OCR Maths C4

Mark Scheme Pack

2005-2014

1	(Quotient $=) x^{2}+2 x+2$ (Remainder $=$) $0 x-3$ Allow without working	B1 M1 A1 A1 4	For correct leading term x^{2} in quotient For evidence of division/identity process For correct quotient For correct remainder. The ' $0 x$ ' need not be written but must be clearly derived. 4
2	$\begin{aligned} & x \sin x-\int \sin x d x \\ & (=x \sin x+\cos x) \\ & \text { Answer }=1 / 2 \pi-1 \end{aligned}$	M1 A1 B1 M1 A1 5	For attempt at parts going correct way ($u=x, d v=\cos x$ and $f(x)+/-\int g(x)(d x)$ For both terms correct Indic anywhere that $\int \sin x \mathrm{~d} x=-\cos x$ For correct method of limits For correct exact answer
3	(i) $\mathbf{r}=(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ or $\mathbf{- i}-2 \mathbf{j}-4 \mathbf{k})+\mathrm{t}(3 \mathbf{i}-\mathbf{j}+5 \mathbf{k})$ (ii) $L(2)(\mathbf{r})=3 \mathbf{i}+2 \mathbf{j}-9 \mathbf{k}+s(4 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k})$ $L(1) \& L(2)$ must be of form $\mathbf{r}=\mathbf{a}+\mathrm{tb}$ $2+3 t=3+4 s,-3-t=2-4 s, 1+5 t=-9+5 s$ or suitable equivalences $(t, s)=(+/-3,2) \text { or }(-/+1,1) \text { or }(-/+9,-7)$ $\text { or }(+/-4,2) \text { or }(0,1) \text { or }(-1+8,-7)$ Basic check other eqn \& interp $\sqrt{ }$	M1 A1 2 M1 M1 M1 A1 B1 5	For (either point) $+t$ (diff betw vectors) Completely correct including $\mathbf{r}=$. AEF For point + (s or t) direction vector For $2 / 3$ eqns with 2 different parameters For solving any relevant pair of eqns For both parameters correct
4	(i) $\mathrm{d} x=\sec ^{2} \theta \mathrm{~d} \theta \quad \mathrm{AEF}$ Indefinite integral $=\int \cos ^{2} \theta d \theta$ $\begin{aligned} & \text { (ii) }=k \int+/-1+/-\cos 2 \theta d \theta \\ & 1 / 2[\theta+1 / 2 \sin 2 \theta] \end{aligned}$ Limits $=1 / 4 \pi$ (accept 45) and 0 $(\pi+2) / 8 \quad \text { AEF }$	M1 A1 A1 3 M1 A1 M1 A1 4	Attempt to connect $\mathrm{d} x, \mathrm{~d} \theta$ (not $\mathrm{dx}=\mathrm{d} \theta$) For $\mathrm{d} x=\sec ^{2} \theta \mathrm{~d} \theta$ or equiv correctly used With at least one intermed step AG "Satis" attempt to change to double angle Correct attempt + correct integration New limits for θ or resubstituting Ignore decimals after correct answer 7 Single 'parts' $+\sin ^{2} \theta=1-\cos ^{2} \theta$ acceptable
5	(i)OD=OA+AD or $O B+B C+C D$ AEF $A D=B C$ or $C D=B A$ $(\mathbf{a}+\mathbf{c}-\mathbf{b})=2 \mathbf{j}+k$ (ii) $A B \cdot C B=\|A B\|\|C B\| \cos \theta$ Scalar product of any 2 vectors Magnitude of any vector $94^{\circ}(94.386 \ldots)$ or $1.65(1.647 \ldots)$	M1 A1 A1 3 M1 M1 M1 A1 4	Connect OD \& 2/3/4 vectors in their diag Or similar ,from their diag [i.e.if diag mislabelled, M1A1A0 possible] Or AB.BC i.e.scalar prod for correct pair $2+3-6=-1$ is expected $\sqrt{ } 19$ or 3 expected Accept 86° (85.614...) or 1.49(424..) 7
6	(i) For $\mathrm{d} / \mathrm{d} x\left(y^{2}\right)=2 y \mathrm{~d} y / \mathrm{d} x$ Using $d(u v)=u d v+v d u$ $2 x y \mathrm{~d} y / \mathrm{d} x+y^{2}=2+3 \mathrm{~d} y / \mathrm{d} x$ $\mathrm{d} y / \mathrm{d} x=\left(2-y^{2}\right) /(2 x y-3)$	B1 M1 A1 M1 A1 5	Solving an equation, with at least $2 \mathrm{dy} / \mathrm{dx}$ terms, for $\mathrm{d} y / \mathrm{d} x ; \mathrm{d} y / \mathrm{d} x$ on one side, non $\mathrm{d} y / \mathrm{d} x$ on other. AG

	(ii) Stating/using $2 x y-3=0$ Attempt to eliminate x or y $8 x^{2}=-9$ or $y^{2}=-2$	B1 M1 A1 3	No use of $2-y^{2}$ in this part. Between 2xy-3=0\& eqn of curve Together with suitable finish
7	(i) $\mathrm{d} y / \mathrm{d} x=(\mathrm{d} y / \mathrm{d} t) /(\mathrm{d} x / \mathrm{d} t)$ $=\left(-1 / t^{2}\right) / 2 t$ as unsimplified expression $=-1 / 2 t^{3}$ as simplified expression (ii) $(4,-1 / 2) \rightarrow t=-2$ only Satis attempt to find equation of tgt $x-16 y=12$ only (iii) $t^{3}-12 t-16=0 \text { or } 16 y^{3}+12 y^{2}-1=0$ or $x^{3}-24 x^{2}+144 x-256=0$ $\overline{t=} 4$ (only) ISW giving cartesian coords	M1 A1 A1 3 B1 M1 A1 3 M1 A1 B2 4	(S.R.Award M1 for attempt to change to cartesian eqn \& differentiate +A 1 for $\mathrm{d} y / \mathrm{d} x$ or $\mathrm{d} x / \mathrm{d} y$ in terms of x or y) Not $1 /-2 t^{3}$. Not in terms of $x \& /$ or y. Using $t=-2$ or 2 AG For substituting ($\left.t^{2}, 1 / t\right)$ into tgt eqn or solving simult tgt \& their cartes eqns For simplified equiv non-fract cubic S.R. Award B1 for " 4 or -2 ". S.R. If B0, award M1 for clear indic of method of soln of correct eqn. 10
8	$\begin{aligned} & \text { (i) } 3 x+4 \equiv A(2+x)^{2}+B(2+x)(1+x)+ \\ & C(1+x) \\ & A=1 \\ & C=2 \\ & A+B=0 \text { or } 4 A+3 B+C=3 \text { or } 4 A+2 B+C \\ & =4 \\ & B=-1 \\ & \text { (ii) } 1-x+x^{2} \\ & 1-1 / 2 x+1 / 4 x^{2} \\ & 1-x \\ & +3 / 4 x^{2} \\ & 1-5 / 4 x+5 / 4 x^{2} \end{aligned}$ (iii) $-1<x<1$ AEF	M1 A/B1 A/B1 A1 A1 5 B1 B1 B1 B1 B1 5 B1 1	Accept \equiv or $=$ If identity used, award ' A ' mark, if cover-up rule used, award 'B' mark. Any correct eqn for B from identity Expansion of $(1+x)^{1}$ Expansion of $(1+1 / 2 x)^{-1}$ First 2 terms of $(1+1 / 2 x)^{2}$ Third term of $\left.(1+1 / 2 x)^{2}\right)^{2}$ Complete correct expansion If partial fractions not used Award B1 for expansion of $(1+x)^{-1}$ B1+B1 for expansion of $(1+1 / 2 x)^{\overline{2}}$, and B1 for $1-5 / 4 x \ldots$ \& 1 for... $+5 / 4 x^{2}$ Or if denom expanded to give $a+b x+c x^{2}$ with $a=4 . b=8, c=5$, award $B 1$ Expansion of $\left[1+(b / a\} x+(c / a) x^{2}\right]^{11}=$ $1-(\mathrm{b} / \mathrm{a}) x+\ldots\left(-\mathrm{c} / \mathrm{a}+\mathrm{b}^{2} / \mathrm{a}^{2}\right) x^{2} \quad \mathrm{~B} 1+\mathrm{B} 1$ Final ans $=\left(1-5 / 4 x \ldots+5 / 4 x^{2}\right) B 1+B 1$ Other inequalities to be discarded. 11
9	$\mathrm{k}=$ const of proportionality $-=$ falling, $\mathrm{d} \theta / \mathrm{d} t=$ rate of change $\theta-20=$ diff betw obj \& surround temp (ii) $\int 1 /(\theta-20) \mathrm{d} \theta=-k \int \mathrm{~d} t$ $\ln (\theta-20)=-k t+c$ Subst $(\theta, t)=(100,0)$ or $(68,5)$	B2 2 M1 A1A1 M1 A1	All 4 items (first two may be linked) S.R. Award B1 for any 2 items For separating variables For integ each side (c not essential) Dep on ' c ' being involved [or M2 for limits $(100,0)(68,5)+$ A1 for

1 Attempt to factorise numerator and
denominator
num $=x x(x-3)$ or denom $=(x-3)(x+3)$
M1
A1 \quad Not num $=x\left(x^{2}-3 x\right)$
Final answer $=\frac{x^{2}}{x+3} \quad\left[\right.$ Not $\left.\frac{x x}{x+3}\right]$
A1 3 Do not ignore further cancellation.
$2 \quad \frac{\mathrm{~d}}{\mathrm{~d} x}(\sin y)=\cos y \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B1
$\frac{\mathrm{d}}{\mathrm{d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \quad$ s.o.i.
B1 [SR: If $x y$ taken to LHS, accept
$-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$ as s.o.i.]
$\cos y \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y+2 x \quad$ AEF \quad B1
[If written as $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y+2 x$, accept for prev B1 but not for following marks if the $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is used]
$\mathrm{f}(x, y) \frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{g}(x, y) \quad$ M1 \quad Regrouping provided $>$ one $\frac{\mathrm{d} y}{\mathrm{~d} x}$ term
$\frac{y+2 x}{\cos y-x}$ or $-\frac{y+2 x}{x-\cos y}$ or $\frac{-2 x-y}{x-\cos y} \quad$ A1 $\quad 5$ ISW Answer could imply M1

3 (i) Quotient $=3 x+\ldots$
For evidence of correct division process
$3 x+4$
$-6 x-13$

B1
M1

A1
A1

For correct leading term in quotient Or for cubic $\equiv\left(x^{2}-2 x+5\right)(g x+h)(+\ldots)$
For correct quotient
4 For correct remainder
(ii) $a=7$

B1 $\sqrt{ } \quad$ Follow through If rem in (i) is
$P x+Q$,
$b=20$
B1 $\sqrt{ }$
then $\mathrm{B} 1 \sqrt{ }$ for $a=1-P$
2 and $\mathrm{B} 1 \sqrt{ }$ for $b=7-Q$
[SR: If B0+B0, award B1 $\sqrt{ }$ for $a=1+P$ AND $b=7+Q ; \quad$ also SR B1 for $a=20, b=7$]
$4 \quad$ (i) Parts using correct split of $u=x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sec ^{2} x \quad$ M1 \quad 1st stage result of form
$\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
$x \tan x-\int \tan x \mathrm{~d} x$
A1 Correct $1^{\text {st }}$ stage
$\int \tan x \mathrm{~d} x=-\ln \cos x$ or $\ln \sec x$
B1
$x \tan x+\ln \cos x+\mathrm{c}$ or $x \tan x-\ln \sec x+\mathrm{c} \quad$ A1 $\quad 4$

$$
\begin{aligned}
& \int x \sec ^{2} x \mathrm{~d} x-\int x \mathrm{~d} x \\
& \quad x \tan x+\ln \cos x-\frac{1}{2} x^{2}+c
\end{aligned}
$$

5
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}$ M1 Used, not just quoted
$\frac{1}{t}$ or t^{-1}
A1 2 Not $\frac{2}{2 t}$ as final answer
SR: M1 for Cart conv, finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ \& ans involv $t+$ A1 \quad M1 is attempt only, accuracy not involved
(ii) Finding equation of tangent (using p or t)
$p y=x+p^{2}$ working

M1
A1 2 AG; p essential; at least 1 line inter
$5 y=x+25$ seen $\Rightarrow B 0$
M1 Producing 2 equations
Substitution of their values of p into given tgt eqn Solving the 2 equations simultaneously M1 $(-15,-2) \quad x=-15, y=-2 \quad$ A1

A1 4 Common wrong ans
$(15,8) \Rightarrow \mathrm{B} 0, \mathrm{M} 2, \mathrm{~A} 0$
(i) Attempt to connect $\mathrm{d} x, \mathrm{~d} \theta$
$\mathrm{d} x=2 \sin \theta \cos \theta \mathrm{~d} \theta$
M1 But not $\mathrm{d} x=\mathrm{d} \theta$
A1 AEF
$\sqrt{\frac{x}{1-x}}=\frac{\sin \theta}{\cos \theta}$
Reduction to $\int 2 \sin ^{2} \theta \mathrm{~d} \theta$
(ii) $\sin ^{2} \theta=k(+/-1+/-\cos 2 \theta)$
$2 \sin ^{2} \theta=1-\cos 2 \theta$
$\int \cos 2 \theta \mathrm{~d} \theta=\frac{1}{2} \sin 2 \theta$
Attempting to change limits
$\frac{1}{2} \pi$
Alternatively Parts once \& use
$\cos ^{2} \theta=1-\sin ^{2} \theta$
$\frac{1}{2}(\theta-\sin \theta \cos \theta)$

B1
A1 4 AG WWW

M1

A1
B1
M1
A1 5
(M2) Instead of the M1 A1 B1
(A1) Then the final M1 A1 for use of limits
Attempt to change (2) $\sin ^{2} \theta$ into $\mathrm{f}(\cos 2 \theta)$
Correct attempt
Seen anywhere in this part
Or Attempting to resubstitute; Accept degrees

7
(i) $A=3$
B1
$C=1$
B1
$11+8 x \equiv A(1+x)^{2}+B(2-x)(1+x)+C(2-x) \mathrm{M} 1$
e.g. $A-B=0,2 A+B-C=8, A+2 B+2 C=11 \mathrm{~A} 1$
$B=3$
(ii) $\left(1-\frac{x}{2}\right)^{-1}=1+\frac{x}{2}+\frac{x^{2}}{4}+\ldots$
$(1+x)^{-1}=1-x+x^{2}-\ldots$
A1
B1
B1
B1,B1
$(1+x)^{-2}=1-2 x \quad+3 x^{2}-\ldots$
Expansion $=\frac{11}{2}-\frac{17}{4} x+\frac{51}{8} x^{2}+\ldots$

B1

For correct value stated
For correct value stated
AEF; any suitable identity
For any correct (f.t.) equation involving B
5
s.o.i.
s.o.i.

SR(1) If partial fractions not used but product of $\mathbf{S R (2)}$ If partial fractions not used
but $(11+8 x)(2-x)^{-1}(1+x)^{-2}$ attempted, then
B1 for $\left(1-\frac{x}{2}\right)^{-1}=1+\frac{x}{2}+\frac{x^{2}}{4}+\ldots$
B1,B1 for $(1+x)^{-2}=1-2 x+\ldots+3 x^{2}+\ldots$
B1,B1 for $\frac{11}{2}-\frac{17}{4} x+\ldots+\frac{51}{8} x^{2}+\ldots$
N.B. In both $S R$, if final expansion given $B 0$, \qquad -allow SR B1 for $22-17 x+51 / 2 x^{2}$ denominator multiplied out, then
B1 for denom $=2+3 x\left(+0 x^{2}\right)+\ldots$
B1 for $\left(1+\frac{3 x}{2}\right)^{-1}=1-\frac{3 x}{2}+\frac{9 x^{2}}{4}+\ldots$
B1,B1,B1 for $\frac{11}{2} \ldots-\frac{17}{4} x \ldots+\frac{51}{8} x^{2}+\ldots$

8
(i) $\int(y-3) \mathrm{d} y=\int(2-x) \mathrm{d} x \quad$ or equiv

M1
8

A1
For an arbitrary const on one/both sides
Substituting $(x, y)=(5,4)$ or $(4,5) \&$ finding ' c ' dep ${ }^{*}$ M1
$\frac{1}{2} y^{2}-3 y=-\frac{1}{2} x^{2}+2 x-\frac{3}{2} \quad$ AEF ISW A1
$\frac{1}{2} y^{2}-3 y=2 x-\frac{1}{2} x^{2}$
For an arbitrary const on one/both sides

C

For separation \& integration of both sides or $\frac{1}{2}(y-3)^{2}=-\frac{1}{2}(x-2)^{2}$
\} (or +M 2 for equiv statement using limits) \}
5 or $\frac{1}{2}(y-3)^{2}=-\frac{1}{2}(x-2)^{2}+5 \quad$ AEF
(ii) Attempt to clear fracts (if nec) \& compl square M1
$a=2, b=3, k=10$

A2

3 For all 3; SR: A1 for 1 or 2 correct
(iii) Circle clearly indicated in a sketch

Centre $(2,3)$ or their (a, b)
Radius $\sqrt{10}$ or their \sqrt{k}

B1
B1 $\sqrt{ }$
B1 $\sqrt{ } \quad 3 \downarrow$ provided $k>0$

9 (i) Using $\left(\begin{array}{l}-8 \\ 1 \\ -2\end{array}\right)$ and $\left(\begin{array}{l}-9 \\ 2 \\ -5\end{array}\right)$ as the relevant vectors M1 i.e. correct direction vectors
Using $\cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$ AEF for any 2 vectors \quad M1 \quad Accept $\cos \theta=\left|\frac{a}{\mid \underline{a} b}\right|$
Method for scalar product of any 2 vectors
M1
Method for finding magnitude of any vector
15° (15.38...), 0.268 rad
A1 5
(ii) \quad Produce (at least) 2 of the 3 eqns in t and s

M1
M1
A1 for first value found
A1 $\sqrt{ } \quad$ for second value found
M1
A1

Substituting their t into l_{1} or their (s, a)
into l_{2}
M1
$\left(\begin{array}{l}-20 \\ 5 \\ -12\end{array}\right)$

$1 \quad \frac{\mathrm{~d}}{\mathrm{~d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Substitute $(1,2)$ into their differentiated equation and attempt to solve for $\frac{\mathrm{d} y}{\mathrm{dx}}$. [Allow subst of $(2,1)$]
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2$
(i) $1+(-2)(-3 x)+\frac{(-2)(-3)}{1.2}(-3 x)^{2}(+\ldots$ ignore $)$
$=1+6 x$
$\ldots+27 x^{2}$
(ii) $(1+2 x)^{2}(1-3 x)^{-2}$

Attempt to expand $(1+2 x)^{2}$ \& select (at least) 2 relevant products and add
55 (Accept 55x ${ }^{2}$)
SR 1 For expansion of $(1+2 x)^{2}$ with 1 error, A1 $\sqrt{ }$
SR 2 For expansion of $(1+2 x)^{2} \&>1$ error, A0
Alternative Method
For correct method idea of long division
$1 \ldots . .+10 x \ldots . .+55 x^{2}$

B1 s.o.i. e.g. $2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$

B1
M1 dep at Or attempt to solve their diff equation for $\frac{d y}{d x}$
least $1 \times \mathbf{B 1}$ and then substitute $(1,2)$
A1 4

M1
B1
A1

M1
M1

A2 $\sqrt{ }$

4 If (i) is $a+b x+c x^{2}$, f.t. $4(a+b)+c$
State or imply; accept $-3 x^{2} \&-9 x^{2}$
Correct first 2 terms
3 Correct third term

For changing into suitable form, seen/implied
Selection may be after multiplying out

3
(i) $\frac{A}{x}+\frac{B}{3-x} \&$ c-u rule or $A(3-x)+B x \equiv 3-2 x$
$\frac{1}{x}$
$-\frac{1}{3-x}$
A1 seen in (i) or (ii)
A1 3 ditto; $\frac{1}{x}-\frac{1}{3-x}$ scores 3 immediately
(ii) $\int \frac{1}{x}(\mathrm{~d} x)=\ln x$ or $\ln |x|$

B1
$\int \frac{1}{3-x}(\mathrm{~d} x)=-\ln (3-x)$ or $-\ln |3-x|$
B1

Correct method idea of substitution of limits
$\ln 2(+\ln 1-\ln 1)-\ln 2=0$
M1
A1
Alternative Method
If ignoring PFs, $\ln x(3-x)$ immediately
As before

M1
A1,A1,A1(4)

4 (i) Working out $\mathbf{b}-\mathbf{a}$ or $\mathbf{a}-\mathbf{b}$ or $\mathbf{c}-\mathbf{a}$ or $\mathbf{a}-\mathbf{c}$
M1) Irrespective of label $=\quad \pm(-3 \mathbf{i}-\mathbf{j}-\mathbf{k}) \quad$ or $\pm(-2 \mathbf{i}+\mathbf{j}-2 \mathbf{k})$
Method for finding magnitude of any vector
A1) If not scored ,these $1^{\text {st }} 3$ marks can be
Method for finding scalar product of any 2 vectors
M1) awarded in part (ii)

Using $\cos \theta=\frac{a . b}{|a||b|}$ AEF for any 2 vectors
M1
[Alternative cosine rule method $|\overrightarrow{B C}|=\sqrt{6}$

Cosine rule used
(45.289378, 0.7904487)
‘Recognisable’ form
$45.3^{\circ}, 0.79(0), \frac{\pi}{3.97}$

6 Do not accept supplement (134.7 etc)
(ii) Use of $\frac{1}{2}|\overrightarrow{A B}||\overrightarrow{A C}| \sin \theta$
3.54 (3.5355) or $\frac{5 \sqrt{2}}{2}$

M1
A1
2 Accept from correct supp (134.7 etc)

5
(i) $\frac{\mathrm{d} A}{\mathrm{~d} t}$ or $k A^{2}$ seen $\frac{\mathrm{d} A}{\mathrm{~d} t}=k A^{2}$

M1

A1 2
(ii) Separate variables + attempt to integrate
$-\frac{1}{A}=k t+c \quad$ or $\quad-\frac{1}{k A}=t+c \quad$ or $\quad-\frac{1}{A}=t+c$
Subst one of $(0,0),(1,1000)$ or $(2,2000)$ into eqn. Subst another of $(0),,(1,1000)$ or $(2,2000)$ into eqn Substitute $A=3000$ into eqn with k and c subst
$t=\frac{7}{3} \quad$ ISW
(i) Attempt to connect $\mathrm{d} u$ and $\mathrm{d} x$ e.g. $\frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$

Use of $\mathrm{e}^{2 x}=\left(\mathrm{e}^{x}\right)^{2}$ or $(u-1)^{2}$ s.o.i.
Simplification to $\int \frac{u-1}{u}(\mathrm{~d} u)$ WWW
(ii) Change $\frac{u-1}{u}$ to $1-\frac{1}{u}$ or use parts
$\int \frac{1}{u} \mathrm{~d} u=\ln u$
Either attempt to change limits or resubstitute Show as $\mathrm{e}+1-\ln (\mathrm{e}+1)-\{2$ or $(1+1)\}+\ln 2$
WWW show final result as $\mathrm{e}-1-\ln \left(\frac{\mathrm{e}+1}{2}\right)$
*M1 Accept if based on $\frac{\mathrm{d} A}{\mathrm{~d} t}=k A^{2}$ or A^{2}
dep*M1 Equation must contain k and/or c dep*M1 This equation must contain k and c dep*M1

A1 $\quad 6$ Accept $2.33,2 \mathrm{~h} 20 \mathrm{~m}$
M1
But not $\mathrm{d} u=\mathrm{d} x$
A1
A1 3 AG

M1 If parts, may be twice if $\int \ln x \mathrm{~d} x$ is involved
A1 Seen anywhere in this part
M1 (indep) Expect new limits e+1 \& 2
A1
A1 5 AG
(i) Produce at least 2 of the 3 relevant eqns in λ and μ Solve the 2 eqns in $\lambda \& \mu$ as far as $\lambda=\ldots$ or $\mu=\ldots$ M1 $1^{\text {st }}$ solution: $\lambda=-2$ or $\mu=3$ $2^{\text {nd }}$ solution: $\mu=3$ or $\lambda=-2 \quad$ f.t. A1 $\sqrt{ }$ Substitute their λ and μ into $3^{\text {rd }}$ eqn and find ' a ' Obtain $a=2$ \& clearly state that a cannot be 2
) Subst their λ or $\mu(\&$ poss $a)$ into either line eqn Point of intersection is $-5 \mathbf{i}-4 \mathbf{j}$
N.B. In this question, award marks irrespective of labelling of parts
8 (i) Integration method
Attempt to change $\cos ^{2} 6 x$ into $f(\cos 12 x)$
$\cos ^{2} 6 x=\frac{1}{2}(1+\cos 12 x)$
$\int=\frac{1}{2} x+\frac{1}{24} \sin 12 x+\mathrm{c}$
Differentiation method
Differentiate RHS producing $\frac{1}{2}+\frac{1}{2} \cos 12 x--(E) \quad$ B1
Attempt to change $\cos 12 x$ into $\mathrm{f}(\cos 6 x) \quad$ M1
Simplify (E) WWW to $\cos ^{2} 6 x+$ satis finish A1

A1
A1
M1
(ii) Parts with $u=x, \mathrm{~d} v=\cos ^{2} 6 x$
$x\left(\frac{1}{2} x+\frac{1}{24} \sin 12 x\right)-\int\left(\frac{1}{2} x+\frac{1}{24} \sin 12 x\right) \mathrm{d} x$
$\int \sin 12 x \mathrm{~d} x=-\frac{1}{12} \cos 12 x$
Correct use of limits to whole integral
$\frac{\pi^{2}}{288}-\frac{\pi^{2}}{576}-\frac{1}{288}-\frac{1}{288}$
$\frac{\pi^{2}}{576}-\frac{1}{144}$
S.R. If final marks are A0 + A0, allow SR A1 for A1

6
A1
e.g. $1+3 \lambda=-8+\mu,-2+\lambda=2-2 \mu$
*M1
A1 Correct expression only
B1 Clear indication somewhere in this part
dep*M1 Accept () (-0)
A1
AE unsimp exp. Accept $12 x 24$,sin π here
6 Tolerate e.g. $\frac{2}{288}$ here
0.01/0.010/0.0101/0.0102/0.0101902
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-4 \sin t \quad$ or $\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=3 \cos t$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3 \cos t}{4 \sin t}$ or $\frac{3 \cos t}{-4 \sin t} \quad$ ISW
SR: M1 for Cartesian eqn attempt +B 1 for $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad+\mathbf{A 1}$ as before(must be in terms of t)
(ii) $y-3 \sin p=\left(\right.$ their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right)(x-4 \cos p)$
or $y=\left(\right.$ their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right) x+\mathrm{c}$ \& subst cords to find c
$4 y \sin p-12 \sin ^{2} p=-3 x \cos p+12 \cos ^{2} p$
or $\mathrm{c}=\frac{12 \sin ^{2} p+12 \cos ^{2} p}{4 \sin p}$
$3 x \cos p+4 y \sin p=12 \quad$ WWW
(iii) Subst $x=0$ and $y=0$ separately in tangent eqn

Produce $\frac{3}{\sin p}$ and $\frac{4}{\cos p}$
Use $\Delta=\frac{1}{2}\left(\frac{3}{\sin p} \cdot \frac{4}{\cos p}\right)=\frac{12}{\sin 2 p} \quad$ WWW
(iv) Least area $=12$
$p=\frac{1}{4} \pi$ as final or only answer
S.R. $45^{\circ} \rightarrow \mathrm{B} 1$;

M1
Used, not just quoted
*B1
dep*A1 3 Also $\frac{-3 \cos t}{4 \sin t}$ provided B0 not awarded

M1 Accept p or t here
Ditto
Correct equation cleared of fractions

A1 3 AG Only p here. Mixture earlier $\rightarrow \mathrm{A} 0$

M1
A1

A1 3 AG

B1
B2
3 These B marks are independent.
S.R. [-12 and e.g. $-\pi / 4 \rightarrow$ B1]

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

$$
4 x+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

Put $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
Obtain $4 x+y=0 \quad$ AEF
Attempt to solve simultaneously with eqn of curve
Obtain $x^{2}=1$ or $y^{2}=16$ from $4 x+y=0$ $\begin{array}{ll}(1,-4) \text { and }(-1,4) \text { and no other solutions } \\ 8 & \text { (i) Use } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}} \text { and }-\frac{1}{m} \text { for grad of normal }\end{array}$ $=-p$

AG WWW
(ii) Use correct formula to find gradient of line

Obtain $\frac{2}{p+q}$
AG WWW
(iii) State $-p=\frac{2}{p+q}$

Simplify to $p^{2}+p q+2=0$ AG WWW
(iv) $(8,8) \rightarrow t$ or p or $q=2$ only

Subst $p=2$ in eqn (iii) to find q_{1}
Subst $p=q_{1}$ in eqn (iii) to find q_{2}
$q_{2}=\frac{11}{3} \rightarrow\left(\frac{242}{9}, \frac{44}{3}\right)$

$9 \quad$ (i) Separate variables as $\int \sec ^{2} y \mathrm{~d} y=2 \int \cos ^{2} 2 x \mathrm{~d} x$
LHS $=\tan y$
RHS; attempt to change to double angle
Correctly shown as $1+\cos 4 x$
$\int \cos 4 x \mathrm{~d} x=\frac{1}{4} \sin 4 x$
Completely correct equation (other than +c)
+c on either side
(ii) Use boundary condition
c $($ on RHS $)=1$
Substitute $x=\frac{1}{6} \pi$ into their eqn, produce $y=1.05$
$\mathbf{1 0} \quad$ (i) For (either point) $+t$ (diff between posn vectors) $\mathbf{r}=($ either point $)+t(\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}$ or $\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$
(ii) $\mathbf{r}=s(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$ or $(\mathbf{i}+2 \mathbf{j}-\mathbf{k})+s(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$

Eval scalar product of $\mathbf{i}+2 \mathbf{j}-\mathbf{k} \&$ their dir vect in (i) Show as (1 x 1 or 1$)+(2 \mathrm{x}-2$ or -4$)+(-1 \mathrm{x}-3$ or 3$)$ $=0 \quad$ and state perpendicular \quad AG
(iii) For at least two equations with diff parameters Obtain $t=-2$ or $s=3$ (possibly -3 or 2 or -2)
Subst. into eqn $A B$ or $O T$ and produce $3 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}$ (iv) Indicate that $|\overline{O C}|$ is to be found
$\sqrt{54}$;f.t. $\sqrt{a^{2}+b^{2}+c^{2}}$ from $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ in
(iii)
e.g. $5+t=s, 2-2 t=2 s, \quad-9-3 \mathrm{t}=-\mathrm{s}$

Check if $t=2,1$ or -1
where C is their point of intersection

In the above question, accept any vectorial notation
t and s may be interchanged, and values stated above need to be treated with caution.
In (iii), if the point of intersection is correct, it is more than likely that the whole part is correct - but check.
(i) Correct format $\frac{A}{x+2}+\frac{B}{x-3}$
$A=1$ and $B=2$
(ii) $-A(x+2)^{-2}-B(x-3)^{-2}$

Convincing statement that each denom >0 State whole $\exp <0$
Convincing statement that each denom >0
State whole $\exp <0 \quad$ AG
Use parts with $u=x^{2}, \mathrm{~d} v=\mathrm{e}^{x}$
Obtain $x^{2} \mathrm{e}^{x}-\int 2 x \mathrm{e}^{x}(\mathrm{~d} x)$

Attempt parts again with $u=(-)(2) x, \mathrm{~d} v=\mathrm{e}^{x}$
Final $=\left(x^{2}-2 x+2\right) \mathrm{e}^{x} \quad$ AEF incl brackets
Use limits correctly throughout

	$\mathrm{e}^{(1)}-2$ ISW Exact answer only
	Volume $=(k) \int_{0}^{\pi} \sin ^{2} x(\mathrm{~d} x)$
Suitable method for integrating $\sin ^{2} x$	
	$\int \sin ^{2} x(\mathrm{~d} x)=\frac{1}{2} \int 1-\cos 2 x(\mathrm{~d} x)$
$\int \cos 2 x(\mathrm{~d} x)=\frac{1}{2} \sin 2 x$	

Use limits correctly
Volume $=\frac{1}{2} \pi^{2} \quad$ WWW Exact answer
(i) $\begin{aligned} & \left(1+\frac{x}{2}\right)^{-2} \\ & =1+(-2)\left(\frac{x}{2}\right)+\frac{-2 .-3}{2}\left(\frac{x}{2}\right)^{2}+\frac{-2 .-3 \cdot-4}{3!}\left(\frac{x}{2}\right)^{3}\end{aligned}$

$$
=1-x
$$

$+\frac{3}{4} x^{2}-\frac{1}{2} x^{3}$
$(2+x)^{-2}=\frac{1}{4}\left(\right.$ their exp of $\left.(1+a x)^{-2}\right)$ mult out
$|x|<2$ or $-2<x<2$ (but not $\left|\frac{1}{2} x\right|<1$)
(ii) If (i) is $a+b x+c x^{2}+d x^{3}$ evaluate $b+d$ $-\frac{3}{8}\left(x^{3}\right)$

Clear indication of method of ≥ 3 terms

First two terms, not dependent on M1
For both third and fourth terms
Correct: $\frac{1}{4}-\frac{1}{4} x+\frac{3}{16} x^{2}-\frac{1}{8} x^{3}$
s.o.i. in answer
for both
accept ≥ 0. Do not accept $x^{2}>0$.
Dep on previous 4 marks.
s.o.i. eg e $+(-2 x+2) \mathrm{e}^{x}$

Tolerate (their value for $x=1$) (-0)
Allow $0.718 \rightarrow$ M1
where $k=\pi, 2 \pi$ or 1 ; limits necessary
eg $\int+/-1+/-\cos 2 x(d x)$ or single integ by parts \& connect to $\int \sin ^{2} x(\mathrm{~d} x)$
or $-\sin x \cos x+\int \cos ^{2} x(\mathrm{~d} x)$
or $-\sin x \cos x+\int 1-\sin ^{2} x(d x)$
dep*M1
A1 6 Beware: wrong working leading to $\frac{1}{2} \pi^{2}$

2 Follow-through from $b+d$

5(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
$=\frac{-4 \sin 2 t}{-\sin t}$
$=8 \cos t$
≤ 8
(ii) Use $\cos 2 t=2 \cos ^{2} t+/-1$ or $1-2 \cos ^{2} t$

Use correct version $\cos 2 t=2 \cos ^{2} t-1$
Produce WWW $y=4 x^{2}+1 \quad$ AG
(iii) U-shaped parabola abve x-axis, sym abt y-axis Portion between $(-1,5)$ and $(1,5)$
N.B. If (ii) answered or quoted before (i) attempted,

M1

Accept $\frac{4 \sin 2 t}{\sin t}$ WWW
with brief explanation eg $\cos t \leq 1$
If starting with $y=4 x^{2}+1$, then
Subst $x=\cos t, y=3+2 \cos 2 t \quad$ M1
Either substitute a formula for $\cos 2 t \mathrm{M} 1$
Obtain $0=0$ or $4 \cos ^{2} t+1=4 \cos ^{2} t+1$ A1
Or Manip to give formula for $\cos 2 t \quad \mathrm{M} 1$
Obtain corr formula \& say it's correct A1
Any labelling must be correct
either $x= \pm 1$ or $y=5$ must be marked
(i) B 2 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x+\mathrm{B} 1, \mathrm{~B} 1$ if earned. 9

6
(i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$

B1
Using $\mathrm{d}(u v)=u \mathrm{~d} v+v \mathrm{~d} u$ for the (3) $x y$ term $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}+3 x y+4 y^{2}\right)=2 x+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ \& subst $(x, y)=(2,3)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{13}{30}$
Grad normal $=\frac{30}{13} \quad$ follow-through
Find equ any line thro $(2,3)$ with any num gra $30 x-13 y-21=0$ AEF

B1
M1

Stated or in relevant position in division
Accept $\frac{x}{x^{2}+4}$ as remainder
$2 x+3+\frac{x}{x^{2}+4}$

Ignore any integration of $\frac{D}{x^{2}+4}$
logs need not be combined.

8
(i) Sep variables eg $\int \frac{1}{6-h}(\mathrm{~d} h)=\int \frac{1}{20}(\mathrm{~d} t) \quad * \mathrm{M} 1 \quad$ s.o.i. $\mathrm{Or} \frac{\mathrm{d} t}{\mathrm{~d} h}=\frac{20}{6-h} \rightarrow \mathrm{M} 1$

LHS $=-\ln (6-h)$
\& then $t=-20 \ln (6-h)(+\mathrm{c}) \rightarrow \mathrm{A} 1+\mathrm{A} 1$
RHS $=\frac{1}{20} t \quad(+c)$
Subst $t=0, h=1$ into equation containing ' c '
Correct value of their $\mathrm{c}=-(20) \ln 5 \mathrm{WWW}$
Produce $t=20 \ln \frac{5}{6-h} \quad$ www AG
(ii) When $h=2, t=20 \ln \frac{5}{4}=4.46(2871)$
(iii) Solve $10=20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h}=\mathrm{e}^{0.5}$
$h=2.97(2.9673467 \ldots)$
[In (ii),(iii) accept non-decimal (exact) answers but -1 once.]
Accept truncated values in (ii),(iii).
(iv) Any indication of (approximately) 6 (m)
dep*M1
A1
A1 6 Must see $\ln 5-\ln (6-h)$

B1 1 Accept 4.5, 4 $\frac{1}{2}$
or $\frac{6-h}{5}=\mathrm{e}^{-0.5}$ or suitable $\frac{1}{2}$-way stage
$6-5 e^{-0,5}$ or $6-e^{1.109}$

4724 Core Mathematics 4

1 Method for finding magnitude of any vector Method for finding scalar prod of any 2 vectors
Using $\cos \theta=\frac{\mathbf{i}-2 \mathbf{j}+3 \mathbf{k} .2 \mathbf{i}+\mathbf{j}+\mathbf{k}}{|\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}| 2 \mathbf{i}+\mathbf{j}+\mathbf{k} \mid}$
70.9 (70.89, 70.893) WWW; 1.24 (1.237)

2 (i) Correct format $\frac{A}{x+1}+\frac{B}{x+2}$

$5 \quad$ (i) Use $3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$ and $2 \mathbf{i}-\mathbf{j}-5 \mathbf{k}$ only Use correct method for scalar prod of any 2 vectors Obtain $6+4-10$, state $=0$ \& deduce perp \quad AG	M1 M1 A1 3	(indep) May be as part of $\cos \theta=\frac{a \cdot b}{\|a\|\|b\|}$
(ii) Produce 3 equations in s and t Solve 2 of the equations for s and t Obtain $(s, t)=\left(\frac{3}{5}, \frac{12}{5}\right)$ or $\left(\frac{9}{22}, \frac{18}{11}\right)$ or $\left(\frac{3}{19}, \frac{33}{19}\right)$ Substitute their values in $3^{\text {rd }}$ equation State/show inconsistency \& state non-parallel \therefore skew	$\left\lvert\, \begin{array}{ll} * \mathrm{M} 1 & \\ \text { dep*M1 } & \\ \text { A1 } & \\ \text { dep*M1 } & \\ \text { A1 } & \mathbf{5} \end{array}\right.$	of the type $5+3 s=2+2 t,-2-4 s=-2-t$ and $-2+2 s=7-5 t$ Or Eliminates (or t) from 2 pairs dep*M1 $(5 t=12,11 t=18,19 t=33) \text { or }(5 s=3,22 s=9,19 s=3) A 1, A 1$ State/show inconsistency \& state non-parallel \therefore skew WWW A1
6 $\begin{aligned} & \text { (i) } \begin{array}{l} 1-4 a x+\ldots \\ \frac{-4 .-5}{1.2}(a x)^{2} \text { or } \frac{-4 .-5}{1.2} a^{2} x^{2} \text { or } \frac{-4 .-5}{1.2} a x^{2} \\ \ldots+10 a^{2} x^{2} \end{array} \text {... } \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } \\ \text { A1 } & 3 \end{array}$	Do not accept $\binom{-4}{2}$ unless 10 also appears
(ii) f.t. (their cf x) $+b$ (their const cf) $=1$ f.t. (their cf $\left.x^{2}\right)+b($ their $\mathrm{cf} x)=-2$ Attempt to eliminate ' b ' and produce equation in ' a ' Produce $6 a^{2}+4 a=2$ AEF $a=\frac{1}{3}$ and $b=\frac{7}{3}$ only	$\begin{aligned} & \text { ل} \mathrm{B} 1 \\ & \sqrt{ } \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Expect $b-4 a=1$ Expect $10 a^{2}-4 a b=-2$ Or eliminate ' a ' and produce equation in ' b ' Or $6 b^{2}+4 b=42$ AEF Made clear to be only (final) answer
$7 \quad$ (i) Perform an operation to produce an equation connecting A and B (or possibly in A or in B) $\begin{aligned} & A=2 \\ & B=-2 \end{aligned}$	M1 A1 A1	Probably substituting value of θ, or comparing coefficients of $\sin x$, and/or $\cos x$ WW scores 3
(ii) Write $4 \sin \theta$ as $A(\sin \theta+\cos \theta)+B(\cos \theta-\sin \theta)$ and re-write integrand as $A+\frac{B(\cos \theta-\sin \theta)}{\sin \theta+\cos \theta}$ $\begin{aligned} & \int A \mathrm{~d} \theta=A \theta \\ & \int \frac{B(\cos \theta-\sin \theta)}{\sin \theta+\cos \theta} \mathrm{d} \theta=B \ln (\sin \theta+\cos \theta) \end{aligned}$ Produce $\frac{1}{4} A \pi+B \ln \sqrt{2}$ f.t. with their A, B	$\begin{aligned} & \text { M1 } \\ & \text { VB1 } \\ & \sqrt{ } \mathrm{A} 2 \\ & \sqrt{ } \mathrm{~A} 1 \end{aligned}$	A and B need not be numerical - but, if they are, they should be the values found in (i). general or numerical general or numerical Expect $\frac{1}{2} \pi-\ln 2$ (Numerical answer only)
$\begin{array}{rr} 8 & \text { (i) } \frac{\mathrm{d} x}{\mathrm{~d} t} \text { or }-k x^{\frac{1}{2}} \text { or } k x^{\frac{1}{2}} \text { seen } \\ \frac{\mathrm{d} x}{\mathrm{~d} t}=-k x^{\frac{1}{2}} \text { or } \frac{\mathrm{d} x}{\mathrm{~d} t}=k x^{\frac{1}{2}} \end{array}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	k non-numerical; i.e. 1 side correct i.e. both sides correct
(ii) Separate variables or invert, + attempt to integrate Correct result for their equation after integration Subst $(t, x)=(0,2)$ into eqn containing $k \& /$ or c dep ${ }^{*}$ Subst $(t, x)=(5,1)$ into eqn containing $k \underline{\&} c$ dep* Subst $x=0.5$ into eqn with their $k \& c$ subst dep* $t=8.5$ (8.5355339)	M1 A1 M1 M1 M1 A1	Based only on above eqns or $\frac{\mathrm{d} x}{\mathrm{~d} t}=x^{\frac{1}{2}},-x^{\frac{1}{2}}$ Other than omission of ' c ' or substitute $(5,1)$ or substitute $(0,2)$ [1 d.p. requested in question]

(i) Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ or $\frac{\frac{\mathrm{d} y}{\mathrm{~d} p}}{\frac{\mathrm{~d} x}{\mathrm{~d} p}}$
$=\frac{2 t}{3 t^{2}}$ or $\frac{2 p}{3 p^{2}}$
Find eqn tgt thro $\left(p^{3}, p^{2}\right)$ or $\left(t^{3}, t^{2}\right)$,their gradient
$3 p y-2 x=p^{3} \quad$ AG
(ii) Substitute $(-10,7)$ into given equation

Satis attempt to find at least 1 root/factor
Any one root
All 3 roots
$(-1,1),(-64,16)$ and $(125,25)$

10
(i) $\left(1-x^{2}\right)^{\frac{3}{2}} \rightarrow \cos ^{3} \theta$
$\mathrm{d} x \rightarrow \cos \theta \mathrm{~d} \theta$
$\frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}} \mathrm{~d} x \rightarrow \sec ^{2} \theta(\mathrm{~d} \theta)$ or $\frac{1}{\cos ^{2} \theta}(\mathrm{~d} \theta)$
$\int \sec ^{2} \theta(\mathrm{~d} \theta)=\tan \theta$
Attempt change of limits (expect $0 \& \frac{1}{6} \pi / 30$)
$\frac{1}{\sqrt{3}} \mathrm{AEF}$
(ii) Use parts with $u=\ln x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{x^{2}}$
$-\frac{1}{x} \ln x+\int \frac{1}{x^{2}}(\mathrm{~d} x)$ AEF
$-\frac{1}{x} \ln x-\frac{1}{x}$
Limits used correctly
$\frac{2}{3}-\frac{1}{3} \ln 3$
If substitution attempted in part (ii)
$\ln x=t$
Reduces to $\int t \mathrm{e}^{-t} \mathrm{~d} t$
Parts with $u=t, \mathrm{~d} v=\mathrm{e}^{-t}$
$-\mathrm{te}^{-t}-\mathrm{e}^{-t}$
$\frac{2}{3}-\frac{1}{3} \ln 3$

4724 Core Mathematics 4

1 (a) $2 x^{2}-7 x-4=(2 x+1)(x-4)$ or

$$
3 x^{2}+x-2=(3 x-2)(x+1)
$$

B1
$\frac{2 x+1}{3 x-2}$ as final answer; this answer only
B1 Do not ISW
(b) For correct leading term x in quotient 2

For evidence of correct division process
B1 Identity method

Quotient $=x-2$
M1 M1: $x^{3}+2 x^{2}-6 x-5=Q\left(x^{2}+4 x+1\right)+R$
A1 M1: $Q=a x+b$ or $x+b, R=c x+d \& \geq 2$ ops
[N.B. If $Q=x+b$, this $\Rightarrow 1$ of the 2 ops]
Remainder $=x-3$
A1 A2: $a=1, b=-2, c=1, d=-3$ SR: B1 for two 4
2 Parts with correct split of $u=\ln x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=x^{4}$
*M1 obtaining result $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
$\frac{x^{5}}{5} \ln x-\int \frac{x^{5}}{5} \cdot \frac{1}{x}(\mathrm{~d} x)$
A1
$\frac{x^{5}}{5} \ln x-\frac{x^{5}}{25}$
Correct method with the limits
$\frac{4 \mathrm{e}^{5}}{25}+\frac{1}{25}$ ISW \quad (Not ' $+\mathrm{c}^{\prime}$)

A1

dep*M1 Decimals acceptable here
A1 Accept equiv fracts; like terms amalgamated

5

3 (i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} y\right)=x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y$ or $\frac{\mathrm{d}}{\mathrm{d} x}\left(x y^{2}\right)=2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}$
Attempt to solve their differentiated equation for $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad \operatorname{dep}^{*} \mathbf{M 1}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-2 x y}{x^{2}-2 x y}$ only

A1 WWW AG Must have intermediate line \&... ...could imply " $=0$ " on $1^{\text {st }}$ line

(ii)(a)Attempt to solve only $y^{2}-2 x y=0 \&$ derive $y=2 x$	B1	AG Any effort at solving $x^{2}-2 x y=0 \rightarrow$ B0
Clear indication why $y=0$ is not acceptable	B1	Substituting $y=2 x \rightarrow$ B0, B0
(b) Attempt to solve $y=2 x$ simult with $x^{2} y-x y^{2}=2$	M1	
Produce $-2 x^{3}=2$ or $y^{3}=-8$	A1	AEF
$(-1,-2)$ or $x=-1, y=-2$ only	A1	
		3

7 (i) Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$
Obtain $-\frac{\cos x}{\sin ^{2} x}$ or $-(\sin x)^{-2} \cos x$
Show manipulation to $-\operatorname{cosec} x$ cot $x \quad$ (or vice-versa)

9 (i) $\quad A: \theta=\frac{1}{2} \pi \quad$ (accept $\left.90^{\circ}\right)$
B1
$B: \theta=2 \pi \quad$ (accept 360°)
B2 SR If B0 awarded for point B, allow B1 SR for any angle s.t. $\sin \theta=0$

3
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\frac{\mathrm{~d} x}{\mathrm{~d} \theta}}$

M1 or $\frac{\mathrm{d} y}{\mathrm{~d} \theta} \cdot \frac{\mathrm{~d} \theta}{\mathrm{~d} x}$ Must be used, not just quoted

$$
\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2+2 \cos 2 \theta
$$

B1
$2+2 \cos 2 \theta=4 \cos ^{2} \theta$ with ≥ 1 line intermed work
*B1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \cos \theta}{2+2 \cos 2 \theta} \quad$ s.o.i.
$=\sec \theta$
A1 This \& previous line are interchangeable
dep*A1 WWW AG
(iii) Equating $\sec \theta$ to 2 and producing at least one value of θ M1 degrees or radians

$$
\begin{aligned}
& (x=)-\frac{2}{3} \pi-\frac{\sqrt{3}}{2} \\
& (y=)-2 \sqrt{3}
\end{aligned}
$$

A1 'Exact' form required
A1 'Exact' form required

4724 Core Mathematics 4

1 Attempt to factorise numerator and denominator

Any (part) factorisation of both num and denom
Final answer $=-\frac{5}{6 x}, \frac{-5}{6 x}, \frac{5}{-6 x},-\frac{5}{6} x^{-1}$ Not $-\frac{\frac{5}{6}}{x}$
M1 $\frac{A}{\mathrm{f}(x)}+\frac{B}{\mathrm{~g}(x)} ; \mathrm{fg}=6 x^{2}-24 x$
A1 Corres identity/cover-up

A1

3

2 Use parts with $u=x, \mathrm{~d} v=\sec ^{2} x$
M1 result $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
Obtain correct result $x \tan x-\int \tan x \mathrm{~d} x$
$\int \tan x \mathrm{~d} x=k \ln \sec x$ or $k \ln \cos x$, where $k=1$ or -1
B1 or $k \ln |\sec x|$ or $k \ln |\cos x|$

Final answer $=x \tan x-\ln |\sec x|+c$ or $x \tan x+\ln |\cos x|+c$ A1

3 (i) $1+\frac{1}{2} \cdot 2 x+\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2}\left(4 x^{2}\right.$ or $\left.2 x^{2}\right)+\frac{\frac{1}{2} \cdot-\frac{1}{2} \cdot-\frac{3}{2}}{6}\left(8 x^{3}\right.$ or $\left.2 x^{3}\right) \quad$ M1
$=1+x$
B1
$\ldots-\frac{1}{2} x^{2}+\frac{1}{2} x^{3} \quad$ (AE fract coeffs)
A1 (3) For both terms
(ii) $(1+x)^{-3}=1-3 x+6 x^{2}-10 x^{3}$

Either attempt at their (i) multiplied by $(1+x)^{-3}$
$1-2 x \ldots . \quad \sqrt{ } 1+(a-3) x$
$\ldots+\frac{5}{2} x^{2} \ldots$
$\sqrt{ }(-3 a+b+6) x^{2}$
... $-2 x^{3}$
$\sqrt{ }(6 a-3 b+c-10) x^{3}$
A1 (5) (AE fract.coeffs)
(iii) $-\frac{1}{2}<x<\frac{1}{2}, \quad$ or $|x|<\frac{1}{2}$

B1 (1)
$4 \quad$ Attempt to expand $(1+\sin x)^{2}$ and integrate it
Attempt to change $\sin ^{2} x$ into $\mathrm{f}(\cos 2 x)$
Use $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
Use $\quad \int \cos 2 x \mathrm{~d} x=\frac{1}{2} \sin 2 x$
Use limits correctly on an attempt at integration
$\frac{3}{8} \pi-\sqrt{2}+\frac{7}{4} \quad \mathrm{AE}(3-$ term $) \mathrm{F}$
*M1 Minimum of $1+\sin ^{2} x$
M1

A1 dep M1 + M1

A1 dep M1 + M1
dep* M1 Tolerate g $\left(\frac{1}{4} \pi\right)-0$

A1 WW $1.51 \ldots \rightarrow$ M1 A0
\square

5 (i) Attempt to connect $\mathrm{d} u$ and $\mathrm{d} x$, find $\frac{\mathrm{d} u}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}$
M1 But not e.g. $\mathrm{d} u=\mathrm{d} x$

Any correct relationship, however used, such as $\mathrm{d} x=2 u \mathrm{~d} u$ A1 \quad or $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-1 / 2}$
Subst with clear reduction (≥ 1 inter step) to AG A1 (3) WWW
(ii) Attempt partial fractions

M1
$\frac{2}{u}-\frac{2}{1+u}$
A1
$\sqrt{ } A \ln u+B \ln (1+u)$
Attempt integ, change limits \& use on $\mathrm{f}(u)$
$\sqrt{ }$ A1 Based on $\frac{A}{u}+\frac{B}{1+u}$
$\ln \frac{9}{4} \quad$ AEexactF $\quad($ e.g. $2 \ln 3-2 \ln 4+2 \ln 2)$
M1 or re-subst \& use $1 \& 9$
A1 (5) Not involving $\ln 1$

6 (i) Solve $0=t-3 \&$ subst into $x=t^{2}-6 t+4$
Obtain $x=-5$
N.B. If (ii) completed first, subst $y=0$ into their cartesian eqn (M1) \& find x (no f.t.) (A1)
(ii) Attempt to eliminate t

Simplify to $x=y^{2}-5 \quad$ ISW
M1
A1 (2)
(iii) Attempt to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} y}$ from cartes or para form

M1 Award anywhere in Que

Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 t-6}$ or $\frac{1}{2 y}$ or $(-) \frac{1}{2}(x+5)^{-\frac{1}{2}}$
A1

If $t=2, x=-4$ and $y=-1$
B1 Awarded anywhere in (iii)
Using their num $(x, y) \&$ their num $\frac{\mathrm{d} y}{\mathrm{~d} x}$, find tgt eqn
$x+2 y+6=0 \quad$ AEF (without fractions) \quad ISW
A1 (5)

7 (i) Attempt direction vector between the 2 given points
M1
State eqn of line using format $(\mathbf{r})=($ either end $)+s($ dir vec) M1 ' s ' can be ' t '
Produce 2/3 eqns containing t and s
M1 2 different parameters
Solve giving $t=3, s=-2$ or 2 or -1 or 1
A1
Show consistency
Point of intersection $=(5,9,-1)$
B1
A1 (6)
(ii) Correct method for scalar product of 'any' 2 vectors

Correct method for magnitude of 'any' vector
Use $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \mathbf{b} \mid}$ for the correct 2 vectors $\left(\begin{array}{l}1 \\ 4 \\ -2\end{array}\right) \&\left(\begin{array}{l}2 \\ -1 \\ 3\end{array}\right)$
62.2 (62.188157...) 1.09 (1.0853881)

A1 (4)

8 (i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{3}\right)=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B1

Consider $\frac{\mathrm{d}}{\mathrm{d} x}(x y)$ as a product M1
$=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$
A1 Tolerate omission of '6'
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x} \quad$ ISW AEF
(ii) $x^{3}=2^{4}$ or 16 and $y^{3}=2^{5}$ or 32

Satisfactory conclusion
dep* B1

AG

M1 or the numerator of $\frac{\mathrm{d} y}{\mathrm{~d} x}$

Show or use calc to demo that num $=0$, ignore denom AG A1 (4)
(iii) Substitute (a, a) into eqn of curve
$a=3$ only with clear ref to $a \neq 0$
Substitute $(3,3)$ or (their a, their a) into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
-1 only WWW

M1 \& attempt to state ' $a=\ldots$ '
A1
M1
A1 (4) from (their a,their a)
12

9 (i) $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\ldots$
$k(160-\theta)$
B1 (2) The 2 @ 'B1’ are indep
(ii) Separate variables with $(160-\theta)$ in denom; or invert

Indication that LHS $=\ln f(\theta)$
${ }^{*} \mathrm{M} 1 \quad \int \frac{1}{160-\theta} \mathrm{d} \theta=\int k, \frac{1}{k}, 1 \mathrm{~d} t$

RHS $=k t$ or $\frac{1}{k} t$ or $t \quad(+c)$
A1 If wrong ln, final 3@A=0

Subst. $t=0, \theta=20$ into equation containing ' c ' dep* M1
Subst $t=5, \theta=65$ into equation containing ' c ' \& ' k ' dep* M1
$c=-\ln 140 \quad(-4.94) \quad$ ISW \quad A1
$k=\frac{1}{5} \ln \frac{140}{95} \quad(\approx 0.077$ or 0.078$) \quad$ ISW
A1
Using their 'c' \& ' k ', subst $t=10 \&$ evaluate $\theta \quad$ dep*M1
$\theta=96(95.535714) \quad\left(95 \frac{15}{28}\right)$
A1 (9)

4724 Core Mathematics 4

1

> Long Division For leading term $3 x^{2}$ in quotient B1
> Suff evid of div process ($a x^{2}$, mult back, attempt sub) M1
> (Quotient) $=3 x^{2}-4 x-5 \quad$ A1
> $($ Remainder $)=-x+2 \quad$ A1
> Identity $\quad 3 x^{4}-x^{3}-3 x^{2}-14 x-8=Q\left(x^{2}+x+2\right)+R \quad * \mathrm{M} 1$
> $Q=a x^{2}+b x+c, R=d x+e \&$ attempt ≥ 3 ops. dep*M1
> $a=3, b=-4, c=-5$
> A1
> If $a=3$,this $\Rightarrow 1$ operation
> $d=-1, e=2$
> A1

Inspection Use 'Identity' method; if $R=e$, $\operatorname{check} \operatorname{cf}(x)$ correct before awarding $2^{\text {nd }}$ M1
4

2

Reduce to $\int 1-\tan ^{2} \theta(\mathrm{~d} \theta)$ A1

A0 if $\frac{\mathrm{d} \theta}{\mathrm{d} x}=\sec ^{2} \theta$; but allow all following A marks
Use $\tan ^{2} \theta=(1,-1)+\left(\sec ^{2} \theta,-\sec ^{2} \theta\right) \quad \operatorname{dep} *$ M1
Produce $\int 2-\sec ^{2} \theta(\mathrm{~d} \theta)$ A1

Correct $\sqrt{ }$ integration of function of type $d+e \sec ^{2} \theta$
$\sqrt{ }$ A1 \quad including $d=0$
EITHER Attempt limits change (allow degrees here)
OR Attempt integ, re-subst \& use original ($\sqrt{3}, 1$)
(This is 'limits' aspect; the integ need not be accurate)
$\frac{1}{6} \pi-\sqrt{3}+1 \quad$ isw \quad Exact answer required

3
3 (i) $\left(1+\frac{x}{a}\right)^{-2}=1+(-2) \frac{x}{a}+\frac{-2 .-3}{2}\left(\frac{x}{a}\right)^{2}+\ldots$
M1 Check $3^{\text {rd }}$ term; accept $\frac{x^{2}}{a}$
$=1-\frac{2 x}{a}+\ldots$ or $1+\left(-\frac{2 x}{a}\right)$
B1 or $1-2 x a^{-1}$ (Ind of M1)
$\ldots+\frac{3 x^{2}}{a^{2}}+\ldots \quad$ (or $3\left(\frac{x}{a}\right)^{2}$ or $3 x^{2} a^{-2}$)
$(a+x)^{-2}=\frac{1}{a^{2}}$ their expansion of $\left.\left(1+\frac{x}{a}\right)^{-2}\right\}$ mult out
A1 Accept $\frac{6}{2}$ for 3
VA1 $4 \frac{1}{a^{2}}-\frac{2 x}{a^{3}}+\frac{3 x^{2}}{a^{4}}$; accept eg a^{-2}
(ii) Mult out $(1-x)$ (their exp) to produce all terms/cfs $\left(x^{2}\right) \quad$ M1 Ignore other terms

Produce $\frac{3}{a^{2}}+\frac{2}{a}(=0)$ or $\frac{3}{a^{4}}+\frac{2}{a^{3}}(=0)$ or AEF
$a=-\frac{3}{2} \quad$ Www seen anywhere in (i) or (ii)

A1 Accept x^{2} if in both terms
A1 3 Disregard any ref to $a=0$

4 (i) Differentiate as a product, $u \mathrm{~d} v+v \mathrm{~d} u$
M1 or as 2 separate products
$\frac{\mathrm{d}}{\mathrm{d} x}(\sin 2 x)=2 \cos 2 x$ or $\frac{\mathrm{d}}{\mathrm{d} x}(\cos 2 x)=-2 \sin 2 x$
B1
$\mathrm{e}^{x}(2 \cos 2 x+4 \sin 2 x)+\mathrm{e}^{x}(\sin 2 x-2 \cos 2 x)$
A1 terms may be in diff order
Simplify to $5 \mathrm{e}^{x} \sin 2 x \quad$ www
A1 4 Accept $10 \mathrm{e}^{x} \sin x \cos x$
(ii) Provided result (i) is of form $k \mathrm{e}^{x} \sin 2 x, k$ const
$\int \mathrm{e}^{x} \sin 2 x \mathrm{~d} x=\frac{1}{k} \mathrm{e}^{x}(\sin 2 x-2 \cos 2 x)$
B1
$\left[\mathrm{e}^{x}(\sin 2 x-2 \cos 2 x)\right]_{0}^{\frac{1}{4} \pi}=\mathrm{e}^{\frac{1}{4} \pi}+2$
B1
$\frac{1}{5}\left(\mathrm{e}^{\frac{1}{4} \pi}+2\right)$
B1 3 Exact form to be seen
SR Although 'Hence', award M2 for double integration by parts and solving + A1 for correct answer.

5 (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ aef used
$=\frac{4 t+3 t^{2}}{2+2 t}$
Attempt to find t from one/both equations
State/imply $t=-3$ is only solution of both equations
Gradient of curve $=-\frac{15}{4}$ or $\frac{-15}{4}$ or $\frac{15}{-4}$

A1

M1 or diff (ii) cartesian eqn \rightarrow M1
A1 subst $(3,-9)$, solve for $\frac{d y}{d x} \rightarrow$ M1
A1 5 grad of curve $=-\frac{15}{4} \rightarrow \mathrm{~A} 1$
[SR If $t=1$ is given as solution $\&$ not disqualified, award A0 $+\sqrt{ }$ A1 for grad $=-\frac{15}{4} \& \frac{7}{4}$;
If $t=1$ is given/used as only solution, award $\mathrm{A} 0+\sqrt{ } \mathrm{A} 1$ for grad $\left.=\frac{7}{4}\right]$
(ii) $\frac{y}{x}=t$

Substitute into either parametric eqn
Final answer $\quad x^{3}=2 x y+y^{2}$

B1
M1
A2 4
[SR Any correct unsimplified form (involving fractions or common factors) \rightarrow A1]

9

6 (i) $4 x \equiv A(x-3)^{2}+B(x-3)(x-5)+C(x-5)$
$A=5$
$B=-5$
$C=-6$

M1
A1 'cover-up’ rule, award B1
A1

Cands adopting other alg. manip. may be awarded M1 for a full satis method + 3 @ A1
(ii) $\int \frac{A}{x-5} \mathrm{~d} x=A \ln (5-x)$ or $A \ln |5-x|$ or $A \ln |x-5| \quad \sqrt{ } 1 \quad$ but not $A \ln (x-5)$
$\int \frac{B}{x-3} \mathrm{~d} x=B \ln (3-x)$ or $B \ln |3-x|$ or $B \ln |x-3| \quad \sqrt{ } 1 \quad$ but not $B \ln (x-3)$
If candidate is awarded $\mathrm{B} 0, \mathrm{~B} 0$, then award $\mathbf{S R} \sqrt{ } \mathrm{B} 1$ for $A \ln (x-5)$ and $B \ln (x-3)$
$\int \frac{C}{(x-3)^{2}} \mathrm{~d} x=-\frac{C}{x-3}$
, B1
$5 \ln \frac{3}{4}+5 \ln 2 \quad$ aef, isw $\quad \sqrt{ } \ln \frac{3}{4}-B \ln 2 \quad \sqrt{ } \quad$ B1 \quad Allow if $\mathbf{S R}$ B1 awarded
$-3 \quad \sqrt{ } \frac{1}{2} C$
, B1 5
[Mark at earliest correct stage \& isw; no ln 1]

7 (i) Attempt scalar prod $\{\mathbf{u} .(4 \mathbf{i}+\mathbf{k})$ or $\mathbf{u} .(4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})\}=0 \quad$ M1 \quad where \mathbf{u} is the given vector
Obtain $\frac{12}{13}+c=0$ or $\frac{12}{13}+3 b+2 c=0$
$c=-\frac{12}{13}$
A1
$b=\frac{4}{13}$
Evaluate $\left(\frac{3}{13}\right)^{2}+(\text { their } b)^{2}+(\text { their } c)^{2}$
Obtain $\frac{9}{169}+\frac{144}{169}+\frac{16}{169}=1 \quad$ AG
(ii) Use $\cos \theta=\frac{\boldsymbol{x} \cdot \boldsymbol{y}}{|\boldsymbol{x} \| \boldsymbol{y}|}$

Correct method for finding scalar product
M1
36° (35.837653...) Accept 0.625 (rad)
SR If $4 \mathbf{i}+\mathbf{k}=(4,1,0)$ in (i) \& (ii), mark as scheme but allow final A 1 for $31^{\circ}(31.160968)$ or 0.544
9

8 (i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad$ B1
$\frac{\mathrm{d}}{\mathrm{d} x}(u v)=u \mathrm{~d} v+v \mathrm{~d} u$ used on $(-7) x y \quad$ M1
$\frac{\mathrm{d}}{\mathrm{d} x}\left(14 x^{2}-7 x y+y^{2}\right)=28 x-7 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-7 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad$ A1 $\quad(=0)$
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-7 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=7 y-28 x \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{28 x-7 y}{7 x-2 y}$ www AG A1 4 As AG, intermed step nec
(ii) Subst $x=1$ into eqn curve $\&$ solve quadratic eqn in $y \quad$ M1 $\quad(y=3$ or 4$)$

Subst $x=1$ and (one of) their y-value(s) into given $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad$ M1 $\quad\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=7\right.$ or 0$)$
Find eqn of tgt, with their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, going through (1, their y) ${ }^{*} \mathrm{M} 1 \quad$ using (one of) y value(s)
Produce either $y=7 x-4$ or $y=4$
A1
Solve simultaneously their two equations
Produce $x=\frac{8}{7}$

A1 6

9 (i) $\frac{20}{k_{1}}$ (seconds)
B1 1
(ii) $\frac{\mathrm{d} \theta}{\mathrm{d} t}=-k_{2}(\theta-20)$

B1 1
(iii) Separate variables or invert each side

Correct int of each side $(+c)$
Subst $\theta=60$ when $t=0$ into eqn containing ' c '
M1 Correct eqn or very similar
A1,A1 for each integration
M1 or $\theta=60$ when $t=$ their (i)
$c($ or $-c)=\ln 40$ or $\frac{1}{k_{2}} \ln 40$ or $\frac{1}{k_{2}} \ln 40 k_{2}$
A1 Check carefully their ' c '

Subst their value of c and $\theta=40$ back into equation
$t=\frac{1}{k_{2}} \ln 2$
M1 Use scheme on LHS

A1 Ignore scheme on LHS

Total time $=\frac{1}{k_{2}} \ln 2+$ their $(\mathrm{i}) \quad$ (seconds)
$\sqrt{ }$ A1 8

SR If the negative sign is omitted in part (ii), allow all marks in (iii) with $\ln 2$ replaced by $\ln \frac{1}{2}$.
SR If definite integrals used, allow M1 for eqn where $t=0$ and $\theta=60$ correspond; a second M1 for eqn where $t=t$ and $\theta=40$ correspond $\&$ M1 for correct use of limits. Final answer scores 2.

4724 Core Mathematics 4

1 Long division method

Correct leading term x^{2} in quotient
B1
Evidence of correct div process
(Quotient $=$) $x^{2}+6 x-4$ A1
(Remainder $=$) $11 x+9$ A1
Identity method
$x^{4}+11 x^{3}+28 x^{2}+3 x+1=Q\left(x^{2}+5 x+2\right)+R$ M1
$Q=a x^{2}+b x+c$ or $x^{2}+b x+c ; R=d x+e \& \geq 3$ ops
$a=1, b=6, c=-4, d=11, e=9 \quad$ (for all 5)

Sufficient to convince
N.B. $a=1 \Rightarrow 1$ of the 3 ops
S.R. $\underline{B} 1$ for 3 of these
S.R. B1 3 these

2 (i) Find at least 2 of $(\overrightarrow{A B}$ or $\overrightarrow{B A}),(\overrightarrow{B C}$ or $\overrightarrow{C B}),(\overrightarrow{A C}$ or $\overrightarrow{C A})$ M1
Use correct method to find scal prod of any 2 vectors M1
Use $\overrightarrow{A B} \cdot \overrightarrow{B C}=0$ or $\frac{\overrightarrow{A B} \cdot \overrightarrow{B C}}{|A B||B C|}=0$
Obtain $p=1$ (dep 3 @ M1)
(ii) Use equal ratios of appropriate vectors

Obtain $p=-8$
or scalar product method
A1 2
6
irrespect of label; any notation or use corr meth for modulus or use $|\overrightarrow{A B}|^{2}+|\overrightarrow{B C}|^{2}=|\overrightarrow{A C}|^{2}$

5 (i) $(1+x)^{\frac{1}{3}}=1+\frac{1}{3} x+\ldots$
... $-\frac{1}{9} x^{2}$

B1
B1 $2-\frac{2}{18} x^{2}$ acceptable
(ii) (a) $(8+16 x)^{\frac{1}{3}}=8^{\frac{1}{3}}(1+2 x)^{\frac{1}{3}}$
$(1+2 x)^{\frac{1}{3}}=$ their (i) expansion with $2 x$ replacing $x \quad$ M1 not dep on prev B1
$=1+\frac{2}{3} x-\frac{4}{9} x^{2}+\ldots$
Required expansion $=2$ (expansion just found)
B1 not $16^{\frac{1}{3}}\left(\frac{1}{2}+x\right)^{\frac{1}{3}}$

VA1 $\quad-\frac{8}{18} x^{2}$ acceptable
$\sqrt{ }$ B1 4 accept equiv fractions
N.B. If not based on part (i), award M1 for $8^{1 / 3}+\frac{1}{3} \cdot 8^{-2 / 3}(16 x)+\frac{\frac{1}{3} \cdot-\frac{2}{3}}{1.2} 8^{-5 / 3}(16 x)^{2}$, allowing $16 x^{2}$ for $(16 x)^{2}$, with $3 @$ A1 for $2 \ldots+\frac{4}{3} x \ldots-\frac{8}{9} x^{2}$, accepting equivalent fractions \& ISW
(ii) (b) $-\frac{1}{2}<x<\frac{1}{2}$ or $|x|<\frac{1}{2}$

B1 $\mathbf{1}$ no equality
7
$6 \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}} & \text { M1 } & \text { quoted/implied } \\ \frac{\mathrm{d} x}{\mathrm{~d} t} & =9-\frac{9}{9 t} & \text { ISW } & \text { B1 } \\ \frac{\mathrm{d} y}{\mathrm{~d} t} & =3 t^{2}-\frac{3 t^{2}}{t^{3}} & \text { ISW } & \text { B1 }\end{aligned}$
Stating/implying $\frac{3 t^{2}-\frac{3}{t}}{9-\frac{1}{t}}=3 \Rightarrow t^{2}=9$ or $t^{3}-9 t=0$
$t=3$ as final ans with clear log indication of
A1 WWW, totally correct at this stage
invalidity of -3 ; ignore (non) mention of $t=0$
S.R. A1 if $t= \pm 3$ or $t=-3$ or $(t=3 \underline{\&}$ wrong/no indication)
$7 \quad$ Treat $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} y\right)$ as a product
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{3}\right)=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B1
$3 x^{2}+2 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 x y=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
A1 Ignore $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ if not used
Subst $(2,1)$ and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or vice-versa
M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 \quad \mathrm{WWW}$
grad normal $=-\frac{1}{\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}}$
A1

Find eqn of line, through $(2,1)$, with either gradient
8 (i) $-\sin x e^{\cos x}$
B1 $\quad \mathbf{1}$
(ii) $\int \sin x \mathrm{e}^{\cos x} \mathrm{~d} x=-\mathrm{e}^{\cos x}$

B1 anywhere in part (ii)
Parts with split $u=\cos x, d v=\sin x e^{\cos x}$
M1 result $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
Indef Integ, 1st stage $-\cos x \mathrm{e}^{\cos x}-\int \sin x \mathrm{e}^{\cos x} \mathrm{~d} x \quad$ A1 accept $\ldots-\int-\mathrm{e}^{\cos x} .-\sin x \mathrm{~d} x$
Second stage $=-\cos x \mathrm{e}^{\cos x}+\mathrm{e}^{\cos x}$
Final answer $=1 \quad$ dep*A2 6
7
9 (i) P is $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)+\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)$
B1
direction vector of ℓ is $\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right)$ and of $\overrightarrow{O P}$ is their $P \quad \sqrt{ } 1$
Use $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \mathbf{b} \mid}$ for $\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right)$ and their OP M1
$\theta=35.3$ or better ($0.615 \ldots$ rad) A1 4
(ii) Use $\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}3+t \\ 1-t \\ 1+2 t\end{array}\right)=0$

M1
$1(3+t)-1(1-t)+2(1+2 t)=0$
A1
$\mathrm{t}=-\frac{2}{3}$
A1
Subst. into $\left(\begin{array}{l}3+t \\ 1-t \\ 1+2 t\end{array}\right)$ to produce $\left(\begin{array}{l}7 / 3 \\ 5 / 3 \\ -1 / 3\end{array}\right)$ ISW \quad A1 4
(iii) Use $\sqrt{x^{2}+y^{2}+z^{2}}$ where $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)^{-\cdots-\cdots}$ is part (ii) answer M1

Obtain $\sqrt{\frac{75}{9}}$ AEF, 2.89 or better (2.8867513....) A1 $\quad 2$
10 (i) $\frac{\frac{1}{3}}{3-x} \cdots \cdots-\frac{\frac{1}{3}}{6-x}$
B1+1 2
(ii) (a) Separate variables $\int \frac{1}{(3-x)(6-x)} \mathrm{d} x=\int k \mathrm{~d} t \quad$ M1 \quad or invert both sides

Style: For the M1, $\mathrm{d} x \& \mathrm{~d} t$ must appear on correct sides or there must be \int sign on both sides
Change $\frac{1}{(3-x)(6-x)}$ into partial fractions from (i) $\sqrt{ } \mathrm{B} 1$
$\int \frac{A}{3-x} \mathrm{~d} x=\left(-\right.$ A or $\left.-\frac{1}{\mathrm{~A}}\right) \ln (3-x) \quad$ B1 \quad or $\int \frac{B}{6-x} \mathrm{~d} x=\left(-B\right.$ or $\left.-\frac{1}{B}\right) \ln (6-x)$
$-\frac{1}{3} \ln (3-x)+\frac{1}{3} \ln (6-x)=k t(+c) \quad$ لA1 f.t. from wrong multiples in (i)
Subst $(x=0, t=0) \&(x=1, t=1)$ into eqn with ' c ' M1 and solve for ' k '
Use $\ln a+\ln b=\ln a b$ or $\ln a-\ln b=\ln \frac{a}{b} \quad$ M1
Obtain $k=\frac{1}{3} \ln \frac{5}{4}$ with sufficient working \& WWW A1 $7 \quad$ AG
(b) Substitute $k=\frac{1}{3} \ln \frac{5}{4}, t=2$ \& their value of ' c ' $\quad{ }^{*} \mathrm{M} 1$

Reduce to an eqn of form $\frac{6-x}{3-x}=\lambda \quad$ dep*M1 where λ is a const
Obtain $x=\frac{27}{17}$ or 1.6 or better (1.5882353...) A2 $\quad 4 \quad$ S.R. A1 $\sqrt{ }$ for $x=\frac{3 \lambda-6}{\lambda-1}$
$=+20 x^{2}$
$4^{\text {th }}$ term shown as $\frac{-\frac{5}{3} \cdot-\frac{8}{3} \cdot-\frac{11}{3}}{2.3}(3 x)^{3}$
$=-\frac{220}{3} x^{3}$ ISW
N.B. If 0 , SR B2 to be awarded for $1-\frac{5}{3} x+\frac{20}{9} x^{2}-\frac{220}{81} x^{3}$. Do not mark $(1+x)^{-5 / 3}$ as a MR.

Attempt quotient rule
M1
[Show fraction with denom $(1-\sin x)^{2} \&$ num $+/-(1-\sin x)+/-\sin x+/-\cos x+/-\cos x$]
Numerator $=(1-\sin x) .-\sin x-\cos x .-\cos x$
A1 terms in any order
\{ Product symbols must be clear or implied by further work \}

Reduce correct numerator to $1-\sin x$
Simplify to $\frac{1}{1-\sin x}$ ISW
$\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}$
$A(x-1)(x-2)+B(x-2)+C(x-1)^{2} \equiv x^{2}$
$A=-3$
$B=-1$
$C=4$

B1 or $-\sin x+\sin ^{2} x+\cos ^{2} x$

A1 Accept $-\frac{1}{\sin x-1}$
\square

M1 For correct format

M1
A1
A1 (B1 if cover-up rule used)
A1 (B1 if cover-up rule used)
[NB1: Partial fractions need not be written out; correct format + correct values sufficient.
NB2: Having obtained B \& C by cover-up rule, candidates may substitute into general expression \& algebraically manipulate; the M1 \& A1 are then available if deserved.]

These special cases using different formats are the only other ones to be considered Max $\frac{A}{x-1}+\frac{B x+C}{(x-1)^{2}}+\frac{D}{x-2} ;$ M1 M1; A0 for any values of $A, B \& C$, A1 or B1 for $D=4$ $\frac{A x+B}{(x-1)^{2}}+\frac{C}{x-2} ; \quad$ M0 M1; A1 for $A=-3$ and $B=2, \quad$ A1 or B1 for $C=4 \quad 3$
$\frac{\mathrm{d}}{\mathrm{d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \quad$ s.o.i.
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Diff eqn(=0 can be implied)(solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and) put $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \mathrm{M} 1$
Produce only $2 x+4 y=0$ (though AEF acceptable) *A1
Eliminate x or y from curve eqn \& eqn(s) just produced M1
Produce either $x^{2}=36$ or $y^{2}=9$
$(\pm 6, \mp 3)$ AEF, as the only answer ISW
dep* A1

6 (i) State/imply scalar product of any two vectors $=0$
Scalar product of correct two vectors $=4+2 a-6$
$a=1$
(ii) (a) Attempt to produce at least two relevant equations

Solve two not containing ' a ' for s and t
Obtain at least one of $s=-\frac{1}{2}, t=1$
Substitute in third equation \& produce $a=-2$
(b) Method for finding magnitude of any vector

Using $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \boldsymbol{b} \mid}$ for the pair of direction vectors
107, $108(107.548)$ or $72,73,72.4,72.5(72.4516)$ c.a.o. A1 $3 \underline{1.87,1.88(1.87707) \text { or } 1.26}$

7 (i) Differentiate x as a quotient, $\frac{v \mathrm{~d} u-u \mathrm{~d} v}{v^{2}}$ or $\frac{u \mathrm{~d} v-v \mathrm{~d} u}{v^{2}}$ M1 or product clearly defined $\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{(t+1)^{2}} \quad$ or $\frac{-1}{(t+1)^{2}} \quad$ or $-(t+1)^{-2} \quad$ A1 $\quad W W W \rightarrow 2$
$\frac{\mathrm{d} y}{\mathrm{~d} t}=-\frac{2}{(t+3)^{2}}$ or $\frac{-2}{(t+3)^{2}}$ or $-2(t+3)^{-2}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
M1 quoted/implied and used
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2(t+1)^{2}}{(t+3)^{2}} \quad$ or $\quad \frac{2(t+3)^{-2}}{(t+1)^{-2}} \quad$ (dep $1^{\text {st }} 4$ marks) $*$ A1 \quad ignore ref $t=-1, t=-3$
State squares + ve or $(t+1)^{2} \&(\mathrm{t}+3)^{2}+\mathrm{ve} \therefore \frac{\mathrm{d} y}{\mathrm{~d} x}+\mathrm{ve} \quad$ dep*A1 6 or $\left(\frac{t+1}{t+3}\right)^{2}+\mathrm{ve}$. Ignore ≥ 0
(ii) Attempt to obtain t from either the x or y equation

M1 No accuracy required
$t=\frac{2-x}{x-1} \quad$ AEF \quad or $\quad t=\frac{2}{y}-3 \quad$ AEF
A1

Substitute in the equation not yet used in this part
M1 or equate the 2 values of t
Use correct meth to eliminate ('double-decker') fractions M1
Obtain $2 x+y=2 x y+2$ ISW AEF A15 but not involving fractions

8 (i) Long division method
Identity method
Evidence of division process as far as $1^{\text {st }}$ stage incl sub
M1 $\equiv Q(x-1)+R$
(Quotient $=) x-4$
A1 $Q=x-4$
(Remainder $=$) 2 ISW
(ii) (a) Separate variables; $\int \frac{1}{y-5} \mathrm{~d} y=\int \frac{x^{2}-5 x+6}{x-1} \mathrm{~d} x$ A1 $3 R=2$; N.B. might be B1 Change $\frac{x^{2}-5 x+6}{x-1}$ into their (Quotient $+\frac{\text { Rem }}{x-1}$) M1
$\ln (y-5)=\sqrt{ }$ (integration of their previous result) $(+c)$ ISW $\sqrt{ }$ A1 3 f.t. if using Quot $+\frac{\text { Rem }}{x-1}$
(ii) (b) Substitute $y=7, x=8$ into their eqn containing ' c ' M1 $\&$ attempt ' c ' $\left(-3.2, \ln \frac{2}{49}\right)$

Substitute $x=6$ and their value of ' c ' M1 \& attempt to find y
$y=5.00 \quad(5.002529) \quad$ Also $5+\frac{50}{49} \mathrm{e}^{-6}$
A2 4 Accept 5, 5.0,
Beware: any wrong working anywhere \rightarrow A0 even if answer is one of the acceptable ones.

9 (i) Attempt to multiply out $(x+\cos 2 x)^{2}$
Finding $\int 2 x \cos 2 x \mathrm{~d} x$
Use $u=2 x, \mathrm{~d} v=\cos 2 x$
$1^{\text {st }}$ stage $x \sin 2 x-\int \sin 2 x \mathrm{~d} x$
$\therefore \int 2 x \cos 2 x \mathrm{~d} x=x \sin 2 x+\frac{1}{2} \cos 2 x$
Finding $\int \cos ^{2} 2 x \mathrm{~d} x$
Change to $k \int+/-1+/-\cos 4 x \mathrm{~d} x$
Correct version $\frac{1}{2} \int 1+\cos 4 x \mathrm{~d} x$
$\int \cos 4 x \mathrm{~d} x=\frac{1}{4} \sin 4 x$
Result $=\frac{1}{2} x+\frac{1}{8} \sin 4 x$
(i) ans $=\frac{1}{3} x^{3}+x \sin 2 x+\frac{1}{2} \cos 2 x+\frac{1}{2} x+\frac{1}{8} \sin 4 x(+\mathrm{c})$
(ii) $\mathrm{V}=\pi \int_{0}^{\frac{1}{2} \pi}(x+\cos 2 x)^{2}(\mathrm{~d} x)$

Use limits $0 \& \frac{1}{2} \pi$ correctly on their (i) answer
(i) correct value $=\frac{1}{24} \pi^{3}-\frac{1}{2}+\frac{1}{4} \pi-\frac{1}{2}$

Final answer $=\pi\left(\frac{1}{24} \pi^{3}+\frac{1}{4} \pi-1\right)$

M1 $1^{\text {st }}$ stage $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$

A1

M1 where $k=\frac{1}{2}, 2$ or 1

B1 seen anywhere in this part

A1

A19 Fully correct

M1

M1

A1
M1 Min of 2 correct terms

A1

A1

A14 c.a.o. No follow-through

Alternative methods
2 If $y=\frac{\cos x}{1-\sin x}$ is changed into $y(1-\sin x)=\cos x$, award
M1 for clear use of the product rule (though possibly trig differentiation inaccurate)
A1 for $-y \cos x+(1-\sin x) \frac{d y}{d x}=-\sin x$
AEF
B1 for reducing to a fraction with $1-\sin x$ or $-\sin x+\sin ^{2} x+\cos ^{2} x$ in the numerator
A1 for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$

If $y=\frac{\cos x}{1-\sin x}$ is changed into $y=\cos x(1-\sin x)^{-1}$, award
M1 for clear use of the product rule (though possibly trig differentiation inaccurate)
A1 for $\left(\frac{d y}{d x}\right)=\cos ^{2} x(1-\sin x)^{-2}+(1-\sin x)^{-1} .-\sin x$

B1 for reducing to a fraction with $1-\sin x$ or $-\sin x+\sin ^{2} x+\cos ^{2} x$ in the numerator
A1 for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$
6(ii)(a) If candidates use some long drawn-out method to find ' a ' instead of the direct route, allow
M1 as before, for producing the 3 equations
M1 for any satisfactory method which will/does produce ' a ', however involved
A2 for $a=-2$
7(ii) Marks for obtaining this Cartesian equation are not available in part (i).
If part (ii) is done first and then part (i) is attempted using the Cartesian equation, award marks as follow:
Method 1 where candidates differentiate implicitly
M1 for attempt at implicit differentiation
A1 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-2}{1-2 x}$ AEF
M1 for substituting parametric values of x and y
A2 for simplifying to $\frac{2(t+1)^{2}}{(t+3)^{2}}$
A1 for finish as in original method
Method 2 where candidates manipulate the Cartesian equation to find $x=$ or $y=$
M1 for attempt to re-arrange so that either $y=\mathrm{f}(x)$ or $x=\mathrm{g}(y)$
A1 for correct $y=\frac{2-2 x}{1-2 x}$ AEF or $x=\frac{2-y}{2-2 y} \quad$ AEF
M1 for differentiating as a quotient
A2 for obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{(1-2 x)^{2}}$ or $\frac{(2-2 y)^{2}}{2}$
A1 for finish as in original method
8(ii)(b) If definite integrals are used, then
M2 for []$_{y}^{7}=[]_{6}^{8}$ or equivalent or M1 for []$_{7}^{y}=[]_{6}^{8}$ or equivalent
Aㄹ for $5,5.0,5.00$ (5.002529) with caveat as in main scheme dep M2

1 (i) First two terms are $1-\frac{1}{2} x_{\ldots \ldots \ldots}$
B1

Third term $=\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2}\left[(-x)^{2}\right.$ or x^{2} or $\left.-x^{2}\right]$
$=-\frac{1}{8} x^{2}$
(ii) Attempt to replace x by $2 y-4 y^{2}$ or $2 y+4 y^{2}$

First two terms are $1-y$
Third term $=+\frac{3}{2} y^{2}$ or $\quad \sqrt{ }(4 b+2) y^{2}$

2 (i) $A(x-2)+B=7-2 x$
$A=-2$
$B=3$
(ii) $\int \frac{A}{x-2} \mathrm{~d} x=\left(A\right.$ or $\left.\frac{1}{A}\right) \ln (x-2)$
$\int \frac{B}{(x-2)^{2}} \mathrm{~d} x=-\left(B\right.$ or $\left.\frac{1}{B}\right) \cdot \frac{1}{x-2}$
Correct f.t. of A \& B; $A \ln (x-2)-\frac{B}{x-2}$
Using limits $=-2 \ln 3+2 \ln 2+\frac{1}{2} \quad$ ISW

3 (i) State/imply $\frac{\mathrm{d}}{\mathrm{d} x}(\sec x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{\cos x}\right)$ or $\frac{\mathrm{d}}{\mathrm{d} x}(\cos x)^{-1}$

Attempt quotient rule or chain rule to power -1

Obtain $\frac{\sin x}{\cos ^{2} x}$ or.$--(\sin x)(\cos x)^{-2}$
Simplify with suff evid to AG e.g. $\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$
(ii) Use $\cos 2 x=+/-1+/-2 \cos ^{2} x$ or $+/-1+/-2 \sin ^{2} x$

Correct denominator $=\sqrt{2 \cos ^{2} x}$
Evidence that $\frac{\tan x}{\cos x}=\sec x \tan x$ or $\int \frac{\tan x}{\cos x} \mathrm{~d} x=\sec x$ $\frac{1}{\sqrt{2}} \sec x \quad(+c)$

M1

A1 3

M1
B1
$\mathrm{A} 1 \sqrt{ } 3 \quad$ where $\mathrm{b}=\operatorname{cf}\left(x^{2}\right)$ in part (i)

6

M1
A1
A1 3

B1

B1 Negative sign is required

B1 $\sqrt{ } \quad$ Still accept lns as before

B1 $4 \quad$ No indication of \ln (negative)

7

B1 Not just $\sec x=\frac{1}{\cos x}$

M1

A1

A1 4

M1
A1

B1 irrespective of any const multiples

A1 $4 \quad$ Condone θ for x except final line

4 (i) Attempt to use $\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x}$
$\frac{4}{2 t}$ or $\frac{2}{t}$
(ii) Subst $t=4$ into their (i), invert \& change sign

Subst $t=4$ into (x, y) \& use num grad for tgt/normal $y=-2 x+52$ AEF CAO (no f.t.)
(iii) Attempt to eliminate t from the 2 given equations
$x=2+\frac{y^{2}}{16}$ or $y^{2}=16(x-2)$ AEF ISW

5 (i) Attempt to connect $\mathrm{d} x$ and $\mathrm{d} u$
$5-x=4-u^{2}$
Show $\int \frac{4-u^{2}}{2+u} \cdot 2 u \mathrm{~d} u$ reduced to $\int 4 u-2 u^{2} \mathrm{~d} u$ AG
Clear explanation of why limits change $\frac{4}{3}$
(ii)(a) $5-x$
(b) Show reduction to $2-\sqrt{x-1}$
$\int \sqrt{x-1} \mathrm{~d} x=\frac{2}{3}(x-1)^{\frac{3}{2}}$
$\left(10-\frac{2}{3} .8\right)-\left(4-\frac{2}{3}\right)=\frac{4}{3}$ or $4 \frac{2}{3}-3 \frac{1}{3}=\frac{4}{3}$

6 (i) Work with correct pair of direction vectors
Demonstrate correct method for finding scalar product
Demonstrate correct method for finding modulus
24, 24.0 (24.006363..) (degrees) 0.419 (0.41899..) (rad)
(ii) Attempt to set up 3 equations

Find correct values of $(s, t)=(1,0)$ or $(1,4)$ or $(5,12)$
Substitute their (s, t) into equation not used
Correctly demonstrate failure
(iii) Subst their (s, t) from first 2 eqns into new $3^{\text {rd }}$ eqn $a=6$

M1 Not just quote formula

A1 2

M1
M1
A1 3 Only the eqn of normal accepted
M1
A1 2 Mark at earliest acceptable form.

7

M1 Including $\frac{\mathrm{d} u}{\mathrm{~d} x}=$ or $\mathrm{d} u=\ldots \mathrm{d} x ;$ not $\mathrm{d} x=\mathrm{d} u$
B1 perhaps in conjunction with next line
A1 In a fully satisfactory \& acceptable manner
B1 e.g. when $x=2, u=1$ and when $x=5, u=2$
B1 5 not dependent on any of first 4 marks
*B1 1 Accept $4-x-1=5-x$ (this is not AG) dep*B1

B1 Indep of other marks, seen anywhere in (b)

B1 3 Working must be shown

9

M1
M1 Of any two 3×3 vectors rel to question
M1 Of any vector relevant to question
A1 4 Mark earliest value, allow trunc/rounding
M1 Of type $3+2 s=5,3 s=3+t,-2-4 s=2-2 t$
A1 Or 2 diff values of s (or of t)
M1 and make a relevant deduction
A1 4 dep on all 3 prev marks
M1 New $3^{\text {rd }}$ eqn of type $a-4 s=2-2 t$
A1 2
10
$7 \quad$ Attempt parts with $u=x^{2}+5 x+7, \mathrm{~d} v=\sin x$
$1^{\text {st }}$ stage $=-\left(x^{2}+5 x+7\right) \cos x+\int(2 x+5) \cos x \mathrm{~d} x$
$\int(2 x+5) \cos x \mathrm{~d} x=(2 x+5) \sin x-\int 2 \sin x \mathrm{~d} x$
$=(2 x+5) \sin x+2 \cos x$
$\mathrm{I}=-\left(x^{2}+5 x+7\right) \cos x+(2 x+5) \sin x+2 \cos x$
(Substitute $x=\pi$) -(Substitute $x=0$)
$\pi^{2}+5 \pi+10 \quad$ WWW AG

8 (i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d}}{\mathrm{d} x}(-5 x y)=(-)(5) x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(-)(5) y$
LHS completely correct $4 x-5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}(=0)$
Substitute $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{8}$ or solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ \& then equate to $\frac{3}{8}$
Produce $x=2 y$ WWW AG (Converse acceptable)
(ii) Substitute $2 y$ for x or $\frac{1}{2} x$ for y in curve equation

Produce either $x^{2}=36$ or $y^{2}=9$
AEF of $(\pm 6, \pm 3)$

M1 as far as $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
A1 signs need not be amalgamated at this stage
B1 indep of previous A1 being awarded
B1
A1 WWW
M1 An attempt at subst $x=0$ must be seen
A1 7
7
B1

M1 i.e. reasonably clear use of product rule

A1 Accept" $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ " provided it is not used
M1 Accuracy not required for "solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ "
A1 5 Expect $17 x=34 y$ and/or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5 y-4 x}{2 y-5 x}$

M1

A1
A1 3 ISW Any correct format acceptable 8

9 (i) Attempt to sep variables in the form $\int \frac{p}{(x-8)^{1 / 3}} \mathrm{~d} x=\int q \mathrm{~d} t$ M1 Or invert as $\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{r}{(x-8)^{1 / 3}} ; p, q, r$ consts
$\int \frac{1}{(x-8)^{1 / 3}} \mathrm{~d} x=k(x-8)^{2 / 3}$
All correct $\quad(+c)$

For equation containing ' c '; substitute $t=0, x=72$

Correct corresponding value of c from correct eqn
Subst their c \& $x=35$ back into eqn
$t=\frac{21}{8}$ or $2.63 / 2.625 \quad$ [C.A.O]
(ii) State/imply in some way that $x=8$ when flow stops

Substitute $x=8$ back into equation containing numeric ' c ' M1
$t=6$

A1 k const

A1

M1

A1
M1
A1 7
A2: $t=\frac{21}{8}$ or $2.63 / 2.625 \mathrm{WWW}$
B1

A1 3
10

1 When an acceptable answer has been obtained, ignore subsequent working (ISW) unless stated otherwise.
2 Ignore working which has no relevance to question as set; e.g. in Qu.1, ignore all terms in x^{3} etc.
3 The ' M ' marks are awarded if it is clear that candidate is attempting to do what he/she should be doing.
4 If an ans is given (AG), working must be checked minutely as answer shown will nearly always be 'correct'. More reasoning/explanation is generally required than when the answer is not given.

Comments or Alternative methods

Question 1(ii)

Beware: there are often double mistakes leading to the correct terms - errors invalidate marks.

Question 2(ii)

For the first 2 marks, we're really testing $\int \frac{1}{x-2} \mathrm{~d} x$ and $\int \frac{1}{(x-2)^{2}} \mathrm{~d} x$; this is why we accept $\frac{1}{A}$ and/or $-\frac{1}{B}$.
For the $1^{\text {st }} \& 3^{\text {rd }}$ marks, accept $\ln (2-x)$ as these are the indef integ stages. At final, definite, stage, it will be penalised..
'Exact value' is required; so $0.0945 \ldots$. without equivalent \log version $\rightarrow B 0 \quad 2 \ln 2-3 \ln 3$ need not be simplified.

Question 4

Allow marks for part (iii) to be awarded at any stage of question.
So, if the Cartesian equation is worked out first of all, then award marks in part (i) as follow: if cart. eqn is found in the form $x=\mathrm{f}(y)$, award M1 for finding $\frac{\mathrm{dx}}{\mathrm{d} y}$, inverting \& subst $y=4 t$ (in either order) if cart. eqn is found in the form $y=\mathrm{g}(x)$, award M1 for finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and substituting $x=2+t^{2}$ and, finally, A1 as in main scheme.

Question 5(i)

The problem here will centre on how the candidate manipulates the equation $u=\sqrt{x-1}$ to get x in terms of u. He/she could get $x=u^{2}+1$ (correct) or, perhaps, $x=u^{2}-1$ or $x=1-u^{2}$ (incorrect) or some other incorrect version. The $1^{\text {st }}, 4^{\text {th }} \& 5^{\text {th }}$ marks in part (i) are unaffected by the correctness or otherwise of this manipulation. However, any error seen must destroy the $2^{\text {nd }}$ and $3^{\text {rd }}$ marks - but candidates can still score 3 of the 5 marks.

For the A1, there must be some evidence of reduction to the given answer; the one main case that we are not accepting is where $\frac{8 u-2 u^{3}}{2+u}$ is said to be $4 u-2 u^{2}$ without any supporting evidence; long division will suffice; or if $8 u-2 u^{3}$ is said to be $(2+u)\left(4 u-2 u^{2}\right)$, then we will accept (as multiplication can easily be checked in the head whereas division is not reckoned to be). Note that ' 2 ' into ' $8 u$ ' gives ' $4 u^{\prime}$ ' and ' u ' into ' $-2 u^{3}$ ' gives ' $-2 u^{2}$ '.

Question 5(ii)(a)

This is just a ' 1 ' mark part so we give 1 or 0 purely dependent on the answer and we ignore any sloppy working.
A candidate writing $4-x-1=3-x$ will be awarded 0 marks; however, another candidate writing $4-x-1=5-x$ will be awarded the B1 mark. This is not an AG so the candidate does not know the required answer.

Question 6(i)

For demonstrating correct method for finding scalar product, I expect to see at least $2 / 3$ of the working correct.
Likewise for modulus: examine either vector, $\sqrt{2^{2}+3^{2}-4^{2}}$ will score M1 $\{2 / 3$ correct, prob $\sqrt{29}$ will follow anyway $\}$
Question 6(ii)
Occasionally candidates do not follow a 'sensible' method. However, the first M1 is always standard. The remaining 3 marks must be awarded for convincing arguments and/for accurate results.

Question 7

This is a question where signs are crucial and where the given answer may be obtained even with errors in the working; also the fact that the answer is AG means that many candidates will state it on the final line.

Using the standard method, 3 marks out of the 7 are fixed (the 2 @ M1 and the final A1) but the other 4 marks depend on the capability of the candidate to integrate $\sin x$ and $\cos x$.

If he/she uses $\cos x$ for the integral of $\sin x$, candidate should get -(our version of 1st main stage), so that's A0 but he/she still has to integrate $(2 x+5) \cos x$ for the $2^{\text {nd }}$ stage. Admittedly he/she may then make a further mistake when integrating $\cos x$ but the 2 @ B1 are available. These 2 marks are an independent pair and only depend on the integral of $(2 x+5) \cos x$ being attempted. Whether it's the integral of $(2 x+5) \cos x$ or of $-(2 x+5) \cos x$ is immaterial. This gives a maximum of 4 out of 7 if $\sin x$ is incorrectly integrated.

Even though I have bracketed the 3 terms as $\left(x^{2}+5 x+7\right)$, we can expect some candidates to multiply out as 3 separate integrals., $\int x^{2} \sin x \mathrm{~d} x \quad$ and $\quad \int 5 x \sin x \mathrm{~d} x \quad \int 7 \sin x \mathrm{~d} x$ Their equivalent $1^{\text {st }}$ stages are:
$-x^{2} \cos x+\int 2 x \cos x \mathrm{~d} x ; \quad-5 x \cos x+\int 5 \cos x \mathrm{~d} x ; \quad-7 \cos x \quad$ M1 + A1
Their equivalent $2^{\text {nd }}$ stages are:
$2 x \sin x+2 \cos x \quad$ B1 $\quad 5 \sin x \quad$ B1
To obtain the corresponding marks, all components must be correct.

Attempt to factorise both numerator \& denominator
Num $=$ e.g. $\left(x^{2}-1\right)\left(x^{2}-9\right)$ or $\left(x^{2}-2 x-3\right)\left(x^{2}+2 x-3\right)$
B1 or $(x-3)(x+3)(x-1)(x+1)$
Denominator $=$ e.g. $\left(x^{2}-2 x-3\right)(x+5)(x+3)$
B1 or $(x-3)(x+1)(x+5)(x+3)$
$\frac{x-1}{x+5}$ or $1-\frac{6}{x+5} \quad$ WWW
A1 4 ISW but not if any further 'cancellation'

Alternative start, attempting long division
Expand denom as quartic \& attempt to divide $\frac{\text { numerator }}{\text { denominator }} \quad \mathrm{M}$
Obtain quotient $=1 \&$ remainder $=-6 x^{3}-6 x^{2}+54 x+54 B 1$
Final B1 A1 available as before
$2^{2}+(-3)^{2}+(\sqrt{12})^{2}$ soi e.g. 25 or 5
5
$\frac{1}{5}\left(\begin{array}{l}2 \\ -3 \\ \sqrt{12}\end{array}\right)$ or $\left(\begin{array}{l}\frac{2}{5} \\ -\frac{3}{5} \\ \frac{\sqrt{12}}{5}\end{array}\right)$ AEF
(i) The words quotient and remainder need not be explicit

Long division For leading term $3 x$ in quotient B1
Suff evidence of div process ($3 x$, mult back, attempt sub) M1
(Quotient) $=3 x-1$
$($ Remainder $)=x \quad$ AG
Identity $3 x^{3}-x^{2}+10 x-3=Q\left(x^{2}+3\right)+R$

4

M1 Allow $2^{2}-3^{2}+\sqrt{12}^{2}$
A1 May be implied by 5 or $1 / 5$ in final answer
VA1 3 FT their '5'. Accept $-\frac{1}{5}()$ or $\frac{1}{ \pm 5}()$

3

$Q=a x+b, R=c x+d \&$ attempt at least 2 operations dep*M1
$a=3, b=-1$
$c=1, d=0$
Inspection $3 x^{3}-x^{2}+10 x-3=\left(x^{2}+3\right)(3 x-1)+x$
B2 or state quotient $=3 x-1$
Clear demonstration of LHS = RHS
B2
(ii) Change integrand to 'their (i) quotient' $+\frac{x}{x^{2}+3}$

M1
Correct FT integration of 'their (i) quotient'
$\sqrt{ } \mathrm{A} 1$
$\int \frac{x}{x^{2}+3} \mathrm{~d} x=\frac{1}{2} \ln \left(x^{2}+3\right)$
A1

Exact value of integral $=\frac{1}{2}+\frac{1}{2} \ln 4-\frac{1}{2} \ln 3$ AEF ISW A1 4 Answer as decimal value (only) \rightarrow A0

4
Indefinite integral Attempt to connect $\mathrm{d} x$ and $\mathrm{d} \theta$
Denominator $\left(1-9 x^{2}\right)^{3 / 2}$ becomes $\cos ^{3} \theta$
Reduce original integral to $\frac{1}{3} \int \frac{1}{\cos ^{2} \theta} \mathrm{~d} \theta$
Change $\int \frac{1}{\cos ^{2} \theta} \mathrm{~d} \theta$ to $\tan \theta$
Use appropriate limits for θ (allow degrees) or x $\frac{\sqrt{3}}{9}$ AEF, exact answer required, ISW

M1 Incl $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=, \frac{\mathrm{d} \theta}{\mathrm{d} x}=, \mathrm{d} x=\ldots \mathrm{d} \theta ;$ not $\mathrm{d} x=\mathrm{d} \theta$

B1
A1 May be implied, seen only as $\frac{1}{3} \int \sec ^{2} \theta \mathrm{~d} \theta$
B1 Ignore $\frac{1}{3}$ at this stage

M1 Integration need not be accurate
A1 6

6

5 (i) Attempt to set up 3 equations
$(s, t)=(-1,4)$ or $(-1,-3)$ or $\left(-\frac{10}{3},-\frac{2}{3}\right)$

M1 of type $4+3 s=1,6+2 s=t, 4+s=-t$
*A1 or $s=-1 \&-\frac{10}{3}$ or $t=$ two of $\left(4,-3,-\frac{2}{3}\right)$

Show clear contradiction e.g. $3 \neq-4,4 \neq-3,-6 \neq 1 \quad$ dep*A1 3 Allow \checkmark unsimpl contradictions. No ISW.
SC If $s=\frac{-10}{3}$ found from $2^{\text {nd }} \& 3^{\text {rd }}$ eqns and contradiction shown in $1^{\text {st }}$ eqn, all 3 marks may be awarded.
(ii) Work with $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ -1\end{array}\right)$

Clear method for scalar product of any 2 vectors
M1
Clear method for modulus of any vector
$79.1^{(0)}$ or better (79.1066..) 1.38 (rad) (1.38067..) ISW
(iii) Use $\left(\begin{array}{l}4+3 s \\ 6+2 s \\ 4+s\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)=0$

Obtain $s=-2$
A1 from $12+9 s+12+4 s+4+s=0$
A is $\left(\begin{array}{l}-2 \\ 2 \\ 2\end{array}\right)$ or $-2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ final answer
B1 3 Accept $(-2,2,2)$
$(1+a x)^{1 / 2}=1+\frac{1}{2} a x \ldots \ldots . .+\frac{\frac{1}{2} \cdot \frac{-1}{2}}{2}(a x)^{2} \quad$ B1,B1 \quad N.B. third term $=-\frac{1}{8} a^{2} x^{2}$
Change $(4-x)^{-1 / 2}$ into $k\left(1-\frac{x}{4}\right)^{-1 / 2}$, where k is likely to be $\frac{1}{2} / 2 / 4 /-2$, \& work out expansion of $\left(1-\frac{x}{4}\right)^{-1 / 2}$
$\left(1-\frac{x}{4}\right)^{-1 / 2}=1+\frac{1}{8} x \quad \ldots . \quad+\frac{\frac{-1}{2} \cdot \frac{-3}{2}}{2}\left(\frac{(-) x}{4}\right)^{2}$
B1,B1
N.B. third term $=\frac{3}{128} x^{2}$

OR Change $\{4-x\}^{1 / 2}$ into $l\left(1-\frac{x}{4}\right)^{1 / 2}$, where l is likely to be $\frac{1}{2} / 2 / 4 /-2$, \& work out expansion of $\left(1-\frac{x}{4}\right)^{1 / 2}$
$\left(1-\frac{x}{4}\right)^{1 / 2}=1-\frac{1}{8} x-\frac{1}{128} x^{2}$
$k=\frac{1}{2}$ (with possibility of $\mathrm{M} 1+\mathrm{A} 1+\mathrm{A} 1$ to follow)
Multiply $(1+a x)^{1 / 2}$ by $(4-x)^{-1 / 2}$ or $\left(1-\frac{x}{4}\right)^{-1 / 2}$

B1 (for all 3 terms simplified)
B1 $\quad l=2$ (with no further marks available)
M1 Ignore irrelevant products

The required three terms (with/without x^{2}) identified as
$-\frac{1}{16} a^{2}+\frac{1}{32} a+\frac{3}{256}$ or $\frac{-16 a^{2}+8 a+3}{256}$ AEF ISW
A1+A1 8 A1 for one correct term + A1 for other two
SC B1 for $\frac{1}{4}\left(1-\frac{x}{4}\right)^{-1}$; \quad B1 for $\left(1-\frac{x}{4}\right)^{-1}=1+\frac{x}{4}+\frac{x^{2}}{16} ; \quad$ M1 for multiplying $(1+a x)$ by their $(4-x)^{-1}$. If result is $p+q x+r x^{2}$, then to find $\left(p+q x+r x^{2}\right)^{1 / 2}$ award B 1 for $p^{1 / 2}(\ldots . .$.$) ,$
B1 correct $1^{\text {st }} \& 2^{\text {nd }}$ terms of expansion, B1 correct $3^{\text {rd }}$ term; A1,A1 as before, for correct answers. 8

Attempt to sep variables in format $\int p y^{2}(\mathrm{~d} y)=\int \frac{q}{x+2}(\mathrm{~d} x)$ Either $y^{3} \& \ln (x+2)$ or $\frac{1}{3} y^{3} \& \frac{1}{3} \ln (x+2) \quad$ A1 If indefinite integrals are being used (most likely scenario)

Substitute $x=1, y=2$ into an eqn containing ' + const' M1
Sub $y=1.5$ and their value of 'const' \& solve for $\underline{x \text { or } q \quad \text { M1 }}$
x or $q=-1.97$ only A2
[SC x or $q=-1.970$ or -1.971 or -1.9705 or -1.9706 A1]
7

If definite integrals are used (less likely scenario)
Use $\int_{1.5}^{2} \ldots \mathrm{~d} y=\int_{q}^{1} \ldots \mathrm{~d} x \quad$ where 2 corresponds with $1 \ldots . . \quad$ M2 $\quad \& 1.5$ corresp with q (at top/bottom or v.v.)
Then A2 or SC A1 as above
Use $\int_{1.5}^{2} \ldots \mathrm{~d} y=\int_{1}^{q} \ldots \mathrm{~d} x \quad$ where 2 corresponds with $q \ldots .$. M1 $\quad \& 1.5$ corresp with 1 (at top/bottom or v.v.)
Then A1 for 1.97 only
(i) Sub parametric eqns into $y=3 x$ \& produce $t=-2$

OR sub $t=-2$ into para eqs, obtain $(-1,-3) \&$ state $y=3 x$
OR other similar methods producing (or verifying) $t=-2 \quad$ B1
Value of t at other point is 2
B1 2
$t= \pm 2$ is sufficient for $\mathrm{B} 1+\mathrm{B} 1$
(ii) Use (not just quote) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$

M1
$=-(t+1)^{2}$
A1

$$
\text { or } \frac{-1}{x^{2}} \text { or } \frac{-(2+y)}{x}
$$

Attempt to use $-\frac{1}{\frac{d y}{d x}}$ for gradient of normal
M1

Gradient normal = 1 cao
A1
Subst $t=-2$ into the parametric eqns. M1
to find pt at which normal is drawn
Produce $y=x-2$ as equation of the normal WWW A1 6 'A' marks in (ii) are dep on prev 'A'
(iii) Substitute the parametric values into their eqn of normal

Produce $t=0$ as final answer cao
N.B. If $y=x-2$ is found fortuitously in (ii) (\& \therefore given A0 in (ii)), you must award A0 here in (iii).
(iv) Attempt to eliminate t from the parametric equations

M1
Produce any correct equation
A1 e.g. $x=\frac{1}{y+2}$
Produce $y=\frac{1}{x}-2$ or $y=\frac{1-2 x}{x} \quad$ ISW
A1 3 Must be seen in (iv)
\{N.B. Candidate producing only $y=\frac{1}{x}-2$ is awarded both A1 marks.\}

9 (i) Treat $x \ln x$ as a product
Obtain $x \cdot \frac{1}{x}+\ln x$
Show $x \cdot \frac{1}{x}+\ln x-1=\ln x$ WWW AG

M1 If $\int \ln x$, use parts $u=\ln x, \mathrm{~d} v=1$
A1

A1 3 And state given result
(ii)(a) Part (a) is mainly based on the indef integral $\int(\ln x)^{2} \mathrm{~d} x$
[A candidate stating e.g. $\int(\ln x)^{2} \mathrm{~d} x=\int 2 \ln x \mathrm{~d} x$ or $=\int(\ln x-x)^{2} \mathrm{~d} x$ is awarded $\mathbf{0}$ for (ii)(a)]

Correct use of $\int \ln x \mathrm{~d} x=x \ln x-x$ anywhere in this part B1
Use integ by parts on $\int(\ln x)^{2} \mathrm{~d} x$ with $u=\ln x, \mathrm{~d} v=\ln x \quad$ M1

Quoted from (i) or derived or $u=(\ln x)^{2}, \mathrm{~d} v=1$ [For 'integration by parts, candidates must get to a $1^{\text {st }}$ stage with format $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$]
$1^{\text {st }}$ stage $=\ln x(x \ln x-x)-\int \frac{1}{x}(x \ln x-x) \mathrm{d} x$ soi $2^{\text {nd }}$ stage $=x(\ln x)^{2}-2 x \ln x+2 x$ AEF (unsimplified)
\therefore Value of definite integral between $1 \& \mathrm{e}=\mathrm{e}-2$ cao
Volume $=\pi(\mathrm{e}-2) \quad$ ISW
Alternative method when subst. $u=\ln x$ used
Attempt to connect $\mathrm{d} x$ and $\mathrm{d} u$
Becomes $\int u^{2} \mathrm{e}^{u} \mathrm{~d} u$
First stage $u^{2} \mathrm{e}^{u}-\int 2 u \mathrm{e}^{u} \mathrm{~d} u$
Third stage $\left(u^{2}-2 u+2\right) e^{u}$
Final A1 A1 available as before
(b) Indication that reqd vol $=$ vol cylinder - vol inner solid

Clear demonstration of either vol of cylinder being πe^{2} (including reason for height $=\ln e$) or rotation of $x=e$
about the y-axis (including upper limit of $y=\ln e$)
$(\pi) \int x^{2} \mathrm{~d} y=(\pi) \int \mathrm{e}^{2 y} \mathrm{~d} y$ $\frac{\pi\left(\mathrm{e}^{2}+1\right)}{2}$ or 13.2 or 13.18 or better

A1

M1
A1 $\quad x(\ln x)^{2}-\int x \cdot \frac{2}{x} \ln x \mathrm{~d} x$
A1
A1
A1 6

M1
A1

> A1
\qquad
A1 Could appear as $\pi \int_{0}^{1} e^{2} \mathrm{~d} y$
B1

B1 $4 \quad$ May be from graphical calculator

Possible helpful points

1. M is Method; does the candidate know what he/she should be doing? It does not ask how accurate it is.. e.g. in Qu.4, a candidate saying $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-\frac{1}{3} \cos \theta$ is awarded M1.
2. When checking if decimal places are acceptable, accept both rounding \& truncation.
3. In general we ISW unless otherwise stated.
4. The symbol $\sqrt{ }$ is sometimes used to indicate 'follow-through' in this scheme.

Question		Answer	Marks	Guidance	
1		$\begin{aligned} & \mathrm{f}(x)=\left(x^{2}+1\right)\left(x^{2}+4 x+2\right)+(x-1) \\ & x^{4}+4 x^{3}+\ldots \\ & +\ldots 3 x^{2}+5 x+1 \end{aligned}$	M1 B1 A1 [3]	written or clearly intended	(Alt)Long div with 3 stages/equate quots/equate rems
2	(i)	$\mathbf{a}=\left(\begin{array}{l} 4 \\ 2 \\ 7 \end{array}\right) \text { or }\left(\begin{array}{l} 5 \\ -4 \\ -1 \end{array}\right)$ $\mathbf{b}=$ Difference between the two points Provided final answer is of form $\underline{\mathbf{r}=\mathbf{a}+t \mathbf{b}}$ $\left(\begin{array}{l} 1 \\ -6 \\ -8 \end{array}\right) \text { or }\left(\begin{array}{l} -1 \\ 6 \\ 8 \end{array}\right)$	B1 M1 A1 [3]	Accept any notation	
2	(ii)	Method for magnitude of any vector Method for scalar product of any 2 vectors Using $\cos \theta=\frac{\mathbf{c . d}}{\|\mathbf{c}\| \mathbf{d} \mid}$ for their \mathbf{b} and $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ 21.4 or better (21.444513); 0.374 or better (0.374277)	M1 M1 M1 A1 [4]	Accept e.g. $\sqrt{1^{2}-6^{2}-8^{2}}$	

Question		Answer	Marks	Guidance	
3	(i)	Treat $(x+3)(y+4)$ or $x y$ as a product $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}(x+3)(y+4)=(x+3) \frac{\mathrm{d} y}{\mathrm{~d} x}+(y+4) \text { or } \\ & \frac{\mathrm{d}}{\mathrm{~d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 x-y-4}{x-2 y+3} \end{aligned}$	M1 A1 B1 B1 [4]	attempting $u . \mathrm{d} v+v . \mathrm{d} u$ AEF including $-\frac{a}{b}, \frac{-a}{b}, \frac{a}{-b}$	
3	(ii)	State or imply that denominator is zero Tangents are parallel to y-axis	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ {[2]} \end{gathered}$	Provided denom is $x-2 y+3$ or $-x+2 y-3$ Accept vertical or of the form $x=k$	
3	(iii)	Substitute $(6,0)$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad\left(=\frac{8}{9}\right)$ $8 x-9 y=48 \quad \text { FT } f x-g y=6 f$	M1 A1 FT [2]	FT their numerical $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{f}{g}$ www in this part	
4	(i)	First two terms in expansion $=1-x$ Third term shown as $\frac{\frac{1}{4} \cdot-\frac{3}{4}}{2}(-4 x)^{2}$ $=-\frac{3}{2} x^{2}$ Fourth term shown as $\frac{\frac{1}{4} \cdot-\frac{3}{4} \cdot-\frac{7}{4}}{2.3}(-4 x)^{3}$ $=-\frac{7}{2} x^{3}$	B1 M1 A1 M1 A1 [5]	(simplify to this, now or later) $-\frac{3}{4}$ can be $\frac{1}{4}-1 ;(-4 x)^{2}$ can be $-4 x^{2}$ or $-16 x^{2}$ Similar allowances as for first M1 [Complete expansion is $1-x-\frac{3}{2} x^{2}-\frac{7}{2} x^{3} \ldots$]	

Question		Answer	Marks	Guidance	
4	(ii)	$\left(1+b x^{2}\right)^{7}$ shown (implied) as $1+7 b x^{2}+\ldots$ Clear indic that terms involving x and x^{2} must cancel $\begin{aligned} & a=-1 \\ & b=-\frac{3}{14} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 FT } \\ \text { A1 FT } \\ \text { [4] } \end{gathered}$	If (i) $=1+\lambda x+\mu x^{2}, a=\lambda$ If (i) $=1+\lambda x+\mu x^{2}, \quad b=\frac{1}{7} \mu$ FT from wrong (i) only, not wrong $\left(1+b x^{2}\right)^{7}$	
5		Attempt to connect $\mathrm{d} u$ and $\mathrm{d} x$ or find $\frac{\mathrm{d} u}{\mathrm{~d} x}$ $\mathrm{d} u=-\sin x \mathrm{~d} x \quad \text { or } \quad \frac{\mathrm{d} u}{\mathrm{~d} x}=-\sin x$ Indefinite integral becomes $-\int\left(1-u^{2}\right) u^{2}(\mathrm{~d} u)$ $-\int\left(1-u^{2}\right) u^{2} \quad(\mathrm{~d} u)=-\frac{1}{3} u^{3}+\frac{1}{5} u^{5}$ Use new limits if $\mathrm{f}(u)$ or original limits if resubstitution AE Fraction	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 FT } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [6] } \end{gathered}$	no accuracy; not $\mathrm{d} u=\mathrm{d} x$ FT only from $\frac{\mathrm{d} u}{\mathrm{~d} x}=\sin x$ Award also for $\int\left(1-u^{2}\right) u^{2} \mathrm{~d} u=\frac{1}{3} u^{3}-\frac{1}{5} u^{5}$ no accuracy ISW www If A0, answer of $0.0979 \ldots \rightarrow$ M1	

Question		Answer	Marks	Guidance	
6		State or imply that graphs cross at $x=\frac{1}{4} \pi$ $\pi \int y^{2} \mathrm{~d} x$ used with either $y=\sin x$ or $y=\cos x$ $\pi \int_{0}^{\frac{1}{4} \pi} \sin ^{2} x(\mathrm{~d} x)+\pi \int_{\frac{1}{4} \pi}^{\frac{1}{2} \pi} \cos ^{2} x(\mathrm{~d} x)$ or $2 \pi \int_{0}^{\frac{1}{4} \pi} \sin ^{2} x(\mathrm{~d} x)$ Changing $\sin ^{2} x$ or $\cos ^{2} x$ into $\mathrm{f}(\cos 2 x)$ $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ or $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$ $\int \cos 2 x(\mathrm{~d} x)=\frac{1}{2} \sin 2 x$ anywhere in this part $\frac{1}{4} \pi^{2}-\frac{1}{2} \pi$	B1 *M1 A1 dep*M1 A1 B1 A1 $[7]$	(Limits on integrals may clarify) The ' π ' element(s) may not appear until later in the working. ISW	Be lenient here
7	(i)	$\begin{aligned} & \text { Use }\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} 1+t \\ -t \\ 2 \end{array}\right) \\ & \left(\begin{array}{l} x \\ y \\ z \end{array}\right) \cdot\left(\begin{array}{c} 1 \\ -1 \\ 0 \end{array}\right)=0 \\ & \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ 2 \end{array}\right) \text { or } \frac{1}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}+2 \mathbf{k} \end{aligned}$	B1 M1 A1 [3]		

Question		Answer	Marks	Guidance	
7	(ii)	$\begin{aligned} & (1+t)^{2}+t^{2}+4=3^{2} \text { or } \sqrt{(1+t)^{2}+t^{2}+4}=3 \\ & t=1 \text { or }-2 \\ & \left(\begin{array}{c} 2 \\ -1 \\ 2 \end{array}\right) \text { and }\left(\begin{array}{c} -1 \\ 2 \\ 2 \end{array}\right) \end{aligned}$	M1 A1 A1 [3]	FT from their (i) P SR If A0A0 award A1A0 for either value of t leading to its correct answer.	
8	(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\text { attempt at } \frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\text { attempt at } \frac{\mathrm{d} x}{\mathrm{~d} \theta}} \text { but not } \frac{4-3 \sin ^{2} \theta}{2 \sin \theta}$ $4 \cos \theta-3 \sin ^{2} \theta \cos \theta$ seen $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{4 \cos \theta-3 \sin ^{2} \theta \cos \theta}{2 \sin \theta \cos \theta}=\frac{4-3 \sin ^{2} \theta}{2 \sin \theta} \quad \text { AG }$	M1 B1 A1 [3]	indep	Alternative Change to Cartesian form, differentiate and resubstitute Correct differentiation of correct equation
8	(ii)	Equating given $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to $2 \&$ producing quadratic equation $\begin{aligned} & \sin \theta=\frac{2}{3} \\ & P \text { is }\left(\frac{4}{9}, \frac{64}{27}\right) \end{aligned}$	M1 A1 A1 [3]	ignore any other given value Accept $0.444 \ldots$ and $2.37 \ldots$ or better	
8	(iii)	Identify problem as solving $4-3 \sin ^{2} \theta=0$ Show convincingly that $4-3 \sin ^{2} \theta=0$ has no solutions	M1 A1 [2]	Consider magnitude of $\sin \theta$	
8	(iv)	Attempt to eliminate $\sin \theta$ from the 2 given equations Produce $y^{2}=x(4-x)^{2}$ or $16 x-8 x^{2}+x^{3}$	M1 A1 [2]	e.g. $y=4 \sqrt{x}-(\sqrt{x})^{3}$ ISW	

Question		Answer	Marks	Guidance
1	(i)	$x^{2}-3 x+2=(x-1)(x-2)$ or $(1-x)(2-x)$ oe Obtain $-\frac{1}{x-2}$ or $\frac{1}{2-x}$ or $\frac{-1}{x-2}$ or $\frac{1}{-(x-2)}$ ISW If Partial Fractions are used, apply normal mark scheme.	B1 B1 [2]	Not $\frac{-1}{-(2-x)}$ Accept WW
1	(ii)	Attempt single fraction or 2 fractions with same relevant denom Fully correct fraction(s) before any simplification Relevant numerator $=3 x-9$ or $3 x^{2}-18 x+27$ Final answer $=\frac{3}{(x-1)(x-4)}$ or $\frac{3}{x^{2}-5 x+4}$ ISW S.R. If partial fractions are used on each fraction $\begin{aligned} & -\frac{1}{x-1}+\frac{2}{x-3} \\ & \frac{2}{x-3}-\frac{1}{x-4} \\ & -\frac{1}{x-1}+\frac{1}{x-4} \text { ISW } \end{aligned}$	M1 A1 B1 A1 [4] (M1) (A1) (A1) (A1)	e.g. $(x-1)(x-4)\left[(x-3)\right.$ or $\left.(x-3)^{2}\right]$ Can award if no denominator
2		Write (or imply as) $\int 1 \cdot \ln (x+2)(\mathrm{d} x) \quad(\ln x+\ln 2 \rightarrow \mathrm{M} 0)$ Correct 'by parts' $1^{\text {st }}$ stage $x \ln (x+2)-\int \frac{x}{x+2}(\mathrm{~d} x)$ Any suitable starting idea for integrating $\frac{x}{x+2}$ [e.g. change num to $x+2-2$ or use substitution $x+2=u$] $\int \frac{x}{x+2}(\mathrm{~d} x)==x-2 \ln (x+2)$ or $x+2-2 \ln (x+2)$ Overall result $=x \ln (x+2)-x+2 \ln (x+2)[(+\mathrm{c})$ or $(-2+\mathrm{c})]$ ISW SR: Correct answer with no working	M1 A1 M1 A1 A1 [5] (B2)	OR: $\mathrm{t}=\ln (\mathrm{x}+2)$ and attempt to connect dx and dt $\int t e^{t}(d t)$ Attempt by parts with $\mathrm{u}=\mathrm{t}, \frac{\mathrm{d} v}{\mathrm{~d} t}=e^{t}$ $t e^{t}-e^{t}$

Question		Answer	Marks	Guidance
3	(i)	The first 5 marks are awarded for expansions of either $(1+4 x)^{-\frac{1}{2}}$ or $(1+4 x)^{\frac{1}{2}}$ Expansion of $(1+4 x)^{-\frac{1}{2}} ; \quad$ First 2 terms $=1-2 x$ $\begin{aligned} & \text { 3rd term }=\frac{-\frac{1}{2} \cdot\left(-\frac{1}{2}-1\right)}{2} \cdot 16 x^{2}\left[\text { Accept } 4 x^{2} \text { for } 16 x^{2}\right] \\ & =+6 x^{2} \end{aligned}$ 4th term $=\frac{-\frac{1}{2} \cdot\left(-\frac{1}{2}-1\right) \cdot\left(-\frac{1}{2}-2\right)}{2.3} \cdot 64 x^{3}$ [Accept $4 x^{3}$ for $64 x^{3}$] $=-20 x^{3}$ $1-2 x+7 x^{2}-22 x^{3} ; \quad 1+a x+(b+1) x^{2}+(a+c) x^{3}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { A1 ft } \\ \text { [6] } \end{gathered}$	Or $(1+4 x)^{\frac{1}{2}}=1+2 x \ldots \ldots .$. 3rd term $=\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2} \cdot 16 x^{2}$ [ditto] $=-2 x^{2}$ 4th tm $=\frac{\frac{1}{2} \cdot-\frac{1}{2} \cdot-\frac{3}{2}}{2.3} \cdot 64 x^{3}$ [ditto] $=+4 x^{3}$ ft only $(1+4 x)^{-\frac{1}{2}}=1+a x+b x^{2}+c x^{3}$ provided a, b and c attempted and at least one @ M1 obtained
3	(ii)	$\|x\|<\frac{1}{4} ;-\frac{1}{4}<x<\frac{1}{4} ;\left\{-\frac{1}{4}<x, x<\frac{1}{4}\right\}$ no equality	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	But not $\left\{-\frac{1}{4}<x\right.$ OR $\left.x<\frac{1}{4}\right\}$ If choice mark what appears to be the final answer.
4		$\begin{aligned} & +/-\int \mathrm{e}^{2 y}(\mathrm{~d} y) \text { and }+/-\int \tan x(\mathrm{~d} x) \text { seen } \\ & \int \mathrm{e}^{2 y}(\mathrm{~d} y)=\frac{1}{2} \mathrm{e}^{2 y} \\ & \int \tan x(\mathrm{~d} x)=\ln \|\sec x\| \text { or }-\ln \|\cos x\| \\ & \text { Subst } x=0, y=0 \text { into their equation containing } \mathrm{f}(x), \mathrm{g}(y) \text { and } \mathrm{c} \\ & \mathrm{c}=\frac{1}{2} \mathrm{WWW} \quad \text { (or poss }-\frac{1}{2} \text { if } \mathrm{c} \text { on LHS) } \\ & y=\frac{1}{2} \ln (1-2 \ln \|\sec x\|) \text { or } \frac{1}{2} \ln (1+2 \ln \|\cos x\|) \text { oe WWW } \end{aligned}$	M1 B1 B1 M1 A1 A1 [6]	may be implied later Accept ln secx or $-\ln \cos x$ S.R. Using def integrals: M1 $\int_{0}^{x}=\int_{0}^{y}$ followed by A2 or A0 Accept omission of modulus

Question		Answer	Marks	Guidance
5	(i)	Use $\cos \theta=\frac{\mathrm{a} . \mathrm{b}}{\|\mathrm{a}\|\|b\|}$ Obtain $\left(\cos \theta=\frac{6}{12}\right) \theta=60$ or $\frac{1}{3} \pi$ or 1.05 or better	M1 A1 [2]	Better: 1.0471976 (rot)
5	(ii)	Indicate $\mathbf{a}-\mathbf{b}$ is vector joining ends of \mathbf{a} and \mathbf{b} or equiv $\|\mathbf{a}-\mathbf{b}\|=\|\mathbf{a}\|-\|\mathbf{b}\|$, or anything similar, \rightarrow M0 Use cosine rule correctly on 3, 4 and included (i) angle Obtain $\sqrt{13}$ or 3.61 or better (No ft from wrong θ)	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Or any other correct method 3.6055513 (rot)
6		Attempt diff to connect $\mathrm{d} u$ and $\mathrm{d} x$ or find $\frac{\mathrm{d} u}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}$ Correct e.g. $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$ or $\mathrm{d} x=(2 u-2) \mathrm{d} u$ AEF Indefinite integral in terms of $u=\int \frac{2 u-2}{u}(\mathrm{~d} u)$ Provided of form $\int \frac{a u+b}{u}(\mathrm{~d} u)$, change to $\int a+\frac{b}{u}(\mathrm{~d} u)$ Integrate to $a u+b \ln \|u\|$ or $a u+b \ln u$ Use correct variable for limits after attempt at integral of $f(u)$ Show as $8-2 \ln 4-6+2 \ln 3$ (oe) $=2+2 \ln \frac{3}{4}$ AG WWW		no accuracy, not just $\mathrm{d} u=\mathrm{d} x$ Or by parts i.e. use new values of u (usually) or orig values of x (if resubst) Some 'numerical' working must be shown before giving final ans

Question			Answer	Marks	Guidance
8	(a)		$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \end{aligned}$ Substitute $(-1,-1)$ for $(x, y) \&$ attempt to solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Obtain $\frac{d y}{d x}=-1 \quad W W W$	B1 B1 M1 A1 [4]	or solve then substitute
8	(b)	(i)	Tangent parallel y-axis $\rightarrow \frac{\mathrm{d} x}{\mathrm{~d} t}=0$ or $\frac{\mathrm{d} y}{\mathrm{~d} x} \rightarrow \infty$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\infty$ Obtain $t=0$ $(-1,0)$ with no other possibilities	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	Accept clear intention Accept $x=-1, y=0$
8	(b)	(ii)	State or imply or use $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t}$ Produce $3 t^{2}+1=4 t$ oe $t=\frac{1}{3}$ or 1	M1 A1 A1 [3]	

Question		Answer	Marks	Guidance
9	(i)	$\begin{aligned} & \frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} \\ & A(x-2)^{2}+B(x+1)(x-2)+C(x+1)=x^{2}-x-11 \\ & A=-1 \\ & B=2 \\ & C=-3 \end{aligned}$ Special Cases The problems arise when we see how candidates deal with the $\frac{A}{x+1}+\frac{B x+C}{(x-2)^{2}}$; allow B1 for PF format, M1 for associated ide $\frac{A}{x+1}+\frac{B}{x-2}+\frac{C x+D}{(x-2)^{2}}$; allow B1 for PF format, M1 for assoc id $\frac{A}{x+1}+\frac{B x}{(x-2)^{2}}$; allow B0 for PF format, M1 for associated iden $\frac{A}{x+1}+\frac{B}{(x-2)^{2}}$: allow B0 for PF format, M1 for associated ide	B1 M1 A1 A1 A1 [5] ominator B1 for ty, B1 fo (max 1, (max 1,	i.e. correct partial fractions or equivalent identity or method B1 if cover up method used B1 if cover up method used $(x-2)^{2}:$ $=-1(\max 3)$ $A=-1(\max 3)$ ven if $A=-1$) ven if $A=-1$)
9	(ii)	No marks are to be awarded for integrating a fraction with a zero numerator. Irrespective of the format used for the Partial Fractions in part (i), award marks as follow: $\begin{aligned} & \int \frac{\lambda}{x+1} \mathrm{~d} x=\left(\lambda \text { or } \frac{1}{\lambda}\right) \ln (x+1) \quad \text { or.... } \\ & \int \frac{\mu}{(x-2)^{2}} \mathrm{~d} x=-\left(\mu \text { or } \frac{1}{\mu}\right) \cdot \frac{1}{x-2} \\ & -\frac{3}{2} \\ & \ldots . .+\ln \frac{16}{5} \quad \text { ISW for either term } \end{aligned}$	B1 B1 B1 ft B1 ft [4]	$\begin{aligned} & \int \frac{\lambda}{x-2} \mathrm{dx}=\left(\lambda \text { or } \frac{1}{\lambda}\right) \ln (x-2) \\ & \mathrm{ft} \frac{C}{2} \\ & \mathrm{ft} \ldots . .+\ln \left\{\left(\frac{5}{4}\right)^{A} \cdot 2^{B}\right\} \end{aligned}$

Question			Answer	Marks	Guidance
10	(i)		If MR, mark according to the scheme \& follow-through from candidate's data. Award M, A \& B marks (where possible) \& apply penalty of 1 mark (by withholding one A mark in the question). E.g. in (i), product to be 'correct' \& 'not perpendicular' to be stated. α. Full justification that $t=-1$. May be 'by inspection'. [No equations not satisfied by $t=-1$ to be shown] ['unusual' attempts must be carefully checked; if convinced, award the B1 e.g. displacement vector between $(-3 \mathbf{i}+6 \mathbf{k})$ and $(-\mathbf{i}+2 \mathbf{j}+7 \mathbf{k})= \pm(2 \mathbf{i}+2 \mathbf{j}+\mathbf{k})]$ β. Consider scalar product $\left(\begin{array}{l}-3 \\ 0 \\ 6\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$ Show $-\mathbf{6 + (0) + 6 = 0}$ and somewhere state perpendicularity oe [If $\cos \theta=\frac{\mathbf{a} . \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}$ quoted, ignore accuracy of work involving $\|\mathbf{a}\|$ and $\|\mathbf{b}\|]$	B1 M1 A1 [3]	No other $t=$ to be mentioned
10	(ii)		Use $\mathbf{r}=\mathrm{v}(-3 \mathbf{i}+6 \mathbf{k})$ and ℓ_{2} Attempt to produce at least two relevant equations Solve two equations \& produce $(v, s)=\left(\frac{1}{3},-3\right)$ soi Demonstrate clearly that these satisfy third equation	*M1 M1dep* A1 B1 [4]	$\begin{aligned} & \text { or }(-3 \mathbf{i}+6 \mathbf{k})+\mathrm{v}(-3 \mathbf{i}+6 \mathbf{k}) \\ & (v, s)=\left(-\frac{2}{3},-3\right) \end{aligned}$ Numerical proof required
10	(iii)		Method for finding $\|\overrightarrow{O B}\|$ or $\|\overrightarrow{O A}\|$ or $\|\overrightarrow{A B}\|$ $\|\overrightarrow{O B}\|=\sqrt{5}$ or $\|\overrightarrow{O A}\|=\sqrt{45}$ oe or $\|\overrightarrow{B A}\|=\sqrt{20}$ oe Obtain 3:2 oe	M1 A1 A1 [3]	Method for finding $\overrightarrow{O B}$ or $\overrightarrow{B O}$ or $\overrightarrow{A B}$ or $\overrightarrow{B A}$ $\overrightarrow{O B}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right) \quad$ or $\quad \overrightarrow{B A}=\left(\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right)$ Answer 3:2 WW \rightarrow B3

Question		Answer	Marks	Guidance	
3		For attempt at product rule on $x y^{2}$ $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 x-y^{2}}{2 x y} \text { or } \frac{1-x^{-2}}{2 y} \end{aligned}$ Stationary point \rightarrow (their) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ soi $\begin{aligned} & x^{2}=1 \text { or } y^{2}=2 \text { or } y^{4}=4 \\ & (1, \sqrt{2}), \quad(1,-\sqrt{2}) \end{aligned}$		or changing equation to $y^{2}=x+x^{-1}$ soi in the differentiating process Award $\underline{\mathrm{B}} 1$ for $(\pm) \frac{1}{2}\left(x+x^{-1}\right)^{-1 / 2}\left(1-x^{-2}\right)$ Ignore any other values Accept 1.41 or $4^{1 / 4}$ for $\sqrt{2}$	SR. Award A1 only if extra coordinates presented with both correct answers
4	(i)	Produce (at least 2) relevant equations Eliminate either λ or μ from 2 of them and solve for the other (μ or λ) $\lambda=2$ and $\mu=-1$ cao Check that $(\lambda, \mu)=(2,-1)$ satisfies all eqns P is $(5,4,6) \quad$ cao $w w w$	M1 M1 A1 B1 A1 [5]	e.g. $1+2 \lambda=6+\mu, 2+\lambda=8+4 \mu, 3 \lambda=1-5 \mu$ soi by correct (λ, μ) or e.g. $\lambda=2$ from 2 different pairs This must be convincing. Check unusual arguments Allow any reasonable vector notation	Dep previous M1M1A1 earned
4	(ii)	Using $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 4 \\ -5\end{array}\right)$ Using $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}$ giving value $\frac{n}{\sqrt{a} \sqrt{b}}$ $68.2^{\circ} \ldots$ (not 111.8...)	M1 M1 A1 [3]	i.e. correct parts for direction vectors for any 2 meaningful vectors in this question using meaningful scalar product $\&$ modulus or 1.19 (radians)	Expect $\frac{-9}{\sqrt{14} \sqrt{42}}$

Question		Answer	Marks	Guidance	
5	(i)	$\begin{aligned} & \text { their } \frac{\mathrm{d} y}{\mathrm{~d} \theta} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \sin \theta}{3 \cos \theta} \\ & \text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \\ & \tan \theta=\frac{3}{4} \\ & (3.8,-0.6) \text { or }\left(\frac{19}{5},-\frac{3}{5}\right) \text { or } x=3.8, y=-0.6 \end{aligned}$	M1 A1 M1 A1 A1 [5]	If $\tan \theta=\frac{3}{4}$ not seen, award this A1 only if coords are correct	
5	(ii)	Manipulating equations into form $\sin \theta=\mathrm{f}(x)$ and $\cos \theta=\mathrm{g}(y)$ and then using $\sin ^{2} \theta+\cos ^{2} \theta=1$ $\frac{(x-2)^{2}}{9}+\frac{(1-y)^{2}}{4}=1$ oe \quad www ISW Accept e.g. $\left(\frac{x-2}{3}\right)^{2}$ $4 x^{2}+9 y^{2}-16 x-18 y-11=0$	M1 A1 [2]	If part (ii) is attempted first, and then part (i), allow B1 for obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4(x-2)}{9(y-1)}$ M1 for equating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to $\frac{1}{2}$ A1 for obtaining $9 y-8 x=-7$ M1 for eliminating x or y from above eqn... A1 for $(3.8,-0.6)$)	the following marks in part (i):- and their Cartesian equation

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& \begin{tabular}{l}
Marks \\
B2 \\
M1
\end{tabular} \& \multicolumn{2}{|l|}{Guidance} \\
\hline 7 \& (i) \& I
II

III \& \[
$$
\begin{aligned}
& \frac{\cos x}{1+\sin x}-\frac{-\sin x}{\cos x} \text { or } \frac{\cos x}{1+\sin x}+\frac{\sin x}{\cos x} \\
& \frac{+/-\cos ^{2} x+/-\sin x(1+\sin x)}{(1+\sin x) \cos x} \\
& \frac{1+\sin x}{\cos x(1+\sin x)}=\frac{1}{\cos x} \quad \text { www } \quad \text { AG } \\
& \text { Change to } \ln \left(\frac{1+\sin x}{\cos x}\right) \\
& \text { Change to } \ln (\sec x+\tan x) \\
& \text { Diff as } \frac{\text { attempt at } \frac{d}{d x}(\sec x+\tan x}{\sec x+\tan x} \\
& \text { Reduce to sec } x=\frac{1}{\cos x} \\
& \text { Change to } \ln \left(\frac{1+\sin x}{\cos x}\right) \\
& \text { Diff as } \\
& \text { attempt at quotient differentiation } \\
& \frac{1+\sin x}{\cos x} \\
& \text { Fully correct differentiation } \\
& \text { Correct reduction to } \frac{1}{\cos x}
\end{aligned}
$$

\] \& | B2 |
| :--- |
| M1 |
| A1 |
| B1 |
| B1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |
| A1 |
| [4] | \& | Each half (including 'middle' sign) scores B1 |
| :--- |
| Combine, provided derivative was of form ${ }^{\prime}(x) / f(x)$ $\cos ^{2} x+\sin ^{2} x=1$ in intermediate step required |
| $\underline{\text { Not }} \ln \left(\frac{1}{\cos x}+\tan x\right)$ | \& Allow only variations num signs

\hline 7 \& (ii) \& \& | Indef integral $=\ln (1+\sin x)-\ln (\cos x)$ [Method I] |
| :--- |
| Substitute limits \& use log manipulation |
| Answer $=\ln (2+\sqrt{ } 3)$ | \& | B1 |
| :--- |
| M1 |
| B1 |
| [3] | \& | or $\ln (\sec x+\tan x) \quad$ [Method II] |
| :--- |
| Use of $\ln \mathrm{A}-\ln \mathrm{B}=\ln \frac{A}{B}$ anywhere in question Accept $\ln 3.73$ or $\ln \frac{2+\sqrt{3}}{1} \ldots$..but not $\ln \frac{1+\sqrt{3} / 2}{1 / 2}$ | \& Answer has not been given

\hline
\end{tabular}

Question		Answer		Guidance	
8	(i)	$\begin{aligned} & A B=\sqrt{(+/-2)^{2}+\left(+/-2^{2}+(+/-4)^{2}\right)} \\ & A D=\sqrt{(+/-2)^{2}+(+/-4)^{2}+(+/-2)^{2}} \end{aligned}$	B1 B1 [2]	oe oe	If $A B^{2}=A D^{2}=24$, then SR B1 $A B=A D$ to be stated for $2^{\text {nd }} \mathrm{B} 1$
8	(ii)	midpoint is $(3,5,0)$ Clear method for finding direction vector $\begin{aligned} & \mathbf{r}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(3 \mathbf{j}-\mathbf{k}) \text { ое } \\ & \text { or e.g. } \quad \mathbf{r}=3 \mathbf{i}+5 \mathbf{j}+\mu(-3 \mathbf{j}+\mathbf{k}) \quad \text { cао } \end{aligned}$	B1 M1 A1 [3]	Accept any reasonable vector notation. Expect $3 \mathbf{j}-\mathbf{k}$ or $-3 \mathbf{j}+\mathbf{k}$ " $\mathbf{r}=$ " is essential. No f.t. for wrong mid-point.	
8	(iii)	substitution of $\lambda=+/-5$ or $\mu=+/-4$	M1 [1]	Based on correct answer to (ii)	
8	(iv)	Kite	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		

Question		Answer Separating variables $\int \frac{1}{\theta+20} \mathrm{~d} \theta=\int-k \mathrm{~d} t$ $\ln (\theta+20)=-k t(+c)$ or equivalent $\left.\theta=A \mathrm{e}^{-k t}-20 \text { oe (i.e. } \theta=\mathrm{e}^{-k t+c}-20\right)$	Marks M1 A1 A1 [3]	Guidance	
9	(i)			or invert each side: $\frac{\mathrm{d} t}{\mathrm{~d} \theta}=-\frac{1}{k(\theta+20)}$ "Eqn A" "Eqn B"	Must see $\frac{1}{\theta+20}$; ignore posn ' k '
9	(ii)	$\begin{aligned} & (-) 3=-k(40+20) \\ & k=\frac{1}{20} \text { oe } \end{aligned}$ Subst $t=0, \theta=40 \&$ their k (where necessary) into their Eqn A or their Eqn B and solve for the arbitrary constant Subst $\theta=0$ \& their values of k and the arbitrary constant into their Eqn A or their Eqn B $t=21.9722=22 \text { minutes cao www }$	$\begin{gathered} \text { M1 } \\ \text { *A1 } \\ \text { M1 } \\ \\ \text { M1 } \\ \text { dep*A1 } \\ \text { [5] } \end{gathered}$	Using $t=0, \theta=40, \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=(-) 3$ in given equation Not $k=-\frac{1}{20}$	
9	(iii)	k is larger	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		

Question		Answer	Marks	Guidance	
10	(i)	Clear start to algebraic division (Quotient) $=x-1$ (Remainder) $=x+7$ Final answer: $\quad x-1+\frac{x+7}{x^{2}-x-6}$	M1 A1 A1 A1 [4]	at least as far as x term in quot $\&$ subseq mult back final answer in correct form This must be shown in part (i) or, if not, then implied in part (ii) If no long division shown but only comparison of coefficients or otherwise, SR M0 B1 B1 B1	\& attempt at subtraction Accept $A=1, B=-1, C=1, D=7$
10	(ii)	Convert their $\frac{C x+D}{x^{2}-x-6}$ to Partial Fracts $\frac{x+7}{x^{2}-x-6}=\frac{2}{x-3}-\frac{1}{x+2}$ Their $\begin{aligned} & \int A x+B \mathrm{~d} x=\frac{1}{2} A x^{2}+B x \text { or } \frac{(A x+B)^{2}}{2 A} \\ & \int \frac{E}{x-3}+\frac{F}{x+2} \mathrm{~d} x=E \ln (x-3)+F \ln (x+2) \end{aligned}$ Using limits in a correct manner $8+\ln \frac{27}{4}\left(8+\ln \frac{54}{8}\right) \quad$ isw		Correct fraction converted to correct PFs Tolerate some wrong signs provided intention clear Answer required in the form $a+\ln b$, so giving only a decimalised form is awarded A0	

Question		$u=\ln 3 x$ and $\mathrm{d} v$ or $\frac{\mathrm{d} v}{\mathrm{~d} x}=x^{8}$ $\frac{\mathrm{d}}{\mathrm{~d} x}(\ln 3 x)=\frac{1}{x} \text { or } \frac{3}{3 x}$ $\frac{x^{9}}{9} \ln 3 x-\int \frac{x^{9}}{9}$ their $\frac{\mathrm{d} u}{\mathrm{~d} x}(\mathrm{~d} x)$ FT Indication that $\int k x^{8} \mathrm{~d} x$ is required $\frac{x^{9}}{9} \ln 3 x-\frac{x^{9}}{81}$ or $\frac{1}{9} x^{9}\left(\ln 3 x-\frac{1}{9}\right)$ ISW $\quad(+\mathrm{c}) \quad \underline{\text { cao }}$ If candidate manipulates $\ln (3 x)$ first of all $\ln (3 x)=\ln 3+\ln x$ $u=\ln x$ and $d v=x^{8}$ $\frac{x^{9}}{9} \ln x-\int \frac{x^{9}}{9} . \frac{1}{x}(\mathrm{~d} x) \quad$ or better $\frac{x^{9}}{9} \ln x-\frac{x^{9}}{81}$ Their $\int x^{8} \ln x \mathrm{~d} x+\frac{x^{9}}{9} \ln 3(+\mathrm{c})$ FT ISW	Marks	Guidance	
2			M1	integ by parts as far as $\mathrm{f}(x)+/-\int \mathrm{g}(x)(\mathrm{d} x)$	If difficult to assess, x^{8} must be integrated, so look for term in x^{9}
			B1	stated or clearly used	
			$\sqrt{ } \mathrm{A} 1$	i.e. correct understanding of 'by parts'...	..even if $\ln (3 x)$ incorrectly differentiated
			M1	i.e. before integrating, product of terms must be taken	The product may already have been indicated on the previous line
			A1 [5]	$\frac{1}{9} \frac{x^{9}}{9}$ to be simplif to $\frac{x^{9}}{81} ; \frac{3 x^{9}}{243}$ satis	
			B1		
			M1	In order to find $\int x^{8} \ln x d x$:	x, then B0 followed by possible M1 A1 A1 in line with alternative solution on
			A1		LHS, where the ' M ' mark is for dealing with
			A1		$\int x^{8} \ln x \mathrm{~d} x$ 'by parts' in the right order and the 2 @ A1 are for correct results.
			\checkmark A1		

Question		Answer	$\begin{gathered} \text { Marks } \\ \hline \text { M1 } \end{gathered}$	Guidance	
5	(ii)	$\int \tan 2 x \mathrm{~d} x=\lambda \ln (\sec 2 x)$ or $\mu \ln (\cos 2 x) \quad[=\mathrm{F}(x)]$ $\lambda=\frac{1}{2} \quad$ or $\quad \mu=-\frac{1}{2}$ their $\mathrm{F}\left[\frac{\pi}{6}\right]$ - their $\mathrm{F}\left[\frac{\pi}{12}\right]$ $\frac{1}{2} \ln 2-\frac{1}{2} \ln \frac{2}{\sqrt{3}}$ ое $\frac{1}{2} \ln \sqrt{3}$ or $\frac{1}{4} \ln 3$ or $\ln 3^{\frac{1}{4}}$ or $\frac{1}{2} \ln \frac{6}{2 \sqrt{3}}$ oe ISW	M1 A1 M1 A1 $+A 1$ [5]	dependent on attempt at integration........ i.e. any correct but probably unsimplified numerical version i.e. any correct version in the form $a \ln b$i.e. not for $\tan \left(\frac{\pi}{3}\right)-\tan \left(\frac{\pi}{6}\right)$

Question		Answer	Marks	Guidance	
6		Find du in terms of $\mathrm{d} x$ (or $v v$) or $\frac{\mathrm{d} u}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}$ Substitute, changing given integral to $\int \frac{u-1}{u^{2}}(\mathrm{~d} u)$ Provided of form $\frac{a u+b}{u^{2}}$, either split as $\frac{a u}{u^{2}}+\frac{b}{u^{2}} \ldots$ Integrate as $\ln u+\frac{1}{u} \quad$ or FT as $a \ln u-\frac{b}{u}[=\mathrm{F}(u)]$ Re-substitute $u=1+\ln x$ in $\mathrm{F}(u)$ $\ln (1+\ln x)+\frac{1}{1+\ln x}(+c) \quad \text { ISW }$	M1 A1 M1 $\sqrt{ }$ A1 M1 A1 [6]	An attempt - not necessarily accurate No evidence of x at this A1 stage $\underline{\text { or }}$ use 'parts' with ' u ' $=a u+b$, ' $\mathrm{d} v$ ' $=\frac{1}{u^{2}}$ or $-(a u+b) \frac{1}{u}+a \ln u \quad$ FT $\quad[=\mathrm{G}(u)]$ Re-substitute $u=1+\ln x$ in $\mathrm{G}(u)$ or $\ln (1+\ln x)-\frac{\ln x}{1+\ln x}(+c) \quad$ ISW	
7	(i)	In each part, mark the answers, ignoring the labels $A B=\sqrt{ } 91 ; \quad A C=\sqrt{ } 27$ or $3 \sqrt{3} \quad$ ISW Attempting to use $\overrightarrow{A B} \cdot \overrightarrow{A C}=A B \cdot A C \cos \theta$ angle $B A C=171(3 \mathrm{sf})$ or $2.99(\mathrm{rad})(3 \mathrm{sf}) \quad$ ISW	$\begin{gathered} \text { B1; B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \\ \hline \end{gathered}$	To invoke MR, evidence must be clear 9.54 or 9.539392..; 5.2(0) or 5.1961524.. or $B C^{2}=A B^{2}+A C^{2}-2 A B \cdot A C \cos \theta$ Final acute answer [8.68 or 0.152] /choice \rightarrow A0	171 to 171.317 or 2.99
7	(ii)	$\begin{array}{ll} 6 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k} \text { or }-6 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k} & \\ 6 \times(-1)+4 \times(-3)-2 \times(-9)=0 & (\therefore \text { perpendicular }) \mathbf{A G} \\ 6 \times 1+4 \times 1-2 \times 5=0 & (\therefore \text { perpendicular }) \mathbf{A G} \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	seen, irrespective of any labelling oe using $(6,4,-2)$ or $(-6,-4,2)$ and... oe using $(6,4,-2)$ or $(-6,-4,2)$ and...	$\begin{aligned} & \ldots(-1,-3,-9) \text { or }(1,3,9) \\ & \ldots(1,1,5) \text { or }(-1,-1,-5) \end{aligned}$
7	(iii)	$\begin{aligned} & (A D=) \sqrt{ } 56 \text { or } 2 \sqrt{14} \text { or } 7.48 \ldots \quad \text { soi } \\ & \text { area } A B C=1 / 2(\text { their }) A B \times(\text { their }) A C \times \sin (\text { their }) B A C \\ & 9.3 \leq V<9.35,9 \frac{1}{3} \quad \text { ISW } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	($\checkmark=3.74 \ldots$ but M mark, not A) Accept even if (i) angle given as 8.68.....	i.e. the acute version not accepted in (i)

Question		Answer	Marks B2	Guidance	
8	(i)	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{k}{\sqrt{r}} \text { oe }$ Sep variables of their diff eqn (or invert) \& integrate each side, increasing powers by 1 (or $\frac{1}{r} \rightarrow \ln r$) Subst $\frac{\mathrm{d} r}{\mathrm{~d} t}=1.08, r=9$ into their diff eqn to find k Substitute $t=5, r=9$ to find ' c ' Correct value of c (probably $=1.8$ or -1.8) $r=(4.86 t+2.7)^{\frac{2}{3}}$ ISW	B2 *M1 M1 dep*M1 A1 A1 [7]	B1 for $\frac{\mathrm{d} r}{\mathrm{~d} t}=$; B1 for $\frac{k}{\sqrt{r}}$ their d.e. must be $\frac{\mathrm{d} r}{\mathrm{~d} t}$ (or $\frac{\mathrm{d} t}{\mathrm{~d} r}$) $=\mathrm{f}(r)$ their d.e. must include $\frac{\mathrm{d} r}{\mathrm{~d} t}$ (or $\frac{\mathrm{d} t}{\mathrm{~d} r}$), $r \& k$ Must involve ' +c ' here Check other values Answer required in form $r=\mathrm{f}(t)$	SR: B1 for $\frac{\mathrm{d} r}{\mathrm{~d} t} \propto \frac{1}{\sqrt{r}}$ Ignore absence of ' +c ' after integration ($\checkmark k=3.24$ but M mark, not A)
8	(ii)	subst $t=0$ into any version of (i) result to find finite r Any V in range $30.5 \leq V<30.55$, but not fortuitously	M1 A1 [2]	Accept 9.72π or $\frac{243}{25} \pi$	($\checkmark r \approx 1.938991 . .$. but M mark, not A)

Question		Answer	$\begin{gathered} \text { Marks } \\ \hline \text { B1, B1 } \\ \text { B1 } \\ \text { [3] } \\ \hline \end{gathered}$	Guidance	
9	(i)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=2(+)-\frac{2}{t^{3}} ; \frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{t^{2}}$ oe soi ISW $\frac{2}{t}-2 t^{2}$ or $-2\left(t^{2}-\frac{1}{t}\right), \frac{2 t^{3}-2}{-t},-t^{2}\left(2-\frac{2}{t^{3}}\right)$ oe		ISW. Must not involve (implied)'tripledeckers’ e.g. fractions with neg powers...	$\ldots \text { e.g. } \frac{2-2 t^{-3}}{-t^{2}}$
9	(ii)	(Any of their expressions for $\frac{\mathrm{d} y}{\mathrm{~d} x}$) $=0$ or their $\frac{d y}{d t}=0$ $t=1 \rightarrow(\text { stationary point })=(0,3)$ Consider values of x on each side of their critical value of x which lead to finite values of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Hence $(0,3)$ is a minimum point \quad www	M1 A1 M1 A1 [4]	Not awarded if $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is wrong in (i) and used here BUT allow recovery if only explicitly considering $\frac{\mathrm{d} y}{\mathrm{~d} t}=0$ Totally satis; values of x must be close to $0 \&$ not going below or equal to $x=-1$	
9	(iii)	Attempt to find t from $x=\frac{1}{t}-1$ and substitute into the equation for y $y=\frac{2}{x+1}+(x+1)^{2} \quad$ oe (can be unsimplified) ISW	M1 A1 [2]		

Question		Answer	Marks M1	Guidance	
10	(i)	$(1-x)^{-3}=1+-3 .-x+\frac{-3 .-4}{2}(-x)^{2}+\ldots \quad$ oе; accept $3 x$ for $-3 .-x \& /$ or $-x^{2}$ or $(x)^{2}$ for $(-x)^{2}$ multiplication by x to produce AG (Answer Given)		As result is given, this expansion must be shown and then simplified. It must not just be stated as $1+3 x+6 x^{2}+\ldots$	For alternative methods such as expanding $(1-x)^{3}$ and multiplying by $x+3 x^{2}+6 x^{3}$ or using long division, consult TL
10	(ii)	Clear indication that $x=0.1$ is to be substituted (estimated value is) $0.1+3(0.1)^{2}+6(0.1)^{3}=\underline{0.136}$	M1 A1 [2]	e.g. $0.1+3(0.1)^{2}+6(0.1)^{3}$ stated	Calculator value \rightarrow M0 ($0.13717 \ldots$ is calculator value of $\frac{100}{729}$)
10	(iii)	Sight of $1-x=x\left(\frac{1}{x}-1\right)$ or $1-x=-x\left(1-\frac{1}{x}\right)$ or $\left(\frac{1}{x}-1\right)^{3}=-\left(1-\frac{1}{x}\right)^{3}$ or $\left(\frac{1}{x}-1\right)^{-3}=-\left(1-\frac{1}{x}\right)^{-3}$ or $\left(\frac{1}{x}-1\right)^{-3}=-\left(1-\frac{1}{x}\right)^{-3}$ or equivalent Complete satisfactory explanation (no reference to style) www $\begin{aligned} & {\left[1+(-3)\left(-\frac{1}{x}\right)+\frac{(-3)(-4)}{2}\left(-\frac{1}{x}\right)^{2}+\ldots\right]} \\ & \rightarrow-\frac{1}{x^{2}}-\frac{3}{x^{3}}-\frac{6}{x^{4}} \end{aligned}$	B1 B1 M1 A1 [4]	(Answer Given) Simplified expansion may be quoted - it may have come from result in part (i). Answer for this expansion is not AG.	

Question		Answer	Marks	Guidance	
$\mathbf{1 0}$	(iv)	Must say "Not suitable" and one of following: Either: requires $\left\|\frac{1}{x}\right\|<1$, which is not true if $x=0.1$ Or: substitution of positive/small value of x in the expansion gives a negative/large value (which cannot be an approximation to 100/729).	B1	This B1 is dep on $x=0.1$ used in (ii).	Realistic reason
[1] "because $\frac{1}{x}>1 "$					
If choice given, do not ignore incorrect					
comments, but ignore					
irrelevant/unhelpful ones					

Question		Answer	Marks	Guidance	
3	(i)	$1+\left(-\frac{1}{2}\right)(-2 x)+\left(-\frac{1}{2}\right)\left(\frac{-3}{2}\right) \frac{(\pm 2 x)^{2}}{2!}[+\ldots]$ $1+x+\frac{3}{2} x^{2}$ oe	B1 B1 B1 [3]	first two terms third term	allow recovery from omission of brackets do not allow $2 x^{2}$ unless fully recovered in answer
	(ii)	use of $(x+3) \times$ their $\left(1+x+\frac{3}{2} x^{2}\right)$ coefficient is 5.5 oe	M1 A1 [2]	or B2 www in either part	may be embedded (eg $5.5 x^{2}$ alone or in expansion)
4		$\int \frac{\cos 2 x}{1+\sin 2 x}(\mathrm{~d} x)$ $\mathrm{F}[x]=k \ln (1+\sin 2 x)$ soi $\begin{aligned} & k=1 / 2 \\ & 1 / 2 \ln (1+\sin (\pi / 2))-1 / 2 \ln (1+0) \\ & =1 / 2 \ln 2 \end{aligned}$	$\begin{gathered} \text { B1* } \\ \text { B1* } \\ \text { M1dep* } \\ \text { A1 } \\ \text { A1 AG } \\ \text { [5] } \end{gathered}$	$\begin{aligned} & \cos 2 x=1-2 \sin ^{2} x \text { or } \\ & (1+) \sin 2 x=(1+) 2 \sin x \cos x \text { seen } \end{aligned}$ numerator and denominator both correct in the integral soi or $k \ln (1+u)$ or $k \ln (u)$ following their substitution www correct k for their substitution correct use of limits www	if B0B0M0A0, SC4 for $\mathrm{F}[x]=1 / 2 \ln (1+2 \sin x \cos x)$ or $1 / 2 \ln (1+\sin 2 x)$ final mark may still be awarded minimum working: $1 / 2 \ln 2-1 / 2 \ln 1$ or $1 / 2 \ln (1+1)$ oе

Question		Answer	Marks	Guidance	
5	(i)	$\begin{aligned} & 1-s=2+t \\ & 4+2 s=8+3 t \\ & 1+2 s=2+5 t \end{aligned}$ value of either s or t obtained from valid method correct pair of values eg $1+2 \times 0.2 \neq 2+5 \times-1.2$ oe isw NB A0 for $1+2 \times 0.2=2+5 \times-1.2$ unless clarified by suitable comment	B1 M1 A1 A1 [4]	for all three equations NB third equation may appear later, or with values already substituted eqns (i) and (ii): $s=0.2, t=-1.2$ eqns (i) and (iii): $s=-4 / 7, t=-3 / 7$ eqns (ii) and (iii) $s=4.25, t=1.5$ correct substitution of correct values in correct equation	or M1 for one value (of s or t) found from one pair of equations A1 for substitution of this value (of s or t) in third equation and obtaining the other parameter (ie of t or s); NB $(0.2,-0.12)$ or $\left(-4 / 7,{ }^{-12} / 7\right)$ or $(4.25,-5.25)$ if s found first and $(-2.5,-1.2)$ or $(19 / 14,-3 / 7)$ or $(-2.5,1.5)$ if t found first or find same parameter from second pair of equations A1 for correct demonstration of inconsistency NB clear statement needed if two different values of same parameter found
5	(ii)	$2 \mathbf{i}-4 \mathbf{j}-4 \mathbf{k}=-2(-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k})$ oe eg line A goes through $(1,4,1)$ but line C goes through ($1,15,11$), so they do not coincide so the lines are parallel eg demonstration of different y or z values on each line for (say) $x=1$, so lines are parallel	B1 B1 [2]	allow equivalent in words, but scale factors must be correct	eg direction of A is $-1 / 2 \times$ direction of C

Question		Answer $\begin{aligned} & 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & 2 x-12 \frac{\mathrm{~d} y}{\mathrm{~d} x}-8 \end{aligned}$ their $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-12 \frac{\mathrm{~d} y}{\mathrm{~d} x}=8-2 x$ soi must be two terms on each side and must follow from RHS $=0$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8-2 x}{3 y^{2}-12}$ oe their $3 y^{2}-12=0$ $y=(\pm) 2$ substitution of their positive y value in original equation $x=10, x=-2$ and no others cao	Marks	Guidance	
6			B1	or $2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}$	if B0B0 M0
			B1	$3 y^{2}-8 \frac{\mathrm{~d} x}{\mathrm{~d} y}-12$	$\mathrm{SC} 2 \text { for } \frac{\mathrm{d} y}{\mathrm{~d} x}=$
			M1	their $2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}-8 \frac{\mathrm{~d} x}{\mathrm{~d} y}=-3 y^{2}+12$	$\frac{1}{3}\left(-x^{2}+8 x+12 y+4\right)^{\frac{-2}{3}} \times\left(-2 x+8+12 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)$ M1 may be earned for setting correct
				must be two terms on each side must follow from RHS $=0$	denominator equal to 0
			A1	This mark may be implied if $\frac{\mathrm{d} x}{\mathrm{~d} y}=0$ is substituted and there is no evidence for an incorrect expression for $\frac{\mathrm{d} x}{\mathrm{~d} y}$	
			M1*		$x \neq 4$ not required
			A1	$\mathrm{A} 0 \text { if } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { incorrect }$	
			M1dep*		ignore substitution of -2
			A1 [8]	A0 if $\frac{\mathrm{d} y}{\mathrm{~d} x}$ incorrect	condone omission of formal statement of coordinates $(10,2)$ and $(-2,2)$

Question		Answer	Marks	Guidance	
7	(i)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} t}=-2 \sin 2 t+2 \cos t \text { soi } \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{their} \frac{\frac{\mathrm{d} y}{\frac{\mathrm{~d} t}{\mathrm{~d}}}}{\mathrm{~d} t} \\ & \text { oe } \\ & \frac{-2 \sin 2 t+2 \cos t}{2 \cos t} \text { soi } \\ & \frac{-4 \sin t \cos t+2 \cos t}{2 \cos t} \text { or } \frac{2 \cos t(-2 \sin t+1)}{2 \cos t} \text { and } \\ & \text { completion to } 1-2 \sin t \text { www } \\ & (1,11 / 2) \end{aligned}$	B1 M1 A1 A1 B1 [5]	$\mathrm{NB} \frac{\mathrm{~d} x}{\mathrm{~d} t}=2 \cos t$ or equivalent intermediate step NB $t=\frac{\pi}{6}$	if B0M0A0 SC3 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=1-x$ from correct Cartesian equation seen in part (i) or part (ii) B1 for substitution of $x=2 \sin t$ from $1-2 \sin t=0$
7	(ii)	$(y=) 1-2 \sin ^{2} t+2 \sin t$ substitution of $\sin t=1 / 2 x$ to eliminate t $y=1+x-1 / 2 x^{2}$ oe isw	B1 M1 A1 [3]	may be awarded after correct substitution for x $\operatorname{eg}(y=) 1-x^{2} / 4-\sin ^{2} t+2 \sin t$ or B3 www	or $(y=) x+\cos 2 t$ substitution of $t=\sin ^{-1}\left(\frac{x}{2}\right)$ to eliminate t $y=x+\cos 2\left(\sin ^{-1}(x / 2)\right)$ oe isw

	estion	Answer	Marks	Guidance	
7	(iii)	$\begin{aligned} & -2 \leq x \leq 2 \text { or } x \geq-2 \text { (and) } x \leq 2 \text { or }\|x\| \leq \\ & 2 \end{aligned}$ sketch of negative quadratic with endpoints in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants positive y-intercept and one distinguishing feature isw	B1 M1 A1 [3]	cao RH point must be to the right of the maximum	one from: endpoints $(-2,-3)$ and $(2,1)$, vertex at $\left(1,1^{112}\right), y$ - intercept is $(0,1), x$ intercept is $(1-\sqrt{ } 3,0)$
8	(i)	t^{2} in quotient and $t^{3}+2 t^{2}$ seen $-2 t$ in quotient and $-2 t^{2}-\left(-2 t^{2}-4 t\right)=4 t$ seen completion to obtain correct quotient and remainder identified www	B1 B1 B1 [3]	$\begin{aligned} & \text { or } \frac{t\left(t^{2}-4\right)+4 t}{(t+2)} \\ & \frac{t(t+2)(t-2)}{(t+2)}+\frac{4 t}{t+2} \\ & t(t-2)+\frac{4(t+2)-8}{t+2} \end{aligned}$	$\begin{aligned} & \text { or } \frac{(t+2)^{3}-6 t^{2}-12 t-8}{(t+2)} \\ & \frac{(t+2)^{3}}{(t+2)}-\frac{6\left((t+2)^{2}-4 t-4\right)+12 t+8}{(t+2)} \text { oe } \\ & (t+2)^{2}-6(t+2)+\frac{12 t+16}{t+2} \text { oe } \\ & =t^{2}+4 t+4-6 t-12+\frac{12(t+2)-8}{t+2} \text { oe } \end{aligned}$ both steps needed for final B1
8	(i)	alternatively $\frac{t^{3}}{t+2} \equiv A t^{2}+B t+C+\frac{D}{(t+2)}$ equate coefficients to obtain correctly $A=1,0=2 A+B$ and $B=-2$ www $0=2 B+C$ and $0=2 C+D$ obtained and solved correctly www	B1 B1 B1 [3]	or $t^{3} \equiv\left(A t^{2}+B t+C\right)(t+2)+D$	or B1 for $\frac{t^{2}(t+2)-2 t^{2}}{(t+2)}$ B1 for $t^{2}+\frac{-2 t(t+2)+4 t}{(t+2)}$ B1 for $t^{2}-2 t+\frac{4(t+2)-8}{(t+2)}$

	estion	Answer	Marks	Guidance	
8	(ii)	integration by parts with $u=\ln (t+2)$ and $\mathrm{d} v=$ $6 t^{2}$ to obtain $f(t) \pm \int \mathrm{g}(t)(\mathrm{d} t)$ $2 t^{3} \ln (t+2)-\int \frac{2 t^{3}}{t+2}(\mathrm{~d} t) \text { cao }$ result from part (i) seen in integrand; must follow award of at least first M1 $\mathrm{F}[t]=2 t^{3} \ln (t+2) \pm \frac{2 t^{3}}{3} \pm 2 t^{2} \pm 8 t \pm 16 \ln (t+2)$ their $F[2]-F[1]$ $-62 / 3-18 \ln 3+32 \ln 4$ ое сао	M1* A1 M1* A1 M1dep* A1 [6]	$\mathrm{f}(t)$ must include t^{3} and $\mathrm{g}(t)$ must not include a logarithm no integration required for this mark $2 t^{3} \ln (t+2)-\frac{2 t^{3}}{3}+2 t^{2}-8 t+16 \ln (t+2)$ at least one of their terms correctly integrated	ignore spurious $\mathrm{d} x$ etc alternatively, following $u=t+2$ $\int 2\left(u^{2}-6 u+12-\frac{8}{u}\right) \mathrm{d} u$ ое $\frac{2 u^{3}}{3}-6 u^{2}+24 u-16 \ln u$ and $2 t^{3} \ln (t+2)$ NB limits following substitution are $u=4$ and $u=3$
9		$\frac{A}{1+2 x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}}$ may be seen in later work $2+x^{2} \equiv A(1-x)^{2}+B(1+2 x)(1-x)+C(1+2 x)$ $A=1, B=0$ and $C=1 \mathrm{www}$ $\begin{aligned} & \int\left(\frac{1}{1+2 x}+\frac{1}{(1-x)^{2}}\right) d x= \\ & a \ln (1+2 x)+b(1-x)^{-1} \end{aligned}$ $\mathrm{F}(x)=1 / 2 \ln (1+2 x)+(1-x)^{-1}$ their $\frac{1}{2} \ln \left(\frac{3}{2}\right)+\frac{4}{3}-\left(\frac{1}{2} \ln 1+1\right)$	B1 M1 A1A1A1 M1* A1 M1dep*	or $\frac{A}{1+2 x}+\frac{B x+C}{(1-x)^{2}}$ may be seen later in later work or $A(1-x)^{2}+(B x+C)(1+2 x)$ a and b are non-zero constants	if B0M0, SC1 for $\frac{1}{1+2 x}$ seen allow only sign errors, not algebraic errors ignore extra terms

Question		Answer	Marks	Guidance	
		$\frac{1}{2} \ln \left(\frac{3}{2}\right)+\frac{4}{3}-0-1$	$\begin{aligned} & \text { A1 } \\ & \text { [9] } \end{aligned}$	and completion to given result www	$\text { NB } \frac{1}{2} \ln \left(\frac{3}{2}\right)+\frac{1}{3}$
10	(i)	$\frac{\mathrm{d} V}{\mathrm{~d} t}= \pm 0.01$ by similar triangles, $\frac{h}{4.5}=\frac{r}{3}$ $\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{4}{9} \pi h^{2}$ oe $\frac{\mathrm{d} h}{\mathrm{~d} t}= \pm 0.01 \times$ their $\frac{\mathrm{d} h}{\mathrm{~d} V}$ oe $-0.01=\left(\frac{4}{9} \pi h^{2}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}$	B1 B1 B1 M1 A1 [5]	may be implied by $r=\frac{2 h}{3}$ oe use of Chain rule completion to given result www	may follow from incorrect differentiation: expressions must be a function of either r or h or both $h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{-0.09}{4 \pi}=\frac{-9}{400 \pi}$
10	(ii)	$\int h^{2} \mathrm{~d} h=\int \frac{-9}{400 \pi} \mathrm{~d} t$ oe soi $\frac{h^{3}}{3}=\frac{-9}{400 \pi} t(+c)$ substitution of $t=0$ and $h=4.5$ in their expression following integration $h=3 \sqrt{\frac{729}{8}-\frac{27 t}{400 \pi}}$ oe isw	M1 A1 M1 A1 [4]	separation of variables expression must include c and powers must be correct on each side allow -0.0215 or -0.02148591 ...r.o.t to 4 sf or more and similarly 91.125	if no subsequent work, integral signs needed, but allow omission of $\mathrm{d} h$ or $\mathrm{d} t$, but must be correctly placed if present; $91.125=729 / 8$
10	(iii)	set $h=0$ and solve to obtain positive t 71 minutes cao	M1 A1 [2]	or $(t=) \frac{1}{3} \pi \times 3^{2} \times 4.5 \div 0.01(=1350 \pi)$	NB $1350 \pi=4241.150082 \ldots$

