplified exact equiv including $\frac{7}{-9}$; A0 if $\tan \beta = 5$ obtained incorrectly in part (i) SC: use of calculator for $\tan(\tan^{-1} 2 + \tan^{-1} 5)$ to give $-\frac{7}{9}$ earns all 3 marks (but 0 out of 3 if answer is not exact); with either or both of 2 and 5 wrong, 2 out of 3 available for this approach if result is exact and correct given their two values
5	(i)		State 26 State 4	B1 B1 [2]	
5	(ii)		Sketch (more or less) correct curve Refer to reflection in $y = x$ or symmetrical about $y = x$ or mirrored in $y = x$	B1 B1 [2]	with approx correct curvatures and curve going through second quadrant but not fourth quadrant; allow if sketch does not meet given curve on line $y = x$ explicit reference needed, not just line $y = x$ shown on sketch

	Questio	n Answer	Marks	Guidance
5	(iii)	Attempt calculation $k(y+4y+2y+)$	M1	any constant k; with y-values from table and coefficients 1, 2 and 4 occurring at least once each; brackets may be implied by subsequent calculation
		Obtain $k(1+32+28+76+46+100+26)$	A1	or (unsimplified) equiv
		Use $k = \frac{1}{3} \times 2$	A1	
		Obtain 206	A1 [4]	
6	(i)	Obtain rational expression of form $\frac{f(y)}{y^3 + 2y}$	M1	where f(y) is not constant; ignore how expression is labelled
		Obtain $\frac{3y^2+2}{y^3+2y}$	A1	
		y 1 2 y	[2]	
6	(ii)	Recognise that $\frac{dy}{dx} = 1 \div \frac{dx}{dy}$ for rational	M1	may be implied
		expression of form $\frac{f(y)}{y^3 + 2y}$		
		Obtain $\frac{y^3 + 2y}{3y^2 + 2} = 4$ or $\frac{3y^2 + 2}{y^3 + 2y} = \frac{1}{4}$	A1ft	following their rational expression from (i)
		Confirm $y = \frac{12y^2 + 8}{y^2 + 2}$	A1	AG; following correct work and with at least one step between $\frac{y^3 + 2y}{3y^2 + 2} = 4$ or equiv and
			[3]	answer

C	Juestio	n	Answer	Marks	Guidance	
6	(iii)		Obtain correct first iterate 11.89	B1	or greater accuracy; having started with 12; accept if 12 used in part (ii) to produce next	
			Attempt iteration process to produce at least 3 iterates in all	M1	value and 11.89 used as starting value here implied by plausible sequence of values; having started anywhere; if formula clearly not based on equation from part (ii), award M0	
			Obtain at least 2 more correct iterates	A1	showing at least 3 decimal places	
			Obtain 11.888 for <i>y</i> Obtain 7.441 for <i>x</i>	A1 A1	answer needed to exactly 3 decimal places answer needed to exactly 3 decimal places; award final A0 if not clear which is x and which is y $[12 \rightarrow 11.89041 \rightarrow 11.88841 \rightarrow$ 11.88837]	
				[5]		

	Questic	on	Answer	Marks	Guidance
7	(i)	(a)	State or imply $e^{-0.132t} = 0.25$ Attempt solution of eqn of form $e^{-0.132t} = k$ Obtain 10.5	B1 M1 A1 [3]	or equiv such as $40e^{-0.132t} = 10$ using sound process; implied by correct ans; allow trial and improvement attempt or greater accuracy
7	(i)	(b)	Differentiate to obtain $ke^{-0.132t}$ Obtain 5.28 $e^{-0.132t}$ or $-5.28e^{-0.132t}$ Substitute 5 to obtain 2.73 or -2.73	M1 A1 A1 [3]	where <i>k</i> is a constant not equal to 40 (allow even if process looks like integration) or (unsimplified) equiv accept 2.7 or –2.7 or greater accuracy; allow 2.73 or –2.73 whatever it is claimed to be
7	(ii)		EITHER Attempt to solve $40e^{2\lambda} = 31.4$ or $40e^{-2\lambda} = 31.4$ Obtain or imply $40e^{-0.121t}$ Substitute 3 to obtain 27.8 <u>OR</u> Attempt calculation involving multiplication of power of $\frac{31.4}{40}$ Obtain $31.4 \times (\frac{31.4}{40})^{0.5}$ or $40 \times (\frac{31.4}{40})^{1.5}$ Obtain 27.8	M1 A1 [3] M1 A1 A1	using sound process; method implied by correct formula for mass of <i>B</i> obtained or greater accuracy (-0.12103) or 0.5ln 0.785 accept 28 or greater accuracy accept 28 or greater accuracy

(Questio	n Answer	Marks	Guidance
8	(i)	State $\cos 4\theta = 1 - 2\sin^2 2\theta$ State or clearly imply $\sin 2\theta = 2\sin\theta\cos\theta$ Obtain $1 - 8\sin^2\theta\cos^2\theta$	B1 B1 B1 [3]	possibly substituted in incorrect expression
8	(ii)	Produce expression involving $\cos \frac{4}{24}\pi$ as only trigonometrical ratio Obtain $\frac{1}{8} - \frac{1}{16}\sqrt{3}$	M1 A1 [2]	or exact equiv (including, eg $\frac{1-\frac{1}{2}\sqrt{3}}{8}$)
8	(iii)	Use $2\cos^2 2\theta = 1 + \cos 4\theta$ Attempt to express in terms of $\cos 4\theta$ Obtain $\frac{2}{3} + \frac{4}{3}\cos 4\theta$ Substitute at least one of -1 and 1 for $\cos 4\theta$ in expression where $\cos 4\theta$ is only trigonometrical ratio Obtain 2 and $-\frac{2}{3}$	B1 M1 A1 M1 A1 [5]	or use $2\cos^2 2\theta = 2 - 8\sin^2 \theta \cos^2 \theta$ or unsimplified equiv or at least one of $\theta = \frac{1}{4}\pi$ and $\theta = 0$

(Question	Answer	Marks	Guidance	
9	(i)	Attempt differentiation to find <i>x</i> -coordinate of stationary point or attempt completion of square as far as $(x +)^2$	M1	or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1	
		Obtain $x = -2$ or $(x+2)^2$ State translation by 2 in negative x-direction State translation by 4 in negative y-direction State stretch parallel to y-axis, scale factor k	A1 A1 A1 B1 [5]	first two marks of part (i) are implied by correct answer to translation in <i>x</i> -direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning <i>y</i> and <i>k</i>	
9	(ii)	State one of $y < 4k, y \le 4k, y < -4k, y \le -4k$ $y > 4k, y \ge 4k, y > -4k, y \ge -4k$ State $y \ge -4k$	B1 B1 [2]	allow alternative notation such as $f(x) \ge -4k$ or range $\ge -4k$	
9	(iii)	Attempt to relate <i>y</i> -value involving <i>k</i> at their stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = -20$ Obtain $k = 5$ State one root $x = -2$ Attempt solution of $k(x^2 + 4x) = 20$ Obtain $\frac{-4 \pm \sqrt{32}}{2}$ Obtain $\frac{-4 \pm \sqrt{32}}{2}$ Obtain $-2 \pm 2\sqrt{2}$ or $-2 \pm \sqrt{8}$	*M1 A1 B1 M1 A1ft A1 [6]	 earned unless there is clear evidence of error in working dep *M; for their value of k provided positive or (unsimplified) exact equivs; following their value of k dependent on previous A1 A1ft marks being awarded 	

	Question	Answer	Marks	Guidance	
1		Attempt process for finding critical values M1		squaring both sides, 2 linear eqns, ineqs,	If using quadratic, need to go as far as factorising or substituting in formula for M1; if using two linear eqns or ineqs, signs of $2x$ and x must be same in one, different in the other for M1
		Obtain $\frac{4}{3}$	A1		
		Obtain 6 Attempt process for inequality involving two critical values	A1 M1	sketch, table,; implied by plausible soln	
		Obtain $x < \frac{4}{3}$, $x > 6$	A1	A0 for use of \leq and/or \geq	
-			[5]		
2	(i)	EITHER Attempt use of at least one logarithm property correctly applied to $\ln(\frac{ep^2}{q})$	M1	not including $\ln e = 1$; such as = $\ln ep^2 - \ln q$ for example	
		Obtain 261 legitimately with necessary detail seen	A2	AG; award A1 if nothing wrong but not quite enough detail or if there is one slip on way to 261	
		OR	[3]		
		Express $\frac{ep^2}{q}$ in form e^n	M1	with correct treatment of powers	
		Obtain e^{261} and hence 261	A2	AG; award A1 if nothing wrong but not quite enough detail to be fully convincing	
2	(ii)	Introduce logarithms and bring power down	M1	relating $n \ln 5$ to a constant; if using base 5 or base 10, no powers must remain on right-hand side	
		Obtain $n \ln 5 > 580$	A1	or equiv (such as $n > 580\log_5 e$ or $n\log 5 > 580\log e$); allow eqn at this stage	
		State single integer 361	A1 [3]	not $n > 360$ nor $n \ge 361$	

	Questi	ion	Answer	Marks	Guidance	
3	(i)		Use $\sec \theta = \frac{1}{\cos \theta}$	B1		
			Attempt to express in terms of $\tan \theta$ only	M1		
			Obtain $\tan^2 \theta = 36$ and hence $\tan \theta = 6$	A1	AG; necessary detail needed (but no need to justify exclusion of $\tan \theta = -6$)	
				[3]		
3	(ii)	(a)	Substitute 6 in attempt at formula	M1	of form $\frac{\tan\theta \pm \tan 45^{\circ}}{1\mp \tan\theta \tan 45^{\circ}}$ with different signs in numerator	any apparent use of angle 80.5 means M0
					and denominator	
			Obtain $\frac{5}{7}$	A1	or exact equiv	answer only: 0/2
				[2]		
3	(ii)	(b)	Substitute 6 in attempt at formula	M1	of form $\frac{\tan\theta + \tan\theta}{1 + \tan\theta}$	any apparent use of angle
					$\frac{1}{1\pm\tan\theta\tan\theta}$	80.5 means M0
			Obtain $-\frac{12}{35}$	A1	or exact equiv; allow $\frac{12}{-35}$	answer only: 0/2
				[2]		
4	(a)		Obtain integral of form $k(6x+1)^{\frac{1}{2}}$	*M1	any constant k	
			Obtain $6(6x+1)^{\frac{1}{2}}$	A1	or (unsimplified) equiv	
			Substitute both limits and subtract	M1	dep *M	
			Obtain $30 - 6$ and hence 24	A1	AG; necessary detail needed	
				[4]		
4	(b)		Attempt expansion of integrand	M1	to obtain (at least) 3 terms	
			Integrate e^{kx} to obtain $\frac{1}{k}e^{kx}$	M1	for any constant <i>k</i> other than 1	
			Obtain $\frac{1}{2}e^{2x} + 4e^x + 4x$	A1	allow $+c$ at this stage	
			Obtain $\frac{1}{2}e^2 + 4e - \frac{1}{2}$	A1	or equiv in terms of e simplified to three terms; no $+c$ now	
				[4]		

Question		ion	Answer	Marks	Marks Guidance				
5	(i)		Sketch (more or less) correct $y = 14 - x^2$	B1	assessed separately from other graph; must exist in all four quadrants; ignore any intercepts given				
			Sketch (more or less) correct $y = k \ln x$	B1	assessed separately from other graph; must exist in first and fourth quadrants; if clearly meets y-axis award B0; if clear maximum point in first quadrant award B0				
			Indicate one root ('blob' on sketch or	B1	dependent on both curves being correct in first quadrant and				
			written reference to one intersection or)		there being no possibility, from their graphs, of further points of intersection elsewhere				
				[3]					
5	(ii)	(a)	Calculate values for at least 2 integers	M1					
			Obtain correct values for $x = 3$ and $x = 4$	A1	$14 - x^2 - 3\ln x : 1.7 -6.2$				
					$14 - x^2$, $3\ln x$: 5, 3.3 -2, 4.2				
			State 3 and 4	A1	following correct calculations				
				[3]					
5	(ii)	(b)	Obtain correct first iterate	B1	having started with any positive value; B1 available if 'iteration' never goes beyond a first iterate;				
			Attempt iteration process	M1	implied by plausible sequence of values				
			Obtain at least 3 correct iterates in all	A1	showing at least 2 d.p.				
			Obtain 3.24	A1	answer required to exactly 2 d.p; not given for 3.24 as the				
					final iterate in a sequence, i.e. needs an indication (perhaps				
					just underlining) that value of α found				
					$[3 \rightarrow 3.27172 \rightarrow 3.23173 \rightarrow 3.23743 \rightarrow 3.23661$				
					$3.5 \rightarrow 3.20027 \rightarrow 3.24196 \rightarrow 3.23596 \rightarrow 3.23682$				
					$4 \rightarrow 3.13706 \rightarrow 3.25118 \rightarrow 3.23465 \rightarrow 3.23701]$				
				[4]					

(Questic	on	Answer	Marks	Guidance
6	6 (i) Attempt use of chain rule		Attempt use of chain rule	*M1	to obtain derivative of form
					$kh(3h^2+4)^n$, any non-zero constants k and n
					condone retention of -8
			Obtain $9h(3h^2+4)^{\frac{1}{2}}$	A1	or (unsimplified) equiv; no – 8 here
			Substitute 0.6 in attempt at first derivative	M1	dep $*M$; condone retention of -8 here; implied by their value
					following wrong derivative if no working seen
			Obtain 12.17	A1	or greater accuracy
6	(ii)		State on imply that $\frac{dk}{dk} = 0.015$ or 0.015	[4] B1	implied by use in calculation with part (i) answer
U	(11)		State or imply that $\frac{dh}{dt} = -0.015$ or 0.015	DI	implied by use in calculation with part (1) answer
			Carry out multiplication of $(\pm)0.015$ and		
			answer from part (i)	M1	an emotion account on dama sharence an misura of manufine signs
			Obtain 0.18 or -0.18 (whatever this value is claimed to be)	A1	or greater accuracy; condone absence or misuse of negative signs throughout; ignore units; allow for answer rounding to 0.18
			is claimed to be		following slight inaccuracy due to use of 12.18 or 12.2 or
				[3]	
7			Show composition of functions	M1	the right way round; or equiv
			Obtain $2\sqrt[3]{12-a} + 5 = 9$	A1	or equiv
			Obtain $a = 4$	A1	
			EITHER		
			Attempt to find $g(x)$	*M1	obtaining $px^3 + q$ or $py^3 + q$ form
			Obtain $(2x+5)^3 + 4 = 68$	A1ft	following their value of a
			Attempt solution of equation	M1	dep *M; earned at stage $2x + 5 =$; if expanding to produce cubic equation, earned with attempt at linear and quadratic factors
			Obtain $-\frac{1}{2}$	A1	and no others; dependent on correct work throughout
				[7]	
			OR		
			State or imply $f(x) = g^{-1}(68)$	B2	
			Attempt solution of equation of form	M1	
			$2x + 5 = \sqrt[3]{68 - 4}$		
			Obtain $-\frac{1}{2}$	A1	

Question		ion	Answer	Marks	Guidance	
8	(i)		State $R = 5$	B1		
			Attempt to find value of α	M1	implied by correct value or its complement	
			Obtain 53.1	A1	allow $\tan^{-1}\frac{4}{3}$	
				[3]		
8	(ii)	(a)	Attempt to find at least one value of $\theta + \alpha$	M1	(should be -168.5 or -11.5 or 191.5 or)	
			Obtain 1 correct value of θ (-64.7 or 138)	A1	allow ± 0.1 in answer and greater accuracy	note that 138 needs to be obtained legitimately from positive value of $\sin^{-1}(-\frac{1}{5})$ and not from 180-41.6
			Attempt correct process to find the second value	M1	involving a positive value of $\sin^{-1}(-\frac{1}{5})$ and subtraction of their α	
			Obtain second value of θ (138 or -64.7)	A1	allow ± 0.1 in answer and greater accuracy; and no others between -180 and 180	answers only: 0/4
8	(ii)	(b)	Use -1 as minimum or 1 as maximum value of $sin(\theta + \alpha)$ Relate $-5k + c$ to -37 and $5k + c$ to 43 Attempt solution of pair of linear eqns Obtain $k = 8$ and $c = 3$	*M1 A1 M1 A1 [4]	as equations or inequalities dep *M; must be equations now SC: both $k = 8$ and $c = 3$ obtained with no working or from unconvincing working, award B2 (i.e. max 2/4)	Note that alternative solutions may occur. If mathematically sound, all 4 marks are available; if work is not fully convincing, apply SC

	Quest	tion	Answer	Marks	Guidance	
9	(i)		Attempt use of product rule to produce the	M1		Note that product rule may be applied to
			form $\ln 2y + y \times \frac{a}{by}$			expression in form
						$y(\ln 2y - 1)$
			Obtain correct $\ln 2y + y \times \frac{2}{2y}$	A1	or equiv	
			Obtain complete $\ln 2y + 1 - 1$ and confirm	A1	AG; necessary detail needed	
				[3]		
9	(ii)		Attempt to rearrange eqn to $x = \dots$ or	M1	obtaining form $p \ln qy$	
			$x^2 =$			
			Obtain $x = \sqrt{\ln 2y}$ or $x^2 = \ln 2y$	A1		
			State or imply volume is $\int \pi \ln 2y dy$	A1ft	following their $x = \dots$ or $x^2 = \dots$; condone absence of dy;	
			j i i		condone presence of dx; no need for limits here; π may be	
					implied by its first appearance later in solution	
			Integrate using result of part (i)	M1		
			Attempt to use limits $\frac{1}{2}$ and $\frac{1}{2}e^4$ correctly	M1		
			with expression involving y			
			Obtain $\frac{1}{2}\pi(3e^4+1)$	A1	or equiv involving two terms; dependent on correct work	
				[6]	throughout part (ii)	
9	(iii)		Subtract answer to part (ii) from $2\pi e^4$	[0] M1	or its decimal equivalent	
	(111)			A1	or exact equiv involving two terms	
			Obtain $\frac{1}{2}\pi(e^4-1)$		or exact equity involving two terms	
				[2]		
				[2]		

	Question	Answer	Marks	Guidance
1	(i)	Either Attempt use of quotient rule	M1	allow numerator wrong way round but needs minus sign in numerator and both terms in numerator involving x ; for M1 condone minor errors such as absence of square in denominator, absence of brackets,
		Obtain $\frac{3(2x+1)-6x}{(2x+1)^2}$ or equiv	A1	give A0 if necessary brackets absent unless subsequent calculation indicates their 'presence'
		Substitute 2 to obtain $\frac{3}{25}$ or 0.12	A1	or simplified equiv but A0 for final $\frac{3}{5^2}$
		<u>Or</u> Attempt use of product rule for $3x(2x+1)^{-1}$	[3] M1	allow sign error; condone no use of chain rule
		Obtain $3(2x+1)^{-1} - 6x(2x+1)^{-2}$ or equiv	A1	
		Substitute 2 to obtain $\frac{3}{25}$ or 0.12	A1	or simplified equiv
1	(ii)	Differentiate to obtain form $kx(4x^2+9)^n$	M1	any non-zero constants k and n (including 1 or $\frac{1}{2}$ for n)
		Obtain $4x(4x^2+9)^{-\frac{1}{2}}$	A1	or (unsimplified) equiv
		Substitute 2 to obtain $\frac{8}{5}$ or 1.6	A1 [3]	or simplified equiv but A0 for final $\frac{8}{\sqrt{25}}$
2	(i)	Either Attempt to find exact value of sin A	M1	using right-angled triangle or identity or
		Obtain $\frac{1}{2}\sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv	A1	final $\pm \frac{1}{2}\sqrt{5}$ is A0; correct answer only earns M1A1
			[2]	
		\underline{Or} Attempt use of identity $1 + \cot^2 A = \csc^2 A$	M1	using $\cot A = \frac{1}{2}$; allow sign error in attempt at identity
		Obtain $\frac{1}{2}\sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv	A1	final $\pm \frac{1}{2}\sqrt{5}$ is A0; correct answer only earns M1A1
2	(ii)	State or imply $\frac{2 + \tan B}{1 - 2 \tan B} = 3$	B1	
		Attempt solution of equation of form $\frac{\text{linear in } t}{\text{linear in } t} = 3$	M1	by sound process at least as far as $k \tan B = c$
		Obtain $\tan B = \frac{1}{7}$	A1 [3]	answer must be exact; ignore subsequent attempt to find angle B

(Question	Answer	Marks	Guidance
3	(a)	Substitute $t = 3$ in $ 2t - 1 $ and obtain value 5	B1	not awarded for final $ 5 $ nor for ± 5
		Substitute $t = -3$ in $ 2t-1 $ and apply modulus correctly to any negative value to obtain a positive value	M1	with no modulus signs remaining
		Obtain value 7 as final answer	A1	not awarded for final $ 7 $ nor for ± 7
				NB: substitutions in $ 2t + 1 $ will give 5 and 7 – this is 0/3, not MR;
				a further step to $5 < t < 7 - B1 M1 A0$; answers $\pm 5, \pm 7 - $ this is B0 M0 A0
			[3]	
3	(b)	EitherAttempt solution of linear equation or inequality with signs of x different Obtain critical value $-\sqrt{2}$	M1 A1	or equiv (exact or decimal approximation)
		Or 1 Attempt to square both sides Obtain $x^2 - 2\sqrt{2}x + 2 > x^2 + 6\sqrt{2}x + 18$	M1 A1	obtaining at least 3 terms on each side or equiv; or equation; condone > here
		<u>Or 2</u> Attempt sketches of $y = x - \sqrt{2} $, $y = x + 3\sqrt{2} $ Obtain $x = -\sqrt{2}$ at point of intersection	M1 A1	or equiv
	<u> </u>	Conclude with inequality of one of the following types:	{ 	
		$x < k\sqrt{2}, x > k\sqrt{2}, x < \frac{k}{\sqrt{2}}, x > \frac{k}{\sqrt{2}}$ Obtain $x < -\sqrt{2}$ or $-\sqrt{2} > x$ as final answer	M1 A1	any integer k final answer $x < -\frac{2}{\sqrt{2}}$ (or similar unsimplified version) is A0
		Obtain $x < -\sqrt{2}$ or $-\sqrt{2} > x$ as final answer	[4]	That answer $x < \sqrt{2}$ (or similar unsimplified version) is Ro

⁴⁷²³

(Question	Answer	Marks	Guidance
4	(i)	Attempt process involving logarithm to solve $e^{0.021t} = 2$	M1	with <i>t</i> the only variable; at least as far as $0.021t = \ln 2$; must be= 2
		Obtain 33	A1	or greater accuracy; ignore absence of, or wrong, units; final answer $\frac{\ln 2}{0.021}$ is A0
		State (or calculate separately to obtain) 99	B1√ [3]	following previous answer; no need to include units
4	(ii)	Differentiate to obtain $ke^{0.021t}$	M1	where k is any constant not equal to 250
		Obtain $250 \times 0.021 e^{0.021t}$	A1	or simplified equiv $5.25e^{0.021t}$
		Substitute to obtain 8.4 or $\frac{42}{5}$	A1	or value rounding to 8.4 with no obvious error
			[3]	
5	(i)	Integrate to obtain form $k(3x+1)^{\frac{1}{2}}$	*M1	any non-zero constant k
		Obtain $4(3x+1)^{\frac{1}{2}}$	A1	or (unsimplified) equiv; or $4u^{\frac{1}{2}}$ following substitution
		Apply the limits and subtract the right way round	M1	dep *M
		Obtain $4\sqrt{28} - 4\sqrt{7}$ and show at least one intermediate	A1	AG; necessary detail required; decimal verification is A0;
		step in confirming $4\sqrt{7}$	[4]	$[]_{2}^{9} = 4\sqrt{28} - 4\sqrt{7} = 4\sqrt{7}$ is A0; $[]_{2}^{9} = 8\sqrt{7} - 4\sqrt{7} = 4\sqrt{7}$ is A0
5	(ii)	State or imply volume is $\int \pi \left(\frac{6}{\sqrt{3x+1}}\right)^2 dx$ or equiv	[4] B1	merely stating $\int \pi y^2 dx$ not enough; condone absence of dx; no need
		$J = \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3}$		for limits yet; π may be implied by its later appearance
		Integrate to obtain $k \ln(3x+1)$	M1	any non-zero constant with or without π
		Obtain $12\pi \ln(3x+1)$ or $12\ln(3x+1)$	A1	or unsimplified equiv
		Substitute limits correct way round and show each logarithm property correctly applied	M1	allowing correct applications to incorrect result of integration providing natural logarithm involved; evidence of $\ln 28 - \ln 7 = \frac{\ln 28}{\ln 7}$ error means
				MO
		Obtain $24\pi \ln 2$	A1 [5]	no need for explicit statement of value of k

(Question	Answer	Marks	Guidance
6	(i)	Sketch more or less correct $y = \ln x$	B1	existing for positive and negative y; no need to indicate (1, 0); ignore any scales given on axes; condone graph touching y-axis but B0 if it crosses y-axis
		Sketch more or less correct $y = 8 - 2x^2$	B1	(roughly) symmetrical about <i>y</i> -axis; extending, if minimally, into quadrants for which $y < 0$; no need to indicate (±2, 0), (0, 8); assess each curve separately
		Indicate intersection by some mark on diagram (just a 'blob' sufficient) of by statement in words away from diagram		needs each curve to be (more or less) correct in the first quadrant and on curves being related to each other correctly there
			[3]	
6	(ii)	Refer, in some way, to graphs crossing x-axis at $x = 1$ and	B1	AG; the values 1 and 2 may be assumed from part (i) if clearly marked
		x = 2 and that intersection is between these values		there; dependent on curves being (more or less) correct in first
			[1]	quadrant; carrying out the sign-change routine is B0
	(***)		[1] B1	to at least 2 to (arrange in the same of starting and as 1 to 1 in the 2)
6	(iii)	Obtain correct first iterate	BI	to at least 3 dp (except in the case of starting value 1 leading to 2)
		Show correct iterative process	M1	involving at least 3 iterates in all; may be implied by plausible converging values
		Obtain at least 3 correct iterates	A1	allowing recovery after error; iterates given to at least 3 dp; values may be rounded or truncated
		Conclude with 1.917	A1	answer required to exactly 3 dp; answer only with no evidence of process is 0/4
			[4]	
		$1 \rightarrow 2 \rightarrow 1.91139$	\rightarrow 1.91	$731 \rightarrow 1.91690 \rightarrow 1.91693$
		$1.5 \rightarrow 1.94865$	→ 1.9147	$9 \rightarrow 1.91707 \rightarrow 1.91692$
		$2 \rightarrow 1.91139$ -	→ 1.91731	$\dots \rightarrow 1.91690 \rightarrow 1.91693$
6	(iv)	Obtain 3.92 or greater accuracy	B1√	following their answer to part (iii)
		Attempt 4×ln(part (iii) answer)	M1	
		Obtain y-coordinate 2.60	A1 [3]	value required to exactly 2 dp (so A0 for 2.6 and 2.603)

(Question	Answer	Marks	Guidance
7	(i)	Attempt use of product rule	M1	to produce expression of form (something non-zero) $\ln(2y+3)$ + linear in y ; ignore what they call
				(something non-zero) $\ln(2y+3) + \frac{\text{linear in } y}{\text{linear in } y}$; ignore what they call
			. 1	their derivative
		Obtain $\ln(2y+3)$	A1	with brackets included
		Obtain + $\frac{2(y+4)}{2y+3}$	A1	with brackets included as necessary
		2y+3	503	
7	(;;)	Substitute a Qinto attempt from part (i) or into their	[3]	
/	(ii)	Substitute $y = 0$ into attempt from part (i) or into their	M1	
		attempt (however poor) at its reciprocal	111	
		Obtain 0.27 for gradient at A	A1	or greater accuracy 0.26558; beware of 'correct' answer coming
		C		from incorrect version $\ln(2y+3) + \frac{8}{3}$ of answer in part (i)
		Attempt to find value of y for which $x = 0$	M1	allowing process leading only to $y = -4$
		Substitute $y = -1$ into attempt from part (i) or into their	M1	
		attempt (however poor) at its reciprocal		
		Obtain 0.17 or $\frac{1}{6}$ for gradient at <i>B</i>	A1	or greater accuracy 0.16666; value following from correct working
			[5]	
8	(i)	Attempt completion of square at least as far as $(x+2a)^2$		
		or differentiation to find stationary point at least as far as	*M1	or equiv but a must be present
		linear equation involving two terms		or equivour <i>a</i> must be present
		Obtain $(x+2a)^2 - 3a^2$ or $(-2a, -3a^2)$	A1	
		Attempt inequality involving appropriate y-value	M1	dep *M; allow $<$, $>$ or \leq here; allow use of x ; or unsimplified equiv
		State $y \ge -3a^2$ or $f(x) \ge -3a^2$	A1	now with \geq ; here $x \geq -3a^2$ is A0
			[4]	

(Question	Answer	Marks	Guidance
8	(ii)	Attempt composition of f and g the right way round	*M1	algebraic or (part) numerical; need to see $4x - 2a$ replacing x at least once
		Obtain or imply $16x^2 - 3a^2$ or $144 - 3a^2$	A1	or less simplified equiv but with at least the brackets expanded correctly
		Attempt to find <i>a</i> from $fg(3) = 69$	M1	dep *M
		Obtain at least $a = 5$	A1	
		Attempt to solve $4x - 10 = x$ or $\frac{1}{4}(x+10) = x$ or		
		$4x - 10 = \frac{1}{4}(x + 10)$	M1	for their <i>a</i> ; must be linear equation in one variable; condone sign slip in finding inverse of g
		Obtain $\frac{10}{3}$	A1	and no other answer
			[6]	
9	(i)	State $\cos\theta\cos45 - \sin\theta\sin45$	B1	or equiv including use of decimal approximation for $\frac{1}{\sqrt{2}}$
		Use correct identity for $\sin 2\theta$ or $\cos 2\theta$	B1	must be used; not earned for just a separate statement
		Attempt complete simplification of left-hand side	M1	with relevant identities but allowing sign errors, and showing two terms involving $\sin \theta \cos \theta$
		Obtain $\sin^2 \theta$	A1	AG; necessary detail needed
			[4]	
9	(ii)	Use identity to produce equation of form $\sin \frac{1}{2}\theta = c$	M1	condoning single value of constant c here (including values outside the range -1 to 1); M0 for $\sin \theta = c$ unless value(s) are subsequently doubled
		Obtain 70.5 or 70.6	A1	or greater accuracy 70.528
		Obtain -70.5 or -70.6	A1√	or greater accuracy -70.528; following first answer; and no other answer between -90 and 90; answer(s) only : 0/3
			[3]	answer(s) only : 0/3
9	(iii)	State or imply $6\sin^2\frac{1}{3}\theta = k$	B1	
		Attempt to relate k to at least $6\sin^2 30^\circ$	M1	
		Obtain $0 < k < \frac{3}{2}$	A1	condone use of \leq
			[3]	

Question		Answer	Marks	Guidance
1	(i)	Obtain integral of form $k(4-3x)^8$	M1	any non-zero constant k; using substitution to obtain ku^8 earns M1
		Obtain $-\frac{1}{24}(4-3x)^8$	A1	or unsimplified equiv; must be in terms of x
1	(ii)	Obtain integral of form $k \ln(4-3x)$	M1	any non-zero constant k; allow M1 if brackets missing; using substitution to obtain $k \ln u$ earns M1; $\log(4-3x)$ with base e not specified is M1A0
		Obtain $-\frac{1}{3}\ln(4-3x)$	A1	now with either brackets or modulus signs; must be in terms of <i>x</i> ; note that $-\frac{1}{3}\ln(x-\frac{4}{3})$ and $-\frac{1}{3}\ln(\frac{4}{3}-x)$ are correct alternatives
		Include $+ c$ or $+ k$ at least once	B1	anywhere in solution to question 1; this mark available even if no other marks earned
			[5]	
2	(i)	Use $2\cos^2 \alpha - 1$ or $\cos^2 \alpha - \sin^2 \alpha$ or $1 - 2\sin^2 \alpha$	B1	
		Obtain equation in which $\sin^2 \alpha$ appears once	M1	condoning sign slips or arithmetic slips; for solution which gives equation involving $\tan^2 \alpha$, M1 is not earned until valid method for
				reaching $\sin \alpha$ is used; attempt involving $4(1-s^2) = s^2$ is M0
		Obtain $\pm \frac{2}{3}$	A1	both values needed; ± 0.667 is A0; $\pm \sqrt{\frac{4}{9}}$ is A0; ignore subsequent
			[3]	work to find angle(s)
2	(ii)	Either Attempt use of identity	M1	of form $\tan^2 \beta = \pm \sec^2 \beta \pm 1$
		Obtain $2\sec^2\beta - 9\sec\beta - 5 = 0$	A1	condone absence of $= 0$
		Attempt solution of 3-term quadratic in sec β to obtain at least one value of sec β	M1	if factorising, factors must be such that expansion gives their first and third terms; if using formula, this must be correct for their values
		Obtain 5 with no errors in solution	A1	and, finally, no other value; no need to justify rejection of $-\frac{1}{2}$
			[4]	
		<u>Or</u> Attempt to express equation in terms of $\cos \beta$	M1	using identities which are correct apart maybe for sign slips
		Obtain $5\cos^2\beta + 9\cos\beta - 2 = 0$	A1	condone absence of $= 0$
		Attempt solution of 3-term quadratic and show	M1	if factorising, factors must be such that expansion gives their first and
		switch at least once to a secant value Obtain 5 with no errors in solution	A1 [4]	third terms; if using formula, this must be correct for their values and, finally, no other value; no need to justify rejection of $-\frac{1}{2}$

	Questio	n Answer	Marks	Guidance
3	(i)	Use α (possibly implicitly) to state that radius of 'base' is $\frac{1}{2}x$	*B1	or to obtain equiv such as $2r = x$ or $\frac{r}{x} = \frac{1}{2}$ or $\frac{x}{r} = 2$
		Substitute into formula to obtain $\frac{1}{3}\pi(\frac{1}{2}x)^2 x$ or	B1	dep *B; AG; necessary detail needed
		$\frac{1}{3}\pi \frac{1}{4}x^2 x$ and obtain $\frac{1}{12}\pi x^3$		Note: comparing formulae $\frac{1}{3}\pi r^2 h$ and $\frac{1}{12}\pi x^3$ to 'deduce' is B0B0
		5 4 12	[2]	
3	(ii)	Differentiate to obtain $\frac{1}{4}\pi x^2$ or equiv	B1	whatever they call it
		Attempt division involving 14 and their value of derivative when $x = 8$	M1	ie 14 ÷ deriv or deriv ÷ 14 with $x = 8$
		Obtain 0.28	A1	allow 0.279 but not greater accuracy
				Alternatives:
				1. $14t = \frac{1}{12}\pi x^3$ Obtain $\frac{dt}{dx} = \frac{1}{56}\pi x^2$ <u>B1</u> Sub 8 and invert <u>M1</u> Ans <u>A1</u>
				2. $x^3 = \frac{168t}{\pi}$ Obtain $3x^2 \frac{dx}{dt} = \frac{168}{\pi} \underline{B1}$ Sub 8 <u>M1</u> Ans <u>A1</u>
			[3]	
4		Differentiate first term to obtain form $k(4x-7)^{-\frac{1}{2}}$	*M1	any non-zero constant k ; M0 if this differentiation is carried out in the midst of some incorrect involved expression
		Obtain $2(4x-7)^{-\frac{1}{2}}$	A1	or (unsimplified) equiv
		Attempt use of quotient rule or, after adjustment, product rule	*M1	for QR, allow numerator wrong way round but needs – sign in numerator; condone a single error such as absence of square in denominator, absence of brackets,; for PR, condone no use of chain rule M0 if this differentiation is carried out in the midst of some incorrect involved expression
		Obtain $\frac{4(2x+1)-8x}{(2x+1)^2}$ or $4(2x+1)^{-1}-8x(2x+1)^{-2}$	A1	or (unsimplified) equivs; give A0 if brackets absent unless subsequent calculation indicates their 'presence'
		Substitute 4 into expression for first derivative so that (initially at least) exactness is retained	M1	dep *M *M
		Obtain $\frac{58}{81}$	A1	answer must be exact
				Note: using $y = \sqrt{4x - 7} + \frac{4}{2x + 1}$: do not apply MR
			[6]	

C	Juestion	Answer	Marks	Guidance
5	(i)	Refer to translation and stretch	M1	in either order; ignore details here; allow any equiv wording (such as move or shift for translation) to describe geometrical transformation but not statements such as add 3 to x
		Either State translation in negative <i>x</i> -direction by 3	A1	or state translation by $\begin{pmatrix} -3\\ 0 \end{pmatrix}$; accept horizontal to indicate direction;
				term 'translate' or 'translation' needed for award of A1
		State stretch by factor 2 in y-direction	A1	or parallel to y-axis or vertically; term 'stretch' needed for award of A1; these two transformations can be given in either order SC: if M0 but details of one transformation correct, award B1 for 1/3
			[2]	(in <u>Either</u> , <u>Or 1</u> , <u>Or 2</u> cases)
		Or 1. State startely by factor 1 in a direction	[3] A1	or parallel to x-axis; term 'stretch' needed for award of A1
		<u>Or 1</u> State stretch by factor $\frac{1}{2}$ in <i>x</i> -direction	711	*
		State translation in negative <i>x</i> -direction by 3	A1 [3]	or state translation by $\begin{pmatrix} -3\\0 \end{pmatrix}$; term 'translate' or 'translation' needed
				for award of A1; these two transformations must be in this order – if details correct for M1A1A1 but order wrong, award M1A1A0
		$\underline{\text{Or } 2}$ State translation in negative <i>x</i> -direction by 6	A1	or state translation by $\begin{pmatrix} -6\\0 \end{pmatrix}$; term 'translate' or 'translation' needed
				for award of A1
		State stretch by factor $\frac{1}{2}$ in x-direction	A1 [3]	or parallel to x-axis; term 'stretch' needed for award of A1; these
				two transformations must be in this order – if details correct for
5	(**)	Either Solve linear any/inex to abtein aritical	B1	M1A1A1 but order wrong, award M1A1A0
5	(ii)	<u>Either</u> Solve linear eqn/ineq to obtain critical value -6	BI	
		Attempt solution of linear eqn/ineq	M1	
		where signs of x and $2x$ are different		
		Obtain critical value –2	A1	
		Attempt solution of inequality	M1	using table, sketch,; implied by correct answer or answer of form $a < x < b$ or of form $x < a, x > b$ (where $a < b$); allow \leq here
		Obtain $-6 < x < -2$	A1	as final answer; must be $<$ not \le ; allow " $x > -6$ and $x < -2$ "
			[5]	

C	Question	Answer	Marks	Guidance
		Or Square both sides to obtain $x^2 > 4(x^2 + 6x + 9)$	B1	or equiv
		Attempt solution of 3-term quadratic eqn/ineq Obtain critical values -6 and -2	M1 A1	with same guidelines as in Q2(ii) for factorising and formula
		Attempt solution of inequality	M1	using table, sketch,; implied by correct answer or answer of form $a < x < b$ or of form $x < a, x > b$ (where $a < b$); allow \leq here
		Obtain $-6 < x < -2$	A1 [5]	as final answer; must be $<$ not \leq ; allow ' $x > -6$ and $x < -2$ '
6	(i)	Attempt evaluation involving <i>y</i> values	M1	with coefficients 1, 4 and 2 each occurring at least once; allow for wrong <i>y</i> -values; solution must include sufficient evidence of method
		Obtain $k(\ln 3 + 4\ln 7 + 2\ln 19 + 4\ln 39 + \ln 67)$	A1	any constant <i>k</i> ; or decimal equivs; correct use of brackets required unless subsequent working shows their 'presence'
		Identify value of k as $\frac{2}{3}$	A1	as factor for their complete expression
		Obtain 22.4	A1 [4]	allow any value rounding to 22.4; answer only is 0/4
6	(ii)	State $9 + 6x^2 + x^4 = (3 + x^2)^2$	B1	or, if proceeding numerically, demonstrate in at least three cases that $\ln 9 = \ln 3^2$, $\ln 49 = \ln 7^2$, $\ln 361 = \ln 19^2$,
		Show relevant property $\ln(3 + x^2)^2 = 2\ln(3 + x^2)$ and conclude with value 2A	B1	AG; necessary detail needed; if proceeding numerically, needs all five cases with relevant property Note: using Simpson's rule again here is B0B0
			[2]	
6	(iii)	Recognise $\ln(3e + ex^2)$ as $1 + \ln(3 + x^2)$	B1	
		Indicate in some way that $\int_0^8 1 dx$ is 8 and conclude with value $A + 8$	B1	AG; necessary detail needed Note: using Simpson's rule again here is B0B0
			[2]	
7	(i)	State $y > 3$ or $f(x) > 3$ or $f > 3$ or 'greater than 3'	B1	must be > not \geq ; allow $3 < y < \infty$
			[1]	

Q	Questio	n	Answer	Marks	Guidance
7	(ii)		Obtain expression or eqn involving $\ln(\frac{y-3}{4})$ or $\ln(\frac{x-3}{4})$	M1	or equivs such as $\ln(\frac{4}{y-3})$ or $\ln(\frac{4}{x-3})$
			Obtain $\ln(\frac{4}{r-3})$ or $-\ln(\frac{x-3}{4})$	A1	or equiv
			State domain is $x > 3$ or equiv	B1FT	following answer to part (i) (but with adjustment so that reference is to x)
			State range is all real numbers or equiv	B1 [4]	
7	(iii)		Obtain correct first iterate	B1	showing at least 3 dp; B0 if initial value not 3 but then M1A1A1 available
			Show correct iteration process	M1	showing at least 3 iterates in all; may be implied by plausible converging values; M1available if based on equation with just a slip in $x = f(x)$ but M0 if based on clearly different equation
			Obtain at least 3 correct iterates	A1	allowing recovery after error; iterates to only 3 dp acceptable; values may be rounded or truncated
			Obtain (3.168, 3.168)	A1	each coordinate required to exactly 3 dp; award A0 if fewer than 4 iterates shown; part (iii) consisting of answer only gets 0 out of 4
			$[3 \rightarrow 3.199148 \rightarrow 3.163]$	l87 →	3.169162 \rightarrow 3.168155 \rightarrow 3.168324]
				[4]	
7	(iv)		State <i>P</i> is point where the curves meet	B1 [1]	or equiv
8	(i)		Obtain $R = \sqrt{20}$ or $R = 4.47$	B1	
			Attempt to find value of α	M1	implied by correct value or its complement; allow sin/cos muddles; allow use of radians for M1; condone use of $\cos \alpha = 4$, $\sin \alpha = 2$ here
					but not for A1
			Obtain 26.6	A1 [3]	or greater accuracy 26.565; with no wrong working seen
8	(ii)	(a)	Show correct process for finding one answer Obtain 21.3	M1 A1FT	allowing for case where the answer is negative or greater accuracy 21.3045; or anything rounding to 21.3 with no
					obvious error; following a wrong value of α but not wrong R
			Show correct process for finding second answer	M1	ie attempting fourth quadrant value minus α value
			Obtain 286 or 285.6	A1FT	or greater accuracy 285.5653; or anything rounding to 286 with no obvious error; following a wrong value of α but not wrong <i>R</i> ; and no others between 0° and 360°
				[4]	

(Juestic	on	Answer	Marks	Guidance
8	(ii)	(b)	State greatest value is 25	B1	allow if α incorrect
			Obtain value 63.4 clearly associated with correct greatest value	B1FT	or greater accuracy 63.4349; following a wrong value of α
			State least value is 5	B1	allow if α incorrect
			Attempt to find θ from $\cos(\theta + \text{their }\alpha) = -1$	M1	and clearly associated with correct least value
			Obtain 153 or 153.4	A1FT [5]	or greater accuracy 153.4349; following a wrong value of α
9	(i)		Differentiate to obtain $2e^{2x} - 18$	B1	
			Equate first derivative to zero and use legitimate method to reach equation without e involved	M1	
			Confirm $x = \ln 3$	A1	AG; necessary detail needed (in particular, for solutions concluding $x = \frac{1}{2} \ln 9 = \ln 3$ or equiv award A0)
				[3]	
9	(ii)		Attempt integration	*M1	confirmed by at least one correct term
			Obtain $\frac{1}{2}e^{2x} - 9x^2 + 15x$	A1	or equiv
			Apply limits 0 and ln 3 to obtain exact unsimplified expression	M1	dep *M
			Obtain $4 - 9(\ln 3)^2 + 15 \ln 3$	A1	or exact (maybe unsimplified) equiv perhaps still involving e
			Attempt area of trapezium or equiv, retaining exactness throughout	M1 A1	using $\frac{1}{2}\ln 3 \times (y_1 + y_2)$ where y_1 is 15 or 16 and y_2 is attempt at <i>y</i> - coordinate of <i>Q</i> ; if using alternative approach involving rectangle and triangle, complete attempt needs to be seen for M1; another alternative approach involves equation of PQ ($y = \frac{8-18\ln 3}{\ln 3}x + 16$) with integration: M1 for attempting equation and integration, A1 for correct answer or equiv perhaps still including e
			Obtain $\frac{1}{2}\ln 3 \times (16 + 24 - 18\ln 3)$		
			Subtract areas the right way round, retaining exactness	M1	dep on award of all three M marks
			Obtain 5ln3-4	A1 [8]	or similarly simplified exact equiv

	Marks	G	buidance
Attempt use of product rule to find first derivative	M1	producing form \pm where one term involves $\ln x$ and the other does not	
Obtain $8x \ln x + 4x$	A1	or unsimplified equiv	
Attempt use of correct product rule to find second derivative Obtain $8 \ln x + 12$ Obtain 28	M1 A1 A1	with one term involving $\ln x$ or unsimplified equiv	
	r 7 1		
State or imply $\csc \alpha - 1 \sin \alpha$		allow $\cos e c = 1$ sin	
Attempt to express equation in terms of $\sin q$ only	M1	using identity of form $\pm 1 \pm 2\sin^2 q$ for	
Obtain $10\sin^2 q + 2\sin q - 5 = 0$	A1	or unsimplified equiv involving $\sin q$ only but with no $\sin q$ remaining in denominator	
Attempt use of formula to find $\sin q$ from 3-term quadratic equation involving $\sin q$ (using formula or completing square even if their equation can be solved by factorisation)	M1	use implied by at least one correct value of $\sin q$ or q ; if correct quadratic formula quoted, condone one sign error for M1; if formula not first quoted, any error leads to M0	if completion of square used to solve equation, this must be correct for M1 to be earned
Obtain 37.9°	A1	or greater accuracy 37.8896	
Obtain 142°	A1 [6]	or greater accuracy 142.1103;. and no others between 0 and 180; ignore any answers, right or wrong, outside 0 - 180	no working and answers only (max 2/6): 37.9 (or greater accuracy) B1 142 (or greater accuracy) and no others B1
	Obtain $8x \ln x + 4x$ Attempt use of correct product rule to find second derivative Obtain $8\ln x + 12$ Obtain 28 State or imply $\csc q = 1$, $\sin q$ Attempt to express equation in terms of $\sin q$ only Obtain $10\sin^2 q + 2\sin q - 5 = 0$ Attempt use of formula to find $\sin q$ from 3-term quadratic equation involving $\sin q$ (using formula or completing square even if their equation can be solved by factorisation) Obtain 37.9°	Obtain $8x \ln x + 4x$ A1Attempt use of correct product rule to find second derivativeM1Obtain $8\ln x + 12$ A1Obtain 28A1Image: State or imply cosec $q = 1$, $\sin q$ B1Attempt to express equation in terms of $\sin q$ onlyM1Obtain $10\sin^2 q + 2\sin q - 5 = 0$ A1Attempt use of formula to find $\sin q$ from 3-term quadratic equation involving $\sin q$ (using formula or completing square even if their equation can be solved by factorisation)M1Obtain 37.9° A1	Obtain $8x \ln x + 4x$ A1notAttempt use of correct product rule to find second derivativeA1or unsimplified equivObtain $8\ln x + 12$ M1with one term involving $\ln x$ or unsimplified equivObtain 28A1[5]State or imply $\csc q = 1$, $\sin q$ Attempt to express equation in terms of $\sin q$ onlyB1Obtain $10\sin^2 q + 2\sin q - 5 = 0$ A1Obtain $10\sin^2 q + 2\sin q - 5 = 0$ A1Attempt use of formula to find $\sin q$ from 3 -term quadratic equation involving $\sin q$ (using formula or completing square even if their equation can be solved by factorisation)M1Use implied by at least one correct value of $\sin q$ or q ; if correct quadratic formula quoted, condone one sign error for M1; if formula not first quoted, any error leads to M0Obtain 37.9° A1Obtain 142° A1

(Question	Answer	Marks	G	uidance
3	(i)	Attempt calculation $k(y+4y+2y+)$	M1	any constant k; using y values with coefficients 1, 2, 4 each occurring at least once; brackets may be implied by subsequent calculation	allow M1 for attempt using y values based on wrong x values such as 0, 1, 2, 3, 4; attempt based on $k(y_0 + y_4) + 4y_1 + 2y_2 + 4y_3$ is M0 unless subsequent calculation shows missing brackets are ' present'
		Obtain $k(e^{0} + 4e^{\sqrt{0.5}} + 2e + 4e^{\sqrt{1.5}} + e^{\sqrt{2}})$	A1	or equiv perhaps involving decimal values 1, 2.02811. ".2.71828. ". 3.40329. ".4.11325	
		Use $k = \frac{1}{3}, \frac{1}{2}$	A1		
		Obtain 5.38	A1	allow 5.379 but not, in final answer, greater ' accuracy'; answer $5.38+c$ is final A0	answer only: 0/4
			[4]		
3	(ii)	Attempt calculation of form $10'$ (answer to part i) + k	M1	implied by correct answer only or by answer following correctly from their incorrect part (i); any non-zero constant k	allow attempt involving second use of Simpson's rule: M1 for complete correct expression, A1 for answer
		Obtain 55.8 or greater accuracy based on their part (i) $-$ more than 3 s.f. acceptable	A1ft	following their answer to part (i) but A0 for $55.8 + c$	answer only 54.8 with no working earns M1A0 (as does 10(their ans) + 1); otherwise incorrect answer with no working earns $0/2$
4	(i)	Either: State $2x^3 + 4 = -50$	[2] B1		
1		State -3 and no other	B1		
		<u>Or</u> : Obtain $\sqrt[3]{\frac{1}{2}(x-4)}$ for inverse of f	B1	or equiv; using any letter	
		State - 3 and no other	B1 [2]		
4	(ii)	Show composition of functions the right way round	M1		
		Obtain $2x - 16$	A1	AG; necessary detail needed	first step $2(x - 10) + 4$ acceptable but then two more steps needed
			[2]		

	Questi	ion	Answer	Marks	G	luidance
4	(iii)		Obtain $\sqrt[3]{2x^3 - 6}$ or $(2x^3 - 6)^{\frac{1}{3}}$ for gf(x)	B1	or unsimplified equiv	
			Apply chain rule to function which is cube root of a non-linear expression	M1	condone incorrect constant; otherwise use of chain rule for their function must be correct	may use $u = 2x^3 - 6$; M1 earned for expression involving u
			Obtain $2x^2(2x^3 - 6)^{-\frac{2}{3}}$	A1	or similarly simplified equiv; do not accept final answer with $\frac{6}{3}$ unsimplified	\dots in terms of x
				[3]		
5	(a)		Differentiate to produce $ke^{-0.33t}$	M1	where constant k is different from 58	method must involve differentiation
			Obtain - $19.14e^{-0.33t}$ or $19.14e^{-0.33t}$	A1	or unsimplified equiv	
			Obtain - 5.1 or 5.1	A1	whatever they claim value represents; accept 5.11 but not greater accuracy	
				[3]		
5	(b)		Either: State or imply formula $42e^{kt}$ or $42a^t$	B1	$42e^{-kt}$, $42e^{-kx}$, etc. also acceptable	
			Attempt to find k from $42e^{6k} = 51.8$ or a from $42a^6 = 51.8$	M1	using sound process involving logarithms at least as far as $6k =$ or $a =$	
			Obtain $k = 0.035$ or $a = 1.0356$	A1	or greater accuracy 0.03495or exact equiv $\frac{1}{6} \ln \frac{37}{30}$	
			Substitute 24 to obtain value between 97.1 and 97.3 inclusive	A1	allow greater accuracy than 3 s.f.	
			<u>Or</u> :			
			Use ratio $\frac{51.8}{42}$ in calculation	B1		
			Attempt calculation of form $42' r^n$	M1		
			Obtain 42' $\left(\frac{51.8}{42}\right)^4$ or 51.8' $\left(\frac{51.8}{42}\right)^3$	A1		
			Obtain value between 97.1 and 97.3 inclusive	A1	allow greater accuracy than 3 s.f.	
				[4]		

	Questi	ion	Answer	Marks		Guidance
6	(i)		Draw inverted parabola roughly symmetrical about the <i>y</i> -axis and with maximum point more or less on <i>y</i> -axis	M1	drawing enough of the parabola that two intersections occur, ignoring their locations at this stage	
			State $y=9-x^2$ and indicate two intersections by marks on diagram or written reference to two intersections	A1 [2]	now needs second curve drawn so that right-hand intersection occurs in first quadrant	
6	(ii)	(a)	Calculate values of quartic expression for 2.1 and 2.2	M1	if no explicit working seen, M1 is implied by at least one correct value; but if no explicit working seen and both values wrong, award M0	
			Obtain - 1.9 and 1.6and draw attention to sign change or clear equiv	A1 [2]		
6	(ii)	(b)	Obtain correct first iterate	B1	starting anywhere between –1 and 9 and showing at least 3 d.p.	
			Carry out process to produce at least three iterates in all	M1	implied by plausible sequence of values; allow recovery after error	2.1® 2.15056® 2.15531® 2.15575® 2.15579 2.15® 2.15526® 2.15574® 2.15579
			Obtain at least two more correct iterates Obtain 2.156	A1 A1	showing at least 3 decimal places final answer needed to exactly 3 d.p.; not given for 2.156 as final iterate in sequence, i.e. needs indication (perhaps just underlining) that value of a found	2.2 ® 2.15980 ® 2.15616 ® 2.15583 ® 2.15580 answer only: 0/4
				[4]		

	Questi	ion	Answer	Marks	G	uidance
	-					
7	(i)		Integrate to obtain $k(4x+1)^{\frac{1}{2}}$ or $ku^{\frac{1}{2}}$	*M1	any constant k	
			Obtain correct $\frac{1}{2}\sqrt{3}(4x+1)^{\frac{1}{2}}$ or $\frac{1}{2}\sqrt{3}u^{\frac{1}{2}}$	A1	or exact equiv	
			Apply limits 0 and 20 and attempt subtraction of area of rectangle (or limits 1 and 81 if <i>u</i> involved) Obtain $4\sqrt{3} - \frac{20}{9}\sqrt{3}$ and hence $\frac{16}{9}\sqrt{3}$	M1 A1 [4]	dep *M; or equiv such as including term - $\frac{1}{9}\sqrt{3}$ in the integration or finding $\partial_{1}^{1}\sqrt{3} dx$ separately; allow M1 if decimal values used here answer must be exact and a single term; $\frac{16}{9}\sqrt{3} + c$ as answer is final A0	Alternative:(region between curve and y-axis)Obtain equation $x = \frac{3}{4}y^{-2} - \frac{1}{4}$ B1Integrate to obtain form $k_1y^{-1} + k_2y$ *M1Apply limits $\frac{1}{9}\sqrt{3}$ and $\sqrt{3}$ the right wayroundM1M1M1Obtain $\frac{6}{\sqrt{3}} - \frac{8}{36}\sqrt{3}$ or betterA1
	(ii)		State volume is $\rho \dot{\mathbf{o}}_{4x+1}^3 dx$	B1	no need for limits here; condone absence of dx ; condone absence of p here if it appears later in solution	allow B1 for ∂y^2 and $y^2 = \frac{3}{4x+1}$ stated
			Obtain integral of form $k \ln(4x+1)$	M1	any constant k with or without p	if brackets missing, and subsequent calculation does not show their ' presence', marks are max B1M1A0A0M1A0
			Obtain $\frac{3}{4}\rho \ln(4x+1)$ or $\frac{3}{4}\ln(4x+1)$	A1		
			Apply limits to obtain $\frac{3}{4}$ $\rho \ln 81$ or $\frac{3}{4} \ln 81$	A1	or exact equiv perhaps with ln1 present	
			Attempt to subtract volume of cylinder, using correct radius and ' height'	M1	with exact volume of cylinder attempted	do not treat rotation around y-axis as mis-read: this is $0/6$
			Obtain $3p \ln 3 - \frac{20}{27}p$ or $p(\frac{3}{4}\ln 81 - \frac{20}{27})$	A1	or exact equiv involving two terms	
				[6]		

	Questi	ion	Answer	Marks	G	uidance
8	(i)		Attempt use of quotient rule or equiv	M1	condone one slip only but must be subtraction in numerator; condone absence of necessary brackets; or equiv	
			Obtain $\frac{2(x^2+5) - 2x(2x+4)}{(x^2+5)^2}$	A1	or correct equiv; now with brackets as necessary	correct numerator but error in denominator: max M1A0A1M1A1A1; numerator wrong way round:
			Obtain $-2x^2 - 8x + 10 = 0$	A1	or equiv involving three terms	max M0A0A0M1A1A1
			Attempt solution of three-term quadratic equation based on numerator of derivative (even if their equation has no real roots)	M1	implied by no working but 2 correct values obtained	M1 for factorisation awarded if attempt is such that x^2 term and one other term correct upon expansion; if formula used, M1 awarded as per Qn 2
			Obtain - 5 and 1	A1		
			Obtain $(-5, -\frac{1}{5})$ and $(1, 1)$	A1 [6]	Allow - $\frac{6}{30}$	
	(ii)	(a)	Sketch (more or less) correct curve	B1	showing negative part reflected in <i>x</i> -axis and positive part unchanged; ignore intercept values on axes, right or wrong	
			State values between 0 and their y-value of maximum point lying in first quadrant	M1	accept f or $<$ signs here	
			State correct $0 \notin y \notin 1$	A1ft	following their <i>y</i> -value of maximum point in first quadrant; now with \pounds signs; or equiv perhaps involving g or g(x)	<pre>for " y ³ 0 and y £1", award M1A1; for separate statements y ³ 0, y £1, award M1A0</pre>
				[3]		
	(ii)	(b)	Indicate, in some way, values between <i>y</i> - coordinates of maximum point and reflected minimum point (provided their <i>y</i> -coordinate of minimum point is negative)	M1	allow $\mathbf{\hat{E}}$ sign(s) here; could be clear indication on graph	for " $k > \frac{1}{5}$ and $k < 1$ ", award M1A1; for separate statements, award M1A0
			State $\frac{1}{5} < k < 1$	A1	or correct equiv; not £ now; correct answer only earns M1A1	
				[2]		

(Questi	ion	Answer	Marks	G	uidance
9	(i)		Simplify to obtain $\frac{11}{2}\cos q + \frac{5\sqrt{3}}{2}\sin q$	B1	or equiv with two terms perhaps with sin 60 retained	accept decimal values
			Attempt correct process to find R	M1	for expression of form $a\cos q + b\sin q$	obtained after initial simplification
			Attempt correct process to find <i>a</i>	M1	for expression of form $a\cos q + b\sin q$;	obtained after initial simplification
					condone $\sin a = \frac{11}{2}, \ \cos a = \frac{5}{2}\sqrt{3}$	
			Obtain $7\sin(q+51.8)$	A1	or greater accuracy 51.786	
				[4]		
	(ii)	(a)	State stretch and translation in either order	M1	or equiv but using correct terminology, not move, squash,	SC: if M0 but one transformation completely correct, award B1 for 1/3
			State stretch parallel to <i>y</i> -axis with factor $\frac{1}{7}$	Alft	following their <i>R</i> and clearly indicating correct direction	
			State translation parallel to q -axis or x-axis by 51.8 in positive direction or state translation by vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ a \end{bmatrix}$	A1ft	following their <i>a</i> and clearly indicating correct direction; or equiv such as 308.2 parallel to <i>x</i> -axis in negative direction	
				[3]		
		(b)	State left-hand side (their <i>R</i>) $\sin(\frac{1}{3}b + g)$ where $g^1 \pm$ (their <i>a</i>), $g^1 \pm 40$, $g^1 \pm 20$ Obtain (their <i>R</i>) $\sin(\frac{1}{3}b + \text{their } a + 20) = 3$	M1 A1ft	or equiv such as stating $q = \frac{1}{3}b + 20$ (and, in this case, allowing A1ft	
				AIIt	provided value of $\frac{1}{3}b$ attempted later)	
			Attempt correct process to find any value of $\frac{1}{3}b$	M1	for equation of form $\sin(\frac{1}{3}b + g) = k$ where $ k < 1, k^{-1} 0$	
			Attempt complete process to find positive value of b	M1	including choosing second quadrant value of their $\sin^{-1}\frac{3}{7}$	
			Obtain 248 or 249 or 248.5	A1 [5]	or greater accuracy 248.508	