OCR Maths C4

Mark Scheme Pack

2005-2014

1	(Quotient =) $x^2 + 2x + 2$ (Remainder =) $0x - 3$ Allow without working	B1 M1 A1 A1 4	For correct leading term x^2 in quotient For evidence of division/identity process For correct quotient For correct remainder. The '0x' need not be written but must be clearly derived. 4
2	$x \sin x - \int \sin x dx$ (= x sin x + cos x) Answer = $\frac{1}{2} \pi - 1$	M1 A1 B1 M1 A1 5	For attempt at parts going correct way (u = x, dv = cos x and f(x) +/ $-\int g(x) (dx)$ For both terms correct Indic anywhere that $\int \sin x dx = -\cos x$ For correct method of limits For correct exact answer ISW 5
3	(i) r = $(2i-3j+k \text{ or } -i-2j-4k) + t(3i-j+5k)$ (ii) $L(2)$ (r) = $3i+2j-9k+s(4i-4j+5k)$ L(1)&L(2) must be of form r = a + tb 2+3t=3+4s, -3-t=2-4s, 1+5t= -9+5s or suitable equivalences (t,s) = $(+/-3,2)$ or $(-/+1,1)$ or $(-/+9,-7)$ or $(+/-4,2)$ or $(0,1)$ or $(-/+8,-7)$ Basic check other eqn & interp $\sqrt{-1}$	M1 A1 2 M1 M1 M1 A1 B1 5	For (either point) + t(diff betw vectors) Completely correct including r =. AEF For point + (s or t) direction vector For 2/3 eqns with 2 different parameters For solving any relevant pair of eqns For both parameters correct 7
4	(i) $dx = \sec^2\theta \ d\theta$ AEF Indefinite integral = $\int \cos^2\theta \ d\theta$ (ii) = $k\int +/-1 +/-\cos 2\theta \ d\theta$ $\frac{1}{2}[\theta + \frac{1}{2}\sin 2\theta]$ Limits = $\frac{1}{4}\pi(\operatorname{accept} 45) \ \text{and} \ 0$ ($\pi + 2$)/8 AEF	M1 A1 3 M1 A1 M1 A1 4	Attempt to connect $dx,d\theta$ (not $dx = d\theta$) For $dx = \sec^2\theta d\theta$ or equiv correctly used With at least one intermed step AG "Satis" attempt to change to double angle Correct attempt + correct integration New limits for θ or resubstituting Ignore decimals after correct answer 7 Single 'parts' + sin ² θ =1–cos ² θ acceptable
5	(i) OD=OA+AD or OB+BC+CD AEF AD = BC or CD = BA ($\mathbf{a} + \mathbf{c} - \mathbf{b}$) = 2 $\mathbf{j} + \mathbf{k}$ (ii) AB.CB = AB CB cos θ Scalar product of <u>any</u> 2 vectors Magnitude of <u>any</u> vector 94°(94.386) or 1.65 (1.647)	M1 A1 A1 3 M1 M1 M1 A1 4	Connect OD & 2/3/4 vectors in their diag Or similar ,from their diag [i.e.if diag mislabelled, M1A1A0 possible] Or AB.BC i.e.scalar prod for correct pair 2 + 3 - 6 = -1 is expected $\sqrt{19}$ or 3 expected Accept 86°(85.614) or 1.49(424) 7
6	(i) For $d/dx (y^2) = 2y dy/dx$ Using $d(uv) = u dv + v du$ $2xy dy/dx + y^2 = 2 + 3 dy/dx$ $dy/dx = (2 - y^2)/(2xy - 3)$	B1 M1 A1 M1	Solving an equation, with at least 2 dy/dx terms, for dy/dx ; dy/dx on one side, non dy/dx on other.

	(ii) Stating/using $2xy - 3 = 0$ Attempt to eliminate x or y $8x^2 = -9$ or $y^2 = -2$	B1 M1 A1 3	No use of 2 - y^2 in this part. Between $2xy - 3 = 0$ & eqn of curve Together with suitable finish 8
7	(i) dy / dx = (dy/dt) / (dx/dt) = $(-1/t^2) / 2t$ as unsimplified expression = $-1 / 2t^3$ as simplified expression (ii) $(4,-1/2) \rightarrow t = -2 \text{ only}$ Satis attempt to find equation of tgt x - 16y = 12 only (iii) $t^3 - 12t - 16 = 0 \text{ or } 16y^3 + 12y^2 - 1 = 0$ $\text{ or } x^3 - 24x^2 + 144x - 256 = 0$ t = 4 (only) ISW giving cartesian coords	M1 A1 3 B1 M1 A1 3 M1 A1 B2 4	(S.R.Award M1 for attempt to change to cartesian eqn & differentiate + A1 for dy/dx or dx/dy in terms of x or y) Not 1/-2t ³ . Not in terms of x &/or y. Using $t = -2$ or 2 AG For substituting (t^2 ,1/t) into tgt eqn <u>or</u> solving simult tgt & their cartes eqns For simplified equiv non-fract cubic S.R. Award B1 for "4 or -2". S.R. If B0, award M1 for clear indic of method of soln of correct eqn. 10
8	(i) $3x+4 \equiv A(2+x)^2+B(2+x)(1+x) + C(1+x)$ A = 1 C = 2 A+B = 0 or 4A+3B+C=3 or 4A+2B+C = 4 B = -1 (ii) $1 - x + x^2$ $1 - \frac{1}{2}x + \frac{1}{4}x^2$ 1 - x $+ \frac{3}{4}x^2$ $1 - 5/4x + 5/4x^2$	M1 A/B1 A1 A1 5 B1 B1 B1 B1 B1 5 B1 1	Accept \equiv or $=$ If identity used, award 'A' mark, if cover-up rule used, award 'B' mark. <u>Any</u> correct eqn for <i>B</i> from identity Expansion of $(1 + x)^{-1}$ Expansion of $(1 + \frac{1}{2}x)^{-1}$ First 2 terms of $(1 + \frac{1}{2}x)^{-2}$ Third term of $(1 + \frac{1}{2}x)^{-2}$ Complete correct expansion <u>If partial fractions not used</u> Award B1 for expansion of $(1 + \frac{1}{2}x)^{-2}$, and B1 for 1-5/4x & B1 for+5/4x ² <u>Or</u> if denom expanded to give $a+bx+cx^{2}$ with $a=4.b=8,c=5$,award B1 Expansion of $[1+(b/a)x+(c/a)x^{2}]^{-1} =$ $1 - (b/a)x + (-c/a + b^{2}/a^{2})x^{2}$ B1+B1 Final ans $= (1 - 5/4x + 5/4x^{2})B1+B1$ Other inequalities to be discarded. 11
	(iii) $-1 < x < 1$ AEF		
9	k = const of proportionality - = falling, $d\theta/dt$ = rate of change $\theta - 20$ = diff betw obj & surround temp (ii) $\int 1/(\theta - 20) d\theta = -k \int dt$ $\ln(\theta - 20) = -kt + c$ Subst $(\theta, t) = (100, 0)$ or (68,5)	B2 2 M1 A1A1 M1 A1	All 4 items (first two may be linked) S.R. Award B1 for any 2 items For separating variables For integ each side (c not essential) Dep on 'c' being involved [or_M2 for limits (100,0) (68,5) + A1 for

c = ln 80	A1	k]
k = 1/5 ln 5/3	M1	
(1.5)	A1 8	AG
$\theta = 20 + 80e^{-(\frac{1}{5}\ln\frac{5}{3})t}$		
	M1	Subst into AEF of given eqn & solve
(iii) Substitute $\theta = 68 - 32$	A1	Accept 15.7 or 15.8
t = 15.75	B1 3	f.t. only if θ = their (68 – 32) or 32 13
Extra time = 10.75, √their 15.75 – 5		

1		Attempt to factorise numerator and denominator num = $xx(x-3)$ or denom = $(x-3)(x+3)$	M1 A1			Not num = $x(x^2 - 3x)$
		<u>Final</u> answer = $\frac{x^2}{x+3}$ [Not $\frac{xx}{x+3}$]	A1		3	Do not ignore further cancellation.
2		$\frac{\mathrm{d}}{\mathrm{d}x}(\sin y) = \cos y \cdot \frac{\mathrm{d}y}{\mathrm{d}x}$	B1			
		$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y \qquad \text{s.o.i.}$	B1			[SR: If xy taken to LHS, accept $-x\frac{dy}{dx} + y$ as s.o.i.]
		$\cos y \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = x \frac{\mathrm{d}y}{\mathrm{d}x} + y + 2x$ AEF	B1			ui
		[If written as $\frac{dy}{dx} = \cos y \frac{dy}{dx} = x \frac{dy}{dx} + y + 2x$, acc is used]	cept for	pre	v E	31 but not for following marks if the $\frac{dy}{dx}$
		$f(x, y)\frac{dy}{dx} = g(x, y)$	M1			Regrouping provided > one $\frac{dy}{dx}$ term
		$\frac{y+2x}{\cos y-x}$ or $-\frac{y+2x}{x-\cos y}$ or $\frac{-2x-y}{x-\cos y}$	A1		5	ISW Answer could imply M1
3	(i)	Quotient = $3x +$ For evidence of correct division process	B1 M1			For correct leading term in quotient Or for cubic $\equiv (x^2 - 2x + 5)(gx + h) (+)$
		3x + 4 - 6x - 13	A1 A1		1	For correct quotient For correct remainder ISW
		- 0, - 13				
	(ii)	<i>a</i> = 7	B 1√			<u>Follow through</u> If rem in (i) is $Px + Q$,
		b = 20 [SR: If B0+B0, award B1 $$ for $a = 1 + P$ AND	B1 $$. O·		then B1 $\sqrt{for} a = 1 - P$ and B1 $\sqrt{for} b = 7 - Q$ also SR B1 for $a = 20, b = 7$]
4	(i)	Parts using correct split of $u = x$, $\frac{dv}{dx} = \sec^2 x$	M1	Ŷ,		1st stage result of form
•	(1)	That is using context spin of $u = x$, $dx = dx$	1111			$f(x) + /-\int g(x) dx$
		$x \tan x - \int \tan x dx$	A1			Correct 1 st stage
		$\int \tan x dx = -\ln \cos x \text{ or } \ln \sec x$	B1			
		$x \tan x + \ln \cos x + c \text{ or } x \tan x - \ln \sec x + c$	A1		4	
	(ii)	$\tan^2 x = +/-\sec^2 x + /-1$	M1			or $\sec^2 x = +/-1 + /-\tan^2 x$
		$\int x \sec^2 x \mathrm{d}x - \int x \mathrm{d}x \qquad \text{s.o.i.}$	A1			Correct 1 st stage
		$x\tan x + \ln\cos x - \frac{1}{2}x^2 + c$	A1	3		f.t. their answer to part (i) $-\frac{1}{2}x^2$

January 2006

5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} / \frac{\mathrm{d}x}{\mathrm{d}t}$	M1		Used, not just quoted
		$\frac{1}{t}$ or t^{-1}	A1	2	2 Not $\frac{2}{2t}$ as final answer
	SR	R: M1 for Cart conv, finding $\frac{dy}{dx}$ & ans involv t +	- A1	M1	is attempt only, accuracy not involved
	 (ii)	Finding equation of tangent (using p or t)	M1		
		$py = x + p^2$ working	A1	2	AG ; <i>p</i> essential; at least 1 line inter
	 (iii)	(25,-10) $\Rightarrow p = -5 \text{ or } -5y = x + 25 \text{ seen}$	B1		$5y = x + 25$ seen \Rightarrow B0
		Substitution of their values of <i>p</i> into given tg Solving the 2 equations simultaneously	eqn M1	M1	Producing 2 equations
		(-15,-2) $x = -15, y = -2$	A1	4	Common wrong ans
					$(15,8) \Rightarrow B0, M2, A0$
6	(i)	Attempt to connect $dx, d\theta$	M1		But not $dx = d\theta$
		$dx = 2\sin\theta\cos\thetad\theta$	A1		AEF
		$\sqrt{\frac{x}{1-x}} = \frac{\sin\theta}{\cos\theta}$	B1		Ignore any references to \pm .
		Reduction to $\int 2\sin^2\theta \mathrm{d}\theta$	A1	4	AG WWW
	- (ii)	$\sin^2\theta = k(+/-1+/-\cos 2\theta)$	M1		Attempt to change (2) $\sin^2 \theta$ into $f(\cos 2\theta)$
		$2\sin^2\theta = 1 - \cos 2\theta$	A1		Correct attempt
		$\int \cos 2\theta \mathrm{d}\theta = \frac{1}{2} \sin 2\theta$	B1		Seen anywhere in this part
		Attempting to change limits	M1		Or Attempting to resubstitute; Accept degrees
		$\frac{1}{2}\pi$	A1	5	
		Alternatively Parts once & use	(\mathbf{A}, \mathbf{A})		
		$\cos^{2}\theta = 1 - \sin^{2}\theta$ $\frac{1}{2}(\theta - \sin\theta\cos\theta)$	(M2) (A1)		Instead of the M1 A1 B1 Then the final M1 A1 for use of
		2 (0 511 0 005 0)	(111)		limits
7	(i)	<i>A</i> = 3	B1		For correct value stated
		<i>C</i> = 1	B1		For correct value stated
		$11 + 8x \equiv A(1+x)^2 + B(2-x)(1+x) + C(2-x)$			AEF; any suitable identity
		e.g. $A - B = 0, 2A + B - C = 8, A + 2B + 2C = 1^{\circ}$	A1		For any correct (f.t.) equation involving B
		<i>B</i> = 3	A1	5	
	(ii)	$(1-\frac{x}{2})^{-1} = 1 + \frac{x}{2} + \frac{x^2}{4} + \dots$	B1		s.o.i.
		$(1+x)^{-1} = 1-x+x^2$	B1		s.o.i.
		$(1+x)^{-2} = 1-2x + 3x^2 - \dots$	B1,B1		s.o.i.
		Expansion = $\frac{11}{2} - \frac{17}{4}x + \frac{51}{8}x^2 + \dots$	B1	5	CAO. No f.t. for wrong A and/or B
					and/or C
		10			

SR(1) If partial fractions not used but product of SR(2) If partial fractions not used but $(11+8x)(2-x)^{-1}(1+x)^{-2}$ attempted, then denominator multiplied out, then $(1-\frac{x}{2})^{-1} = 1 + \frac{x}{2} + \frac{x^2}{4} + \dots$ B1 for B1 for denom = $2 + 3x(+0x^2) + ...$ B1 for $(1 + \frac{3x}{2})^{-1} = 1 - \frac{3x}{2} + \frac{9x^2}{4} + \dots$ B1,B1 for $(1+x)^{-2} = 1-2x + ... + 3x^{2} + ...$ B1,B1 for $\frac{11}{2} - \frac{17}{4}x + \dots + \frac{51}{8}x^2 + \dots$ B1,B1,B1 for $\frac{11}{2}$... $-\frac{17}{4}x$... $+\frac{51}{8}x^2$ +... N.B. In both SR, if final expansion given B0, -----allow SR B1 for $22 - 17x + 51/2 x^2$ $\int (y-3) \mathrm{d}y = \int (2-x) \mathrm{d}x$ or equiv (i) M1 For separation & integration of both sides $\frac{1}{2}y^2 - 3y = 2x - \frac{1}{2}x^2$ A1 or $\frac{1}{2}(y-3)^2 = -\frac{1}{2}(x-2)^2$ } (or + M2 for equiv statement using limits) For an arbitrary const on one/both sides *B1 Substituting (x, y) = (5, 4) or (4, 5) & finding 'c' dep*M1 5 or $\frac{1}{2}(y-3)^2 = -\frac{1}{2}(x-2)^2 + 5$ $\frac{1}{2}y^2 - 3y = -\frac{1}{2}x^2 + 2x - \frac{3}{2}$ AEF ISW A1 AEF **(ii)** Attempt to clear fracts (if nec) & compl square M1 a = 2, b = 3, k = 10**3** For all 3; SR: A1 for 1 or 2 correct A2 (iii) Circle clearly indicated in a sketch B1 Centre (2,3) or their (a,b)B1√ Radius $\sqrt{10}$ or their \sqrt{k} B1√ 3 $\sqrt{\text{provided } k > 0}$ Using $\begin{pmatrix} -8\\1\\-2 \end{pmatrix}$ and $\begin{pmatrix} -9\\2\\-5 \end{pmatrix}$ as the relevant vectors M1 (i) i.e. correct direction vectors Using $\cos \theta = \frac{\underline{a}.\underline{b}}{|\underline{a}||\underline{b}|}$ AEF for any 2 vectors Accept $\cos \theta = \frac{\underline{a}.\underline{b}}{|\underline{a}||\underline{b}|}$ **M**1 Method for scalar product of any 2 vectors **M**1 Method for finding magnitude of any vector **M**1 15° (15.38...), 0.268 rad A1 5 e.g. 4 - 8t = -2 - 9s, **(ii)** Produce (at least) 2 of the 3 eqns in t and s M1-6-2t = -2-5sSolve the (x) and (z) equations M1t = 3 or s = 2for first value found A1 s = 2 or t = 3f.t. A1√ for second value found Substituting their (t, s) into (v) equation **M**1 *a* = 1 A1 Substituting their t into l_1 or their (s, a)

8

4724	Mark Scheme	January 2006
into l_2	M1	
(-20) 5 (-12)	A1	8 Any format but not $\begin{pmatrix} \\ \\ \end{pmatrix} + \begin{pmatrix} \\ \\ \end{pmatrix}$

1		$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$	B1		s.o.i. e.g. $2x\frac{dy}{dx} + y$
		$\frac{d}{dr}(y^2) = 2y\frac{dy}{dr}$	B1		
		Substitute (1,2) into their differentiated equation	M1 dep	at	Or attempt to solve their diff equation for $\frac{dy}{dx}$
		and attempt to solve for $\frac{dy}{dx}$. [Allow subst of (2,1)]	least 1 x	x B1	and then substitute (1,2)
		$\frac{dy}{dx} = -2$	A1	4	
		dx			
2	(i)	$1 + (-2)(-3x) + \frac{(-2)(-3)}{1.2}(-3x)^2 (+ \dots \text{ ignore})$	M1		State or imply; accept $-3x^2 \& -9x^2$
		= 1 + 6x	B1		Correct first 2 terms
		$\dots + 27x^2$	A1	3	Correct third term
	(ii)	$(1+2x)^2(1-3x)^{-2}$	M1		For changing into suitable form, seen/implied
		Attempt to expand $(1+2x)^2$ & select (at least) 2	M1		Selection may be after multiplying out
		relevant products and add 55 (Accept $55x^2$)	A2√	4	If (i) is $a + bx + cx^2$, f.t. $4(a + b) + c$
		<u>SR 1</u> For expansion of $(1 + 2x)^2$ with 1 error, A1v		•	
		<u>SR 2</u> For expansion of $(1 + 2x)^2$ & > 1 error, A0			
		Alternative MethodFor correct method idea of long division $1 \dots +10x \dots +55x^2$	M1 A1,A1,4	A1(4))
3	(i)	$\frac{A}{x} + \frac{B}{3-x}$ & c-u rule or $A(3-x) + Bx \equiv 3-2x$	M1		Correct format + suitable method
		$\frac{1}{x}$	A1		seen in (i) or (ii)
		x 1	A1	3	ditto; $\frac{1}{r} - \frac{1}{3-r}$ scores 3 immediately
		$-\frac{3}{3-x}$	AI	3	$\frac{1}{x} = \frac{1}{3-x}$ scores 5 minediately
	(ii)	$\int \frac{1}{x} (\mathrm{d}x) = \ln x \text{ or } \ln x $	B1		
		$\int \frac{1}{3-x} (dx) = -\ln(3-x) \text{ or } -\ln 3-x $	B1		Check sign carefully; do not allow $\ln(x-3)$
		Correct method idea of substitution of limits ln 2 (+ ln 1 - ln 1) - ln 2 = 0 <u>Alternative Method</u>	M1 A1	4	Dep on an attempt at integrating Clearly seen; WWW AG
		If ignoring PFs, $\ln x(3 - x)$ immediately As before	B2 M1,A1	(4)	$\ln x(x-3) \to 0$
	(iii)	Suitable statement or clear implication e.g. Equal amounts (of area) above and below (axis) or graph crosses axis or there's a root (Be lenient)	B1	1	

4	= N N U	Vorking out $\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$ or $\mathbf{c} - \mathbf{a}$ or $\mathbf{a} - \mathbf{c}$ $\pm (-3\mathbf{i} - \mathbf{j} - \mathbf{k})$ or $\pm (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Method for finding magnitude of <u>any</u> vector Method for finding scalar product of <u>any</u> 2 vectors Using $\cos \theta = \frac{a.b}{ a b }$ AEF for <u>any</u> 2 vectors	M1 A1 M1 M1 M1)))	Irrespective of label If not scored ,these 1 st 3 marks can be awarded in part (ii)
		Alternative cosine rule method $\left \overrightarrow{BC} \right = \sqrt{6}$	B 1		
		Cosine rule used π	M1		'Recognisable' form
	4	$45.3^{\circ}, 0.79(0), \frac{\pi}{3.97} $ (45.289378, 0.7904487)	A1	6	Do not accept supplement (134.7 etc)
	(ii)	Use of $\frac{1}{2} \left \overrightarrow{AB} \right \left \overrightarrow{AC} \right \sin \theta$	M1		Accept $\left \frac{1}{2} \overrightarrow{AB} \ge \overrightarrow{AC} \right $
	3	3.54 (3.5355) or $\frac{5\sqrt{2}}{2}$	A1	2	Accept from correct supp (134.7 etc)
5	(i)	$\frac{\mathrm{d}A}{\mathrm{d}t}$ or kA^2 seen	M1		
		$\frac{\mathrm{d}A}{\mathrm{d}t} = kA^2$	A1	2	
	(ii)	Separate variables + attempt to integrate	*M1		Accept if based on $\frac{dA}{dt} = kA^2$ or A^2
		$-\frac{1}{A} = kt + c \text{or} -\frac{1}{kA} = t + c \text{or} -\frac{1}{A} = t + c$	A1		
		Subst one of $(0,0)$, $(1,1000)$ or $(2,2000)$ into eqn. Subst another of $(0,)$, $(1,1000)$ or $(2,2000)$ into eqn Substitute $A = 3000$ into eqn with k and c subst	dep*M dep*M dep*M	[1	Equation must contain k and/or c This equation must contain k and c
		$t = \frac{7}{3}$ ISW	A1	6	Accept 2.33, 2h 20 m
6	(i)	Attempt to connect du and dx e.g. $\frac{du}{dx} = e^x$	M1		But not $du = dx$
		Use of $e^{2x} = (e^x)^2$ or $(u-1)^2$ s.o.i.	A1		
		Simplification to $\int \frac{u-1}{u} (du)$ WWW	A1	3	AG
	(ii)	Change $\frac{u-1}{u}$ to $1-\frac{1}{u}$ or use parts	M1		If parts, may be twice if $\int \ln x dx$ is involved
		$\int \frac{1}{u} du = \ln u$	A1		Seen anywhere in this part
		Either attempt to change limits or resubstitute Show as $e + 1 - \ln(e + 1) - \{2 \text{ or } (1 + 1)\} + \ln 2$	M1 (in A1	dep)	Expect new limits e+1 & 2
		WWW show final result as $e - 1 - ln\left(\frac{e+1}{2}\right)$	A1	5	AG

472	4	Mark Scheme			June 2006		
7	(i)	Produce at least 2 of the 3 relevant eqns in λ and μ Solve the 2 eqns in $\lambda \& \mu$ as far as $\lambda =$ or $\mu =$ 1^{st} solution: $\lambda = -2$ or $\mu = 3$ 2^{nd} solution: $\mu = 3$ or $\lambda = -2$ f.t. Substitute their λ and μ into 3^{rd} eqn and find ' <i>a</i> '	M1 M1 A1 A1√ M1		e.g. $1 + 3\lambda = -8 + \mu$, $-2 + \lambda = 2 - 2\mu$		
		Obtain $a = 2$ & clearly state that a cannot be 2	A1	6			
	(ii)	Subst their λ or μ (& poss <i>a</i>) into either line eqn	M1				
		Point of intersection is $-5i - 4j$	A1	2	Accept any format <u>No f.t. here</u>		
		N.B. In this question, award marks irrespective					
8	(i)	of labelling of parts Integration method					
Ū	(-)	Attempt to change $\cos^2 6x$ into $f(\cos 12x)$	M1				
		$\cos^2 6x = \frac{1}{2} (1 + \cos 12x)$	A1		with $\cos^2 6x$ as the subject of the formula		
		$\int = \frac{1}{2}x + \frac{1}{24}\sin 12x + c$	A1		AG Accept $\frac{1}{2}\left(x + \frac{1}{12}\sin 12x\right)$		
		Differentiation method					
		Differentiate RHS producing $\frac{1}{2} + \frac{1}{2}\cos 12x$ (E)	B1				
		Attempt to change $\cos 12x$ into $f(\cos 6x)$	M1		Accept $+/-2\cos^2 6x + /-1$		
		Simplify (E) WWW to $\cos^2 6x + \text{satis finish}$	A1	3			
	(ii)	Parts with $u = x$, $dv = \cos^2 6x$	*M1				
		$x\left(\frac{1}{2}x + \frac{1}{24}\sin 12x\right) - \int \left(\frac{1}{2}x + \frac{1}{24}\sin 12x\right) dx$	A1		Correct expression only		
		$\int \sin 12x \mathrm{d}x = -\frac{1}{12} \cos 12x$	B1		Clear indication somewhere in this part		
		Correct use of limits to whole integral	dep*M1		Accept () (-0)		
		$\frac{\pi^2}{288} - \frac{\pi^2}{576} - \frac{1}{288} - \frac{1}{288}$	A1		AE unsimp exp. Accept 12x24, sin π here		
		$\frac{\pi^2}{576} - \frac{1}{144}$	+A1	6	Tolerate e.g. $\frac{2}{288}$ here		
		S.R. If final marks are A0 + A0, allow SR A1 for			0.01/0.010/0.0101/0.0102/0.0101902		

June 2006

(i) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}x}}$ 9 M1 Used, not just quoted $\frac{\mathrm{d}x}{\mathrm{d}t} = -4\sin t$ or $\frac{\mathrm{d}y}{\mathrm{d}t} = 3\cos t$ *B1 $\frac{dy}{dx} = -\frac{3\cos t}{4\sin t} \text{ or } \frac{3\cos t}{-4\sin t}$ ISW **dep*A1** 3 Also $\frac{-3\cos t}{4\sin t}$ provided B0 not awarded SR: M1 for Cartesian eqn attempt + B1 for $\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$ + A1 as before(must be in terms of t) (ii) $y - 3\sin p = \left(\operatorname{their} \frac{\mathrm{d}y}{\mathrm{d}x}\right)(x - 4\cos p)$ M1 Accept *p* or *t* here <u>or</u> $y = \left(\text{their } \frac{dy}{dx} \right) x + c$ & subst cords to find c Ditto $4y\sin p - 12\sin^2 p = -3x\cos p + 12\cos^2 p$ A1 Correct equation cleared of fractions $\underline{\text{or}} \, \mathbf{c} = \frac{12 \sin^2 p + 12 \cos^2 p}{4 \sin p}$ $3x \cos p + 4y \sin p = 12$ WWW A1 **3** AG Only *p* here. Mixture earlier \rightarrow A0 ---------to find R & S (iii) Subst x = 0 and y = 0 separately in tangent eqn M1 Accept $\frac{12}{4 \sin p}$ and/or $\frac{12}{3 \cos p}$ Produce $\frac{3}{\sin p}$ and $\frac{4}{\cos p}$ A1 Use $\Delta = \frac{1}{2} \left(\frac{3}{\sin p} \cdot \frac{4}{\cos p} \right) = \frac{12}{\sin 2p}$ WWW A1 3 AG (iv) Least area = 12**B1** $p = \frac{1}{4}\pi$ as final or only answer **B2** 3 These B marks are independent. S.R. $45^{\circ} \rightarrow B1$; S.R. [-12 and e.g. $-\pi / 4 \rightarrow B1$]

4724	Mark Scheme	r	January 2007
1	Factorise numerator and denominator	M1	or Attempt long division
	Num = $(x+6)(x-4)$ or denom = $x(x-4)$	A1	$\text{Result} = 1 + \frac{6x - 24}{x^2 - 4x}$
	Final answer = $\frac{x+6}{x}$ or $1 + \frac{6}{x}$	A1 3	$3 = 1 + \frac{6}{x}$
2	Use parts with $u = \ln x$, $dv = x$	M1	& give 1 st stage in form $f(x) + /-\int g(x)(dx)$
	Obtain $\frac{1}{2}x^2 \ln x - \int \frac{1}{x} \cdot \frac{1}{2}x^2 (dx)$	A1	or $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x(dx)$
	$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 (+c)$	A1	
	Use limits correctly	M1	
	Exact answer $2 \ln 2 - \frac{3}{4}$	A1 5	5 AEF ISW
3	(i) Find $\boldsymbol{a} - \boldsymbol{b}$ or $\boldsymbol{b} - \boldsymbol{a}$ irrespective of label	M1	(expect $11i - 2j - 6k$ or $-11i + 2j + 6k$)
	Method for magnitude of any vector	M1	
	$\sqrt{161 \text{ or } 12.7(12.688578)}$	A1 3	
	(ii) Using $(\overline{AO} \text{ or } \overline{OA})$ and $(\overline{AB} \text{ or } \overline{BA})$	B1	Do not class angle <i>AOB</i> as MR
	$\cos \theta = \frac{\text{scalar product of any two vectors}}{\text{product of their moduli}}$	M1	
	43 or better (42.967), 0.75 or better (0.7499218	A1 3	If 137 obtained, followed by 43, award A0 Common answer 114 probably \rightarrow B0 M1 A0
4	Attempt to connect dx and du	M1	but not just $dx = du$
	For $du = 2 dx$ AEF correctly used	A1	sight of $\frac{1}{2}$ (du) necessary
	$\int u^8 + u^7 (\mathrm{d}u)$	A1	or $\int u^7 (u+1)(\mathrm{d}u)$
	Attempt new limits for u at any stage (expect 0,1)	M1	or re-substitute & use $(\frac{5}{2},3)$
	<u>17</u> 72	A1 5	5 AG WWW
	S.R. If M1 A0 A0 M1 A0, award S.R. B1 for answe	$\frac{68}{72}, \frac{34}{36} \text{ or } \frac{17}{18}$	$\frac{7}{3}$ ISW
5	(i) Show clear knowledge of binomial expansion	M1	-3x should appear but brackets can be
	1	D1	missing; $-\frac{1}{3} \cdot -\frac{4}{3}$ should appear, not $-\frac{1}{3} \cdot \frac{2}{3}$
	$= 1 + x$ $+ 2x^{2}$	B1 A1	Correct first 2 terms; not dep on M1
	+2x $+\frac{14}{3}x^3$		4
	(ii) Attempt to substitute $x + x^3$ for x in (i)	M1	Not just in the $\frac{14}{3}x^3$ term
	Clear indication that $(x + x^3)^2$ has no term in x^3	A1	
	$\frac{17}{3}$	√A1 3	3 f.t. $\operatorname{cf}(x) + \operatorname{cf}(x^3)$ in part (i)
6	(i) $2x+1 = / = A(x-3) + B$	M1	
	$\begin{array}{l} A=2\\ B=7 \end{array}$	A1 A/B1 3	Cover-up rule acceptable for B1
	(ii) $\int \frac{1}{x-3} (dx) = \ln(x-3) \operatorname{or} \ln x-3 $	B1	Accept A or $\frac{1}{A}$ as a multiplier
	$\int \frac{1}{(x-3)^2} (dx) = -\frac{1}{x-3}$	B1	Accept <i>B</i> or $\frac{1}{B}$ as a multiplier
	6 + 2 ln 7 Follow-through $\frac{6}{7}B + A \ln 7$	√B2 4	4

4/24				January 2007
7	$\frac{d}{dx}(xy) = x \frac{dy}{dx} + y$	B1		
	$\frac{d}{dx}\left(y^2\right) = 2y\frac{dy}{dx}$	B1		
	$4x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$	B1		
	Put $\frac{dy}{dx} = 0$	*M1		
	Obtain $4x + y = 0$ AEF	A1		and no other (different) result
	Attempt to solve simultaneously with eqn of curve	dep*M1		
	2			
	Obtain $x^2 = 1$ or $y^2 = 16$ from $4x + y = 0$	A1	0	
	(1,-4) and $(-1,4)$ and no other solutions	A1	8	Accept $(\pm 1, \mp 4)$ but not $(\pm 1, \pm 4)$
8	(i) Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and $-\frac{1}{m}$ for grad of normal	M1		or change to cartesian.,diff & use $-\frac{1}{m}$
	= -p (ii) Use correct formula to find gradient of line	A1 M1	2	Not $-t$.
	Obtain $\frac{2}{p+q}$ AG WWW	A1	2	Minimum of denom = $2(p-q)(p+q)$
	(iii) State $-p = \frac{2}{p+q}$	M1		Or find eqn normal at P & subst $(2q^2, 4q)$
	Simplify to $p^2 + pq + 2 = 0$ AG WWW	A1	2	With sufficient evidence
	(iv) $(8,8) \rightarrow t$ or p or $q = 2$ only	B1		No possibility of -2
	Subst $p = 2$ in eqn (iii) to find q_1	M1		Or eqn normal, solve simult with cartes/param
	Subst $p = q_1$ in eqn (iii) to find q_2	M1		Ditto
	$q_2 = \frac{11}{3} \rightarrow \left(\frac{242}{9}, \frac{44}{3}\right)$	A1	4	No follow-through; accept (26.9, 14.7)
9	(i) Separate variables as $\int \sec^2 y dy = 2 \int \cos^2 2x dx$	M1		seen or implied
	LHS = $\tan y$	A1		
	RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$	M1 A1		
	$\int \cos 4x dx = \frac{1}{4} \sin 4x$	A1		
	Completely correct equation (other than +c)	A1		$\tan y = x + \frac{1}{4}\sin 4x$
	+c on either side	A1	7	<u>not</u> on both sides unless c_1 and c_2
	(ii) Use boundary condition	M1		provided a sensible outcome would ensue
	c (on RHS) = 1	A1		or $c_2 - c_1 = 1$; not fortuitously obtained
	Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$	A1	3	or 4.19 or 7.33 etc. Radians only
10	(i) For (either point) + t (diff between posn vectors) r = (either point) + t (i -2 j - 3 k or - i + 2 j + 3 k)	M1 A1	2	"r =" not necessary for the M mark but it is essential for the A mark
	(ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \text{ or } (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$	B1	4	Accept any parameter, including <i>t</i>
	Eval scalar product of $i+2j-k$ & their dir vect in (i)	M1		
	Show as $(1x1 \text{ or } 1)+(2x-2 \text{ or } -4)+(-1x-3 \text{ or } 3)$ = 0 and state perpendicular AG	A1 A1	4	This is just one example of numbers involved
	(iii) For at least two equations with diff parameters	M1	-	e.g. $5 + t = s$, $2 - 2t = 2s$, $-9 - 3t = -s$
	Obtain $t = -2$ or $s = 3$ (possibly -3 or 2 or -2)	A1		Check if $t = 2,1$ or -1
	Subst. into eqn AB or OT and produce $3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$	A1	3	
	(iv) Indicate that $ \overline{OC} $ is to be found	M1		where <i>C</i> is their point of intersection
	$\sqrt{54}$; f.t. $\sqrt{a^2 + b^2 + c^2}$ from $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ in (iii)	√A1	2	1

January 2007

In the above question, accept any vectorial notation

4724

t and s may be interchanged, and values stated above need to be treated with caution.

In (iii), if the point of intersection is correct, it is more than likely that the whole part is correct – but check.

4724	Mark Sche	eme	June 2007
1	(i) Correct format $\frac{A}{x+2} + \frac{B}{x-3}$	M1	s.o.i. in answer
	A = 1 and $B = 2$		for both
	(ii) $-A(x+2)^{-2} - B(x-3)^{-2}$ f.t.	√A1	
	Convincing statement that each denom > 0 State whole exp < 0 AG	B1 B1 3	accept ≥ 0 . Do not accept $x^2 > 0$. Dep on previous 4 marks.
	2		5
2	Use parts with $u = x^2$, $dv = e^x$	*M1	obtaining a result $f(x) + / - \int g(x)(dx)$
	Obtain $x^2 e^x - \int 2x e^x (dx)$	A1	
	Attempt parts again with $u = (-)(2)x$, $dv = e^{x}$	M1	
	Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets	A1	s.o.i. eg $e + (-2x + 2)e^x$
	Use limits correctly throughout $e^{(1)} - 2$ ISW Exact answer only	dep*M1 A1 6	Tolerate (their value for $x = 1$) (-0) Allow 0.718 \rightarrow M1
		7.1 U	6
3	Volume = $(k) \int_{0}^{\pi} \sin^2 x (dx)$	B1	where $k = \pi$, 2π or 1; limits necessary
	Suitable method for integrating $\sin^2 x$	*M1	eg $\int + /-1 + /-\cos 2x (dx)$ or single
			integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x \left(\mathrm{d}x \right) = \frac{1}{2} \int 1 - \cos 2x \left(\mathrm{d}x \right)$	A1	or $-\sin x \cos x + \int \cos^2 x(\mathrm{d}x)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1	or $-\sin x \cos x + \int 1 - \sin^2 x (dx)$
	Use limits correctly	dep*M1	
	Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	A1 6	<u>Beware</u> : wrong working leading to $\frac{1}{2}\pi^2$
	(4 x)-2		
4	(i) $\frac{\left(1+\frac{x}{2}\right)^{-2}}{=1+\left(-2\right)\left(\frac{x}{2}\right)+\frac{-23}{2}\left(\frac{x}{2}\right)^{2}+\frac{-234}{3!}\left(\frac{x}{2}\right)^{3}}$	M1	Clear indication of method of ≥ 3 terms
	= 1- <i>x</i>	B1	First two terms, not dependent on M1
	+ $\frac{3}{4}x^2 - \frac{1}{2}x^3$	A1	For both third and fourth terms
	$(2+x)^{-2} = \frac{1}{4} (\text{their exp of } (1+ax)^{-2}) \text{ mult out}$	√B1	Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ x < 2 \text{ or } -2 < x < 2 \text{ (but not } \left \frac{1}{2}x\right < 1$)	B1 5	
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d$	M1	
	$-\frac{3}{8}(x^3)$	√A1 2	Follow-through from $b + d$
		I	, ,

_

5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1	
	$= \frac{-4\sin 2t}{-\sin t}$	A1	Accept $\frac{4\sin 2t}{\sin t}$ WWW
	$= 8 \cos t$	A1	with brief evolution of $200.4 < 1$
	≤ 8 AG (ii) Use $\cos 2t = 2\cos^2 t + /-1$ or $1 - 2\cos^2 t$	A1 4 M1	with brief explanation eg COS $t \le 1$ If starting with $y = 4x^2 + 1$, then
	Use correct version $\cos 2t = 2\cos^2 t - 1$	A1	Subst $x = \cos t$, $y = 3 + 2\cos 2t$ M1
	Produce WWW $y = 4x^2 + 1$ AG	A1 3	
	(iii) U-shaped parabola abve <i>x</i> -axis, sym abt <i>y</i> -axis Portion between $(-1,5)$ and $(1,5)$	B1	Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain corr formula & say it's correct A1 Any labelling must be correct either $x = \pm 1$ or $y = 5$ must be marked
	N.B. If (ii) answered or quoted before (i) attempted,		(i) B2 for $\frac{dy}{dx} = 8x$ +B1,B1 if earned. 9
6	(i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1	
	Using $d(uv) = u dv + v du$ for the (3)xy term	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2 + 3xy + 4y^2\right) = 2x + 3x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y + 8y\frac{\mathrm{d}y}{\mathrm{d}x}$	A1	
	Solve for $\frac{dy}{dx}$ & subst $(x, y) = (2,3)$	M1	or v.v. Subst now or at normal eqn stage;
	dx		(M1 dep on either/both B1 M1 earned)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{13}{30}$	A1	Implied if grad normal = $\frac{30}{13}$
	Grad normal = $\frac{30}{13}$ follow-through	√B1	This f.t. mark awarded only if numerical
	Find equ any line thro (2,3) with any num grac 30x - 13y - 21 = 0 AEF	I M1 A1 8	No fractions in final answer 8
7	(i) Leading term in quotient = $2x$	B1	
•	Suff evidence of division or identity process	M1	
	Quotient = $2x + 3$	A1	Stated or in relevant position in division
	Remainder = x	A1 4	Accept $\frac{x}{x^2+4}$ as remainder
	(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$	√B1 1	$2x+3+\frac{x}{x^2+4}$
	(iii) <u>Working with their expression in part (ii)</u> their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$	√B1	
	their $\frac{Cx}{x^2+4}$ integrated as $k \ln (x^2+4)$	M1	Ignore any integration of $\frac{D}{x^2 + 4}$
	$k=\frac{1}{2}C$	√A1	
	Limits used correctly throughout $14 + 1 \ln 13$	M1	
	$14 + \frac{1}{2} \ln \frac{13}{5}$	A1 5	logs need not be combined.
		l	

_

			-
8	(i) Sep variables $eg \int \frac{1}{6-h} (dh) = \int \frac{1}{20} (dt)$	*M1	s.o.i. <u>Or</u> $\frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$
	$LHS = -\ln(6-h)$	A1	& then $t = -20 \ln(6 - h)$ (+c) \rightarrow A1+A1
	$RHS = \frac{1}{20}t (+c)$	A1	
	Subst $t = 0, h = 1$ into equation containing 'c'	dep*M1	
	Correct value of their c = $-(20)\ln 5$ WWW	A1	or (20)In 5 if on LHS
	Produce $t = 20 \ln \frac{5}{6-h}$ WWW AG	A1 (6 Must see $\ln 5 - \ln(6 - h)$
	(ii) When $h = 2$, $t = 20 \ln \frac{5}{4} = 4.46(2871)$	B1 [·]	1 Accept 4.5, $4\frac{1}{2}$
	(iii) Solve $10 = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$	M1	or $\frac{6-h}{5} = e^{-0.5}$ or suitable $\frac{1}{2}$ -way stage
	<i>h</i> = 2.97(2.9673467)		2 $6-5e^{-0.5}$ or $6-e^{1.109}$
	[In (ii),(iii) accept non-decimal (exact) answers Accept truncated values in (ii),(iii).	but –1 on	ce.]
	(iv) Any indication of (approximately) 6 (m)	B1 ⁻	1
			10
9	(i) Use $-6i + 8j - 2k$ and $i + 3j + 2k$ only	M1	
	Correct method for scalar product	M1	of any two vectors $(-6+24-4=14)$
	Correct method for magnitude	M1	of any vector $(\sqrt{36+64+4} = \sqrt{104} \text{ or})$
			$\sqrt{1+9+4} = \sqrt{14}$)
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene		4 i – j -2k and 3i – 8j]
	(ii) Indication that relevant vectors are parallel	M1	$-6\mathbf{i} + 8\mathbf{j} - 2\mathbf{k} \otimes 3\mathbf{i} + c\mathbf{j} + \mathbf{k}$ with some indic of method of attack
	c = -4	A1 2	eg $-6i + 8j - 2k = \lambda(3i + cj + k)$ c = -4 WW \rightarrow B2
	(iii) Produce 2/3 equations containing <i>t,u</i> (& c)	M1	eg $3 + t = 2 + 3u, -8 + 3t = 1 + cu$ and $2t = 3 + u$
	Solve the 2 equations not containing 'c'	M1	
	t = 2, u = 1	A1	
	Subst their (<i>t</i> , <i>u</i>) into equation containing c $c = -3$	M1 A1	5
	Alternative method for final 4 marks		-
	Solve two equations, one with 'c', for t and u		
	in terms of c, and substitute into third equation $c = -3$	(M2) (A2)	11
	0 – −0	(^~)	

1	Method for finding magnitude of any vector Method for finding scalar prod of any 2 vectors Using $\cos \theta = \frac{\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} \cdot 2\mathbf{i} + \mathbf{j} + \mathbf{k}}{ \mathbf{i} - 2\mathbf{j} + 3\mathbf{k} 2\mathbf{i} + \mathbf{j} + \mathbf{k} }$ 70.9 (70.89, 70.893) WWW; 1.24 (1.237)	M1 M1 M1 A1 4	Expect $\sqrt{14}$ and $\sqrt{6}$ Expect $1.2 + (-2).1 + 3.1 = 3$ Correct vectors only. Expect $\cos \theta = \frac{3}{\sqrt{14}\sqrt{6}}$ Condone answer to nearest degree (71)
2	(i) Correct format $\frac{A}{x+1} + \frac{B}{x+2}$ $-\frac{1}{x+1}$ or $A = -1$ $+\frac{2}{x+2}$ or $B = 2$	M1 A1 A1 3	stated or implied by answer
	(ii) $\int \frac{1}{x+1} dx = \ln(x+1) \text{ or } \ln x+1 $ or $\int \frac{1}{x+2} dx = \ln(x+2) \text{ or } \ln x+2 $ $A \ln x+1 + B \ln x+2 + c \text{ ISW}$	B1 √A1 2	Expect $-\ln x+1 + 2\ln x+2 + c$
3	<u>Method 1 (Long division)</u> Clear correct division method at beginning Correct method up to & including x term in quot <u>Method 2 (Identity)</u> Writing $(x^2 + 2x - 1)(x^2 + bx + 2) + cx + 7$ Attempt to compare cfs of x^3 or x^2 or x or const Then: b = -4 c = -1 a = 5	M1 M1 M1 M1 A1 A1 A1 A1 5	x^{2} in quot, mult back & attempt subtraction [At subtraction stage, cf $(x^{4})=0$] [At subtraction stage, cf $(x^{3})=0$] Probably equated to $x^{4} - 2x^{3} - 7x^{2} + 7x + a$
4	$\frac{d}{dx}(x^{2}y) = x^{2} \frac{dy}{dx} + 2xy$ $\frac{d}{dx}(y^{3}) = 3y^{2} \frac{dy}{dx}$ Substitute $(x,y) = (1,1)$ and solve for $\frac{dy}{dx}$ $\frac{dy}{dx} = -\frac{11}{7} \qquad WWW$ Gradient normal $= -\frac{1}{\frac{dy}{dx}}$ $7x - 11y + 4 = 0$ AEF	B1 B1 M1 M1 A1 A1 6	s.o.i.; or v.v. Solve now or at normal stage. [This dep on either/both B1 earned] Implied if grad normal = $\frac{7}{11}$ Numerical or general, awarded at any stage No fractions in final answer.

5	(i) Use $3i - 4j + 2k$ and $2i - j - 5k$ only	M1	,
	Use correct method for scalar prod of any 2 vectors	M1	(indep) May be as part of $\cos \theta = \frac{a.b}{ a b }$
	Obtain $6 + 4 - 10$, state = 0 & deduce perp AG	A1 3	
	(ii) Produce 3 equations in <i>s</i> and <i>t</i>	*M1	of the type $5 + 3s = 2 + 2t$, $-2 - 4s = -2 - t$ and $-2 + 2s = 7 - 5t$
	Solve 2 of the equations for s and t	dep*M1	\underline{Or} Eliminate s (or t) from 2 pairs dep*M1
	Obtain $(s,t) = \left(\frac{3}{5}, \frac{12}{5}\right) \operatorname{or}\left(\frac{9}{22}, \frac{18}{11}\right) \operatorname{or}\left(\frac{3}{19}, \frac{33}{19}\right)$	A1	(5t=12,11t=18,19t=33) <u>or</u> (5s=3,22s= 9,19s=3) A1,A1
	Substitute their values in 3^{rd} equation State/show inconsistency <u>& state non-parallel</u> : skew	dep*M1 A1 5	State/show inconsistency <u>& state non-parallel</u> ∴skew WWW A1
6	(i) $1 - 4ax + \dots$	B1	
	$\frac{-45}{1.2}(ax)^2$ or $\frac{-45}{1.2}a^2x^2$ or $\frac{-45}{1.2}ax^2$	M1	Do not accept $\begin{pmatrix} -4\\ 2 \end{pmatrix}$ unless 10 also appears
	$\dots + 10a^2x^2$	A1 3	
	(ii) f.t. (their cf x) + b (their const cf) = 1 f.t. (their cf x^2) + b (their cf x) = -2 Attempt to eliminate ' b ' and produce equation in ' a ' Produce $6a^2 + 4a = 2$ AEF		Expect $b - 4a = 1$ Expect $10a^2 - 4ab = -2$ Or eliminate 'a' and produce equation in 'b' Or $6b^2 + 4b = 42$ AEF
	Produce $6a + 4a = 2$ AEF $a = \frac{1}{3}$ and $b = \frac{7}{3}$ only	A1 A1 5	Or $60^{\circ} + 40^{\circ} = 42^{\circ}$ AEF Made clear to be only (final) answer
7	(i) Perform an operation to produce an equation	M1	Probably substituting value of θ , or
	connecting A and B (or possibly in A or in B) A = 2	A1	comparing coefficients of $\sin x$, and/or $\cos x$
	B = -2		WW scores 3
	(ii) Write $4\sin\theta$ as $A(\sin\theta + \cos\theta) + B(\cos\theta - \sin\theta)$		A and B need not be numerical $-$ but, if they
	and re-write integrand as $A + \frac{B(\cos \theta - \sin \theta)}{\sin \theta + \cos \theta}$	M1	are, they should be the values found in (i).
	$\int A \mathrm{d}\theta = A\theta$	$\sqrt{B1}$	general or numerical
	$\int \frac{B(\cos\theta - \sin\theta)}{\sin\theta + \cos\theta} d\theta = B \ln(\sin\theta + \cos\theta)$	$\sqrt{A2}$	general or numerical
	Produce $\frac{1}{4}A\pi + B \ln \sqrt{2}$ f.t. with their A,B	√A1 5	Expect $\frac{1}{2}\pi - \ln 2$ (Numerical answer only)
8	(i) $\frac{dx}{dt}$ or $-kx^{\frac{1}{2}}$ or $kx^{\frac{1}{2}}$ seen	M1	k non-numerical; i.e. 1 side correct
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx^{\frac{1}{2}} \text{or} \frac{\mathrm{d}x}{\mathrm{d}t} = kx^{\frac{1}{2}}$	A1 2	i.e. both sides correct
	(ii) Separate variables or invert, + attempt to integrate *	M1	Based <u>only</u> on above eqns or $\frac{dx}{dt} = x^{\frac{1}{2}}, -x^{\frac{1}{2}}$
	Correct result for their equation after integration Subst $(t, x) = (0, 2)$ into eqn containing k &/or c dep'	A1 *M1	Other than omission of 'c' or substitute (5,1)
	Subst $(t,x) = (5,1)$ into eqn containing $k \le c$ dep*		or substitute (0,2)
	Subst $x = 0.5$ into eqn with their $k \& c$ subst dep [*] t = 8.5 (8.5355339)	M1 A1 6	[1 d.p. requested in question]
			-

 \checkmark

9	Satis attempt to find at least 1 root/factor dep* Any one root All 3 roots (-1,1), (-64,16) and $(125,25)$	A1 4 M1	Or conv to cartes form & att to find $\frac{dy}{dx}$ at <i>P</i> Using $y - y_1 = m(x - x_1)$ or $y = mx + c$ Do not accept <i>t</i> here to produce a cubic equation in <i>p</i> Inspection/factor theorem/rem theorem/t&i -1 or -4 or $5-1,-4$ and $5All 3 sets; no f.t.$
10	(i) $(1 - x^2)^{\frac{3}{2}} \to \cos^3 \theta$ $dx \to \cos \theta d\theta$ $\frac{1}{(1 - x^2)^{\frac{3}{2}}} dx \to \sec^2 \theta (d\theta) \text{ or } \frac{1}{\cos^2 \theta} (d\theta)$ $\int \sec^2 \theta (d\theta) = \tan \theta$ Attempt change of limits (expect 0 & $\frac{1}{6}\pi/30$) $\frac{1}{\sqrt{3}}$ AEF	 B1 B1 B1 B1 M1 A1 6 	May be implied by $\int \sec^2 \theta d\theta$ Use with $f(\theta)$; or re-subst & use 0 & $\frac{1}{2}$ Obtained with no mention of 30 anywhere
	(ii) Use parts with $u = \ln x$, $\frac{dv}{dx} = \frac{1}{x^2}$ $-\frac{1}{x}\ln x + \int \frac{1}{x^2}(dx)$ AEF $-\frac{1}{x}\ln x - \frac{1}{x}$ Limits used correctly $\frac{2}{3} - \frac{1}{3}\ln 3$ <u>If substitution attempted in part (ii)</u> $\ln x = t$ Reduces to $\int t e^{-t} dt$ Parts with $u = t$, $dv = e^{-t}$ $-te^{-t} - e^{-t}$ $\frac{2}{3} - \frac{1}{3}\ln 3$	*M1 A1 A1 dep*M1 A1 5 B1 B1 B1 M1 A1 A1	obtaining a result $f(x) + /-\int g(x)(dx)$ Correct first stage result Correct overall result

1 (a)	$2x^2 - 7x - 4 = (2x + 1)(x - 4)$ or		
	$3x^2 + x - 2 = (3x - 2)(x + 1)$	B 1	
	$\frac{2x+1}{3x-2}$ as final answer; this answer only	B1	Do not ISW
(b)	For evidence of correct division process Quotient = $x - 2$ Remainder = $x - 3$	2 B1 M1 A1 A1 4	<u>Identity method</u> M1: $x^3 + 2x^2 - 6x - 5 = Q(x^2 + 4x + 1) + R$ M1: $Q = ax + b$ or $x + b$, $R = cx + d$ & ≥ 2 ops [N.B. If $Q = x + b$, this $\Rightarrow 1$ of the 2 ops] A2: $a = 1, b = -2, c = 1, d = -3$ SR: <u>B</u> 1 for two
2	Parts with correct split of $u = \ln x$, $\frac{dv}{dx} = x^4$ $\frac{x^5}{5} \ln x - \int \frac{x^5}{5} \cdot \frac{1}{x} (dx)$	*M1 A1	obtaining result $f(x) + /-\int g(x) dx$
	$\frac{x^{5}}{5} \ln x - \frac{x^{5}}{25}$ Correct method with the limits $\frac{4e^{5}}{25} + \frac{1}{25}$ ISW (Not '+c')	A1 dep*I A1 5	M1 Decimals acceptable here Accept equiv fracts; like terms amalgamated
3 (i)	$\frac{d}{dx}(x^2y) = x^2 \frac{dy}{dx} + 2xy \text{ or } \frac{d}{dx}(xy^2) = 2xy \frac{dy}{dx} + y^2$ Attempt to solve their differentiated equation for $\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{y^2 - 2xy}{x^2 - 2xy} \text{ only}$	* B1 dep*I A1	M1 WWW AG Must have intermediate line &
		3	could imply "=0" on 1 st line
(ii)	(a)Attempt to solve only $y^2 - 2xy = 0$ & derive $y = 2x$ Clear indication why $y = 0$ is not acceptable	B1 B1 2	AG Any effort at solving $x^2 - 2xy = 0 \rightarrow B0$ Substituting $y = 2x \rightarrow B0, B0$
(b)	Attempt to solve $y = 2x$ simult with $x^2 y - xy^2 = 2$ Produce $-2x^3 = 2$ or $y^3 = -8$ (-1, -2) or $x = -1$, $y = -2$ only	M1 A1 A1 3	AEF

4	(i)	For (either point) + t (difference between vectors) $\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k} \text{ or } 2\mathbf{i} - \mathbf{j})$	M1 - k) A1 2	'r' must be 'r' but need not be bold Check other formats, e.g. $ta + (1-t)b$
	(ii)		* M1 M dep* M 1	N.B.This *M1 is dep on M1 being earned in (i)
		Obtain $t = -\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$	A1	
		0 0 0 0	M1	
		Obtain $\frac{1}{6}(16i + 13j + 19k)$ AEF	A1 A	Accept decimals if clear
		Ū	5	
5	(i)	$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc	B2	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq -\frac{1}{8}$ or 0
		$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc	B2	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq \frac{3}{8}$ or 0
		Product = $1 - x + \frac{1}{2}x^2$ ignoring x^3 etc	B1	
			5	
	(ii)	$\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen	B 1	
		$\frac{37}{49}$ or $1 - \frac{2}{7} + \frac{1}{2} \left(\frac{2}{7}\right)^2$ seen	B1	
		$\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Longrightarrow \sqrt{5} \approx \frac{111}{49}$	B 1	AG
			3	
6	(i)	Produce at least 2 of the 3 relevant equations in t and s	M 1	
		Solve for <i>t</i> and <i>s</i> (t, s) = (4, -3) AEF	M1 *A	
		Subst $(4, -3)$ into suitable equation(s) & show consiste		
			-	N.B. Intersection coords not asked for
			4	
	(ii)	Method for finding magnitude of any vector		I1 Expect $\sqrt{29}$ and $\sqrt{21}$
		Method for finding scalar product of any 2 vectors	*N	II Expect -18
		Using $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ AEF for the correct 2 vectors	dep	p*M1 Should be $-\frac{18}{\sqrt{29}\sqrt{21}}$
		137 (136.8359) or 43.2(43.164)	A1	2.39 (2.388236) or 0.753(0.75335) rads

7	(i)	Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$	M1	
		Obtain $-\frac{\cos x}{\sin^2 x}$ or $-(\sin x)^{-2} \cos x$	A1	
		Show manipulation to $-\operatorname{cosec} x \cot x$ (or vice-versa)	A1 3	WWW AG with ≥ 1 line intermed working
	(ii)	Separate variables, $\int (-) \frac{1}{\sin x \tan x} dx = \int \cot t dt$	M1	or $\int \frac{1}{\sin x \tan x} dx = \int (-) \cot t dt$
		Style: For the M1 to be awarded, dx and dt must appear of	on corre	ect sides or there must be $\int sign on both sides$
		$\int -\csc x \cot x dx = \csc x (+c)$	A1	or $\int \operatorname{cosec} x \operatorname{cot} x \mathrm{d}x = -\operatorname{cosec} x$
		$\int \cot t dt = \ln \sin t \text{or} \ln \left \sin t \right \tag{+c}$		or $\int -\cot t dt = -\ln \sin t$ or $-\ln \sin t $
		Subst $(t, x) = \left(\frac{1}{2}\pi, \frac{1}{6}\pi\right)$ into their equation containing 'c'	M1	and attempt to find 'c'
		$\operatorname{cosec} x = \ln \sin t + 2 \operatorname{or} \ \ln \left \sin t \right + 2$	A1	WWW ISW; cosec $\frac{\pi}{6}$ to be changed to 2
	(5	
8	(i)	A(t+1) + B = 2t $A = 2$	M1 A1	<u>Beware</u> : correct values for <i>A</i> and/or <i>B</i> can be obtained from a wrong identity
		A = 2 B = -2	A1	<u>Alt method:</u> subst suitable values into given
			3	expressions
	(ii)	Attempt to connect dx and dt dx = t dt s.o.i. AEF	M1 A1	But not just $dx = dt$. As AG , look carefully.
		$x + \sqrt{2x - 1} \rightarrow \frac{t^2 + 1}{2} + t = \frac{(t + 1)^2}{2}$ s.o.i.	B 1	Any wrong working invalidates
		$\int \frac{2t}{\left(t+1\right)^2} \mathrm{d}t$	A1	AG WWW The 'd <i>t</i> ' must be present
			4	
	(iii)	$\int \frac{1}{t+1} \mathrm{d}t = \ln(t+1)$	B1	Or parts $u = 2t$, $dv = (t+1)^{-2}$ or subst $u = t+1$
		$\int \frac{1}{(t+1)^2} \mathrm{d}t = -\frac{1}{t+1}$	B 1	
		Attempt to change limits (expect 1 & 3) and use $f(t)$	M1	or re-substitute and use 1 and 5 on $g(x)$
		$\ln 4 - \frac{1}{2}$	A1	AEF (like terms amalgamated); if A0 A0 in (i),
			4	then final A0

9	(i)	$A: \theta = \frac{1}{2}\pi (\text{accept } 90^\circ)$	B1	
		$B: \theta = 2\pi (\text{accept } 360^\circ)$	B2	SR If B0 awarded for point <i>B</i> , allow B1 SR for
			3	any angle s.t. $\sin \theta = 0$
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$	M1	or $\frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ Must be used, not just quoted
		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 + 2\cos 2\theta$	B1	
		$2 + 2\cos 2\theta = 4\cos^2 \theta$ with ≥ 1 line intermed work	*B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{2+2\cos2\theta} \qquad \text{s.o.i.}$	A1	This & previous line are interchangeable
		$= \sec \theta$	dep*A	1 WWW AG
	(iii)	Equating sec $\theta $ to 2 and producing at least one value of θ	M1	degrees or radians
		$(x =) -\frac{2}{3}\pi - \frac{\sqrt{3}}{2}$ (y =) - 2\sqrt{3}	A1	'Exact' form required
		$(y =) - 2\sqrt{3}$	A1	'Exact' form required
			3	

1	Attempt to factorise numerator and denominator	M1 $\frac{A}{f(x)} + \frac{B}{g(x)}$; fg= 6x ² - 24x
	Any (part) factorisation of both num and denom	A1 Corres identity/cover-up
	Final answer = $-\frac{5}{6x}$, $\frac{-5}{6x}$, $\frac{5}{-6x}$, $-\frac{5}{6}x^{-1}$ Not $-\frac{\frac{5}{6}}{x}$	A1
		3
2	Use parts with $u = x$, $dv = \sec^2 x$	M1 result $f(x) + /-\int g(x) dx$
	Obtain correct result x tan $x - \int \tan x dx$	A1
	$\int \tan x dx = k \ln \sec x \text{ or } k \ln \cos x, \text{ where } k = 1 \text{ or } -1$	B1 or $k \ln \sec x $ or $k \ln \cos x $
	Final answer = $x \tan x - \ln \sec x + c$ or $x \tan x + \ln \cos x $	+ <i>c</i> A1
		4
3 (i)	$1 + \frac{1}{2} \cdot 2x + \frac{\frac{1}{2} \cdot -\frac{1}{2}}{2} \left(4x^2 \text{ or } 2x^2 \right) + \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2}}{6} \left(8x^3 \text{ or } 2x^3 \right)$) M1
	= 1 + x	B1
	$\dots -\frac{1}{2}x^2 + \frac{1}{2}x^3$ (AE fract coeffs)	$\mathbf{A1}_{\mathbf{A}}(2) = \mathbf{E}_{\mathbf{A}} + \mathbf{E}_{\mathbf$
	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} $ (AE fract coeffs)	A1 (3) For both terms
(ii)	$(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3$	B1 or $(1+x)^3 = 1+3x+3x^2+x^3$
(ii)	2 2	
 (ii)	$(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3$	B1 or $(1+x)^3 = 1+3x+3x^2+x^3$
(ii)	$(1+x)^{-3} = 1-3x+6x^2-10x^3$ Either attempt at their (i) multiplied by $(1+x)^{-3}$	B1 or $(1+x)^3 = 1+3x+3x^2+x^3$ M1 or (i) long div by $(1+x)^3$
 (ii)	$(1+x)^{-3} = 1-3x+6x^2-10x^3$ Either attempt at their (i) multiplied by $(1+x)^{-3}$ $1-2x$ $\sqrt{1+(a-3)x}$ $\dots + \frac{5}{2}x^2$ $\sqrt{(-3a+b+6)x^2}$	B1 or $(1+x)^3 = 1+3x+3x^2+x^3$ M1 or (i) long div by $(1+x)^3$ A1 f.t. (i) = $1+ax + bx^2 + cx^3$
(ii)	$(1+x)^{-3} = 1-3x+6x^2-10x^3$ Either attempt at their (i) multiplied by $(1+x)^{-3}$ $1-2x$ $\sqrt{1+(a-3)x}$ $\dots + \frac{5}{2}x^2$ $\sqrt{(-3a+b+6)x^2}$	B1 or $(1+x)^3 = 1+3x+3x^2+x^3$ M1 or (i) long div by $(1+x)^3$ A1 f.t. (i) = $1+ax + bx^2 + cx^3$ A1
	$(1+x)^{-3} = 1-3x+6x^{2}-10x^{3}$ Either attempt at their (i) multiplied by $(1+x)^{-3}$ $1-2x \qquad \sqrt{1+(a-3)x}$ $\dots + \frac{5}{2}x^{2} \qquad \sqrt{(-3a+b+6)x^{2}}$ $\dots -2x^{3} \qquad \sqrt{(6a-3b+c-10)x^{3}}$	B1 or $(1+x)^3 = 1+3x+3x^2+x^3$ M1 or (i) long div by $(1+x)^3$ A1 f.t. (i) = $1+ax + bx^2 + cx^3$ A1
	$(1+x)^{-3} = 1-3x+6x^2-10x^3$ Either attempt at their (i) multiplied by $(1+x)^{-3}$ $1-2x$ $\sqrt{1+(a-3)x}$ $\dots + \frac{5}{2}x^2$ $\sqrt{(-3a+b+6)x^2}$	B1 or $(1+x)^3 = 1+3x+3x^2+x^3$ M1 or (i) long div by $(1+x)^3$ A1 f.t. (i) = $1+ax + bx^2 + cx^3$ A1 A1 (5) (AE fract.coeffs)

4	Attempt to expand $(1 + \sin x)^2$ and integrate it	*M1	Minimum of $1 + \sin^2 x$
	Attempt to change $\sin^2 x$ into $f(\cos 2x)$	M1	
	Use $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$	A1	dep M1 + M1
	Use $\int \cos 2x dx = \frac{1}{2} \sin 2x$	A1	dep M1 + M1
	Use limits correctly on an attempt at integration dep [*]	• M1	Tolerate g $(\frac{1}{4}\pi) - 0$
	$\frac{3}{8}\pi - \sqrt{2} + \frac{7}{4} \text{AE}(3\text{-term})\text{F}$	A1	WW 1.51 \rightarrow M1 A0
		6	
5 (i)	Attempt to connect du and dx, find $\frac{du}{dx}$ or $\frac{dx}{du}$	M1	But not e.g. $du = dx$
	Any correct relationship, however used, such as $dx = 2u du$	A1	or $\frac{du}{dx} = \frac{1}{2} x^{-\frac{1}{2}}$
	Subst with clear reduction (≥ 1 inter step) to AG	A1 (3	3) WWW
(ii)	Attempt partial fractions	M1	
	$\frac{2}{u} - \frac{2}{1+u}$	A1	
	$\sqrt{A \ln u + B \ln (1+u)}$	√A1	Based on $\frac{A}{u} + \frac{B}{1+u}$
	Attempt integ, change limits & use on $f(u)$	M 1	or re-subst & use 1 & 9
	$\ln \frac{9}{4}$ AEexactF (e.g. 2 ln 3 –2 ln 4 + 2 ln 2)	A1 (5	5) Not involving ln 1
		8	

6	(i)	Solve $0 = t-3$ & subst into $x = t^2 - 6t + 4$	M1	(2) (50) mode at the subtained
		Obtain $x = -5$		(2) $(-5,0)$ need not be quoted
		N.B. If (ii) completed first, subst $y = 0$ into their cartesian	eqn	(M1) & find x (no f.t.) (A1)
	(ii)	Attempt to eliminate <i>t</i>	M1	
		Simplify to $x = y^2 - 5$ ISW	A1	(2)
	(iii)	Attempt to find $\frac{dy}{dx}$ or $\frac{dx}{dy}$ from cartes or para form	M1	Award anywhere in Que
		Obtain $\frac{dy}{dx} = \frac{1}{2t-6}$ or $\frac{1}{2y}$ or $(-)\frac{1}{2}(x+5)^{-\frac{1}{2}}$	A1	
		If $t = 2$, $x = -4$ and $y = -1$	B1	Awarded anywhere in (iii)
		Using their num (x, y) & their num $\frac{dy}{dx}$, find tgt eqn	M1	
		x + 2y + 6 = 0 AEF(without fractions) ISW	A1	(5)
			9	
7	(i)	Attempt direction vector between the 2 given points	M1	
'	(1)	State eqn of line using format (\mathbf{r}) = (either end) + <i>s</i> (dir vec)		
		Produce $2/3$ eqns containing t and s	M1	
		Solve giving $t = 3$, $s = -2$ or $2 \text{ or } -1 \text{ or } 1$	A1	
		Show consistency	B1	
		Point of intersection = $(5,9,-1)$	A1	(6)
	(ii)	Correct method for scalar product of 'any' 2 vectors	M1	Vectors from this question
		Correct method for magnitude of 'any' vector	M1	Vector from this question
		Use $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ for the correct 2 vectors $\begin{pmatrix} 1\\4\\-2 \end{pmatrix} \& \begin{pmatrix} 2\\-1\\3 \end{pmatrix}$		-
		62.2 (62.188157) 1.09 (1.0853881)	A1	(4)
			10	

8	(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^{3}\right) = 3y^{2}\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
		Consider $\frac{d}{dx}(xy)$ as a product	M1	
		$= x \frac{\mathrm{d}y}{\mathrm{d}x} + y$	A1	Tolerate omission of '6'
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6y - 3x^2}{3y^2 - 6x} \qquad \text{ISW} \text{AEF}$	A1	(4)
	(ii)	$x^3 = 2^4$ or 16 and $y^3 = 2^5$ or 32	*B1	
		Satisfactory conclusion	dep* B1	AG
		Substitute $\left(2^{\frac{4}{3}}, 2^{\frac{5}{3}}\right)$ into their $\frac{dy}{dx}$	M1	or the numerator of $\frac{dy}{dx}$
		Show or use calc to demo that num = 0, ignore denor	m AG A1	(4)
	(iii)	Substitute (a, a) into eqn of curve	M1	& attempt to state ' $a = \dots$ '
		$a = 3$ only with clear ref to $a \neq 0$	A1	
		Substitute (3,3) or (their <i>a</i> , their <i>a</i>) into their $\frac{dy}{dx}$	M1	
		-1 only WWW	A1 12	(4) from (their <i>a</i> ,their <i>a</i>)
9	(i)	-1 only WWW $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \dots$		(4) from (their <i>a</i> ,their <i>a</i>)
9	(i)		12 B1	 (4) from (their <i>a</i>, their <i>a</i>) (2) The 2 @ 'B1' are indep
9	(i) (ii)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \dots$	12 B1 B1	
9		$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \dots$ $k(160 - \theta)$	12 B1 B1	(2) The 2 @ 'B1' are indep
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or invert	12 B1 B1 *M1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or invert Indication that LHS = ln f(θ)	12 B1 *M1 A1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or invert Indication that LHS = ln f(θ) RHS = kt or $\frac{1}{k}t$ or t (+ c)	12 B1 *M1 A1 A1 dep*M1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or invert Indication that LHS = ln f(θ) RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c'	12 B1 *M1 A1 A1 dep*M1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or invert Indication that LHS = ln f(θ) RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c' & 'd' Subst $t = 5, \theta = 65$ into equation containing 'c' & 'd'	12 B1 B1 *M1 A1 A1 dep* M1 k' dep* M1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or invert Indication that LHS = $\ln f(\theta)$ RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c' Subst $t = 5, \theta = 65$ into equation containing 'c' & 'c $c = -\ln 140$ (-4.94) ISW	12 B1 B1 *M1 A1 A1 dep* M1 k' dep* M1 A1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or invert Indication that LHS = ln f(θ) RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c' Subst $t = 5, \theta = 65$ into equation containing 'c' & ' t $c = -\ln 140$ (-4.94) ISW $k = \frac{1}{5} \ln \frac{140}{95}$ (≈ 0.077 or 0.078) ISW	12 B1 B1 *M1 A1 A1 dep* M1 k' dep* M1 A1 A1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$ If wrong ln, final 3@A = 0

1	<u>Long Division</u> For leading term $3x^2$ in quotient Suff evid of div process (ax^2 , mult back, attempt sub) (Quotient) = $3x^2 - 4x - 5$ (Remainder) = $-x + 2$	B1 M1 A1 A1	
	<u>Identity</u> $3x^4 - x^3 - 3x^2 - 14x - 8 = Q(x^2 + x + 2) + R$ $Q = ax^2 + bx + c, R = dx + e$ & attempt ≥ 3 ops. dep a = 3, b = -4, c = -5	A1	If $a = 3$, this $\Rightarrow 1$ operation dep*M1; $Q = ax^2 + bx + c$
	d = -1, e = 2 <u>Inspection</u> Use 'Identity' method; if $R = e$, check cf(x) c	A1 correct be	fore awarding 2 nd M1
2	Indefinite Integral Attempt to connect dx & d θ Reduce to $\int 1 - \tan^2 \theta (d\theta)$	*M1 A1	Incl $\frac{dx}{d\theta}$ or $\frac{d\theta}{dx}$; not $dx = d\theta$ A0 if $\frac{d\theta}{dx} = \sec^2\theta$; but allow all following A marks
OR	Produce $\int 2 - \sec^2 \theta (d\theta)$ Correct $$ integration of function of type $d + e \sec^2 \theta$ EITHER Attempt limits change (allow degrees here) Attempt integ, re-subst & use original ($\sqrt{3}$,1)	o*M1 A1 √A1 M1	including $d = 0$ (This is 'limits' aspect; the integ need not be accurate)
	$\frac{1}{6}\pi - \sqrt{3} + 1$ isw Exact answer required	A1 7	

3	(i)	$\left(1+\frac{x}{a}\right)^{-2} = 1+\left(-2\right)\frac{x}{a}+\frac{-23}{2}\left(\frac{x}{a}\right)^2+\dots$	M1	Check 3 rd term; accept $\frac{x^2}{a}$
		$= 1 - \frac{2x}{a} + \dots$ or $1 + \left(-\frac{2x}{a}\right)$	B1	or $1 - 2xa^{-1}$ (Ind of M1)
		+ $\frac{3x^2}{a^2}$ + (or $3(\frac{x}{a})^2$ or $3x^2a^{-2}$)	A1	Accept $\frac{6}{2}$ for 3
		$(a+x)^{-2} = \frac{1}{a^2} \left\{ \text{their expansion of } \left(1 + \frac{x}{a}\right)^{-2} \right\} \text{ mult out}$	√A1 4	$\frac{1}{a^2} - \frac{2x}{a^3} + \frac{3x^2}{a^4}$; accept eg a^{-2}
	(ii)	Mult out $(1-x)$ (their exp) to produce all terms/cfs(x^2)	M1	Ignore other terms
		Produce $\frac{3}{a^2} + \frac{2}{a} (= 0)$ or $\frac{3}{a^4} + \frac{2}{a^3} (= 0)$ or AEF	A1	Accept x^2 if in both terms
		$a = -\frac{3}{2}$ www seen anywhere in (i) or (ii)	A1 3	Disregard any ref to $a = 0$
			7	
4	(i)	Differentiate as a product, $u dv + v du$	M1	or as 2 separate products
		$\frac{\mathrm{d}}{\mathrm{d}x}(\sin 2x) = 2\cos 2x \underline{\mathrm{or}} \frac{\mathrm{d}}{\mathrm{d}x}(\cos 2x) = -2\sin 2x$	B1	
		$e^{x}(2\cos 2x + 4\sin 2x) + e^{x}(\sin 2x - 2\cos 2x)$	A1	terms may be in diff order
		Simplify to $5e^x \sin 2x$ www	A1 4	Accept $10e^x \sin x \cos x$
	(ii)	Provided result (i) is of form $k e^{x} \sin 2x$, k const		
		$\int e^x \sin 2x dx = \frac{1}{k} e^x \left(\sin 2x - 2 \cos 2x \right)$	B1	
		$\left[e^{x}\left(\sin 2x - 2\cos 2x\right)\right]_{0}^{\frac{1}{4}\pi} = e^{\frac{1}{4}\pi} + 2$	B1	
		$\left[e^{x}\left(\sin 2x - 2\cos 2x\right)\right]_{0}^{\frac{1}{4}\pi} = e^{\frac{1}{4}\pi} + 2$ $\frac{1}{5}\left(e^{\frac{1}{4}\pi} + 2\right)$	B1 B1 3	Exact form to be seen
			B1 3	

5 (i) $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ aef used M1 $=\frac{4t+3t^2}{2+2t}$ A1 Attempt to find *t* from one/both equations M1 or diff (ii) cartesian eqn \rightarrow M1 A1 subst (3,-9), solve for $\frac{dy}{dx} \rightarrow M1$ State/imply t = -3 is only solution of both equations A1 5 grad of curve = $-\frac{15}{4} \rightarrow A1$ Gradient of curve = $-\frac{15}{4}$ or $\frac{-15}{4}$ or $\frac{15}{-4}$ [**SR** If t = 1 is given as solution & not disqualified, award A0 + $\sqrt{A1}$ for grad = $-\frac{15}{4} \& \frac{7}{4}$; If t = 1 is given/used as only solution, award A0 + $\sqrt{A1}$ for grad = $\frac{7}{4}$] (ii) $\frac{y}{r} = t$ B1 Substitute into either parametric eqn M1 Final answer $x^3 = 2xv + v^2$ A2 4 [**SR** Any correct unsimplified form (involving fractions or common factors) \rightarrow A1] 9 $4x \equiv A(x-3)^2 + B(x-3)(x-5) + C(x-5)$ 6 (i) **M**1 A = 5A1 'cover-up' rule, award B1 B = -5A1 C = -6'cover-up' rule, award B1 A1 4 Cands adopting other alg. manip. may be awarded M1 for a full satis method + 3 @ A1 _____ (ii) $\int \frac{A}{x-5} dx = A \ln(5-x) \text{ or } A \ln|5-x| \text{ or } A \ln|x-5|$ $\sqrt{B1}$ but <u>not</u> $A \ln(x-5)$ $\sqrt{B1}$ but <u>not</u> $B \ln(x-3)$ $\int \frac{B}{x-3} dx = B \ln(3-x) \text{ or } B \ln|3-x| \text{ or } B \ln|x-3|$ If candidate is awarded B0,B0, then award SR $\sqrt{B1}$ for $A \ln(x-5)$ and $B \ln(x-3)$ $\int \frac{C}{(x-3)^2} dx = -\frac{C}{x-3}$ **√**B1 $5 \ln \frac{3}{4} + 5 \ln 2$ aef, isw $\sqrt{A \ln \frac{3}{4}} - B \ln 2$ $\sqrt{B1}$ Allow if SR B1 awarded $\sqrt{\frac{1}{2}C}$ √B1 **5** -3

[Mark at earliest correct stage & isw; no ln 1]

VRI 2

7	(i)	Attempt scalar prod $\{\mathbf{u}.(4\mathbf{i} + \mathbf{k}) \text{ or } \mathbf{u}.(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})\} = 0$	M1	where u is the given vector
		Obtain $\frac{12}{13} + c = 0$ or $\frac{12}{13} + 3b + 2c = 0$	A1	
		$c = -\frac{12}{13}$	A1	
		$b = \frac{4}{13}$	A1	cao No ft
		Evaluate $\left(\frac{3}{13}\right)^2 + (\text{their } b)^2 + (\text{their } c)^2$	M1	Ignore non-mention of $$
		Obtain $\frac{9}{169} + \frac{144}{169} + \frac{16}{169} = 1$ AG	A1 6	Ignore non-mention of $$
	(ii)	Use $\cos \theta = \frac{x \cdot y}{ x y }$	M1	
		Correct method for finding scalar product	M1	
		36° (35.837653) Accept 0.625 (rad)	A1 3	From $\frac{18}{\sqrt{17}\sqrt{29}}$
	SI	D If $4\mathbf{i} \cdot \mathbf{k} = (4, 1, 0)$ in (i) $\mathcal{E}_{\mathbf{k}}(\mathbf{i})$ mark as scheme but allow:	final A 1	for $31^{\circ}(31, 160068)$ or 0.544

SR If 4i+k = (4,1,0) in (i) & (ii), mark as scheme but allow final A1 for $31^{\circ}(31.160968)$ or 0.544

		9	
8 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
	$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u \mathrm{d}v + v \mathrm{d}u \text{used on } (-7)xy$	M 1	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(14x^2 - 7xy + y^2\right) = 28x - 7x\frac{\mathrm{d}y}{\mathrm{d}x} - 7y + 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	A1	(=0)
	$2y \frac{dy}{dx} - 7x \frac{dy}{dx} = 7y - 28x \rightarrow \frac{dy}{dx} = \frac{28x - 7y}{7x - 2y} \text{www AG}$	A1 4	As AG, intermed step nec
(ii)	Subst $x = 1$ into eqn curve & solve quadratic eqn in y	M1	(y = 3 or 4)
	Subst $x = 1$ and (one of) their y-value(s) into given $\frac{dy}{dx}$	M1	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = 7 \text{or} 0\right)$
	Find eqn of tgt, with their $\frac{dy}{dx}$, going through (1, their y)	*M1	using (one of) y value(s)
	Produce either $y = 7x - 4$ or $y = 4$	A1	
	Solve simultaneously their two equations dep	*M1	provided they have two
	Produce $x = \frac{8}{7}$	A1 6	i de la companya de l
		1	0

9 (i)
$$\frac{20}{k_1}$$
 (seconds)

(ii)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k_2\left(\theta - 20\right)$	B1 1	
(iii)	Separate variables or invert each side	M1	Correct eqn or very similar
	Correct int of each side $(+ c)$	A1,A1	for each integration
	Subst $\theta = 60$ when $t = 0$ into eqn containing 'c'	M1	or $\theta = 60$ when $t =$ their (i
	$c \text{ (or } -c) = \ln 40 \text{ or } \frac{1}{k_2} \ln 40 \text{ or } \frac{1}{k_2} \ln 40 k_2$	A1	Check carefully their 'c'
	Subst their value of <i>c</i> and $\theta = 40$ back into equation	M1	Use scheme on LHS
	$t = \frac{1}{k_2} \ln 2$	A1	Ignore scheme on LHS
	Total time = $\frac{1}{k_2} \ln 2 + \text{their}(i)$ (seconds)	√A1 8	
SR I	f the negative sign is omitted in part (ii), allow all marks	s in (iii) wi	th ln 2 replaced by $\ln \frac{1}{2}$.

SR If definite integrals used, allow M1 for eqn where t = 0 and $\theta = 60$ correspond; a second M1 for eqn where t = t and $\theta = 40$ correspond & M1 for correct use of limits. Final answer scores 2.

1	Long division method Correct leading term x^2 in quotient Evidence of correct div process (Quotient =) $x^2 + 6x - 4$ (Remainder =) $11x + 9$	B1 M1 A1 A1		Sufficient to convince
	<u>Identity method</u> $x^{4} + 11x^{3} + 28x^{2} + 3x + 1 = Q(x^{2} + 5x + 2) + R$ $Q = ax^{2} + bx + c \text{ or } x^{2} + bx + c \text{ ; } R = dx + e \& \ge 3 \text{ ops}$ a = 1, b = 6, c = -4, d = 11, e = 9 (for all 5)	M1 M1 A2 4		N.B. $a = 1 \Rightarrow 1$ of the 3 ops S.R. <u>B</u> 1 for 3 of these
2 (i)	Find at least 2 of $(\overrightarrow{AB} \text{ or } \overrightarrow{BA}), (\overrightarrow{BC} \text{ or } \overrightarrow{CB}), (\overrightarrow{AC} \text{ or } \overrightarrow{CA})$) м 1		irrespect of label; any notation
	Use correct method to find scal prod of any 2 vector	s M1		or use corr meth for modulus
	Use $\overrightarrow{AB.BC} = 0$ or $\frac{\overrightarrow{AB.BC}}{ AB BC } = 0$	M1		or use $\left \overrightarrow{AB} \right ^2 + \left \overrightarrow{BC} \right ^2 = \left \overrightarrow{AC} \right ^2$
	Obtain $p = 1$ (dep 3 @ M1)	A1	4	
(ii)	Use equal ratios of appropriate vectors Obtain $p = -8$	M1 A1	2	or scalar product method
	p = 0	6	2	
3	Use $\cos 2x = a \cos^2 x + b / \pm \cos^2 x - \sin^2 x / 1 - 2\sin^2 x$	*M1		
	Obtain $\lambda + \mu \sec^2 x$ dep	*M1		using 'reasonable' Pythag attempt
	$\int \lambda + \mu \sec^2 x \mathrm{d}x = \lambda x + \mu \tan x$	A1		(λ or μ may be 0 here/prev line)
	Obtain correct result $2x - \tan x$	A1		no follow-through
	$\frac{1}{6}\pi - \sqrt{3} + 1$ ISW	A1		exact answer required
	ů (martine do la construction do	5		
4	Attempt to connect du and dt or find $\frac{du}{dt}$ or $\frac{dt}{du}$	M1		not $du = dt$ but no accuracy
	$du = \frac{1}{t} dt$ or $\frac{du}{dt} = \frac{1}{t}$ or $dt = e^{u-2} du$ or $\frac{dt}{du} = e^{u-2}$	A1		
	Indef int $\rightarrow \int \frac{1}{u^2} (du)$	A1		no <i>t</i> or d <i>t</i> in evidence
	$=-\frac{1}{n}$	A1		
	Attempt to change limits if working with $f(u)$	M1		or re-subst & use 1 and e
	$\frac{1}{6}$ ISW	A1		In e must be changed to 1, ln 1 to 0
	U	6		

5	(i) $(1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x + \dots$	B1	
	$\dots -\frac{1}{9}x^2$	B1 2	$-\frac{2}{18}x^2$ acceptable
-	(ii) (a) $(8+16x)^{\frac{1}{3}} = 8^{\frac{1}{3}} (1+2x)^{\frac{1}{3}}$	B1	not $16^{\frac{1}{3}}(\frac{1}{2}+x)^{\frac{1}{3}}$
	$(1+2x)^{\frac{1}{3}}$ = their (i) expansion with 2x replacing x	M1	not dep on prev B1
	$= 1 + \frac{2}{3}x - \frac{4}{9}x^2 + \dots$	$\sqrt{A1}$	$-\frac{8}{18}x^2$ acceptable
	Required expansion = 2 (expansion just found)	√B1 4	accept equiv fractions
	<u>N.B.</u> If not based on part (i), award M1 for $8^{\frac{1}{3}} + \frac{1}{3} \cdot 8^{-\frac{2}{3}}$ (10)	$(5x) + \frac{\frac{1}{3} \cdot -\frac{2}{3}}{1.2} 8$	$5^{-\frac{5}{3}}(16x)^2$, allowing $16x^2$ for
	$(16x)^2$, with 3 @ A1 for 2+ $\frac{4}{3}x$ $\frac{8}{9}x^2$, accepting equiv	alent fracti	ons & ISW
	(ii) (b) $-\frac{1}{2} < x < \frac{1}{2}$ or $ x < \frac{1}{2}$	B1 1 7	no equality
6	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	M1	quoted/implied
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 9 - \frac{9}{9t} \qquad \text{ISW}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - \frac{3t^2}{t^3} \text{ISW}$	B1	
	Stating/implying $\frac{3t^2 - \frac{3}{t}}{9 - \frac{1}{t}} = 3 \implies t^2 = 9 \text{ or } t^3 - 9t = 0$	A1 V	WWW, totally correct at this stage
	t = 3 as final ans with clear log indication of	A2	<u>S.R.</u> A1 if $t = \pm 3$ or $t = -3$
	invalidity of -3 ; ignore (non) mention of $t = 0$	6	or ($t = 3$ & wrong/no indication)
7	Treat $\frac{d}{dx}(x^2 y)$ as a product	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^3\right) = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
	$3x^2 + 2x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 4xy = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	A1	Ignore $\frac{dy}{dx}$ = if not used
	Subst (2, 1) and solve for $\frac{dy}{dx}$ or vice-versa	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4 \qquad \text{WWW}$	A1	
	grad normal = $-\frac{1}{\text{their } \frac{dy}{dx}}$	$\sqrt{A1}$	stated or used
	Find eqn of line, through (2, 1), with either gradient	M1	using their $\frac{dy}{dx}$ or $-\frac{1}{\text{their}\frac{dy}{dx}}$
	x - 4y + 2 = 0	A1 8	AEF with integral coefficients

8 (i) $-\sin x e^{\cos x}$ B1 1 (ii) $\int \sin x e^{\cos x} dx = -e^{\cos x}$ B1 anywhere in part (ii) Parts with split $u = \cos x$, $dv = \sin x e^{\cos x}$ result $f(x) + \int g(x) dx$ M1 Indef Integ, 1st stage $-\cos x e^{\cos x} - \int \sin x e^{\cos x} dx$ accept ... $-\int -e^{\cos x} - \sin x \, dx$ A1 Second stage = $-\cos x e^{\cos x} + e^{\cos x}$ *A1 dep*A2 6 Final answer = 17 **9** (i) *P* is $\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$ **B**1 direction vector of ℓ is $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and of \overrightarrow{OP} is their P**√**B1 Use $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ for $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and their OP M1 $\theta = 35.3$ or better (0.615... rad) A1 4 ------(ii) Use $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3+t \\ 1-t \\ 1+2t \end{pmatrix} = 0$ M1 1(3+t)-1(1-t)+2(1+2t)=0A1 $t = -\frac{2}{2}$ A1 Subst. into $\begin{pmatrix} 3+t\\ 1-t\\ 1+2t \end{pmatrix}$ to produce $\begin{pmatrix} \frac{7}{3}\\ \frac{5}{3}\\ -\frac{1}{3} \end{pmatrix}$ ISW A1 4 (iii) Use $\sqrt{x^2 + y^2 + z^2}$ where $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is part (ii) answer M1 Obtain $\sqrt{\frac{75}{9}}$ AEF, 2.89 or better (2.8867513....) A1 2 10

Mark Scheme

January 2010

(i)
$$\frac{1}{3-x}$$
 $-\frac{1}{3-x}$ B1+1 2
(ii) (a) Separate variables $\int \frac{1}{(3-x)(6-x)} dx = \int k dt$ M1 or invert both sides
Style: For the M1, dx & dt must appear on correct sides or there must be \int sign on both sides
Change $\frac{1}{(3-x)(6-x)}$ into partial fractions from (i) $\sqrt{B1}$
 $\int \frac{A}{3-x} dx = \left(-A \text{ or } -\frac{1}{A}\right) \ln(3-x)$ B1 or $\int \frac{B}{6-x} dx = \left(-B \text{ or } -\frac{1}{B}\right) \ln(6-x)$
 $-\frac{1}{3} \ln(3-x) + \frac{1}{3} \ln(6-x) = kt (+c)$ $\sqrt{A1}$ f.t. from wrong multiples in (i)
Subst $(x = 0, t = 0)$ & $(x = 1, t = 1)$ into eqn with 'c' M1 and solve for 'k'
Use $\ln a + \ln b = \ln ab$ or $\ln a - \ln b = \ln \frac{a}{b}$ M1
Obtain $k = \frac{1}{3} \ln \frac{5}{4}$ with sufficient working & WWW A1 7 AG
(b) Substitute $k = \frac{1}{3} \ln \frac{5}{4}$, $t = 2$ & their value of 'c' *M1
Reduce to an eqn of form $\frac{6-x}{3-x} = \lambda$ dep*M1 where λ is a const
Obtain $x = \frac{27}{17}$ or 1.6 or better (1.5882353...) A2 4 S.R. A1 $\sqrt{10}$ for $x = \frac{3\lambda - 6}{\lambda - 1}$

First 2 terms in expansion =
$$1-5x$$

 $3^{a^{4}}$ term shown as $-\frac{5}{3}, -\frac{8}{3}, (3x)^{2}$
 $(3x)^{2}$ can be $-\frac{5}{3}, -1$
 $(3x)^{2}$ can be $9x^{2}$ or $3x^{2}$
 $= + 20x^{2}$
 $4^{4^{4}}$ term shown as $-\frac{5}{3}, -\frac{8}{3}, -\frac{11}{3}, (3x)^{3}$
 $4^{4^{4}}$ term shown as $-\frac{5}{3}, -\frac{8}{3}, -\frac{11}{3}, (3x)^{3}$
 $(3x)^{3}$ can be $27x^{3}$ or $3x^{3}$
 $= -\frac{220}{3}x^{3}$ ISW
A1 $Accept -\frac{440}{6}x^{3}$ ISW
N.B. If 0, SR B2 to be awarded for $1-\frac{5}{3}x + \frac{39}{9}x^{2} - \frac{239}{81}x^{3}$. Do not mark $(1+x)^{-\frac{5}{2}}$ as a MR.
 $\boxed{\mathbf{S}}$
Attempt quotient rule
[Some factor with denom $(1-\sin x)^{2}$ & num +/- $(1-\sin x)+/-\sin x+/-\cos x+/-\cos x$]
Numerator = $(1-\sin x)$. $-\sin x - \cos x$ A1 terms in any order
[Product symbols must be clear or implied by further work]
Reduce correct numerator to $1-\sin x$
 $B1$ or $-\sin x + \sin^{2} x + \cos^{2} x$
Simplify to $\frac{1}{1-\sin x}$ ISW
A1 $Accept -\frac{1}{\sin x-1}$
 $\boxed{\mathbf{A}}$
 $\frac{4}{x-1} + \frac{B}{(x-1)^{2}} + \frac{C}{x-2}$
M1 For correct format
 $\frac{A(x-1)(x-2) + B(x-2) + C(x-1)^{2} = x^{2}}$
 $A1$
 $B = -1$
 $A1$ (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
A1 (B1 if cover-up rule used)
 $C = 4$
 $C = 5$
 $C = 5$

$$\frac{Ax+B}{(x-1)^2} + \frac{C}{x-2};$$
 M0 M1; A1 for $A = -3$ and $B = 2$, A1 or B1 for $C = 4$ 3

4	Att by diff to connect dx & du or find $\frac{dx}{du}$ or $\frac{du}{dx}$ (not dx=d)	<u>u)</u> M1	no accuracy; not 'by parts'
	$dx = 2u du \text{ or } \frac{du}{dx} = \frac{1}{2} (x+2)^{-\frac{1}{2}}$ AEF	A1	
	Indefinite integral $\rightarrow \int 2(u^2 - 2)^2 \left(\frac{u}{u}\right) (du)$	A1	May be implied later
	{If relevant, cancel u/u and} attempt to square out	M1	
	$\{ \operatorname{dep} \int k \mathbf{I}(\mathrm{d}u) \text{ where } k = 2 \text{ or } \frac{1}{2} \text{ or } 1 \text{ and } \mathbf{I} = (u^2 - 2)^2 $	or $(2-a)$	$(u^2)^2$ or $(u^2 + 2)^2$ }
	Att to change limits if working with $f(u)$ after integration	M1	or re-subst into integral attempt and use $-1 \& 7$
	Indefiniteg = $\frac{2}{5}u^5 + \frac{8}{3}u^3 + 8u$ or $\frac{1}{10}u^5 + \frac{2}{3}u^3 + 2u$	A1	or $\frac{1}{5}u^5 + \frac{4}{3}u^3 + 4u$
	$\frac{652}{15}$ or $43\frac{7}{15}$ ISW but no '+c'	A1	
		7	
5	$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$ s.o.i.	B 1	Implied by e.g., $4x \frac{dy}{dx} + y$
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
	Diff eqn(=0 can be implied)(solve for $\frac{dy}{dx}$ and) put $\frac{dy}{dx}$ =	0 M1	
	Produce <u>only</u> $2x + 4y = 0$ (though AEF acceptable)	*A1	without any error seen
	Eliminate x or y from curve eqn & eqn(s) just produced	M1	
	Produce either $x^2 = 36$ or $y^2 = 9$ dep	o*A1	Disregard other solutions
	$(\pm 6, \mp 3)$ AEF, as the only answer ISW dep	o* A1	Sign aspect must be clear
		7	
6 (i)	State/imply scalar product of any two vectors $= 0$	M1	
	Scalar product of correct two vectors = $4 + 2a - 6$	A1	$(4+2a-6=0 \rightarrow M1A1)$
	<u>a = 1</u>	A1 3	
(ii)	(a) Attempt to produce at least two relevant equations	M1	e.g. $2t = 3 + 2s \dots$
	Solve two not containing 'a' for s and t	M1	
	Obtain at least one of $s = -\frac{1}{2}$, $t = 1$	A1	
	Substitute in third equation & produce $\underline{a = -2}$	A1 4	l de la construcción de la constru
	(b) Method for finding magnitude of <u>any</u> vector	M1	possibly involving 'a'
	Using $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ for the pair of direction vectors	M1	possibly involving 'a'
	<u>107, 108 (107.548) or 72, 73, 72.4, 72.5 (72.4516)</u> c.a.o.	A1 3	3 <u>1.87, 1.88 (1.87707) or 1.26</u>

(i)	Differentiate x as a quotient, $\frac{v du - u dv}{v^2}$ or $\frac{u dv - v du}{v^2}$	M1	or product clearly defined	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{(t+1)^2}$ or $\frac{-1}{(t+1)^2}$ or $-(t+1)^{-2}$	A1	WWW $\rightarrow 2$	
	$\frac{dy}{dt} = -\frac{2}{(t+3)^2}$ or $\frac{-2}{(t+3)^2}$ or $-2(t+3)^{-2}$	B1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1	quoted/implied and used	
	$\frac{dy}{dx} = \frac{2(t+1)^2}{(t+3)^2} \text{or} \frac{2(t+3)^{-2}}{(t+1)^{-2}} (\text{dep } 1^{\text{st}} 4 \text{ marks})$	*A1	ignore ref $t = -1, t = -3$	
	State <u>squares</u> +ve or $(t+1)^2$ & $(t+3)^2$ + ve $\therefore \frac{dy}{dx}$ +ve dep	•*A1 6	or $\left(\frac{t+1}{t+3}\right)^2$ + ve . Ignore ≥ 0	
(ii)	Attempt to obtain t from either the x or y equation	M1	No accuracy required	
	$t = \frac{2-x}{x-1}$ AEF or $t = \frac{2}{y} - 3$ AEF	A1		
	Substitute in the equation not yet used in this part	M1	or equate the 2 values of t	
	Use correct meth to eliminate ('double-decker') fractions	M1		
	Obtain $2x + y = 2xy + 2$ ISW AEF	A1 5	but not involving fractions	11
(i)	Long division method		Identity method	
	Evidence of division process as far as 1 st stage incl sub		$\equiv Q(x-1) + R$	
	(Quotient =) x - 4	A1	Q = x - 4	
	(Remainder =) 2 ISW	A1 3	R = 2; N.B. might be B1	
(ii)	(a) Separate variables; $\int \frac{1}{y-5} dy = \int \frac{x^2 - 5x + 6}{x-1} dx$	M1	' \int ' may be implied later	
	Change $\frac{x^2 - 5x + 6}{x - 1}$ into their (Quotient + $\frac{\text{Rem}}{x - 1}$)	M1		
	$\ln(y-5) = \sqrt{(\text{integration of their previous result)} (+c) \text{ISW}}$	√A13	3 f.t. if using Quot + $\frac{\text{Rem}}{x-1}$	
(ii)	(b) Substitute $y = 7$, $x = 8$ into their eqn containing 'c'	M1	& attempt 'c' $(-3.2, \ln \frac{2}{49})$	
	Substitute $x = 6$ and their value of ' <i>c</i> '	M1	& attempt to find <i>y</i>	

8

<u>y = 5.00 (5.002529)</u> Also $5 + \frac{50}{49}e^{-6}$ A2 **4** Accept 5, 5.0,

Beware: <u>any</u> wrong working anywhere \rightarrow A0 even if answer is one of the acceptable ones.

9(i)	Attempt to multiply out $(x + \cos 2x)^2$	M1	Min of 2 correct terms
	<u>Finding</u> $\int 2x \cos 2x dx$		
	Use $u = 2x$, $dv = \cos 2x$	M1	1 st stage $f(x) + -\int g(x) dx$
	1^{st} stage $x \sin 2x - \int \sin 2x dx$	A1	
	$\therefore \int 2x \cos 2x \mathrm{d}x = x \sin 2x + \frac{1}{2} \cos 2x$	A1	
	<u>Finding</u> $\int \cos^2 2x dx$		
	Change to $k \int + \frac{1}{-1} + \frac{1}{-\cos 4x} dx$	M1	where $k = \frac{1}{2}$, 2 or 1
	Correct version $\frac{1}{2}\int 1 + \cos 4x dx$	A1	
	$\int \cos 4x \mathrm{d}x = \frac{1}{4} \sin 4x$	B1	seen anywhere in this part
	$\text{Result} = \frac{1}{2}x + \frac{1}{8}\sin 4x$	A1	
	(i) ans $=\frac{1}{3}x^3 + x\sin 2x + \frac{1}{2}\cos 2x + \frac{1}{2}x + \frac{1}{8}\sin 4x$ (+ c)	A1 9	Fully correct
(ii)	$V = \pi \int_{0}^{\frac{1}{2}\pi} (x + \cos 2x)^2 (dx)$	M1	
	Use limits 0 & $\frac{1}{2}\pi$ correctly on their (i) answer	M1	
	(i) correct value = $\frac{1}{24}\pi^3 - \frac{1}{2} + \frac{1}{4}\pi - \frac{1}{2}$	A1	
	Final answer = $\pi \left(\frac{1}{24} \pi^3 + \frac{1}{4} \pi - 1 \right)$	A1 4	c.a.o. No follow-through
		13	

Alternative methods

2 If $y = \frac{\cos x}{1 - \sin x}$ is changed into $y(1 - \sin x) = \cos x$, award M1 for clear use of the product rule (though possibly trig differentiation inaccurate) A1 for $-y \cos x + (1 - \sin x) \frac{dy}{dx} = -\sin x$ AEF B1 for reducing to a fraction with $1 - \sin x$ or $-\sin x + \sin^2 x + \cos^2 x$ in the numerator A1 for correct final answer of $\frac{1}{1 - \sin x}$ or $(1 - \sin x)^{-1}$

If $y = \frac{\cos x}{1 - \sin x}$ is changed into $y = \cos x (1 - \sin x)^{-1}$, award M1 for clear use of the product rule (though possibly trig differentiation inaccurate) A1 for $\left(\frac{dy}{dx}\right) = \cos^2 x (1 - \sin x)^{-2} + (1 - \sin x)^{-1} - \sin x$ AEF

Mark Scheme

B1 for reducing to a fraction with $1-\sin x$ or $-\sin x + \sin^2 x + \cos^2 x$ in the numerator

A1 for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$

- 6(ii)(a) If candidates use some long drawn-out method to find 'a' instead of the direct route, allow
 - M1 as before, for producing the 3 equations
 - M1 for any satisfactory method which will/does produce 'a', however involved

A<u>2</u> for a = -2

7(ii) Marks for obtaining this Cartesian equation are not available in part (i).

If part (ii) is done first and then part (i) is attempted using the Cartesian equation, award marks as follow:

Method 1 where candidates differentiate implicitly

- M1 for attempt at implicit differentiation
- A1 for $\frac{dy}{dx} = \frac{2y-2}{1-2x}$ AEF
- M1 for substituting parametric values of *x* and *y*
- A2 for simplifying to $\frac{2(t+1)^2}{(t+3)^2}$
- A1 for finish as in original method

Method 2 where candidates manipulate the Cartesian equation to find x =or y =

- M1 for attempt to re-arrange so that either y = f(x) or $\overline{x = g(y)}$
- A1 for correct $y = \frac{2-2x}{1-2x}$ AEF or $x = \frac{2-y}{2-2y}$ AEF
- M1 for differentiating as a quotient
- A2 for obtaining $\frac{dy}{dx} = \frac{2}{(1-2x)^2}$ or $\frac{(2-2y)^2}{2}$
- A1 for finish as in original method

8(ii)(b) If definite integrals are used, then

A2 for 5, 5.0, 5.00 (5.002529) with caveat as in main scheme dep M2

No indication of ln(negative)

Still accept lns as before

7
Not just sec
$$x = \frac{1}{\cos x}$$

Allow
$$\frac{u \, \mathrm{d}v - v \, \mathrm{d}u}{v^2}$$
 & wrong trig signs

Or vice versa. Not just = sec x.tan x
or
$$\pm (\cos^2 x - \sin^2 x)$$

 $\sqrt{2 - 2\sin^2 x}$ needs simplifying

e of any const multiples

Condone θ for *x* except final line A1 4

Obtain
$$\frac{\sin x}{\cos^2 x}$$
 or $-.-(\sin x)(\cos x)^{-2}$ A1 No inaccur
Simplify with suff evid to AG e.g. $\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$ A1 4 Or vice vertices
(ii) Use $\cos 2x = +/-1+/-2\cos^2 x$ or $+/-1+/-2\sin^2 x$ M1 or $\pm (\cos^2 x)^{-2}$
Correct denominator $= \sqrt{2\cos^2 x}$ A1 $\sqrt{2-2\sin^2 x}$ A1 $\sqrt{2-2\sin^2 x}$
Evidence that $\frac{\tan x}{\cos x} = \sec x \tan x$ or $\int \frac{\tan x}{\cos x} dx = \sec x$ B1 irrespective

Obtain
$$\sin x$$
 or $(-i\pi x)(-2x)^{-2}$

State/imply
$$\frac{d}{dx}(\sec x) = \frac{d}{dx}\left(\frac{1}{\cos x}\right) \operatorname{or} \frac{d}{dx}(\cos x)^{-1}$$

 $\frac{1}{\sqrt{2}}\sec x$ (+ c)

Attempt quotient rule or chain rule to power -1

State/imply
$$\frac{d}{d}(\sec x) = \frac{d}{d} \left(\frac{1}{d} \right)$$
 or $\frac{d}{d}$

Correct f.t. of A & B;
$$A \ln(x-2) - \frac{B}{x-2}$$

Using limits = $-2 \ln 3 + 2 \ln 2 + \frac{1}{2}$ ISW

(ii)
$$\int \frac{A}{x-2} dx = \left(A \text{ or } \frac{1}{A}\right) \ln \left(x-2\right)$$
$$\int \frac{B}{\left(x-2\right)^2} dx = -\left(B \text{ or } \frac{1}{B}\right) \cdot \frac{1}{x-2}$$

2 (i)
$$A(x-2)+B = 7-2x$$

 $A = -2$
 $B = 3$

Third term =
$$+\frac{3}{2}y^2$$
 or $\sqrt{(4b+2)y^2}$

$$= -\frac{1}{8}x^{2}$$

Attempt to replace x by $2y - 4y^{2}$ or $2y + 4y^{2}$

Third term = $\frac{\frac{1}{2} - \frac{1}{2}}{2} [(-x)^2 \text{ or } x^2 \text{ or } - x^2]$

(ii) Attempt to replace x by
$$2y-4y^2$$
 or $2y+4y^2$
First two terms are $1-y$

irst two terms are
$$1-y$$

hird term = $+\frac{3}{2}y^2$ or $\sqrt{(4b+2)y^2}$

B1

B1

A1 3
$$-\frac{1}{8}x^2$$
 without work \rightarrow M1A1
M1 or write as $1 - (2y - 4y^2 \text{ or } 2y + 4y^2)$

A1
$$\sqrt{3}$$
 where b = cf (x^2) in part (i)

6

M1	or $A(x-2)^2 + B(x-2) = (7-2x)(x-2)$

A1 A1 3

B1√

B1 4

B1

M1

- Accept $\ln |x-2|, \ln |2-x|, \ln (2-x)$ B1
- B1 Negative sign is required

1 (i)

3 (i)

4 (i) Attempt to use
$$\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 or $\frac{dy}{dt} \cdot \frac{dt}{dx}$
 $\frac{4}{2t}$ or $\frac{2}{t}$

- (ii) Subst t = 4 into their (i), invert & change sign Subst t = 4 into (x,y) & use num grad for tgt/normal y = -2x + 52 AEF CAO (no f.t.)
- (iii) Attempt to eliminate t from the 2 given equations

$$x = 2 + \frac{y^2}{16}$$
 or $y^2 = 16(x-2)$ AEF ISW

5 (i) Attempt to connect dx and du

$$5 - x = 4 - u^2$$

Show
$$\int \frac{4-u^2}{2+u} \cdot 2u \, du$$
 reduced to $\int 4u - 2u^2 \, du$ AG

Clear explanation of why limits change

$$\frac{4}{3}$$

(ii)(a) 5-x

(**b**) Show reduction to $2 - \sqrt{x-1}$

$$\int \sqrt{x-1} \, dx = \frac{2}{3} \left(x-1 \right)^{\frac{3}{2}}$$
$$\left(10 - \frac{2}{3} \cdot 8 \right) - \left(4 - \frac{2}{3} \right) = \frac{4}{3} \text{ or } 4 \frac{2}{3} - 3 \frac{1}{3} = \frac{4}{3}$$

- 6 (i) Work with correct pair of direction vectors Demonstrate correct method for finding scalar product Demonstrate correct method for finding modulus 24, 24.0 (24.006363..) (degrees) 0.419 (0.41899..) (rad) A1 4 Mark earliest value, allow trunc/rounding
 - (ii) Attempt to set up 3 equations Find correct values of $(s, t) = (1,0) \operatorname{or} (1,4) \operatorname{or} (5,12)$ Substitute their (s,t) into equation not used Correctly demonstrate failure
 - (iii) Subst their (s,t) from first 2 eqns into new 3rd eqn a = 6

M1Not just quote formula

- M1
- **M**1
- A1 3 Only the eqn of normal accepted
- **M**1
- A1 2 Mark at earliest acceptable form.

7

- M1 Including $\frac{du}{dx} = \operatorname{or} du = \dots dx$; not dx = du
- **B**1 perhaps in conjunction with next line
- A1 In a fully satisfactory & acceptable manner
- B1 e.g. when x = 2, u = 1 and when x = 5, u = 2
- B1 5 not dependent on any of first 4 marks
- *B1 1 Accept 4-x-1=5-x (this is not AG)

dep*B1

- **B**1 Indep of other marks, seen anywhere in (b)
- B1 3 Working must be shown

9

M1

- M1 Of any two 3x3 vectors rel to question
- M1 Of any vector relevant to question
- M1 Of type 3 + 2s = 5, 3s = 3 + t, -2 - 4s = 2 - 2t
- A1 Or 2 diff values of s (or of t)
- and make a relevant deduction **M**1
- A1 4 dep on all 3 prev marks
- New 3^{rd} eqn of type a 4s = 2 2tM1
- A1 2

Mark Scheme

- Attempt parts with $u = x^2 + 5x + 7$, $dv = \sin x$ $1^{\text{st}} \text{ stage} = -(x^2 + 5x + 7)\cos x + \int (2x + 5)\cos x \, dx$ $\int (2x + 5)\cos x \, dx = (2x + 5)\sin x - \int 2\sin x \, dx$ $= (2x + 5)\sin x + 2\cos x$ $I = -(x^2 + 5x + 7)\cos x + (2x + 5)\sin x + 2\cos x$ (Substitute $x = \pi$) -(Substitute x = 0) $\pi^2 + 5\pi + 10$ WWW AG
- 8 (i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$ $\frac{d}{dx}(-5xy) = (-)(5)x \frac{dy}{dx} + (-)(5)y$ LHS completely correct $4x - 5x \frac{dy}{dx} - 5y + 2y \frac{dy}{dx} (= 0)$ Substitute $\frac{dy}{dx} = \frac{3}{8}$ or solve for $\frac{dy}{dx}$ & then equate to $\frac{3}{8}$ Produce x = 2y WWW AG (Converse acceptable)
 - (ii) Substitute 2y for x or $\frac{1}{2}x$ for y in curve equation Produce either $x^2 = 36$ or $y^2 = 9$ AEF of $(\pm 6, \pm 3)$

9 (i) Attempt to sep variables in the form $\int \frac{p}{(x-8)^{\frac{1}{3}}} dx = \int q dt M1$

$$\int \frac{1}{(x-8)^{\frac{1}{3}}} dx = k(x-8)^{\frac{2}{3}}$$
A1
All correct (+ c) A1

For equation containing 'c'; substitute t = 0, x = 72

Correct corresponding value of c from correct eqn Subst their c & x = 35 back into eqn

$$t = \frac{21}{8}$$
 or 2.63 / 2.625 [C.A.O]

(ii) State/imply in some way that x = 8 when flow stopsB1Substitute x = 8 back into equation containing numeric 'c' M1t = 6A1 3

- as far as $f(x) + /- \int g(x) dx$ **M**1 A1 signs need not be amalgamated at this stage indep of previous A1 being awarded **B**1 B1 A1 WWW **M**1 An attempt at subst x = 0 must be seen A1 7 7 B1 M1 i.e. reasonably clear use of product rule A1 Accept " $\frac{dy}{dy}$ = " provided it is not used M1 Accuracy not required for "solve for $\frac{dy}{dr}$ " A1 5 Expect 17x = 34y and/or $\frac{dy}{dx} = \frac{5y - 4x}{2y - 5x}$ M1 A1 A1 3 ISW Any correct format acceptable
 - 8 .

Or invert as $\frac{dt}{dx} = \frac{r}{(x-8)^{\frac{1}{3}}}$; *p*,*q*,*r* consts

k const

M1

A1

M1

A1 7

10

M2 for
$$\int_{72}^{35} = \int_{0}^{t}$$
 or $\int_{35}^{72} = \int_{0}^{t}$

A2:
$$t = \frac{21}{8}$$
 or 2.63 / 2.625 WWW

Mark Scheme

- 1 When an acceptable answer has been obtained, ignore subsequent working (ISW) unless stated otherwise.
- 2 Ignore working which has no relevance to question as set; e.g. in Qu.1, ignore all terms in x^3 etc.
- 3 The 'M' marks are awarded if it is clear that candidate is <u>attempting</u> to do what he/she should be doing.
- 4 If an ans is given (**AG**), <u>working must be checked minutely</u> as answer shown will nearly always be 'correct'. More reasoning/explanation is generally required than when the answer is not given.

Comments or Alternative methods

Question 1(ii)

Beware: there are often double mistakes leading to the correct terms - errors invalidate marks.

Question 2(ii)

For the first 2 marks, we're really testing $\int \frac{1}{x-2} dx$ and $\int \frac{1}{(x-2)^2} dx$; this is why we accept $\frac{1}{A}$ and/or $-\frac{1}{B}$.

For the 1st & 3rd marks, accept $\ln(2-x)$ as these are the indef integ stages. At final, definite, stage, it will be penalised.. 'Exact value' is required; so 0.0945.... without equivalent log version $\rightarrow B0$ 2ln2-3ln3 need not be simplified.

Question 4

Allow marks for part (iii) to be awarded at any stage of question.

So, if the Cartesian equation is worked out first of all, then award marks in part (i) as follow:

if cart. eqn is found in the form x = f(y), award M1 for finding $\frac{dx}{dy}$, inverting & subst y = 4t (in either order)

if cart. eqn is found in the form y = g(x), award M1 for finding $\frac{dy}{dx}$ and substituting $x = 2 + t^2$

and, finally, A1 as in main scheme.

Question 5(i)

The problem here will centre on how the candidate manipulates the equation $u = \sqrt{x-1}$ to get x in terms of u. He/she could get $x = u^2 + 1$ (correct) or, perhaps, $x = u^2 - 1$ or $x = 1 - u^2$ (incorrect) or some other incorrect version. The 1st, 4th & 5th marks in part (i) are unaffected by the correctness or otherwise of this manipulation. However, any error seen must destroy the 2nd and 3rd marks – but candidates can still score 3 of the 5 marks.

For the A1, there must be some evidence of reduction to the given answer; the one main case that we are <u>not accepting</u> is where $\frac{8u - 2u^3}{2+u}$ is said to be $4u - 2u^2$ without any supporting evidence; long division will suffice; <u>or</u> if $8u - 2u^3$ is said to be $(2+u)(4u - 2u^2)$, then we will accept (as multiplication can easily be checked in the head whereas division is not reckoned to be). Note that '2' into '8u' gives '4u' and 'u' into '-2u³' gives '-2u²'.

Question 5(ii)(a)

This is just a '1' mark part so we give 1 or 0 purely dependent on the answer and we ignore any sloppy working. A candidate writing 4-x-1=3-x will be awarded 0 marks; however, another candidate writing 4-x-1=5-x will be awarded the B1 mark. This is not an AG so the candidate does not know the required answer.

Question 6(i)

For demonstrating correct method for finding scalar product, I expect to see at least 2/3 of the working correct.

Likewise for modulus: examine either vector, $\sqrt{2^2 + 3^2 - 4^2}$ will score M1 { $\frac{2}{3}$ correct, prob $\sqrt{29}$ will follow

anyway}

Question 6(ii)

Occasionally candidates do not follow a 'sensible' method. However, the first M1 is always standard. The remaining 3 marks must be awarded for convincing arguments and/for accurate results.

Question 7

This is a question where signs are crucial and where the given answer may be obtained even with errors in the working; also the fact that the answer is **AG** means that many candidates will state it on the final line.

Using the standard method, 3 marks out of the 7 are fixed (the 2 @ M1 and the final A1) but the other 4 marks depend on the capability of the candidate to integrate sin *x* and cos *x*.

If he/she uses $\cos x$ for the integral of $\sin x$, candidate should get -(our version of 1st main stage), so that's A0 but he/she still has to integrate $(2x+5)\cos x$ for the 2nd stage. Admittedly he/she may then make a further mistake when integrating $\cos x$ but the 2 @ B1 are available. These 2 marks are an independent pair and only depend on the integral of $(2x+5)\cos x$ being attempted. Whether it's the integral of $(2x+5)\cos x$ or of $-(2x+5)\cos x$ is immaterial. This gives a maximum of 4 out of 7 if $\sin x$ is incorrectly integrated.

Even though I have bracketed the 3 terms as $(x^2 + 5x + 7)$, we can expect some candidates to multiply out as 3 separate

integrals., $\int x^2 \sin x dx$	and	$\int 5x \sin x \mathrm{d}x$	and	$\int 7 \sin x \mathrm{d}x$	
Their equivalent 1 st stages are:					
$-x^2\cos x + \int 2x\cos x\mathrm{d}x;$		$-5x\cos x + \int 5\cos x \mathrm{d}x;$		$-7\cos x$	M1 + A1
Their equivalent 2 nd stages are:					
$2x\sin x + 2\cos x \mathbf{B1}$		$5 \sin x$ B1			

To obtain the corresponding marks, all components must be correct.

2

3

Attempt to factorise **<u>both</u>** numerator & denominator Num = e.g. $(x^2 - 1)(x^2 - 9)$ or $(x^2 - 2x - 3)(x^2 + 2x - 3)$ Denominator = e.g. $(x^2 - 2x - 3)(x + 5)(x + 3)$

$$\frac{x-1}{x+5} \quad \text{or} \quad 1-\frac{6}{x+5} \qquad \text{WWW}$$

Alternative start, attempting long division

Expand denom as quartic & attempt to divide $\frac{\text{numerator}}{\text{denominator}}$ M1 Obtain quotient = 1 & remainder = $-6x^3 - 6x^2 + 54x + 54$ B1 Final B1 A1 available as before

(i) The words quotient and remainder need not be explicit

 $2^{2} + (-3)^{2} + (\sqrt{12})^{2}$ soi e.g. 25 or 5 5

$$\frac{1}{5} \begin{pmatrix} 2\\ -3\\ \sqrt{12} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{2}{5}\\ -\frac{3}{5}\\ \frac{\sqrt{12}}{5} \end{pmatrix} \text{ AEF}$$

M1 completely or partially

- B1 or (x-3)(x+3)(x-1)(x+1)B1 or (x-3)(x+1)(x+5)(x+3)
 - $1 \quad \text{or} \left(x y \right) \left(x + 1 \right) \left(x + y \right) \left(x + y \right)$
- A1 4 ISW but not if any further 'cancellation'

but <u>not</u> divide <u>denominator</u>

4

- M1 Allow $2^2 3^2 + \sqrt{12}^2$
- A1 May be implied by 5 or 1/5 in final answer

$$\sqrt{A1}$$
 3 FT their '5'. Accept $-\frac{1}{5}\left(\begin{array}{c}\\\\\\\\\end{array}\right)$ or $\frac{1}{\pm 5}\left(\begin{array}{c}\\\\\\\end{array}\right)$

3

Long division For leading term 3x in quotient B1 Suff evidence of div process (3x, mult back, attempt sub) M1 (Quotient) = 3x - 1A1 (Remainder) = xAG A1 4 No wrong working, partic on penult line $3x^{3} - x^{2} + 10x - 3 = Q(x^{2} + 3) + R$ Identity *M1 Q = ax + b, R = cx + d & attempt at least 2 operations dep*M1 If a = 3, this $\Rightarrow 1$ operation a = 3, b = -1A1 c = 1, d = 0A1 No wrong working anywhere <u>Inspection</u> $3x^3 - x^2 + 10x - 3 = (x^2 + 3)(3x - 1) + x$ **B**2 or state quotient = 3x - 1Clear demonstration of LHS = RHS B2 (ii) Change integrand to 'their (i) quotient' + $\frac{x}{x^2+3}$ M1 √A1 Correct FT integration of 'their (i) quotient' $\int \frac{x}{x^2 + 3} \, \mathrm{d}x = \frac{1}{2} \ln \left(x^2 + 3 \right)$ A1 Exact value of integral = $\frac{1}{2} + \frac{1}{2} \ln 4 - \frac{1}{2} \ln 3$ AEF ISW A1 **4** Answer as decimal value (only) \rightarrow A0

4 Indefinite integral Attempt to connect dx and d
$$\theta$$
 M1 Incl $\frac{dx}{d\theta} =, \frac{d\theta}{dx} =, dx = ...d\theta$; not $dx = d\theta$
Denominator $(1-9x^2)^{\frac{3}{2}}$ becomes $\cos^3\theta$ B1
Reduce original integral to $\frac{1}{3}\int \frac{1}{\cos^2\theta} d\theta$ A1 May be implied, seen only as $\frac{1}{3}\int \sec^2\theta d\theta$
Change $\int \frac{1}{\cos^2\theta} d\theta$ to $\tan \theta$ B1 Ignore $\frac{1}{3}$ at this stage
Use appropriate limits for θ (allow degrees) or x M1 Integration need not be accurate
 $\frac{\sqrt{3}}{9}$ AEF, exact answer required, ISW A1 6

Attempt to set up 3 equations M1 of type 4 + 3s = 1,6 + 2s = t,4 + s = -t5 (i) (s,t) = (-1,4) or (-1,-3) or $(-\frac{10}{3},-\frac{2}{3})$ *A1 or $s = -1 \& -\frac{10}{3} \text{ or } t = \text{two of } (4,-3,-\frac{2}{3})$ Show clear contradiction e.g. $3 \neq -4$, $4 \neq -3$, $-6 \neq 1$ dep*A1 **3** Allow \checkmark unsimpl contradictions. No ISW. <u>SC</u> If $s = \frac{-10}{3}$ found from 2^{nd} & 3^{rd} eqns and contradiction shown in 1^{st} eqn, all 3 marks may be awarded. (ii) Work with $\begin{pmatrix} 3\\2\\1 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$ **M**1 Clear method for scalar product of any 2 vectors **M**1 Clear method for modulus of any vector **M**1 A1 4 (From $\frac{1}{\sqrt{14}\sqrt{2}}$) 79,1^(o) or better (79.1066..) 1.38 (rad) (1.38067..) ISW (iii) Use $\begin{pmatrix} 4+3s \\ 6+2s \\ 4+s \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = 0$ M1Obtain s = -2from 12 + 9s + 12 + 4s + 4 + s = 0A1 A is $\begin{pmatrix} -2\\ 2\\ 2 \end{pmatrix}$ or $-2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ final answer <u>B</u>1 **3** Accept (-2, 2, 2)10

6	$(1+ax)^{\frac{1}{2}} = 1+\frac{1}{2}ax$ $+\frac{1}{2}\cdot\frac{-1}{2}(ax)^2$ B1,B1 N.B. third term $=-\frac{1}{8}a^2x^2$
	Change $(4-x)^{-\frac{1}{2}}$ into $k\left(1-\frac{x}{4}\right)^{-\frac{1}{2}}$, where k is likely to be $\frac{1}{2}/2/4/-2$, & work out expansion of $\left(1-\frac{x}{4}\right)^{-\frac{1}{2}}$
	$\left(1-\frac{x}{4}\right)^{-\frac{1}{2}} = 1+\frac{1}{8}x \dots +\frac{\frac{-1}{2}\cdot\frac{-3}{2}}{2}\left(\frac{(-)x}{4}\right)^2$ B1,B1 N.B. third term $=\frac{3}{128}x^2$
	<u>OR</u> Change $\{4-x\}^{\frac{1}{2}}$ into $l(1-\frac{x}{4})^{\frac{1}{2}}$, where <i>l</i> is likely to be $\frac{1}{2}/2/4/-2$, & work out expansion of $(1-\frac{x}{4})^{\frac{1}{2}}$
	$(1 - \frac{x}{4})^{\frac{1}{2}} = 1 - \frac{1}{8}x - \frac{1}{128}x^2$ B1 (for all 3 terms simplified)
	$k = \frac{1}{2}$ (with possibility of M1 + A1 + A1 to follow) B1 $l = 2$ (with no further marks available)
	Multiply $(1+ax)^{\frac{1}{2}}$ by $(4-x)^{-\frac{1}{2}}$ or $(1-\frac{x}{4})^{-\frac{1}{2}}$ M1 Ignore irrelevant products
	The required three terms (with/without x^2) <u>identified as</u>
	$-\frac{1}{16}a^2 + \frac{1}{32}a + \frac{3}{256}$ or $\frac{-16a^2 + 8a + 3}{256}$ AEF ISW A1+A1 8 A1 for one correct term + A1 for other two
	<u>SC</u> B1 for $\frac{1}{4}\left(1-\frac{x}{4}\right)^{-1}$; B1 for $\left(1-\frac{x}{4}\right)^{-1} = 1 + \frac{x}{4} + \frac{x^2}{16}$; M1 for multiplying $(1+ax)$ by their $(4-x)^{-1}$.
	If result is $p + qx + rx^2$, then to find $(p + qx + rx^2)^{\frac{1}{2}}$ award B1 for $p^{\frac{1}{2}}(\dots)$,
	B1 correct 1 st & 2 nd terms of expansion, B1 correct 3 rd term; A1,A1 as before, for correct answers.
7	Attempt to sep variables in format $\int py^2 (dy) = \int \frac{q}{x+2} (dx)$ M1 where constants p and/or q may be wrong Either y^3 & $\ln(x+2)$ or $\frac{1}{3}y^3$ & $\frac{1}{3}\ln(x+2)$ A1+A1 Accept $\frac{1}{3}\ln(3x+6)$ for $\frac{1}{3}\ln(x+2)$ & $ $ for ()
	If indefinite integrals are being used (most likely scenario)
	Substitute $x = 1, y = 2$ into an eqn <u>containing '+const'</u> M1
	Sub $\underline{y} = 1.5$ and their value of 'const' & solve for $\underline{x \text{ or } q}$ M1
	x or q = -1.97 only A2
	[SC x or $q = -1.970$ or -1.971 or -1.9705 or -1.9706 A1] 7
	If definite integrals are used (less likely scenario)
	<u>If definite integrals are used (less likely scenario)</u> Use $\int_{1.5}^{2} dy = \int_{q}^{1} dx$ where 2 corresponds with 1 M2 & 1.5 corresp with q (at top/bottom or v.v.) Then A2 or SC A1 as above
	<u>If definite integrals are used (less likely scenario)</u> Use $\int_{1.5}^{2} dy = \int_{q}^{1} dx$ where 2 corresponds with 1 M2 & 1.5 corresp with q (at top/bottom or v.v.)

8 Cartesian equation may be used in parts (i) - (iii) and corresponding marks awarded

(i)	Sub parametric eqns into $y = 3x$ & produce $t = -2$							
	<u>OR</u> sub $t = -2$ into para eqs, obtain $(-1, -3)$ & state $y = 3x$							
	<u>OR</u> other similar methods producing (or verifying) $t = -2$ B1							
	Value of <i>t</i> at other point is 2	B1 2	$t = \pm 2$ is sufficient for B1+B1					
(ii)	Use (not just quote) $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	M1						
	$= -(t+1)^2$	A1	or $\frac{-1}{x^2}$ or $\frac{-(2+y)}{x}$					
	Attempt to use $-\frac{1}{\frac{dy}{dx}}$ for gradient of normal	M1						
	Gradient normal $= 1$ cao	A1						
	Subst $t = -2$ into the parametric eqns.	M1	to find pt at which normal is drawn					
	Produce $y = x - 2$ as equation of the normal <u>WWW</u>	A1 6	'A' marks in (ii) are dep on prev 'A'					
(iii)	Substitute the parametric values into their eqn of normal	M1						
	Produce $t = 0$ as final answer cao	A1 2	This is dep on final A1 in (ii)					
	N.B. If $y = x - 2$ is found fortuitously in (ii) (& \therefore given	n A0 in (ii)),	you must award A0 here in (iii).					
(iv)	Attempt to eliminate <i>t</i> from the parametric equations	M1						

Produce any correct equation	A1	e.g. $x = \frac{1}{y+2}$
------------------------------	----	--------------------------

Produce $y = \frac{1}{x} - 2$ or $y = \frac{1 - 2x}{x}$ ISW A1 3 Must be seen in (iv)

{N.B. Candidate producing only $y = \frac{1}{x} - 2$ is awarded both A1 marks.}

June 2011

(i) Treat x ln x as a product M1 If
$$\int \ln x$$
, use parts $u = \ln x$, $dv = 1$
Obtain $x \frac{1}{x} + \ln x$ A1 $x \ln x - \int 1 dx = x \ln x - x$
Show $x \frac{1}{x} + \ln x - 1 = \ln x$ WWW AG A1 3 And state given result
(ii)(a) Part (a) is mainly based on the indef integral $\int (\ln x)^2 dx$
[A candidate stating e.g. $\int (\ln x)^2 dx - \int 2 \ln x dx$ or $= \int (\ln x - x)^2 dx$ is awarded 0 for (ii)(a)]
Correct use of $\int \ln x dx = x \ln x - x$ anywhere in this part B1 Quoted from (i) or derived
Use integ by parts on $\int (\ln x)^2 dx$ with $u = \ln x$, $dv = \ln x$ M1 or $u = (\ln x)^2$, $dv = 1$
[For 'integration by parts, candidates must get to a 1st stage with format $f(x) + (-\int g(x) dx$]
1st stage $= \ln x(x \ln x - x) - \int \frac{1}{x}(x \ln x - x) dx$ soi A1 $x(\ln x)^2 - \int x \cdot \frac{2}{x} \ln x dx$
2^{std} stage $= x(\ln x)^2 - 2x \ln x + 2x$ AEF (unsimplified) A1
 \therefore Value of definite integral between 1 & e = e - 2 cao A1 Use limits on 2^{sd} stage & produce cao
Volume $= \pi(e^{-2})$ ISW A1 6 Answer as decimal value (only) \rightarrow A0
Alternative method when subst. $u = \ln x$ used
Attempt to connect dx and du M1
Becomes $\int u^2 e^u du$ A1
First stage $(u^2 - 2u + 2)e^u$ A1
Final A1 A1 available as before
(b) Indication that requ vol = vol cylinder - vol inner solid M1
Clear demonstration of either vol of cylinder being πe^2
(including reason for height $= \ln e$) or rotation of $x = e$
about the y-axis (including upper limit of $y = \ln e$) A1 Could appear as $\pi \int_0^1 e^2 dy$
($\pi \int x^2 dy = (\pi) \int e^{2y} dy$ B1
 $\frac{\pi (e^2 + 1)}{2}$ or 13.2 or 13.18 or better B1 4 May be from graphical calculator

Possible helpful points

- M is Method; does the candidate know what he/she should be doing? It does not ask how accurate it is.. e.g. in Qu.4, a candidate saying $\frac{dx}{d\theta} = -\frac{1}{3}\cos\theta$ is awarded M1. 1.
- When checking if decimal places are acceptable, accept both rounding & truncation.
 In general we ISW unless otherwise stated.
- 4. The symbol $\sqrt{}$ is sometimes used to indicate 'follow-through' in this scheme.

	Juestio	n Answer	Marks	Guidance	
1		$f(x) = (x^{2} + 1)(x^{2} + 4x + 2) + (x - 1)$ $x^{4} + 4x^{3} + \dots$ $+ \dots 3x^{2} + 5x + 1$	M1 B1 A1 [3]	written or clearly intended	(Alt)Long div with 3 stages/equate quots/equate rems
2	(i)	$\mathbf{a} = \begin{pmatrix} 4\\2\\7 \end{pmatrix} \text{ or } \begin{pmatrix} 5\\-4\\-1 \end{pmatrix}$ $\mathbf{b} = \text{Difference between the two points}$ Provided final answer is of form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ $\begin{pmatrix} 1\\-6\\-8 \end{pmatrix} \text{ or } \begin{pmatrix} -1\\6\\8 \end{pmatrix}$	B1 M1 A1 [3]	Accept any notation	
2	(ii)	Method for magnitude of <u>any</u> vector Method for scalar product of <u>any</u> 2 vectors Using $\cos \theta = \frac{\mathbf{c.d}}{ \mathbf{c} \mathbf{d} }$ for their b and $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$ 21.4 or better (21.444513); 0.374 or better (0.374277)	M1 M1 M1 A1 [4]	Accept e.g. $\sqrt{1^2 - 6^2 - 8^2}$	

Q	Juestio	n Answer	Marks	Guidance
3	(i)	Treat $(x+3)(y+4)$ or xy as a product	M1	attempting $u.dv + v.du$
		$\frac{\mathrm{d}}{\mathrm{d}x}(x+3)(y+4) = (x+3)\frac{\mathrm{d}y}{\mathrm{d}x} + (y+4) \text{ or}$	A1	
		$\frac{d}{dx}(xy) = x \frac{dy}{dx} + y$ $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - y - 4}{x - 2y + 3}$	B1 [4]	AEF including $-\frac{a}{b}, \frac{-a}{b}, \frac{a}{-b}$
3	(ii)	State or imply that denominator is zero	B1	Provided denom is $x - 2y + 3$ or $-x + 2y - 3$
		Tangents are parallel to <i>y</i> -axis	B1 [2]	Accept vertical or of the form $x = k$
3	(iii)	Substitute (6,0) into their $\frac{dy}{dx}$ (= $\frac{8}{9}$)	M1	
		$8x - 9y = 48 \qquad \qquad \text{FT} fx - gy = 6f$	A1 FT	FT their numerical $\frac{dy}{dx} = \frac{f}{g}$ www in this part
			[2]	
4	(i)	First two terms in expansion $= 1 - x$	B1	(simplify to this, now or later)
		Third term shown as $\frac{\frac{1}{4} \cdot -\frac{3}{4}}{2} (-4x)^2$	M1	$-\frac{3}{4}$ can be $\frac{1}{4}-1$; $(-4x)^2$ can be $-4x^2$ or
		$=-\frac{3}{2}x^2$	A1	$-16x^2$
		Fourth term shown as $\frac{\frac{1}{4} - \frac{3}{4} - \frac{7}{4}}{2.3} (-4x)^3$	M1	Similar allowances as for first M1
		$=-\frac{7}{2}x^3$	A1	[Complete expansion is $1 - x - \frac{3}{2}x^2 - \frac{7}{2}x^3$]
			[5]	

C	Juestion	Answer	Marks	Guidance
4	(ii)	$(1+bx^2)^7$ shown (implied) as $1+7bx^2+$	B1	
		Clear indic that terms involving x and x^2 must cancel	M1	
		<i>a</i> = -1	A1 FT	If (i) = $1 + \lambda x + \mu x^2$, $a = \lambda$
		$b = -\frac{3}{14}$	A1 FT	If (i) = $1 + \lambda x + \mu x^2$, $b = \frac{1}{7}\mu$
				FT from wrong (i) only, not wrong $(1+bx^2)^7$
			[4]	
5		Attempt to connect du and dx or find $\frac{du}{dx}$	M1	no accuracy ; not $du = dx$
		$du = -\sin x dx$ or $\frac{du}{dx} = -\sin x$	A1	
		Indefinite integral becomes $-\int (1-u^2)u^2 (du)$	A1 FT	FT only from $\frac{\mathrm{d}u}{\mathrm{d}x} = \sin x$
		$-\int (1-u^2) u^2 (du) = -\frac{1}{3}u^3 + \frac{1}{5}u^5$	B1	Award also for $\int (1-u^2) u^2 du = \frac{1}{3}u^3 - \frac{1}{5}u^5$
		Use new limits if $f(u)$ or original limits if resubstitution	M1	no accuracy
		$\frac{47}{480}$ AE Fraction	A1	ISW www If A0, answer of $0.0979 \rightarrow M1$
		400	[6]	

Q	Juestion	n Answer	Marks	Guidance	
6		State or imply that graphs cross at $x = \frac{1}{4}\pi$	B1	(Limits on integrals may clarify)	Be lenient here
		$\pi \int y^2 dx$ used with either $y = \sin x$ or $y = \cos x$	*M1	The ' π ' element(s) may not appear until later	
		$\pi \int_{0}^{\frac{1}{4}\pi} \sin^{2}x (dx) + \pi \int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} \cos^{2}x (dx) \text{or } 2\pi \int_{0}^{\frac{1}{4}\pi} \sin^{2}x (dx)$	A1	in the working.	
		Changing $\sin^2 x$ or $\cos^2 x$ into $f(\cos 2x)$	dep*M1		
		$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ or $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$	A1		
		$\int \cos 2x (dx) = \frac{1}{2} \sin 2x \text{ anywhere in this part}$	B1		
		$\frac{1}{4}\pi^2 - \frac{1}{2}\pi$	A1 [7]	ISW	
7	(i)	Use $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1+t \\ -t \\ 2 \end{pmatrix}$	B1		
		$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 0$	M1		
		$\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 2 \end{pmatrix} \text{ or } \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + 2\mathbf{k}$	A1		
			[3]		

C	Juestion	Answer	Marks	Guidance	
7	(ii)	$(1+t)^2 + t^2 + 4 = 3^2$ or $\sqrt{(1+t)^2 + t^2 + 4} = 3$ t = 1 or -2	M1	FT from their (i) P	
		t = 1 or -2	A1	SR If A0A0 award A1A0 for either value of <i>t</i> leading to its correct answer.	
		$ \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \text{ and } \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} $	A1		
			[3]		
8	(i)	$\frac{dy}{dx} = \frac{\text{attempt at } \frac{dy}{d\theta}}{\text{attempt at } \frac{dx}{d\theta}} \text{ but not } \frac{4 - 3 \sin^2 \theta}{2 \sin \theta}$	M1		Alternative Change to Cartesian form, differentiate and resubstitute
		$4\cos\theta - 3\sin^2\theta\cos\theta$ seen	B1	indep	Correct differentiation of
		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{4\cos\theta - 3\sin^2\theta}{2\sin\theta\cos\theta} = \frac{4 - 3\sin^2\theta}{2\sin\theta} \qquad \mathbf{AG}$	A1		correct equation
			[3]		
8	(ii)	Equating given $\frac{dy}{dx}$ to 2 & producing quadratic equation	M1		
		$\sin \theta = \frac{2}{3}$	A1	ignore any other given value	
		$P \text{ is } \left(\frac{4}{9}, \frac{64}{27}\right)$	A1 [3]	Accept 0.444 and 2.37 or better	
8	(iii)	Identify problem as solving $4-3 \sin^2 \theta = 0$ Show convincingly that $4-3 \sin^2 \theta = 0$ has no solutions	M1 A1 [2]	Consider magnitude of sin θ	
8	(iv)	Attempt to eliminate $\sin\theta$ from the 2 given equations	M1	e.g. $y = 4\sqrt{x} - \left(\sqrt{x}\right)^3$	
		Produce $y^2 = x(4-x)^2$ or $16x - 8x^2 + x^3$	A1	ISW	
			[2]		

Q	uestion	Answer	Marks	Guidance
9		Use $u = x^2 + 1$, $dv = e^{2x}$ or $u = x^2$, $dv = e^{2x}$	M1	$1^{\text{st}} \text{ stage} = f(x) + -\int g(x) dx$
		$1^{\text{st}} \text{ stage} = \frac{1}{2} (x^2 + 1) e^{2x} - \int x e^{2x} dx \text{ or}$ $\frac{1}{2} x^2 e^{2x} - \int x e^{2x} dx$	A1	
		For $\int x e^{2x} dx$, use $u = x$, $dv = e^{2x}$	M1	ditto
		$= \frac{1}{2}x e^{2x} - \frac{1}{4}e^{2x}$	A1	tolerate second sign error in $-\int xe^{2x}dx$
		Complete final stage = $\frac{1}{2}(x^2+1)e^{2x}-\frac{1}{4}(2x-1)e^{2x}$	A1	soi; may be separate terms
		Correct (method) use of limits seen anywhere	M1	Do not accept $(\ldots) = 0$
		Final answer $= \frac{3}{4}e^2 - \frac{3}{4}$	A1	ISW; if A0, answer of 4.79 \rightarrow M1
			[7]	
10	(i)	$\frac{1}{2}(y^2+1)^{-\frac{1}{2}}.2y$ or better	B1 [1]	Tolerate " $\frac{dy}{dx} = \dots$ " but, otherwise, no $\frac{dy}{dx}$ or $\frac{dx}{dy}$
10	(ii)	Separate variables; $\int \frac{y}{\sqrt{y^2 + 1}} dy = \int \frac{x - 1}{x} dx$	*M1	\int may be implied later
		Change $\frac{x-1}{r}$ into $1-\frac{1}{r}$	M1	
		$RHS = x - \ln x$	A1	
		$LHS = \sqrt{y^2 + 1}$	B1	Quoted or derived
		Subst $y = \sqrt{e^2 - 2e}$, $x = e$ into their eqn. with 'c'	Dep*M1	
		$\sqrt{y^2 + 1} = \sqrt{(e - 1)^2} = e - 1$	A1	Ignore lack of/no ref to 1-e
		$c = 0$ $\sqrt{y^2 + 1} = x - \ln x$	A1 A1	Ignore any ref to $c = 2 - 2$ e ISW
		v.	[8]	

Q	uestion	Answer	Marks	Guidance
1	(i)	$x^{2}-3x+2 = (x-1)(x-2)$ or $(1-x)(2-x)$ oe	B1	
		Obtain $-\frac{1}{x-2}$ or $\frac{1}{2-x}$ or $\frac{-1}{x-2}$ or $\frac{1}{-(x-2)}$ ISW	B1	Not $\frac{-1}{-(2-x)}$ Accept WW
		If Partial Fractions are used, apply normal mark scheme.		
			[2]	
1	(ii)	Attempt single fraction or 2 fractions with same relevant denom	M1	e.g. $(x-1)(x-4)[(x-3)or(x-3)^2]$
		Fully correct fraction(s) before any simplification	A1	
		Relevant numerator = $3x-9$ or $3x^2-18x+27$	B1	Can award if no denominator
		Final answer = $\frac{3}{(x-1)(x-4)}$ or $\frac{3}{x^2 - 5x + 4}$ ISW	A1	
			[4]	
		S.R. If partial fractions are used on each fraction	(M1)	
		$-\frac{1}{x-1}+\frac{2}{x-3}$	(A1)	
			(A1)	
		$\frac{2}{x-3} - \frac{1}{x-4}$	(A1)	
			(A1)	
		$-\frac{1}{x-1} + \frac{1}{x-4}$ ISW	(111)	
2		Write (or imply as) $\int 1.\ln(x+2)(dx)$ (ln $x+\ln 2 \rightarrow M0$)	M1	OR: $t = ln(x+2)$ and attempt to connect dx and dt
		Correct 'by parts' 1 st stage $x \ln(x+2) - \int \frac{x}{x+2} (dx)$	A1	$\int te^t(dt)$
		Any suitable <u>starting idea</u> for integrating $\frac{x}{x+2}$	M1	Attempt by parts with $u = t$, $\frac{dv}{dt} = e^t$
		[e.g. change num to $x+2-2$ or use substitution $x+2=u$]		
		$\int \frac{x}{x+2} (dx) = = x - 2\ln(x+2) \text{ or } x + 2 - 2\ln(x+2)$	A1	$te^t - e^t$
		Overall result = $x \ln(x+2) - x + 2 \ln(x+2)$ [(+c) or (-2+c)] ISW	A1	
		SR: Correct answer with no working	[5] (B2)	

Q	uestic	n	Answer	Marks	Guidance
3	(i)	The first 5 marks are av	warded for expansions of either		
		$(1+4x)^{-\frac{1}{2}}$ or $(1+4x)^{\frac{1}{2}}$			
		Expansion of $(1+4x)^{-\frac{1}{2}}$;	First 2 terms = $1-2x$	B1	<u>Or</u> $(1+4x)^{\frac{1}{2}} = 1+2x$
		3rd term = $\frac{-\frac{1}{2} \cdot (-\frac{1}{2} - 1)}{2}$).16 x^2 [Accept 4 x^2 for 16 x^2]	M1	3rd term = $\frac{\frac{1}{2} \cdot -\frac{1}{2}}{2} \cdot 16x^2$ [ditto]
		$=+6x^{2}$		A1	$= -2x^2$
		4th term = $\frac{-\frac{1}{2} \cdot (-\frac{1}{2} - 1)}{2.3}$	$\frac{1}{3} \cdot (-\frac{1}{2} - 2)}{3} \cdot 64x^3$ [Accept $4x^3$ for	M1	4th tm = $\frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2}}{2 \cdot 3} \cdot 64x^3$ [ditto]
		$64x^3$]			
		$= -20x^3$		A1	$=+4x^{3}$
		$1-2x+7x^2-22x^3$; $1+a$	$x + (b+1)x^2 + (a+c)x^3$	A1 ft	ft only $(1+4x)^{-\frac{1}{2}} = 1 + ax + bx^2 + cx^3$ provided <i>a</i> , <i>b</i> and <i>c</i> attempted
				[0]	and at least one @ M1 obtained
3	(ii)	$ x < \frac{1}{4}; -\frac{1}{4} < x < \frac{1}{4}; \{-\frac{1}{4} < x < \frac{1}{4}\}$	$x < \frac{1}{2}$ ho equality	[6] B1	But not $\{-\frac{1}{4} < x \text{ OR} \ x < \frac{1}{4}\}$ If choice mark what appears to be
-	``				the final answer.
				[1]	
4		$+/-\int e^{2y}(dy)$ and $+/$	$-\int \tan x (\mathrm{d}x)$ seen	M1	may be implied later
		$\int e^{2y} (dy) = \frac{1}{2} e^{2y}$	•	B1	
		$\int \tan x (\mathrm{d}x) = \ln \sec x $	or $-\ln \left \cos x \right $	B1	Accept ln secx or $-\ln \cos x$
		Subst $x = 0$, $y = 0$ into the	eir equation containing $f(x)$, $g(y)$ and c	M1	S.R. Using def integrals: M1 $\int_0^x = \int_0^y$ followed by A2 or A0
		$c = \frac{1}{2}$ WWW (or poss	$-\frac{1}{2}$ if c on LHS)	A1	
		$y = \frac{1}{2} \ln \left(1 - 2 \ln \left \sec x \right \right)$	or $\frac{1}{2} \ln(1 + 2 \ln \cos x)$ oe WWW	A1	Accept omission of modulus
			· · ·	[6]	

Q	uestio	n	Answer	Marks	Guidance
5	(i)	Use	$e \cos \theta = \frac{a.b}{ a b }$	M1	
		Obta	$ain\left(\cos\theta = \frac{6}{12}\right)\theta = 60 \text{ or } \frac{1}{3}\pi \text{ or } 1.05 \text{ or better}$	A1	Better: 1.0471976 (rot)
				[2]	
5	(ii)		icate $\mathbf{a} - \mathbf{b}$ is vector joining ends of \mathbf{a} and \mathbf{b} or equiv $\mathbf{b} = \mathbf{a} - \mathbf{b} $, or anything similar, $\rightarrow M0$	M1	
		Use	e cosine rule correctly on 3, 4 and included (i) angle	M1	Or any other correct method
			tain $\sqrt{13}$ or 3.61 or better (No ft from wrong θ)	A1	3.6055513 (rot)
				[3]	
6		Atte	<u>empt</u> diff to connect du and dx or find $\frac{du}{dx}$ or $\frac{dx}{du}$	M1	<u>no</u> accuracy, <u>not</u> just $du = dx$
		Corr	rrect <u>e.g.</u> $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $dx = (2u-2)du$ AEF	*A1	
		Inde	efinite integral in terms of $u = \int \frac{2u-2}{u} (du)$	A1dep*	
		Prov	vided of form $\int \frac{au+b}{u} (du)$, change to $\int a + \frac{b}{u} (du)$	M1	Or by parts
		Integ	egrate to $au + b \ln u $ or $au + b \ln u$	A1 ft	
		Use	e correct variable for limits after attempt at integral of f(u)	M1	i.e. use new values of <i>u</i> (usually) or orig values of <i>x</i> (if resubst)
		Sho	w as $8-2\ln 4-6+2\ln 3$ (oe) $= 2+2\ln \frac{3}{4}$ AG WWW	A1	Some 'numerical' working must be shown before giving final ans
				[7]	

Question	Answer	Marks	Guidance
Question 7	AnswerSatisfactory start method eg attempt square of $(1 - \sin 3x)$ [N.B. The squaring process might include a term $\sin^2 9x$]The next 2 marks are awarded for integrating - $2\sin 3x$ Obtain $\int -2\sin 3x dx = \frac{2}{3}\cos 3x$ Obtain $-\frac{2}{3}$ or $(+0)-(+\frac{2}{3})$ The next 3 marks are awarded for integrating $\sin^2 3x$	M1 *A1 A1dep*	Not e.g. $\frac{(1-\sin 3x)^3}{3}$. <u>or for integrating</u> $\sin^2 ax$ where $a = 6$ or 9 only
	Use $\sin^2 3x = k(+/-1+/-\cos 6x)$ Correct version $= \frac{1}{2}(1-\cos 6x)$ $\int \cos 6x dx = \frac{1}{6} \sin 6x$, seen anywhere, indep Final answer $= \frac{1}{4}\pi + their - \frac{2}{3}$	M1 A1 B1 A1 [7]	$\sin^{2} ax = k(+/-1+/-\cos 2ax)$ Correct = $\frac{1}{2}(1-\cos 2ax)$ or $\int \cos 2ax dx = \frac{1}{2a} \sin 2ax$ Check that the $\frac{1}{4}\pi$ is from $\left[\frac{3}{2}x - \frac{1}{12}\sin 6x\right]_{0}^{\frac{1}{6}\pi}$

Q	uesti	on	Answer	Marks	Guidance
8	(a)		$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$	B1	
			$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
			Substitute $(-1,-1)$ for (x, y) & attempt to solve for $\frac{dy}{dx}$	M1	or solve then substitute
			Obtain $\frac{dy}{dx} = -1$ WWW	A1	
				[4]	
8	(b)	(i)	Tangent parallel y-axis $\rightarrow \frac{dx}{dt} = 0 \text{ or } \frac{dy}{dx} \rightarrow \infty \text{ or } \frac{dy}{dx} = \infty$	M1	Accept clear intention
			Obtain $t = 0$	A1	
			(-1,0) with no other possibilities	A1	Accept $x = -1, y = 0$
				[3]	
8	(b)	(ii)	State or imply or use $\frac{dy}{dt} = \frac{dx}{dt}$	M1	
			Produce $3t^2 + 1 = 4t$ oe	A1	
			$t = \frac{1}{3}$ or 1	A1	
			-	[3]	

Q	Question		Answer	Marks	Guidance				
9	(i)		$\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$	B1	i.e. correct partial fractions				
			$A(x-2)^{2} + B(x+1)(x-2) + C(x+1) = x^{2} - x - 11$	M1	or equivalent identity or method				
			A = -1	A1	B1 if cover up method used				
			B = 2 $C = -3$	A1 A1	B1 if cover up method used				
				[5]					
			Special Cases The problems arise when we see how condidates deal with the de	nominator	$(-2)^2$				
			The problems arise when we see how candidates deal with the de A = Br + C						
			$\frac{A}{x+1} + \frac{Bx+C}{(x-2)^2}$; allow B1 for PF format, M1 for associated identi	ty, B1 for A	$= -1 (\max 3)$				
			$\frac{A}{x+1} + \frac{B}{x-2} + \frac{Cx+D}{(x-2)^2}$; allow B1 for PF format, M1 for assoc iden						
			$\frac{A}{x+1} + \frac{Bx}{(x-2)^2}$; allow B0 for PF format, M1 for associated identi	ty (max 1, e	ven if $A = -1$)				
			$\frac{A}{x+1} + \frac{B}{(x-2)^2}$: allow B0 for PF format, M1 for associated identi	ty (max 1, e	ven if $A = -1$)				
9	(ii)		No marks are to be awarded for integrating a fraction with a						
			zero numerator. Irrespective of the format used for the Partial Fractions in part (i), award marks as follow:						
			$\int \frac{\lambda}{x+1} dx = \left(\lambda \text{ or } \frac{1}{\lambda}\right) \ln(x+1) \qquad \text{or}$	B1	$\int \frac{\lambda}{x-2} \mathrm{d}x = \left(\lambda \text{ or } \frac{1}{\lambda}\right) \ln(x-2)$				
			$\int \frac{\mu}{(x-2)^2} dx = -\left(\mu \operatorname{or} \frac{1}{\mu}\right) \cdot \frac{1}{x-2}$						
			$-\frac{3}{2}$	B1 ft	ft $\frac{C}{2}$				
			$1 + \ln \frac{16}{5}$ ISW for either term	B1 ft					
			5		ft + $\ln\left\{\left(\frac{5}{4}\right)^{A}.2^{B}\right\}$				
				[4]					

Q	uestion	Answer	Marks	Guidance
10	(i)	If MR, mark according to the scheme & follow-through from candidate's data. Award M, A & B marks (where possible) & apply penalty of 1 mark (by withholding one A mark in the question). E.g. in (i), product to be 'correct' & 'not perpendicular' to be stated. α . Full justification that $t = -1$. May be 'by inspection'. [No equations not satisfied by $t = -1$ to be shown] ['unusual' attempts must be carefully checked; if convinced, award the B1 e.g. displacement vector between (-3i + 6k) and (-i + 2j + 7k) = ±(2i + 2j + k)]		No other $t = to$ be mentioned
		β. Consider scalar product $\begin{pmatrix} -3 \\ 0 \\ 6 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ Show - 6 + (0) + 6 = 0 and somewhere state perpendicularity oe [If $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ quoted, ignore accuracy of work involving $ \mathbf{a} $ and $ \mathbf{b} $]	A1 [3]	
10	(ii)	Use $\mathbf{r} = \mathbf{v} (-3\mathbf{i} + 6\mathbf{k})$ and ℓ_2 Attempt to produce at least two relevant equations Solve two equations & produce $(v, s) = (\frac{1}{3}, -3)$ soi	*M1 M1dep* A1	or $(-3\mathbf{i} + 6\mathbf{k}) + v(-3\mathbf{i} + 6\mathbf{k})$ $(v, s) = (-\frac{2}{3}, -3)$
		Demonstrate clearly that these satisfy third equation	B1 [4]	Numerical proof required
10	(iii)	Method for finding $ \overrightarrow{OB} $ or $ \overrightarrow{OA} $ or $ \overrightarrow{AB} $ $ \overrightarrow{OB} = \sqrt{5}$ or $ \overrightarrow{OA} = \sqrt{45}$ oe or $ \overrightarrow{BA} = \sqrt{20}$ oe	M1	Method for finding \overrightarrow{OB} or \overrightarrow{BO} or \overrightarrow{AB} or \overrightarrow{BA}
		$\left \overrightarrow{OB}\right = \sqrt{5}$ or $\left \overrightarrow{OA}\right = \sqrt{45}$ oe or $\left \overrightarrow{BA}\right = \sqrt{20}$ oe Obtain 3:2 oe	A1 A1	$\overrightarrow{OB} = \begin{pmatrix} -1\\0\\2 \end{pmatrix} \text{or} \overrightarrow{BA} = \begin{pmatrix} -2\\0\\4 \end{pmatrix}$ Answer 3:2 WW \rightarrow B3
			[3]	

4724

Q	uestic	on	Answer	Marks	Guidance	
1			$u = x$ and $dv = \cos 3x$	M1	integration by parts as far as $f(x) \pm \int g(x) dx$	Check if labelled <i>v</i> ,d <i>u</i>
			$x \times \frac{1}{3}\sin 3x - \int \frac{1}{3}\sin 3x dx$	A2	A1 for $x \times k \sin 3x - \int k \sin 3x dx$; $k \neq \frac{1}{3}$ or 0	k may be negative
			$\frac{x}{3}\sin 3x + \frac{1}{9}\cos 3x [+c] \text{cao www ISW}$	A1 [4]	Not $\frac{1}{3} \left(\frac{1}{3} \cos 3x \right)$ or $-\frac{1}{9} \cos 3x$	
2			The first 3 marks refer to the expansion		$\underline{\text{of}}\left(1-\frac{16x}{9}\right)^{\frac{3}{2}}$ and to no other expansion	
			First 2 terms = $1 - \frac{8}{3}x$	B1	Allow any equiv fraction for the $-\frac{8}{3}$ and ISW	$\frac{3}{2} \cdot -\frac{16}{9}$ is not an equiv fraction
			$3^{\rm rd} {\rm term} = \frac{\frac{3}{2} \cdot \frac{1}{2}}{1.2} \left(-\frac{16x}{9} \right)^2$	M1	Allow clear evidence of intention, e.g. $\frac{\frac{3}{2} \cdot \frac{1}{2}}{1.2} \frac{-16x^2}{9}$	
			$=\frac{32}{27}x^2$	A1	Allow any equiv fraction for the $\frac{32}{27}$ and ISW	
			Complete expansion $\approx 27 - 72x + 32x^2$	A1	cao No equivalents. Ignore any further terms	If expansion $(a+b)^n$ used, award B1,B1,B1 for 27, $-72x$, $32x^2$
			valid for $\frac{-9}{16} < x < \frac{9}{16}$ or $ x < \frac{9}{16}$	B1 [5]	oe Beware, e.g. $x < \left \frac{9}{16} \right $	condone \leq instead of $<$

Q	uesti	ion	Answer	Marks	Guidance	
3			For attempt at product rule on xy^2 $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	M1 B1	or changing equation to $y^2 = x + x^{-1}$ soi in the differentiating process	
			$\frac{\mathrm{d}x}{\mathrm{d}x} (y'')^{-2y} \frac{\mathrm{d}x}{\mathrm{d}x}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - y^2}{2xy} \text{ or } \frac{1 - x^{-2}}{2y}$	A1	Award <u>B</u> 1 for $(\pm)\frac{1}{2}(x+x^{-1})^{-\frac{1}{2}}(1-x^{-2})$	
			Stationary point \rightarrow (their) $\frac{dy}{dx} = 0$ soi	M1		
			$x^2 = 1 \underline{\text{or}} y^2 = 2 \underline{\text{or}} y^4 = 4$	A1	Ignore any other values	CD America 1 A 1 and 1 - Company and
			$(1,\sqrt{2}), (1,-\sqrt{2})$	A1,A1	Accept 1.41 or $4^{\frac{1}{4}}$ for $\sqrt{2}$	SR. Award A1 only if extra co- ordinates presented with both correct answers
				[7]		
4	(i)		Produce (at least 2) relevant equations	M1	e.g. $1 + 2\lambda = 6 + \mu$, $2 + \lambda = 8 + 4\mu$, $3\lambda = 1 - 5\mu$	
			Eliminate either λ or μ from 2 of them and	M1	soi by correct (λ, μ)	
			solve for the other $(\mu \text{ or } \lambda)$	A1		
			$\lambda = 2$ and $\mu = -1$ cao		or e.g. $\lambda = 2$ from 2 different pairs This must be convincing. Check unusual arguments	
			Check that $(\lambda, \mu) = (2, -1)$ satisfies all eqns	B1	This must be convincing. Check unusual arguments	Dep previous M1M1A1 earned
			P is (5, 4, 6) cao www	A1 [5]	Allow any reasonable vector notation	
4	(ii)		Using $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$ and $\begin{pmatrix} 1\\4\\-5 \end{pmatrix}$	M1	i.e. correct parts for direction vectors	â
			Using $\cos \theta = \frac{\mathbf{a}.\mathbf{b}}{ \mathbf{a} \mathbf{b} }$ giving value $\frac{n}{\sqrt{a}\sqrt{b}}$	M1	for any 2 meaningful vectors in this question using meaningful scalar product & modulus	Expect $\frac{-9}{\sqrt{14}\sqrt{42}}$
			68.2°(not 111.8)	A1 [3]	or 1.19 (radians)	

4724

Q	Question		Answer	Marks	Guidance	
5	(i)		their $\frac{dy}{d\theta}$ $\frac{dx}{d\theta}$	M1		
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\sin\theta}{3\cos\theta}$	A1		
			their $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	M1		
			$\tan\theta = \frac{3}{4}$	A1	If $\tan \theta = \frac{3}{4}$ not seen, award this A1 only if coords are correct	
			$(3.8, -0.6) \operatorname{or}\left(\frac{19}{5}, -\frac{3}{5}\right) \operatorname{or} x = 3.8, y = -0.6$	A1 [5]		
5	(ii)		Manipulating equations into form $\sin \theta = f(x)$ and $\cos \theta = g(y)$ and then using $\sin^2 \theta + \cos^2 \theta = 1$ $\frac{(x-2)^2}{9} + \frac{(1-y)^2}{4} = 1$ oe www ISW Accept e.g. $\left(\frac{x-2}{3}\right)^2$ $4x^2 + 9y^2 - 16x - 18y - 11 = 0$	[2]	If part (ii) is attempted first, and then part (i), allowB1for obtaining $\frac{dy}{dx} = \frac{4(x-2)}{9(y-1)}$ M1for equating their $\frac{dy}{dx}$ to $\frac{1}{2}$ A1for obtaining $9y - 8x = -7$ M1for eliminating x or y from above eqnA1for $(3.8, -0.6)$	the following marks in part (i):-

Mark Scheme

Q	Question		Answer	Marks	Guidance	
6			Attempt diff to connect $du \& dx$ Correct result e.g. $\frac{du}{dx} = 2$ or $du = 2 dx$	M1 A1	or find $\frac{du}{dx}$ or $\frac{dx}{du}$	
			Indef integ in terms of $u = \frac{1}{2} \int \frac{2u-3}{u^5} (du)$	A1	Must be completely in terms of u .	
			Integrate to $\frac{u^{-3}}{-3} - \frac{3u^{-4}}{-8}$ oe	A1A1	or (using 'by parts') $\frac{(2u-3)u^{-4}}{-8} - \frac{u^{-3}}{12}$	Award B1,B1 for $\frac{4u^{-3}}{-3} - \frac{3u^{-4}}{-2}$
			Use correct variable & correct values for limits -23	M1	Provided minimal attempt at $\int f(u) du$ made Accept decimal answer only if minimum of first 3	or for $\frac{2u^{-3}}{-3} - \frac{3u^{-4}}{-4}$ $(2u-3)u^{-4} u^{-3}$
			$= \frac{-23}{384} \text{ oe } (-0.059895)$ [ISW,e.g. changing to $\frac{23}{384}$]	A1	marks scored	or for $\frac{(2u-3)u^{-4}}{-2} - \frac{u^{-3}}{3}$ or for $\frac{(2u-3)u^{-4}}{-4} - \frac{u^{-3}}{6}$
			384	[7]		-4 6

Q	Question		Answer	Marks	Guidance	
7	(i)	Ι	$\frac{\cos x}{1+\sin x} - \frac{-\sin x}{\cos x} \text{ or } \frac{\cos x}{1+\sin x} + \frac{\sin x}{\cos x}$	B2	Each half (including 'middle' sign) scores B1	
			$\frac{+/-\cos^2 x + /-\sin x(1+\sin x)}{(1+\sin x)\cos x}$	M1	Combine, <u>provided</u> derivative was of form $\frac{f'(x)}{f(x)}$	Allow only variations num signs
			$\frac{1+\sin x}{\cos x(1+\sin x)} = \frac{1}{\cos x} \underline{\text{www}} \mathbf{AG}$	A1	$\cos^2 x + \sin^2 x = 1$ in intermediate step required	
		Π	Change to $\ln\left(\frac{1+\sin x}{\cos x}\right)$	B1		
			Change to $\ln(\sec x + \tan x)$	B1	$\underline{\mathrm{Not}}\ln(\frac{1}{\cos x} + \tan x)$	
			Diff as $\frac{\text{attempt at } \frac{d}{dx}(\sec x + \tan x)}{\sec x + \tan x}$	M1		
			Reduce to sec $x = \frac{1}{\cos x}$	A1		
		III	Change to $\ln\left(\frac{1+\sin x}{\cos x}\right)$	B1		
			Diff as <u>attempt at quotient differentiation</u> $\frac{1+\sin x}{\cos x}$	M1		
			Fully correct differentiation	A1		
			Correct reduction to $\frac{1}{\cos x}$	A1 [4]		
7	(ii)		Indef integral = $\ln(1 + \sin x) - \ln(\cos x)$ [Method I]	B1	or $\ln(\sec x + \tan x)$ [Method II]	
			Substitute limits & use log manipulation	M1	Use of $\ln A - \ln B = \ln \frac{A}{B}$ anywhere in question	
			Answer = $\ln(2 + \sqrt{3})$	B1 [3]	Accept ln 3.73 or $\ln \frac{2 + \sqrt{3}}{1}$ but not $\ln \frac{1 + \sqrt{3}/2}{\frac{1}{2}}$	Answer has <u>not</u> been given

Mark Scheme

Q	Question		Answer	Marks	Guidance	
8	(i)		$AB = \sqrt{(+/-2)^2 + (+/-2^2 + (+/-4)^2)}$ $AD = \sqrt{(+/-2)^2 + (+/-4)^2 + (+/-2)^2}$	B1 B1	oe oe	If $AB^2 = AD^2 = 24$, then SR B1 $AB = AD$ to be stated for 2^{nd} B1
				[2]		
8	(ii)		midpoint is (3, 5, 0)	B1	Accept any reasonable vector notation.	
			Clear method for finding direction vector	M1	Expect $3\mathbf{j} - \mathbf{k}$ or $-3\mathbf{j} + \mathbf{k}$	
			$\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda (3\mathbf{j} - \mathbf{k})$ oe or e.g. $\mathbf{r} = 3\mathbf{i} + 5\mathbf{j} + \mu (-3\mathbf{j} + \mathbf{k})$ cao	A1	"r =" is essential. No f.t. for wrong mid-point.	
8	(iii)		substitution of $\lambda = +/-5$ or $\mu = +/-4$	[3] M1	Based on correct answer to (ii)	
-	()			[1]		
8	(iv)		Kite	B1		
				[1]		

Q	Question		Answer	Marks	Guidance		
9	(i)		Separating variables $\int \frac{1}{\theta + 20} d\theta = \int -k dt$	M1	or invert each side: $\frac{dt}{d\theta} = -\frac{1}{k(\theta + 20)}$	Must see $\frac{1}{\theta + 20}$; ignore posn 'k'	
			$\ln(\theta + 20) = -kt$ (+ c) or equivalent	A1	"Eqn A"		
			$\theta = Ae^{-kt} - 20$ oe (i.e. $\theta = e^{-kt+c} - 20$)	A1	"Eqn B"		
				[3]			
9	(ii)		(-)3 = -k(40+20)	M1	Using $t = 0, \theta = 40, \frac{d\theta}{dt} = (-)3$ in given equation		
			(-)3 = -k(40 + 20) $k = \frac{1}{20}$ oe	*A1	Not $k = -\frac{1}{20}$		
			Subst $t = 0, \theta = 40$ & their k (where necessary) into their Eqn A or their Eqn B and solve for the arbitrary constant	M1			
			Subst $\theta = 0$ & their values of k and the arbitrary constant into their Eqn A or their Eqn B	M1			
			t = 21.9722 = 22 minutes cao www	dep*A1			
	/•••		7 * 1	[5]			
9	(iii)		<i>k</i> is larger	B1 [1]			

Q	uesti	ion	Answer	Marks	Guidance	
10	(i)		Clear start to algebraic division (Quotient) = $x - 1$ (Remainder) = $x + 7$	M1 A1 A1	at least as far as x term in quot & subseq mult back	& attempt at subtraction
			Final answer: $x-1+\frac{x+7}{x^2-x-6}$	A1	final answer in correct form This must be shown in part (i) or, if not, then implied in part (ii)	Accept $A = 1, B = -1, C = 1, D = 7$
				[4]	If no long division shown but only comparison of coefficients or otherwise, SR M0 B1 B1 B1	
10	(ii)		Convert their $\frac{Cx+D}{x^2-x-6}$ to Partial Fracts	M1		
			$\frac{x+7}{x^2 - x - 6} = \frac{2}{x-3} - \frac{1}{x+2}$ Their	A1A1	Correct fraction converted to correct PFs	
			$\int Ax + B \mathrm{d}x = \frac{1}{2} Ax^2 + Bx \text{ or } \frac{(Ax+B)^2}{2A}$	B1 ft		
			$\int \frac{E}{x-3} + \frac{F}{x+2} dx = E \ln(x-3) + F \ln(x+2)$	B1 ft		
			Using limits in a correct manner	M1	Tolerate some wrong signs provided intention clear	
			$8 + \ln \frac{27}{4} \left(8 + \ln \frac{54}{8}\right) \text{isw}$	A1	Answer required in the form $a + \ln b$, so giving <u>only</u> a decimalised form is awarded A0	
				[7]		

Question	Answer	Marks	Guid	ance
1	$\frac{(x-7)(x-2)}{(x+2)(x-1)^2} \equiv \frac{A}{x+2} + \frac{B}{(x-1)} + \frac{C}{(x-1)^2}$ [If no partial fractions seen anywhere, B0]	B1	<u>SC</u> $\frac{(x-7)(x-2)}{(x+2)(x-1)^2} \equiv \frac{A}{x+2} + \frac{Bx+C}{(x-1)^2}$ [If no partial fractions seen anywhere, B0]	B1
	$(x-7)(x-2) \equiv A(x-1)^2 + B(x+2)(x-1) + C(x+2)$ [Allow careless minor error but not algebraic method error] or any equiv identity such as $\frac{(x-7)(x-2)}{(x-1)^2} \equiv A + \frac{B(x+2)}{(x-1)} + \frac{C(x+2)}{(x-1)^2}$ (or even the identity on the 1 st line), in which values of x are substituted (or cfs compared) $A = 4, B = -3, C = 2 \text{ or } \frac{4}{x+2} - \frac{3}{x-1} + \frac{2}{(x-1)^2}$ ISW	M1 A1,1,1	$(x-7)(x-2) \equiv A(x-1)^2 + (Bx+C)(x+2)$ [Allow careless minor error but not algebraic method error] or any equivalent identity (as in previous column) (or even the identity on the 1 st line), in which values of x are substituted (or cfs compared)	M1 A1
	The 3 @ A1 are dep on the used identity being correct. <u>Cover-up:</u> $A=4, C=2$ score B1,B1; $B = -3$ needs M1, then A1			This gives max 3/5 for easier case
		[5]		

Quest	tion	Answer	Marks	Guid	ance
2		$u = \ln 3x$ and dv or $\frac{dv}{dx} = x^8$	M1	integ by parts as far as $f(x) + -\int g(x)(dx)$	If difficult to assess, x^8 must be integrated, so look for term in x^9
		$\frac{\mathrm{d}}{\mathrm{d}x}(\ln 3x) = \frac{1}{x} \text{ or } \frac{3}{3x}$	B1	stated or clearly used	
		$\frac{x^9}{9}\ln 3x - \int \frac{x^9}{9} \operatorname{their} \frac{\mathrm{d}u}{\mathrm{d}x} (\mathrm{d}x) \mathrm{FT}$	√ A1	i.e. correct understanding of 'by parts'	even if $ln(3x)$ incorrectly differentiated
		Indication that $\int kx^8 dx$ is required	M1	i.e. before integrating, product of terms must be taken	The product may already have been indicated on the previous line
		$\frac{x^9}{9}\ln 3x - \frac{x^9}{81}$ or $\frac{1}{9}x^9 \left(\ln 3x - \frac{1}{9}\right)$ ISW (+c) <u>cao</u>	A1	$\frac{1}{9}\frac{x^9}{9}$ to be simplif to $\frac{x^9}{81}$; $\frac{3x^9}{243}$ satis	
			[5]		
		$\frac{\text{If candidate manipulates } \ln(3x) \text{ first of all}}{\ln(3x) = \ln 3 + \ln x}$ $u = \ln x \text{ and } dv = x^8$ $\frac{x^9}{9} \ln x - \int \frac{x^9}{9} \cdot \frac{1}{x} (dx) \text{ or better}}$ $\frac{x^9}{9} \ln x - \frac{x^9}{81}$	B1 M1 A1 A1	In order to find $\int x^8 \ln x dx$:	If, however, $\ln(3x)$ is said to be $\ln 3.\ln x$, then B0 followed by possible M1 A1 A1 in line with alternative solution on LHS, where the 'M' mark is for dealing with $\int x^8 \ln x dx$ 'by parts' in the right order and the 2 @ A1 are for correct results.
		Their $\int x^8 \ln x dx + \frac{x^9}{9} \ln 3$ (+ c) FT ISW	√A1		

Questio	n Answer	Marks	Guid	ance
3	Set up the 3 relevant equations $1 + 2\lambda = \mu - 1$ $-\lambda = 5 - \mu$ $3 + 5\lambda = 2 - 5\mu$	M1	'M' mark so intention must be clear; minor error(s) only accepted	MR must be consistent; correct version anywhere \Rightarrow not MR
	Attempt to find λ or μ from 2 of the equations & then find μ or λ from any of the 3 equations.	M1	Or find λ , say, from (i)(ii) & then from (ii)(iii) [values shown at next stage] – inconsistency dep*A1 also awarded here	
	$ (\lambda, \mu) = (3,8) \text{ or } (-2\frac{3}{5}, 2\frac{2}{5}) \text{ or } (-\frac{11}{15}, \frac{8}{15}) \text{ or } (3, -3\frac{1}{5}) \text{ or } (-\frac{11}{15}, 4\frac{4}{15}) \text{ or } (-2\frac{3}{5}, -3\frac{1}{5}) \text{ or } (\frac{1}{5}, 2\frac{2}{5}) \text{ or } (-8\frac{1}{5}, 8) \text{ or } (-4\frac{7}{15}, \frac{8}{15}) $	A1	Accept equivalent proper/improper fractional values or decimal equivalent values	These are all of the solutions obtainable using different combinations of the 3 equations; e.g. using just i & ii or using i & ii to find λ & iii to find μ
	Demonstrate <u>inconsistency</u> i.e. substitute the <u>correct</u> values into a <u>correct</u> equation (but not the immediate last one used)	M1	e.g. after (3,8), subst in iii & write $3+5\times3 \neq 2-5\times8$ or $3+5\times3=2-5\times8$ do not intersect	
	State "skew"	A1	Dep on 3 @ M1 + A1	
	(a) Identify direction vectors; (b) state "not identical/same/equal/equiv/multiples" or eval $\cos(\text{angle}) \& \text{state} \neq 1(\text{or}-1)$; (c) state "not parallel"	B1	dvs <u>must be identified</u> : $\begin{pmatrix} 2\\ -1\\ 5 \end{pmatrix}$ and $\begin{pmatrix} 1\\ -1\\ -5 \end{pmatrix}$ Accept any vector notation.	
		[6]		

Q	uestion	Answer	Marks	Guid	ance
4		Use of $\sin 2x = +/-2\sin x \cos x \text{ or } +/-\cos\left(\frac{\pi}{2}-2x\right)$ $or \cos 2x = +/-2\cos^2 x +/-1 \text{ etc}$ $\left(\frac{dy}{dx}\right) - 2\sin 2x(\text{or } -4\sin x \cos x); + 2\cos x$	M1	Seen anywhere in the solution	
			B1,B1		
		their $\frac{dy}{dx} = 0$	*M1		
		$\left(\frac{\pi}{2},1\right)$; $\left(\frac{\pi}{6},\frac{3}{2}\right)$ and $\left(\frac{5\pi}{6},\frac{3}{2}\right)$	dep* A1; A1	 -1(once) for using degrees in an answer instead of radians. If B0 &/or B0 because of sign error, 	SC If A0 but all 3 <i>x</i> -values are correct, award SC A1 SC B2 for $3 \checkmark$ answers without working
				allow A1 to be awarded for $\left(\frac{\pi}{2}, 1\right)$	
			[6]		
5	(i)	$\frac{(1 + \tan x) - (1 - \tan x)}{(1 - \tan x)(1 + \tan x)}$	M1	Combine (or write as 2 separate fractions) using common denominator	Accept with/without brackets in num Accept $1 - \tan x \cdot 1 + \tan x$ in denom
		$= \frac{2\tan x}{1 - \tan^2 x} = \tan 2x$ Answer Given	A1	$\frac{2\tan x}{1-\tan^2 x}$ essential stage	A0 for omission of any necessary brackets
			[2]	N.B. If tan <i>x</i> changed into $\frac{\sin x}{\cos x}$ before manipulation, apply same principles	

Qu	uestion	Answer	Marks	s Guidance	
5	(ii)	$\int \tan 2x dx = \lambda \ln(\sec 2x) \text{ or } \mu \ln(\cos 2x) [= F(x)]$	M1		
		$\lambda = \frac{1}{2}$ or $\mu = -\frac{1}{2}$	A1		
		their F[$\frac{\pi}{6}$] – their F[$\frac{\pi}{12}$]	M1	dependent on attempt at integration	i.e. not for $\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{\pi}{6}\right)$
		$\frac{1}{2}\ln 2 - \frac{1}{2}\ln \frac{2}{\sqrt{3}}$ oe	A1	i.e. any correct but probably unsimplified numerical version	
		$\frac{1}{2} \ln \sqrt{3}$ or $\frac{1}{4} \ln 3$ or $\ln 3^{\frac{1}{4}}$ or $\frac{1}{2} \ln \frac{6}{2\sqrt{3}}$ oe ISW	+A1	i.e. any correct version in the form $a \ln b$	
			[5]		

Qu	uestion	Answer	Marks	Guid	ance
6		Find du in terms of dx (or vv) or $\frac{du}{dx}$ or $\frac{dx}{du}$	M1	An attempt - not necessarily accurate	
		Substitute, changing given integral to $\int \frac{u-1}{u^2} (du)$	A1	No evidence of <i>x</i> at this A1 stage	
		Provided of form $\frac{au+b}{u^2}$, <u>either</u> split as $\frac{au}{u^2} + \frac{b}{u^2}$	M1	<u>or</u> use 'parts' with 'u' = $au+b$, 'dv' = $\frac{1}{u^2}$	
		Integrate as $\ln u + \frac{1}{u}$ or FT as $a \ln u - \frac{b}{u} [=F(u)]$	$\sqrt{A1}$	or $-(au+b)\frac{1}{u}+a\ln u$ FT $[=G(u)]$	
		Re-substitute $u = 1 + \ln x$ in F(u)	M1	Re-substitute $u = 1 + \ln x$ in G(u)	
		$\ln(1 + \ln x) + \frac{1}{1 + \ln x} (+ c)$ ISW	A1	or $\ln(1 + \ln x) - \frac{\ln x}{1 + \ln x}$ (+ c) ISW	
			[6]		
7	(i)	In each part, mark the answers, ignoring the labels $AB = \sqrt{91}$; $AC = \sqrt{27}$ or $3\sqrt{3}$ ISW	B1; B1	To invoke MR, evidence must be clear 9.54 or 9.539392; 5.2(0) or 5.1961524	
		Attempting to use \overrightarrow{AB} . $\overrightarrow{AC} = AB.AC \cos \theta$	M1	or $BC^2 = AB^2 + AC^2 - 2AB.AC\cos\theta$	
		angle $BAC = 171$ (3 sf) or 2.99 (rad) (3 sf) ISW	A1	Final acute answer [8.68 or 0.152] /choice $\rightarrow A0$	171 to 171.317 or 2.99
			[4]		
7	(ii)	6i + 4j - 2k or $-6i - 4j + 2k$	B1	seen, irrespective of any labelling	
		$6 \times (-1) + 4 \times (-3) - 2 \times (-9) = 0$ (: perpendicular)AG	B1	oe using $(6,4,-2)$ or $(-6,-4,2)$ and	
		$6 \times 1 + 4 \times 1 - 2 \times 5 = 0$ (: perpendicular) AG	B 1	oe using $(6,4,-2)$ or $(-6,-4,2)$ and	(1,1,5) or (-1,-1,-5)
			[3]		
7	(iii)	$(AD =) \sqrt{56} \text{ or } 2\sqrt{14} \text{ or } 7.48 \text{ soi}$	B1		
		area $ABC = \frac{1}{2}$ (their) $AB \times$ (their) $AC \times$ sin(their) BAC	M1	$(\checkmark = 3.74$ but M mark, not A)	
		$9.3 \le V < 9.35, 9\frac{1}{3}$ ISW	A1	Accept even if (i) angle given as 8.68	i.e. the acute version not accepted in (i)
			[3]		

Q	uestion	Answer	Marks	Guida	ance
8	(i)	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{k}{\sqrt{r}} \text{oe}$	B2	B1 for $\frac{\mathrm{d}r}{\mathrm{d}t}$ = ; B1 for $\frac{k}{\sqrt{r}}$	SR: B1 for $\frac{dr}{dt} \propto \frac{1}{\sqrt{r}}$
		Sep variables of their diff eqn (or invert) & integrate each side, increasing powers by 1 (or $\frac{1}{r} \rightarrow \ln r$)	*M1	their d.e. must be $\frac{dr}{dt}$ (or $\frac{dt}{dr}$) = f(r)	Ignore absence of '+c' after integration
		Subst $\frac{dr}{dt} = 1.08, r = 9$ into their diff eqn to find k	M1	their d.e. must include $\frac{dr}{dt}$ (or $\frac{dt}{dr}$), $r \& k$	$(\checkmark k = 3.24 \text{ but M mark, not A})$
		Substitute $t = 5$, $r = 9$ to find 'c'	dep*M1	Must involve '+c' here	
		Correct value of c (probably = $1.8 \text{ or } -1.8$)	A1	Check other values	
		$r = (4.86t + 2.7)^{\frac{2}{3}}$ ISW	A1	Answer required in form $r = f(t)$	
			[7]		
8	(ii)	subst $t = 0$ into any version of (i) result to find finite r	M1		$(\checkmark r \approx 1.938991$ but M mark, not A)
		Any <i>V</i> in range $30.5 \le V < 30.55$, but not fortuitously	A1	Accept 9.72 π or $\frac{243}{25}\pi$	
			[2]		

Q	iestior	Answer	Marks	Guidance
9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 2(+) - \frac{2}{t^3}; \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{t^2}$ oe soi ISW	B1, B1	
		$\frac{2}{t} - 2t^{2} \text{ or } -2\left(t^{2} - \frac{1}{t}\right), \frac{2t^{3} - 2}{-t}, -t^{2}\left(2 - \frac{2}{t^{3}}\right) \text{ oe }$	B1	ISW. Must not involve (implied) 'triple- deckers' e.g. fractions with neg powers \dots e.g. $\frac{2-2t^{-3}}{-t^2}$
			[3]	
9	(ii)	(Any of their expressions for $\frac{dy}{dx}$) = 0 or their $\frac{dy}{dt}$ = 0	M1	
		$t = 1 \rightarrow (\text{stationary point}) = (0, 3)$	A1	Not awarded if $\frac{dy}{dx}$ is wrong in (i) and used here BUT allow recovery if only explicitly considering $\frac{dy}{dt} = 0$
		Consider values of x on each side of their critical value of x which lead to finite values of $\frac{dy}{dx}$	M1	
		Hence (0, 3) is a minimum point www	A1	Totally satis; values of x must be close to 0 & not going below or equal to $x = -1$
			[4]	
9	(iii)	Attempt to find <i>t</i> from $x = \frac{1}{t} - 1$ and substitute into the equation for <i>y</i>	M1	
		$y = \frac{2}{x+1} + (x+1)^2$ oe (can be unsimplified) ISW	A1	
			[2]	

Qı	uestion	n	Answer	Marks	Guid	ance
10	(i)		$(1-x)^{-3} = 1 + -3 x + \frac{-3 4}{2}(-x)^2 + \dots$ oe;	M1	As result is given, this expansion must be shown and then simplified. It must not	For alternative methods such as expanding $(1-x)^3$ and multiplying by
			accept 3x for $-3x$ &/or $-x^2$ or $(x)^2$ for $(-x)^2$		just be stated as $1+3x+6x^2+$	$x + 3x^{2} + 6x^{3}$ or using long division, consult TL
			multiplication by x to produce AG (Answer Given)	A1 [2]		
10	(ii)		Clear indication that $x = 0.1$ is to be substituted	M1	e.g. $0.1 + 3(0.1)^2 + 6(0.1)^3$ stated	Calculator value $\rightarrow M0$
			(estimated value is) $0.1 + 3(0.1)^2 + 6(0.1)^3 = 0.136$	A1		$(0.13717$ is calculator value of $\frac{100}{729}$)
				[2]		
10	(iii)		Sight of $1-x = x\left(\frac{1}{x}-1\right)$ or $1-x = -x\left(1-\frac{1}{x}\right)$ or	B1		
			$\left(\frac{1}{x}-1\right)^3 = -\left(1-\frac{1}{x}\right)^3$ or $\left(\frac{1}{x}-1\right)^{-3} = -\left(1-\frac{1}{x}\right)^{-3}$ or			
			$\left(\frac{1}{x}-1\right)^{-3} = -\left(1-\frac{1}{x}\right)^{-3} \text{ or equivalent}$			
			Complete satisfactory explanation (no reference to style) www	B1	(Answer Given)	
			$[1+(-3)(-\frac{1}{x})+\frac{(-3)(-4)}{2}\left(-\frac{1}{x}\right)^2+\dots]$	M1	Simplified expansion may be quoted – it may have come from result in part (i). Answer for this expansion is not AG .	
			$\rightarrow -\frac{1}{x^2} - \frac{3}{x^3} - \frac{6}{x^4}$	A1		
				[4]		

Qu	Question		Answer	Marks	Guidance	
10	(iv)		Must say "Not suitable" and one of following:		This B1 is dep on $x = 0.1$ used in (ii).	
			Either: requires $\left \frac{1}{x}\right < 1$, which is not true if $x = 0.1$	B1	Or "because $\frac{1}{x} > 1$ "	Realistic reason
			Or: substitution of positive/small value of x in the expansion gives a negative/large value (which cannot be an approximation to 100/729).		Or "it gives – 63100"	If choice given, do not ignore incorrect comments, but ignore irrelevant/unhelpful ones
				[1]		

Qu	estion	Answer	Marks	Gu	idance
1		$x(1-x^{2}) + (1+x) + 2(1-x)$ oe	M1	condone one sign error	if M0B0, SC1 for any pair of terms correctly combined into a single fraction, may be
		$1-x^2$ oe	B1	any correct denominator common to all three fractions	unsimplified
		$\frac{3-x^3}{1-x^2} \text{oe cao}$	A1	must be fully simplified; mark the final answer	eg $\frac{x(3-x^3)}{x(1-x^2)}$ oe may score a maximum of M1B1A0
			[3]		
2		$\pm ((3-2)\mathbf{i} + (-3-8)\mathbf{j} + (6-2)\mathbf{k})$ soi	B1	NB $\mathbf{i} - 11\mathbf{j} + 4\mathbf{k}$	or
		their \pm (i – 11 j + 4 k). \pm (5 i + 5 j + 8 k) both diagonals used ; evaluation not essential	M1	if M0 SC2 for 84° (or 84.5°), or $52(.3^{\circ})$ or 39° or $(38.5^{\circ}$ or $43(.2^{\circ})$ or $46(.0^{\circ})$ found from scalar product or SC1 for the equivalent obtuse angle	B3 for correct use of Cosine Rule (using the midpoint of the diagonals of the parallelogram) $[\cos \theta] = \frac{34.5 + 28.5 - 72}{2\sqrt{34.5}\sqrt{28.5}}$ oe
		$ \pm (1 \times 5 + (-11) \times 5 + 4 \times 8) = \sqrt{1^2 + 11^2 + 4^2} \times \sqrt{5^2 + 5^2 + 8^2} \cos \theta \text{ oe} $	A1	must be fully correct	
		$\theta = \cos^{-1} \frac{\pm 18}{\sqrt{138} \times \sqrt{114}}$ 81.7 to 82°	A1 A1 [5]	1.4 to 1.43 rad	B2 for 81.7 to 82° unsupported or B3 + B2 possible for Cosine Rule

Qı	uestio	on Answer	Marks	Gt	iidance
3	(i)	$1 + (-\frac{1}{2})(-2x) + (-\frac{1}{2})(\frac{-3}{2})\frac{(\pm 2x)^2}{2!}[+]$	B1 B1	first two terms third term	allow recovery from omission of brackets do not allow $2x^2$ unless fully recovered in answer
		$1 + x + \frac{3}{2}x^2$ oe	B1 [3]		
	(ii)	use of $(x + 3) \times \text{their}(1 + x + \frac{3}{2}x^2)$ coefficient is 5.5 oe	M1 A1 [2]	or B2 www in either part	may be embedded (eg $5.5x^2$ alone or in expansion)
4		$\int \frac{\cos 2x}{1+\sin 2x} (\mathrm{d}x)$	B1* B1*	$\cos 2x = 1 - 2\sin^2 x$ or (1 +) $\sin 2x = (1 +) 2\sin x \cos x$ seen numerator and denominator both correct	if B0B0M0A0, SC4 for $F[x] = \frac{1}{2}\ln(1 + 2\sin x \cos x)$ or $\frac{1}{2}\ln(1 + \sin 2x)$ final mark may still be awarded
		$F[x] = k \ln(1 + \sin 2x) \text{ soi}$	M1dep*	in the integral soi or $k\ln(1 + u)$ or $k\ln(u)$ following their substitution www	
		$k = \frac{1}{2}$	A1	correct <i>k</i> for their substitution	
		$\frac{1}{2}\ln(1 + \sin(\pi/2)) - \frac{1}{2}\ln(1 + 0)$ = $\frac{1}{2}\ln 2$	A1 AG	correct use of limits www	minimum working: $\frac{1}{2}\ln 2 - \frac{1}{2}\ln 1$ or $\frac{1}{2}\ln(1+1)$ oe
			[5]		

Qı	iestio	n Answer	Marks	Gu	idance
5	(i)	Answer $1 - s = 2 + t$ $4 + 2 s = 8 + 3t$ $1 + 2 s = 2 + 5t$ value of either s or t obtained from valid methodcorrect pair of valueseg $1 + 2 \times 0.2 \neq 2 + 5 \times -1.2$ oe isw NB A0 for $1 + 2 \times 0.2 = 2 + 5 \times -1.2$ unless clarified by suitable comment	Marks B1 M1 A1 A1 [4]	for all three equations NB third equation may appear later, or with values already substituted eqns (i) and (ii): $s = 0.2$, $t = -1.2$ eqns (i) and (iii): $s = -4/7$, $t = -3/7$ eqns (ii) and (iii) $s = 4.25$, $t = 1.5$ correct substitution of correct values in correct equation	or M1 for one value (of <i>s</i> or <i>t</i>) found from one pair of equations A1 for substitution of this value (of s or <i>t</i>) in third equation and obtaining the other parameter (ie of <i>t</i> or <i>s</i>); NB (0.2, -0.12) or $(^{-4}/_{7}, ^{-12}/_{7})$ or (4.25, -5.25) if <i>s</i> found first and ($-2.5, -1.2$) or $(^{19}/_{14}, ^{-3}/_{7})$ or ($-2.5, 1.5$) if <i>t</i> found first or find same parameter from second pair of equations A1 for correct demonstration of inconsistency NB clear statement needed if two different values of same parameter found
5	(ii)	$2\mathbf{i} - 4\mathbf{j} - 4\mathbf{k} = -2(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \text{ oe}$ eg line <i>A</i> goes through (1, 4, 1) but line <i>C</i> goes through (1, 15, 11), so they do not coincide so the lines are parallel eg demonstration of different <i>y</i> or <i>z</i> values on each line for (say) <i>x</i> = 1, so lines are parallel	B1 B1 [2]	allow equivalent in words, but scale factors must be correct	eg direction of A is $-\frac{1}{2} \times$ direction of C

Qu	estion	Answer	Marks	Gu	idance
6		$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	or $2x \frac{\mathrm{d}x}{\mathrm{d}y}$	if B0B0 M0
		$2x - 12\frac{\mathrm{d}y}{\mathrm{d}x} - 8$	B1	$3y^2 - 8\frac{\mathrm{d}x}{\mathrm{d}y} - 12$	SC2 for $\frac{dy}{dx} =$
		their $3y^2 \frac{dy}{dx} - 12 \frac{dy}{dx} = 8 - 2x$ soi	M1	their $2x\frac{\mathrm{d}x}{\mathrm{d}y} - 8\frac{\mathrm{d}x}{\mathrm{d}y} = -3y^2 + 12$	$\frac{1}{3}(-x^2 + 8x + 12y + 4)^{\frac{-2}{3}} \times (-2x + 8 + 12\frac{dy}{dx})$
		must be two terms on each side and must follow from RHS $= 0$		must be two terms on each side must follow from RHS $= 0$	M1 may be earned for setting correct denominator equal to 0
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8 - 2x}{3y^2 - 12} \text{ oe}$	A1	This mark may be implied if $\frac{dx}{dy} = 0$ is substituted and there is no evidence for an incorrect expression for $\frac{dx}{dy}$	
		their $3y^2 - 12 = 0$	M1*		$x \neq 4$ not required
		$y = (\pm) 2$	A1	A0 if $\frac{dy}{dx}$ incorrect	
		substitution of their positive y value in original equation	M1dep*		ignore substitution of – 2
		x = 10, x = -2 and no others cao	A1	A0 if $\frac{dy}{dx}$ incorrect	condone omission of formal statement of coordinates $(10, 2)$ and $(-2, 2)$
			[8]		

Qu	estion	Answer	Marks	Gu	idance
7	(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2\sin 2t + 2\cos t \ \mathrm{soi}$	B1	NB $\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos t$	if B0M0A0 SC3 for $\frac{dy}{dx} = 1 - x$ from correct Cartesian
		$\frac{dy}{dx} = \text{their}\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{ oe}$	M1		equation seen in part (i) or part (ii) B1 for substitution of $x = 2\sin t$
		$\frac{-2\sin 2t + 2\cos t}{2\cos t}$ soi	A1		
		$\frac{-4\sin t\cos t + 2\cos t}{2\cos t} \text{ or } \frac{2\cos t(-2\sin t + 1)}{2\cos t} \text{ and}$ completion to $1 - 2\sin t$ www	A1	or equivalent intermediate step	
		(1, 11/2)	B1 [5]	NB $t = \frac{\pi}{6}$	from $1 - 2\sin t = 0$
7	(ii)	$(y=)\ 1-2\sin^2 t+2\sin t$	B1	may be awarded after correct substitution for x eg (y =) $1 - \frac{x^2}{4} - \sin^2 t + 2\sin t$	or $(y =) x + \cos 2t$
		substitution of $\sin t = \frac{1}{2}x$ to eliminate t	M1		substitution of $t = \sin^{-1}(x/2)$ to eliminate t
		$y = 1 + x - \frac{1}{2}x^2$ oe isw	A1	or B3 www	$y = x + \cos^2(\sin^{-1}(x/2))$ oe isw
			[3]		

Q	uestior	n Answer	Marks	Guidance	
7	(iii)	$\begin{vmatrix} -2 \le x \le 2 \text{ or } x \ge -2 \text{ (and) } x \le 2 \text{ or } x \le 2 \end{vmatrix}$	B1	cao	
		sketch of negative quadratic with endpoints in 1^{st} and 3^{rd} quadrants	M1	RH point must be to the right of the maximum	
		positive y-intercept and one distinguishing feature isw	A1		one from: endpoints $(-2, -3)$ and $(2, 1)$, vertex at $(1, 1\frac{1}{2})$, y – intercept is $(0, 1)$, x- intercept is $(1 - \sqrt{3}, 0)$
			[3]		
8	(i)	t^2 in quotient and $t^3 + 2t^2$ seen	B1	or $\frac{t(t^2 - 4) + 4t}{(t+2)}$	or $\frac{(t+2)^3 - 6t^2 - 12t - 8}{(t+2)}$
		$-2t$ in quotient and $-2t^2 - (-2t^2 - 4t) = 4t$ seen	B1	$\frac{t(t+2)(t-2)}{(t+2)} + \frac{4t}{t+2}$	$\frac{(t+2)^3}{(t+2)} - \frac{6((t+2)^2 - 4t - 4) + 12t + 8}{(t+2)}$ oe
		completion to obtain correct quotient and remainder identified www	B1	$t(t-2) + \frac{4(t+2) - 8}{t+2}$	$(t+2)^2 - 6(t+2) + \frac{12t+16}{t+2}$ oe
					$= t^{2} + 4t + 4 - 6t - 12 + \frac{12(t+2) - 8}{t+2}$ oe
					both steps needed for final B1
			[3]		
8	(i)	alternatively $\frac{t^3}{t+2} \equiv At^2 + Bt + C + \frac{D}{(t+2)}$	B1	or $t^3 \equiv (At^2 + Bt + C)(t+2) + D$	or B1 for $\frac{t^2(t+2) - 2t^2}{(t+2)}$
		equate coefficients to obtain correctly A = 1, 0 = 2A + B and $B = -2$ www	B1		B1 for $t^2 + \frac{-2t(t+2) + 4t}{(t+2)}$
		0 = 2B + C and $0 = 2C + D$ obtained and solved correctly www	B1		B1 for $t^2 - 2t + \frac{4(t+2) - 8}{(t+2)}$
			[3]		

Q	uestion	Answer	Marks	Guidance	
8	(ii)	integration by parts with $u = \ln(t + 2)$ and $dv = 6t^2$ to obtain $f(t) \pm \int g(t)(dt)$	M1*	$f(t)$ must include t^3 and $g(t)$ must not include a logarithm	ignore spurious dx etc
		$2t^{3}\ln(t+2) - \int \frac{2t^{3}}{t+2}(\mathrm{d}t) \operatorname{cao}$	A1		alternatively, following $u = t + 2$
		result from part (i) seen in integrand; must follow award of at least first M1	M1*	no integration required for this mark	$\int 2(u^2 - 6u + 12 - \frac{8}{u}) du $ oe
		$F[t] = 2t^{3} \ln(t+2) \pm \frac{2t^{3}}{3} \pm 2t^{2} \pm 8t \pm 16 \ln(t+2)$	A1	$2t^{3}\ln(t+2) - \frac{2t^{3}}{3} + 2t^{2} - 8t + 16\ln(t+2)$	$\frac{2u^3}{3} - 6u^2 + 24u - 16\ln u$ and
					$2t^3\ln(t+2)$
		their F[2] – F[1]	M1dep*	at least one of their terms correctly integrated	NB limits following substitution are $u = 4$ and $u = 3$
		$-6^{2/3} - 18\ln 3 + 32\ln 4$ oe cao	A1		
			[6]		
9		$\frac{A}{1+2x} + \frac{B}{1-x} + \frac{C}{(1-x)^2}$	B1	or $\frac{A}{1+2x} + \frac{Bx+C}{(1-x)^2}$	if B0M0, SC1 for $\frac{1}{1+2x}$ seen
		may be seen in later work		may be seen later in later work	
		$2 + x^{2} \equiv A(1 - x)^{2} + B(1 + 2x)(1 - x) + C(1 + 2x)$	M1	or $A(1-x)^2 + (Bx + C)(1 + 2x)$	allow only sign errors, not algebraic errors
		A = 1, B = 0 and $C = 1$ www	A1A1A1		
		$\int \left(\frac{1}{1+2x} + \frac{1}{(1-x)^2}\right) dx =$			
		$a\ln(1+2x) + b(1-x)^{-1}$	M1*	a and b are non-zero constants	ignore extra terms
		$F(x) = \frac{1}{2}\ln(1+2x) + (1-x)^{-1}$	A1		
		their $\frac{1}{2}\ln(\frac{3}{2}) + \frac{4}{3} - (\frac{1}{2}\ln 1 + 1)$	M1dep*		

Qu	iestion	Answer	Marks	Gu	idance
		$\frac{1}{2}\ln(\frac{3}{2}) + \frac{4}{3} - 0 - 1$	A1 [9]	and completion to given result www	NB $\frac{1}{2}\ln(\frac{3}{2}) + \frac{1}{3}$
10	(i)	$\frac{\mathrm{d}V}{\mathrm{d}t} = \pm 0.01$	B1		
		by similar triangles, $\frac{h}{4.5} = \frac{r}{3}$	B1	may be implied by $r = \frac{2h}{3}$ oe	
		$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{4}{9}\pi h^2 \text{ oe}$	B1		
		$\frac{\mathrm{d}h}{\mathrm{d}t} = \pm 0.01 \times \mathrm{their} \frac{\mathrm{d}h}{\mathrm{d}V} \mathrm{oe}$	M1	use of Chain rule	may follow from incorrect differentiation: expressions must be a function of either r or h or both
		$-0.01 = \left(\frac{4}{9}\pi h^2\right) \times \frac{\mathrm{d}h}{\mathrm{d}t}$	A1 [5]	completion to given result www	$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-0.09}{4\pi} = \frac{-9}{400\pi}$
10	(ii)	$\int h^2 \mathrm{d}h = \int \frac{-9}{400\pi} \mathrm{d}t \text{oe soi}$	M1	separation of variables	if no subsequent work, integral signs needed, but allow omission of dh or dt, but must be correctly placed if present;
		$\frac{h^3}{3} = \frac{-9}{400\pi}t(+c)$	A1		
		substitution of $t = 0$ and $h = 4.5$ in their expression following integration	M1	expression must include c and powers must be correct on each side	
		$h = {}^{3} \sqrt{\frac{729}{8}} - \frac{27t}{400\pi}$ oe isw	A1	allow – 0.0215 or – 0.02148591r.o.t to 4 sf or more and similarly 91.125	$91.125 = \frac{729}{8}$
			[4]		
10	(iii)	set $h = 0$ and solve to obtain positive t	M1	or $(t=)\frac{1}{3}\pi \times 3^2 \times 4.5 \div 0.01 \ (=1350\pi)$	NB $1350\pi = 4241.150082$
		71 minutes cao	A1 [2]		