OCR Maths M1

Mark Scheme Pack

2005-2014

1	(i)	R is smooth	B1	1	
1	(ii)		M1	1	For resolving forces horizontally to obtain an equation in <i>T</i> (requires 3 relevant terms and at least one force resolved)
		$T + T\cos 60^{\circ} = 1.6\cos 45^{\circ}$ Tension is 0.754 N AG	A1 A1	3	
	(iii)	$mg = T\sin 60^{\circ} + 1.6\sin 45^{\circ}$ m = 0.182	M1 A1 ft A1	3	For resolving forces vertically to obtain an equation for m (requires 3 relevant terms with both T and the 1.6 N force resolved) ft $\sin/\cos \min f$ from (ii) SR $m = T\sin 60^{\circ} + 1.6\sin 45^{\circ}$ M1 $m = 1.78$
					B1
2	(i)		M1 A1		For applying $F = ma$ (requires at least ma , T and air resistance in linear combination in at least one equation). At least one equation with not more than one error.
		0.2g + T - 0.4 = 0.2a $0.3g - T - 0.25 = 0.3a$	A1 A1	4	SR $0.2g - T - 0.4 = 0.2a$ and $0.3g + T - 0.25 = 0.3a$ B1
	(ii)	0.5g - 0.65 = 0.5a or 5T - 0.7 = 0	M1		For obtaining an equation in T or a only, either by eliminating a or T from the equations in (i) or by applying $F = ma$ to the complete system For a correct equation in a only or T only
		a = 8.5 and $T = 0.14$ (positive only)	A1	3	ft opposite direction of <i>T</i> only

3	(i)	Momentum before=0.1×4 –	B1	or Loss by $P = 0.1 \times 4 + 0.1u$
		0.2×3 Momentum after =	B1	or Gain by $Q = 0.2(3.5 - u) + 0.2 \times 3$
		$-0.1u + 0.2(3.5 - u)$ $0.1 \times 4 -0.2 \times 3 =$		For using the principle of
		-0.1u + 0.2(3.5 - u) u = 3 (positive value only)	M1	conservation of momentum
		" (positive value only)	A1 4	
[SR If mgv used for momentum
				instead of mv, then $u = 3$ B1
	(ii)		M1	For using $v^2 = u^2 + 2as$ with v
				= 0 (either case) or equivalent
				equations
		$0 = 3^2 - 10s_1$ and $0 = 0.5^2 - 10s_2$	A1 ft	ft value of <i>u</i> from (i)
		0.9 + 0.025	M1	For using $PQ = s_1 + s_2$
		Distance is 0.925 m cao	A1 4	

4	(i) a:		M1		For using $s = ut + \frac{1}{2} at^2$ for the
4	(i) α		1411		first stage
		$\frac{1}{2}$ 0.8. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	A1		
		$2 = 0.8u + \frac{1}{2}a(0.8)^2$	3.41		T 1. 1. 1
			M1		For obtaining another
		$8 = 2u + \frac{1}{2}a^2$ or			equation in u and a with
		$6 = 1.2(u + 0.8a) + \frac{1}{2}a(1.2)^2$ or	A1		relevant values of velocity,
		$6 = 1.2(2 \times 2 \div 0.8 - u) + \frac{1}{2} a(1.2)^2$			displacement and time
			M1		For eliminating <i>a</i> or <i>u</i>
		u = 1.5	A1		
		Acceleration is 2.5 ms ⁻²	A1	7	
	(i) β		M1		For using $s = vt - \frac{1}{2} at^2$ for
	(1) P		1,11		the first stage
		$2 = 0.8v - \frac{1}{2}a(0.8)^2$	A1		ine mst stage
		2 - 0.0v - 72u(0.0)	M1		For using $s = ut + \frac{1}{2} at^2$ for
			1411		the second stage
		$6 = 1.2v + \frac{1}{2}a(1.2)^2$	A1		the second stage
		0 - 1.2v + 72u(1.2)	M1		For obtaining values of <i>a</i>
			1011		_
					and v and using $v = u + at$
		A1	A 1		for first stage to find <i>u</i>
		Acceleration is 2.5 ms ⁻² ($v =$	A1	7	
		3.5)	A1	7	
		u=1.5			
	(i) γ	2÷0.8 ms ⁻¹ and 6÷1.2 ms ⁻¹	M1		For finding average speeds
					in both intervals
		$= 2.5 \text{ ms}^{-1} \text{ and } 5 \text{ms}^{-1}$	A1		
		$t_1 = 0.4$ and $t_2 = (0.8 +) 0.6$	B1		For finding mid-interval
					times
		5 = 2.5 + a (1.4 - 0.4)	M 1		
		·			For using $v = u + at$
					between
		Acceleration is 2.5 ms ⁻²	A1		the mid-interval times

	$2.5 = u + 2.5 \times 0.4 \text{ or}$ $5 = u + 2.5 \times 1.4$	M1		
	u = 1.5	A1	7	For using $v = u + at$ between t = 0 and one of the mid- interval times
(ii)	$2.5 = 9.8\sin\alpha$ $\alpha = 14.8^{\circ}$	M1 A1ft	2	For using $(m)a = (m)g\sin\alpha$ ft value of acceleration

5	(i)		M1		For resolving forces on A vertically (3 terms)
		$F = 2 + 7\cos\alpha$ F = 3.96 (may be implied)	A1 A1		
		$N = 7\sin\alpha$	M1		For resolving forces on A
		N = 6.72 (may be implied)	A1		horizontally (2 terms)
		$3.96 = \mu 6.72$ Coefficient is 0.589 or 33/56 cao	M1 A1	7	For using $F = \mu N$
	(ii)	$T\cos\beta = 7\cos\alpha$	M1		For resolving forces at <i>P</i> vertically (2 terms)
		$T\cos\beta = 7 \times 0.28 \ (=1.96 \ AG)$	A1 :	2	,
	(iii)		M1		For resolving forces on B
					vertically (2 terms)
		$T\cos\beta - mg = 0$	A1		
		Mass is 0.2 kg	A1	3	

6	(i)(a)	$V = P\cos 20^{\circ} - 0.04g$	B1		Farantina IV. O
		P = 0.417	M1 A1	3	For setting $V = 0$
	(i)(b)	$R = P\sin 20^{\circ}$	M1		For using $R = \text{horizontal component}$ of P
		Magnitude is 0.143 N	A1ft	2	ft value of P
	(i)(c)	0.143 = 0.04a Acceleration is 3.57 ms ⁻²	M1 A1ft	2	For using Newton's second law ft magnitude of the resultant
	(ii)	$R^2 = 0.08^2 + (0.04g)^2$	M1		For using $R^2 = P^2 + W^2$
		Magnitude is 0.400 N (or 0.40 or 0.4)	A1		
		$\tan \theta = +/-0.04g/0.08 \text{ or}$	M1		For using $\tan \theta = Y/X$ or
		$\tan(90^{\circ} - \theta) = +/-0.08/0.04g$			$\tan(90^{\circ} - \theta) = X/Y$
		Angle made with horizontal is 78.5° or 1.37 radians, or angle made with vertical is 11.5° or 0.201 radians	A1		
		Downwards or below	B1	5	Direction may alternatively be
		horizontal			shown clearly on a diagram or given as a bearing

7	(i)		M1		For using the idea that the area of the quadrilateral represents distance
		$\frac{1}{2}200 \times 16 + 300 \times \frac{1}{2}(16 + 25)$			
		+	A1		
		½ 100×25 (=1600 + 6150 +			
		1250)	A1	3	
		Distance is 9000m			
[(ii)	a = (0 - 25)/(600 - 500)	M1		For using the idea that gradient
					(= vel ÷ time) represents
					acceleration
		Deceleration is 0.25 ms ⁻²	A1	2	Or for using $v = u + at$
				_	Allow acceleration = - 0.25 ms ⁻²
	(iii)		M1		For using $a(t) = \dot{V}(t)$
		Acceleration is $(1200t - 3t^2) \times 10^{-6}$	A1	2	
	(iv)	0.25 – 0.2475 Amount is +/- 0.0025 ms ⁻²	M1 A1ft		For using 'ans(ii) – $ a_Q(550) $ ' ft ans(ii) only
		l		2	
	(v)	$1200t - 3t^2 = 0$	M1		For solving $a_Q(t) = 0$ or for finding $a_Q(400)$
		t = (0 or) 400	A1	2	Or for obtaining $a_0(400) = 0$
		AG			
	(vi)	1/ 200 1/2 200 1/2 (20)	M1		For correct method for s _P (400)
		$\frac{1}{2}200 \times 16 + 200 \times \frac{1}{2}(16 + 22)$	A1		
		$s_{\rm Q}(t) = (200t^3 - t^4/4) \times 10^{-6} \ (+C)$	M1		For using $s_Q(t) = \int v_Q dt$
		6400 – 5400	A1 M1		For using correct limits and
			1V1 1		finding
		Distance is 1000 m			$ s_{Q}(400) - s_{P}(400) $
			A1	6	

F.			1	1	1
1	(i)	0.3g - T = 0.3a and	M1		For using Newton's second law (either
		T - 0.4g = 0.4a			particle) condone 0.3ga,0.4ga and
			A1		!(LHS)
					Both correct. SR Accept T -0.3 g =
					0.3a etc as correct only if consistent
		-0.1g = 0.7a	M1		with a shown as upwards for P on c's
		a = -1.4	A1	[4]	diagram
		See appendix for substituting	711	[-]	
					Eliminating T
		$\frac{a = -1.4}{2.2}$	3.61		AG
	(ii)	$0 = 2.8t - \frac{1}{2} \cdot 1.4t^2$	M1		
		0 = t(2.8 - 0.7t)	M1		
		Time taken is 4 s	A1	[3]	For using $s = ut + \frac{1}{2}at^2$ with $s = 0$
		OR			Solving QE
		(0.3 + 0.4)a = (0.3 - 0.4)g	M2		From correct equation only
			A1		1
		a = -1.4	A1	[4]	For using $(m_1 + m_2)a = (m_1 - m_2)g$
	(:)	0 = 2.8 + -1.4t	M1		No application of <i>SR</i> shown above
	(i)	t = 2.8/1.4	M1		AG
		Time taken is 4 s	A1	[3]	For using $v = u + at$ with $v = 0$
		Time taken is 4 s	AI		•
	(ii)				Solve for t, and double <u>or any other</u>
					complete method for return time
	1	+	_	1	1
2	(i)	$T\sin\alpha = 0.08 \text{ x } 1.25$	M1		Newton's second law condone cos,
		= 0.1	A1	[2]	and
	(ii)	$T\cos\alpha = 0.08g$	M1		0.08g for mass but not part of
			A1		force
			M1		Resolving forces vertically, condone
		$T^2 = 0.1^2 + 0.784^2$ or $\alpha =$	A1		sin
		7.3°	A1	[5]	May be implied by $T^2 = 0.1^2 + 0.784^2$
		T = 0.79	711		For eliminating α or T
		1 = 0.79			$\alpha = 7.3^{\circ}$ or better
					Accept anything rounding to 0.79
2	(2)		N/1		E
3	(i)	7.2	M1		For using $a = dv/dt$
		a = 7.2 - 0.9t	A1		
			M1		For attempting to solve $a(t) = 0$
		T=8	A1	[4]	
		See also special case in			
		appendix.			
	(ii)	v(T) = 28.8	B1		AG (From $7.2 \times 8 - 0.45 \times 8^2$)
		See also special case in			
		appendix.		[1]	
	(iii)	- 		-	Earwing a - Ludt
	(***)		M1		For using $s = \int v dt$
		$s = 3.6t^2 - 0.15t^3$ (+C)	A1		
		ĺ	DM1		For finding $s(T \text{ or } 31)$ or using limits
			וואוע		(0) to <i>T</i> or (0) to 31 (dep on
		s = 153.6 (+C)	A 1		integration)
			A1		Condone +C
		s at constant speed = 662.4	B1ft	5.63	
		Displacement is 816 m	A1ft	[6]	For using $(31 - \text{cv } T) \times 28.8$
					cv 153.6 + cv 662.4 (non-zero
					numerical)

4	(i)	$F = 12\cos 15^{\circ}$	M1		Resolve horizontally (condone sin)
		Frictional component is 11.6 N	A1	[2]	Accept 12cos 15°
	(ii)	$N + 12\sin 15^{\circ} = 2g$	M1		Resolve vert 3 forces (accept
					cos)
		Normal component is 16.5 N	A1	[2]	AG
	(iii)	$11.591 = \mu 16.494$	M1		For using $\operatorname{cv} F = \mu \operatorname{cv} N$
		Coefficient is 0.7(0)	A1ft	[2]	Ft cv <i>F</i> to 2 sf. $\mu = 0.7027$
	(iv)	N=2g	B1		
		$F = 19.6 \times 0.7027$	M1		
			M1		For using Newton's second law
		20 - 13.773 = 2a	A1ft		cv Tractive - cv Friction (e.g.
					from (i))
		Acceleration is 3.11 ms ⁻²	A1	[5]	Accept either 3.11 or 3.12 only
		MISREAD (omits "horizontal")	MR-1		All A and B marks now ft.
					Subtract "MR-1" from initial B1
					or final A1 (not A1ft in main
		$N = 2g - 20\sin 15$	B1ft		scheme).
		$F = 0.7027 \times 14.4$	M1		Equals 14.42
			M1		Equals 10.1
		$20\cos 15 - 10.14 = 2a$	A1ft		For using Newton's second law
		Acceleration is 4.59 ms ⁻²	A1ft	[4]	cv Tractive - cv Friction
					Accept 4.59, 4.6(0)

5	(i)		Graph with 5			'Wait' line
			straight line			segment may not
			segments and			be distinguishable
			with v single			from part of the t
		1	valued.	B1		axis. Attempt at all
		ν(m/s)				lines segments
		Λ				fully straight.
		/\	Line segment			Mainly straight,
			for car stage	B1		ends on <i>t</i> -axis
		/	Line segment			Horizontal below
		\	for walk	B1		t-axis. Ignore
			stage			linking to axis.
			Line segment			Can be implied by
		<i>t</i> (s)	for wait stage			gap between walk
						and motor-cycle
				B1		stages
			2 line			Inverted V not U,
			segments for	D.1		mainly straight.
			motor-cycle	B1	553	Condone vertex
		1 12/0	stage		[5]	below <i>x</i> intercept.
	(ii)	d = 12/8		3.61		Using gradient
		Decel- median in 1.5 mm ⁻²		M1	[0]	represents accn
	(:::)	Deceleration is 1.5 ms ⁻²		A1	[2]	Or $a = -1.5 \text{ ms}^{-2}$
	(iii)			M1		Using area
				IVII		represents
		_ 420/0.7		B1		displacement.
		$t_{\text{walk}} = 420/0.7$		B1		Accept 600 Ignore method
		$\begin{array}{c} t_{\text{motorcycle}} = 42 \\ T = 8 + 600 + 250 + 42 = 900 \end{array}$		A1	[4]	ignore memou
		1 - 0 + 000 + 230 + 42 - 900		AI	[+]	
	•	•				

6	(i)	$T_{\rm A}\cos\alpha - T_{\rm B}\cos\beta = W$	M1		For resolving 3 forces
		$T_{\rm A} = T_{\rm B} \; (=T)$	B1		vertically, condone <i>Wg</i> , sin May be implied or shown in diagram
		$\cos \alpha > \cos \beta \rightarrow \alpha < \beta$	A1	[3]	AG
	(ii)(a)	$T\sin\alpha + T\sin\beta = 14$	M1		Resolve 3 forces horiz accept
					cos
		$\sin \alpha = 0.6$ and $\sin \beta = 0.8$	DM1		
		Tension is 10 N	A1	[3]	
	(ii)(b)	$10\cos\alpha - 10\cos\beta = W$	M1		Must use cv T, and W (not Wg)
		$\alpha = 36.9^{\circ}, \ \beta = 53.1^{\circ}$	DM1		Or $\cos \alpha = 0.8$ and $\cos \beta = 0.6$
					$SR - 1$ for assuming $\alpha + \beta = 90^{\circ}$
		W=2	A1 ft	[3]	ft for <i>T</i> /5 (accept 1.99)
		See appendix for solution based			-
		on resolving along RA and RB.			
	(iii)	R is below B	B1		Accept R more than 0.5 m
					below A
		Tension is 1 N	B1 ft	[2]	ft for W/2 accept W/2

7	(i)	Initial momentum			(or loss in A's momentum =
		$= 0.15 \times 8 +$	B1		0.15×8
		0.5×2			B1
		Final momentum = $0.5v$	B1		and gain in B's momentum =
					0.5(v-2)
		$0.15 \times 8 + 0.5 \times 2 = 0.5v$			B1)
		$(\text{or } 0.15 \times 8 = 0.5 \times (v - 2))$	M1		For using the principle of
					conservation of momentum
		v = 4.4	A1	[4]	condone inclusion of g in all
		$(m)g\sin\alpha = (\pm)(m)a$	M1		terms
		$a = (\pm)4.9$	A1		SR Awarded even if g in all
		EITHER (see also part (ii))			terms
		$0 = 4.4^2 - 2 \times 4.9s$	M1		Condone cos
		s = 1.97 or 1.98 m	A1ft		
		OR			
		$v^2 = 4.4^2 - 2 \times 4.9 \times 2$	M1		For using $v^2 = u^2 + 2as$ with $v =$
		$v^2 = -0.24$	A1ft		0
		OR (see also part (ii))			Accept $s < 2 \text{ iff } s = 4.4^2 / ($
		t = 4.4/4.9 (=0.898) with either			2×4.9)
		$s = 4.4 \times 0.898 - 0.5 \times 4.9 \times$			ŕ
		0.898^2 or $s = (4.4 + 0)/2 \times$	M1		For using $v^2 = u^2 + 2as$ with $s =$
		0.898	A1ft	[4]	2
		s = 1.97 or 1.98 m			Accept $v^2 < 0$
					•
					Both parts of method needed
					Accept $s < 2$
	(ii)	$2 = \frac{1}{2}4.9 \ t_{\rm A}^2$	M1		cv for acceleration
		$t_{\rm A} = 0.904$	A1		Accept 0.903= <time=<0.904< td=""></time=<0.904<>
		EITHER			_
		$2 = (-4.4)t_{\rm B} + \frac{1}{2} \cdot 4.9 t_{\rm B}^2$	M1		Appropriate use of $s = ut + \frac{1}{2}$
		$t_{\rm B} = (4.4! \oplus (4.4^2))$	M1		at ² Correct method for solving
		$+4 \times 2.45 \times 2))/4.9$	A1		QE
		$t_{\rm B} = 2.17$	A1		2.171
		$t_{\rm B}$ $t_{\rm A} = (2.17 - 0.9) = 1.27 \text{ s}$			
		OR	M1		
		$t_{\rm up} = 4.4/4.9 \ (=0.898)$	M1		Or using $s_{\rm up}$ to find $t_{\rm up}$
		$(2+1.98) = 0.5 \times 4.9 \times t_{\text{down}}^2$	A1		$s = ut + \frac{1}{2}at^2$ with cv s in part
		$t_{\text{down}} = 1.27$	A1		(i)
		$t_{\rm B}$ - $t_{\rm A}$ = (0.9 + 1.27 - 0.9) = 1.27s			Not the final answer
		OR			
		$0 = 4.4t - \frac{1}{2} \cdot 4.9t^2$	M1		_
		(i.e. approx 1.8 s to return to			$s = ut + \frac{1}{2}at^2$ with $s = 0 = 1.796$
		start)	M1		
		$2 = 4.4t + 4.9t^2$	A1		
		t = 0.376	A1	[5]	
		$t_{\rm B} - t_{\rm A} = 1.796 + 0.376 - 0.9 =$			
		1.27s			

1		Momentum before = $3M$ - 1200×3	B1		Ignore g if included; accept inconsistent directions
		Momentum after = 1200×5	B1		moonloident directions
					(or loss of momentum of
					loaded wagon = 3 <i>M</i>
					B1
					gain of momentum of
					unloaded wagon = 1200(5 + 3) B1)
		3M - 3600 = 6000	M1		Equation with all terms; accept
		3(1200 + m) - 3600 = 6000	A1		with g For any correct equation in <i>m</i> ,
		3(1200 1 111) 3000 = 0000	Ai		M
		<i>m</i> = 2000	A1	5	
2	(i)		M1		For resolving forces in the i
					direction or for relevant use of
					trigonometry
		$2.5 = 6.5\sin\theta$	A1	_	
		$\theta = 22.6^{\circ}$	A1	3	AG Accept verification
	(ii)		M1		For resolving forces in the j
					direction or for using
					Pythagoras or relevant
		$R = 6.5\cos 22.6^{\circ}$	A1		trigonometry.
		R = 6	A1	3	
<u> </u>		11 = 0	, , , ,		

2	/:\				Line cogment AD (april of the
3	(i)		B1		Line segment <i>AB</i> (say) of +ve slope from origin Line segment <i>BC</i> (say) of steeper +ve slope and shorter
			B1		time interval than those for <i>AB</i> . <i>SR</i> : If the straight line segments are joined by curves, this B1 mark is not awarded Line segment <i>CD</i> (say) of less steep slope compared with <i>BC</i> .
		Time intervals 20, 40, 40	D4		(An (x, t) graph is accepted and the references to more/less steep are reversed.)
		Time intervals 80, 40, 40 t = 80, 120, 160	B1 B1		May be implied; any 2 correct
	(ii)	Line joining (0, 0) and (160, 360)	B1 ft	6	
	(iii)	v = 360/160	M1 M1		Woman's velocity (= 2.25) For equation of man's displacement in relevant
		s = 120 + 4.5(t - 80)	A1		interval Accept omission of -80
		2.25 <i>t</i>	M1		Woman's displacement, awarded even if <i>t</i> is interpreted differently in man's expression
		$t = 106 \frac{2}{3}$ (107) SR Construction method	A1	5	Accept also 106.6, 106.7 but not 106
		Plotting points on graph	M1		Candidates reading the
		paper t between 104 and 109 inclusive	A1		displacement intersection from graph, then dividing this distance by the woman's speed to find t , also get $v = 360/160$ M1 as above for the woman's velocity.
4	(i)	Displacement is 20 m	B1	1	20+c (from integration) B0
	(ii)	$s(t) = 0.01t^3 - 0.15t^2 + 2t$	M1 A1		For using $s(t) = \int v(t)dt$
		(+A) 10 - 15 + 20 + A = 20 Displacement is	M1		Can be awarded prior to cancelling For using s(10) = cv (20)
		$0.01t^3 - 0.15t^2 + 2t + 5$	A1	4	AG
	(iii)	a = 0.06t - 0.3 0.06t - 0.3 = 0.6	M1 A1 DM1		For using $a(t) = dv/dt$ For starting solving $a(t) = 0.6$
		t = 15	A1		depends on previous M1
		Displacement is 35 m	B1	5	

5	/i)		M1		For using $F = 5$ and $F = \mu R$
J	(i)	B - ma	M1		I or using $I = 3$ and $F = \mu R$
		R = mg $m = 2.55$	A1	2	Accept 2 5 or 2 6
	/::\ <u>-</u>		B1	3	Accept 2.5 or 2.6
	(ii)a	$P\cos\alpha = 6$	М1		For recolving vertically with 2
			IVII		For resolving vertically with 3 distinct forces
		$R = P\sin \alpha + 25$	A1ft		Or $P \sin \alpha + (\text{cv m})g$
		0.2R = 6	B1		For using $F = 6$ and $F = \mu R$.
		0.27(= 0			Can be implied by
					0.2(P sin α +25) = 6
		$0.2(P\sin\alpha + 25) = 6$	M1		For an equation in
		0.2(73114423) = 0	IVII		$P\sin\alpha$ (=5)after elimination of
					R
		$\alpha = 39.8^{\circ}$	A1		Accept a r t 40°
	(ii)b	$P^2 = 6^2 + 5^2$	M1		For eliminating or substituting
	(,5	or $P\cos 39.8^{\circ} = 6$			for α with cv(6). Evidence is
		or $P \sin 39.8^{\circ} = 5$			needed that 5 is the value of
					P sin α (rather than the original
					frictional force)
		P = 7.81	A1	8	Accept a r t 7.8
6	(i)	10500 + 3000 + 1500	M1		For summing 3 resistances
		Driving force below 15000	A1		Accept generalised case or
		gives retardation		2	specific instance
	(ii)	35000 – 15000 = 80000a	M1		Newton's second law for
		Applemention is 0.25 mg ⁻²	۸.4	2	whole train
	/:::\	Acceleration is 0.25 ms ⁻²	A1	2	AG Accept verification
	(iii)		M1		For applying Newton's second law to <i>E</i> only, at least 2 forces
					out of the relevant 3.
		35000 - 10500 - 8500 =	A1		out of the followant of
		0.25 <i>m</i>			
		Mass is 64000 kg	A1	3	
	(iv)	-	M1		For applying Newton's second
					law with all appropriate forces
		-15000 – 15000 = 80000 <i>a</i>	A1		a = -0.375
		OR			
		-3000-10500-15000=(80000			
		- m)a	N/4		For applying Newton's asset
			M1		For applying Newton's second
		-1500 = <i>ma</i>	A1		law to <i>B</i> only, only 1 force Or cv(a)
		Mass is 4000 kg	A1	5	
	(v)	-15000 – 10500 ± <i>T</i>		<u>-</u>	Follow through cv ($m_{\rm E},~a$), or
	(',	= 64000(-	B1ft		accept use of $m_{\rm E}$, a
		0.375)			
		$T = \pm 1500 \Rightarrow$ forward force			
		on <i>E</i> of 1500 N	B1	2	
		OR (working with A and B)			
		$-1500 - 3000 \pm T$			Follow through cv (m_E, a) , or
		= (80000 - 64000)(-	B1ft		accept use of $m_{\rm E}$, a
		0.375)	B1		
		$T = \pm 1500 \Rightarrow$ forward force			
		on <i>E</i> of 1500			

7	(i)	$0 = 6 + (\pm)1.5a$	M1	For using $v = u + at$ with $v = 0$
---	-----	---------------------	----	-------------------------------------

	$a = (\mp) 4\text{ms}^{-2}$ $-mg \sin 15^{\circ} - F = ma$ $-0.1 \times 9.8 \sin 15^{\circ} - F = 0.1 \times (-4)$	A1 M1 A1		For applying Newton's second law with 2 forces
	$R = 0.1g\cos 15^{\circ}$ 0.146357 = μ 0.946607	B1 M1		For using $F = \mu R$
	Coefficient is 0.155	A1	7	Anything between 0.15 and 0.16 inclusive
(ii)	mg sin15° > μ mg cos15° (or tan 15° > μ)	M1		For comparing weight component with frictional force (or tan 'angle of friction' with μ)
	→ particle moves down	A1	2	Awarded if conclusion is correct even though values are wrong
(iii)	$(6 + 0) \div 2 = s \div 1.5$ s = 4.5	M1 A1		For using $(u + v) \div 2 = s \div t$
	mgsin15° – $F = ma$	M1		For using Newton's second law with 2 forces
	0.25364 0.146357 = 0.1 <i>a</i>	A1		Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong value of R
	$v^2 = 2(1.07285)4.5$	M1		For using $v^2 = 2as$ with any value of a
	Speed is 3.11 ms ⁻¹	A1	6	Accept anything rounding to 3.1 from correct working

1	(i)	Net force on trailer is $+/-(700 - R_T)$	B1		
			M1		For applying Newton's second law to the trailer with 2 terms on LHS (no vertical forces)
		$700 - R_T = 600 \times 0.8$	A1ft		ft cv $(+/-(700 - R_T))$
		Resistance is 220N	A 1	4	
	(ii)		M1		For applying Newton's second law to the car or to the whole, with $a = +/-0.8$ (no vertical forces)
		$2100 - 700 - R_{\rm C} = 1100 \times 0.8$	A1ft		
		or			ft cv(220)
		$2100 - (R_C + 220) = (1100 + 600)x$			
		0.8			
		Resistance is 520N	A1	3	

2	(i)		M1		For resolving forces vertically
		15 x 0.28 and 11x 0.8 Y= 15x0.28 + 11x0.8 -	A1 A1ft		Allow use of = 16.3 and =53.1 Ft cv(15 x 0.28 and 11x 0.8)
		13 Component is zero AG	A1	4	SR 15sin + 11sin $-13 = 0$ gets M1A0A1ftA0
	(ii)	$X = 15 \times 0.96 - 11 \times 0.6$	M1 A1		For resolving forces horizontally Allow use of = 16.3 and =53.1
		Magnitude is 7.8N	A1	3	Accept 7.79, -7.8
	(iii)	Direction is that of the	B1	1	Do not allow horizontal, 90° from vertical.
		(+ve) x -axis			Do not award if $= 16.3$ and $= 53.1$
					have been used.

3	(i)	T = 0.3g	B1	At particle (or $0.3g - T = 0.3a$)
		F = T	B1	Or $F = cv(T \text{ at particle})$ (or $T - F = 0.4a$)
		R = 0.4g	B1	
			M1	For using $F = \mu R$
		Coefficient is 0.75	A1 5	
	(ii)		M1	For resolving 3 relevant forces on B horizontally, a=0
		X = 0.3g + 0.3g	A1ft	$Ft X = 0.3g + cv(\mu)$
				cv(R)
		X = 5.88N	A1 3	

4	(i)	Momentum before collision = $\pm /-(0.8 \times 4 - 0.6 \times 2)$ Momentum after collision = $\pm /-0.8 \times 1.6 \times 2$	B1 B1 M1		Or momentum change L $0.8x4 + /- 0.8v_L$ Accept inclusion of g in both terms Momentum change N $0.6x2 + 0.6x2$ Accept inclusion of g in both terms For using the principle of conservation of momentum
		Speed is 1 ms ⁻¹	A1	4	even if g is included throughout Accept -1 from correct work (g not used).
	(ii)(a)	0.6x2 - 0.7x0.5 Total is 0.85kgms ⁻¹ Total momentum +ve after the collision. If N continues in its original direction, both particles have a negative momentum.	M1 A1 DM 1		Must be a difference. SR 0.6x1 - 0.7x0.5 M1 Must be positive Or 0.6v + 0.7w is positive, confirming that the momentum is shared between two particles. No reference need be made to the physically impossible scenario where M and N both might continue in their original directions.
		N must reverse its direction.	A1	4	
	(ii)(b)	0.6x2 - 0.7x0.5 (= 0.85) = 0.7v	A1ft		ft cv (0.85). Award M1 if not given in ii(a).
		Speed is 1.21ms ⁻¹	A1	2	Positive. Accept (a.r.t) 1.2 from correct work

5	(i)	$1.8t^2/2$ (+C)	M*1		For using $v = \int adt$
	(ii)	(t = 0, v = 0) C = 0 Expression is $1.8t^2/2$	B1 A1 M1	3	May be awarded in (ii). Accept c written and deleted. also for $1.8t^2 + c$ For using $s = \int v dt$
		$0.9t^{3}/3$ (+K) 0.3×64	A1 M1		SR Award B1 for $(s = 0, t = 0)$ K = 0 if not already given in (i), or +K included and limits used. For using limits 0 to 4 (or equivalent)
	(iii)	19.2m AG $u = 0.9 \times 4^2$	A1		For using 'u' = v(4)
		$s = 14.4 \times 3 + \frac{1}{2} 7.2 \times 3^2$	M1 A1		For using $s = ut + \frac{1}{2} x7.2t^2$ with non-zero u ($s = 75.6$)
		19.2 + 75.6 Displacement is 94.8m OR	M1 A1	5	For adding distances for the two distinct stages
		$v = \int 7.2dt$ $t = 0, v = 14.4, c = 14.4$	D* M1		For finding v(4) Integration and finding non-zero integration constant Nb Using t=4, v=14.4 gives c = -14.4 $s = \int 7.2t - 14.4 dt$
		$s = \int 7.2t + 14.4dt$ t = 0, s = 0, k = 0	M1		Integration and finding integration constant. Nb t=4 with s=19.2 and v=7.2t-14.4 gives k=19.2 Substituting t = 3 (OR 7 into s = $3.6t^2$ - $14.4t$ + 19.2)
		$s=3.6x3^2+14.4x3$ 19.2 + 75.6 = 94.8 Displacement is 94.8m	A1 M1 A1		(s=75.6) (OR s = 3.6×7^2 - $14.4 \times 7 + 19.2$) Adding two distinct stages OR s = 3.6×7^2 - $14.4 \times 7 + 19.2 = 94.8$ final M1A1

6	(i)	$\frac{1}{2} 25 v_m = 8 \text{ or }$	B*1	Do not accept solution based on isosceles or right
		$\frac{1}{2}Tv_m + \frac{1}{2}(25 - T)v_m =$		angled triangle

	8			
		D*D	•	
	Greatest speed is	D*B	2	
	0.64	1		
	ms ⁻¹			
(ii)		M1		For using $v = u + at$ or the idea that gradient represents acceleration
	$V = 0.02 \times 40$	A1		•
	V = 0.8	A1	3	
(iii)		M1		For using the idea that the area represents displacement. nb trapezium area is 16+8+8
		M1		For $A = \frac{1}{2}(L_1 + L_2)h$ or other appropriate breakdown
	$\frac{1}{2}(70 + T) \times 0.8 = 40 - 8$	A1ft		$\frac{1}{2}(30 + T) \times 0.8 = 40 - 8 - \frac{1}{2} \times 40 \times 0.8$ ft cv(0.8)
	Duration is 10s	A1	4	
(iv)		M1		For using $v = u + at$ or the idea that gradient represents acceleration
	0=0.8+a(30-10)	A1ft		ft $cv(10)$ and $cv(0.8)$
	Deceleration is 0.04ms ⁻²	A1	3	Accept -0.04 from correct work
	Or	M1		Using the idea that the area represents displacement.
	40-8-½ x 40 x 0.8-	A1ft		Ft cv(0.8 and 10)
	10x0.8	A1		Accept -0.04 from correct work. d=-0.04 A0
	=0.8(30-10)-a(30-			
	$10)^2/2$			
	Deceleration is			
	0.04ms ⁻²			

7	(i)	$R = 0.5g\cos 40^{\circ}$	B1		R = 3.7536
		$F = 0.6 \times 0.5 g\cos 40^{\circ}$	M1		For using $F = \mu R$
		Magnitude is 2.25N AG	A1	3	
	(ii)		M1		For applying Newton's second law (either case) //slope, two forces
		$-/+0.5$ gsin $40^{o} - F = 0.5$ a	A1		Either case
		(a) Acceleration is - 10.8ms ⁻²	A1		Accept 10.8 from correct working (both forces have the same sign)
		(b) Acceleration is	A1	4	Accept -1.79 from correct working (the forces have opposite sign) Accept ! 1.8(0)
	(iii)a)	1.79ms^{-2} $0 = 4 + (-10.8) \text{T}_1$	M1		Requires appropriate sign
	(111)41)	$T_1 = 0.370(3)$	A1		requires appropriate sign
					Accept 0.37
	b)		M1		For complete method of finding distance from A to highest point using a(up) with appropriate sign
		$0 = 4^2 + 2(-10.8)$ s or	A1		ft a(up) and/or T ₁
		$s = (0 + 4) \times 0.37/2 \text{ or}$ $s = 4(0.370) + \frac{1}{2} (-10.8)(0.370)^{2}$	ft		(s = 0.7405)
		10.0)(0.370)	M1		For method of finding time taken from highest point
					to A and not using a(up)
		$0.7405 = \frac{1}{2} (1.79) T_2^2$	A1ft		ft a(down) and $cv(0.7405)$ ($T_2 = 0.908$ approx)
		0.370 + 0.908	M1	0	Using $T = T_1 + T_2$ with different values for T_1 , T_2
		= 1.28s	A1	8	3 significant figures cao

1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
	Y = 12	B1	No evidence for which value is X or Y available from (ii)
			award B1 for the pair of values 5 and 12 irrespective of
		[2]	order
(ii)	$R^2 = 5^2 + 12^2$	M1	For using $R^2 = X^2 + Y^2$
	Magnitude is 13 N	A1	Allow 13 from X=-5
	$\tan \theta = 12/5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	A1	SR: p=14.9 and Q=11.4 giving R=13+/-0.1 B2,
	8	[4]	Angle = $67.5 + /-0.5 B2$
<u>I</u>			6
2(i)	$250 + \frac{1}{2}(290 - 250)$	M1	Use of the ratio 12:12 (may be implied), or $v = u+at$
()			r
	t = 270	A1	
		[2]	
(ii)		M1	The idea that area represents displacement
,	½ x40x12+210x12+½x20x12-	M1	Correct structure, ie triangle1 + rectangle2 + triangle3 -
	$\frac{1}{2}$ x20x12 or $\frac{1}{2}$ x40x12+210x12		triangle4 with triangle3 = triangle4 , triangle1 +
	or $\frac{1}{2}$ x(210+250)x12etc		rectangle2, trapezium1&2, etc
	Displacement is 2760m	A1	•
	-	[3]	
(iii)	appropriate structure, ie triangle +	M1	All terms positive
	rectangle + triangle + triangle ,		
	triangle + rectangle + 2triangle, etc		
	Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
		[2]	as a mis-read.
3(i)		M1	An equation with R, T and 50 in linear combination.
	$R + T\sin 72^{\circ} = 50g$	A1	R + 0.951T = 50g
		[2]	
(ii)	$T = 50g/\sin 72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^{\circ} = 50(g)$
	T = 515 (AG)	A1	Or better
	T = mg	B1	
	m = 52.6	B1	Accept 52.5
		[4]	
(iii)	$X = T\cos 72^{\circ}$	B1	Implied by correct
			answer
	X = 159	B1	Or better
		[2]	
4(i)	In Q4 right to left may be used as the	M1	For using Momentum 'before' is zero
	positive sense throughout.	4.1	
	$0.18 \times 2 - 3m = 0$	A1	
	m = 0.12	A1	2 months massible if a included a society offer
	Managhan	[3]	3 marks possible if g included consistently
(iia)	Momentum after	B1	
	$= -0.18 \times 1.5 + 1.5 \text{m}$ 0.18 x 2 3m = 0.18 x 1.5 + 1.5 m	N /11	For using conservation of momentum
	$0.18 \times 2 - 3m = -0.18 \times 1.5 + 1.5m$ m = 0.14	M1 A1	For using conservation of momentum
	III — U.14	[3]	3 marks possible if g included consistently
(iib)	0.18 x 2 – 3m	B1ft	ft wrong momentum 'before'
(110)	$0.18 \times 2 - 5111 = (0.18 + m)1.5$	חוום	it wrong momentum before
	m = 0.02	B1	
	$0.18 \times 2 - 3m = -(0.18 + m)1.5$	B1ft	
	m = 0.42	B11	
	III — U.T.2	[4]	0 marks if g included
		[+]	o marko ii g included

5(i)		M1	Using $v^2 = u^2 + /- 2gs$ with $v = 0$ or $u = 0$
	$8.4^2 - 2gs_{max} = 0$	A1	
	Height is 3.6m (AG)	A 1	
	-	[3]	
(ii)		M1	Using $u^2 = +/- 2g(ans(i) - 2)$
, ,	u = 5.6	A 1	
		[2]	
(iii)	EITHER (time when at same height)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, expressions for
` ′	` '		s terms must differ
	$s+/-2 = 8.4t - \frac{1}{2}gt^2$ and		Or 8.4t $(-\frac{1}{2}gt^2)=5.6t(-\frac{1}{2}gt^2)+/-2$
	$(s+/-2) = 5.6t - \frac{1}{2}gt^2$	A1	Correct sign for g, $cv(5.6)$, +/-2 in only one equation
	t = 5/7 (0.714)	A1	cao
	(31, 21)	M1	Using $v = u$ +at for P and for Q, $a = +/-g$, $cv(t)$
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$	A1	Correct sign for g, cv(5.6), candidates answer for t (including
	v _r on onligand of the onlig		sign)
	$v_P = 1.4 \text{ and } v_O = -1.4$	A1	cao
	vp 1.1 and vQ 1.1	[6]	
	OR (time when at same speed in	[0]	
	opposite directions)	M1	Using $v = u+at$ for P and for Q, $a = +/-g$
	v = 8.4 -gt and $-v = 5.6$ -gt	A1	Correct sign for g, $cv(5.6)$
	v = 0.4 gt and $v = 3.0$ gt $v = 1.4$ {or $t = 5/7$ (0.714)}	A1	Only one correct answer is needed
	$V = 1.4 \{01 \ t = 3/7 \ (0.714)\}$	Λ 1	only one correct answer is needed
	(with $v = 1.4$)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(v)$
	$1.4^2 = 8.4^2 - 2gs_P$ and		
	$(-1.4)^2 = 5.6^2 - 2gs_0$	A 1	Correct sign for g, cv(5.6), candidate's answer for v (including
	, ,		- for Q)
	$s_P = 3.5 \text{ and } s_O = 1.5$	A 1	cao
	$\{(\text{with } t=5/7)\}$		
	,	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, $cv(t)$
	$s = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and		
	$s = 5.6x0.714 - \frac{1}{2}gx0.714^2$	A 1	Correct sign for g, cv(5.6), candidate's answer for t
	C		(including sign of t if negative)
	$s_P = 3.5 \text{ and } s_O = 1.5$	A 1	cao}
	OR (motion related to greatest height		
	and verification)	M1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	0 = 8.4 -gt and $0 = 5.6 -gt$		
	t = 6/7 and $t = 4/7$	A1	Both values correct
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$		mid-interval t $(6/7+4/7)/2 = 0.714$
	$\{0 = v_P - g/7 \text{ and } v_O = 0 + g/7\}$		{Or semi-interval = $6/7-4/7$)/2=1/7}
	$v_P = 1.4 \text{ and } v_O = -1.4$	A1	cao
	$s_P = 8.4 \times 0.714 - \frac{1}{2} \text{ gx} \cdot 0.714^2$ and	M1	$s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g,
	$s_Q = 5.6x0.714 - \frac{1}{2} gx0.714^2$		cv(5.6) and $cv(t)$
	$\{ s_P = 0/7 - \frac{1}{2}(-g)x(1/7)^2 \text{ and } \}$		$\{s = vt - \frac{1}{2} at^2 \text{ for P } and s = ut + \frac{1}{2} at^2 \text{ for } Q\}$
	$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2$	A1	
	$s_P = 3.5 \ s_O = 1.5$		
	$\{s_P = 0.1 \ s_Q = 0.1\}$	A1	cao
	💘 ,		continued

5(iii)	OR (without finding exactly where or		
	when)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(5.6)$,
	2 0.42 0 (/0) 1		different expressions for s.
cont	$v_P^2 = 8.4^2 - 2g(s+/-2)$ and		Correct sign for g, cv(5.6), (s+/-2) used only once
	$\frac{2}{100}$ $\frac{2}{100}$ $\frac{2}{100}$ $\frac{2}{100}$	A 1	cao. Verbal explanation essential
	$v_Q^2 = 5.6^2 - 2g[(s+/-2)]$ $v_P^2 = v_Q^2$ for all values of s so that	A1	Using $v = u+at t$ for P and for Q, $a = +/-g$
			Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the		cv(5.6)
	same heights.	A1	
		M1	
	0 = 8.4 - gt and $0 = 5.6 - gt$	A1	
	$t_P = 6/7$ and $t_O = 4/7$ means there is a		
	time interval when Q has started to		cao. Verbal explanation essential
	descend but P is still rising, and there		•
	will be a position where they have the		
	same height but are moving in		
	opposite directions.	A1	

6(i)		M1	For differentiating s
	$v = 0.004t^3 - 0.12t^2 + 1.2t$	A 1	Condone the inclusion of +c
	$v(10) = 4 - 12 + 12 = 4ms^{-1}$ (AG)	A1	Correct formula for v (no +c) and t=10
		[3]	stated sufficient
(ii)		M1	For integrating a
	$v = 0.8t - 0.04t^2 + (+C)$	A 1	
	8 - 4 + C = 4	M1*	Only for using $v(10) = 4$ to find C
	$v = 0.8x20 - 0.04x20^2 (+C)$	M1	
	$v(20) = 16 - 16 = 0 \tag{AG}$	DA1	Dependant on M1*
		[5]	
(iii)		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3 (+K)$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be
			linear)
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \implies K = 10/3$	A 1	Not if S includes ct
			term
	S(20) = 160 - 320/3 + 10/3 = 56.7m	B1	Accept 56.6 to 56.7, Adding 30 subsequently is not isw,
	OR	[6]	hence B0
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$	A 1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
		M1	Using limits of 10 and 20 (limits 0, 10 M0A0B0)
	S(20) - S(10) = 26.6, 26.7	A1	For $53.3 - 26.7$ or better (Note $S(10) = 26.7$ is
			fortuitously correct M0A0B0)
	displacement is 56.7m	B1	Accept 56.6 to 56.7

7(i)	$R = 1.5g\cos 21^{\circ}$	B1	
. (1)		M1	For using $F = \mu R$
	Frictional force is 10.98N	A1	Note 1.2gcos21=10.98 fortuitously, B0M0A0
	(AG)	[3]	, , , , , , , , , , , , , , , , , , ,
(ii)		M1	For obtaining an N2L equation relating to the block in which F,
			T, m and a are in linear combination or
			For obtaining an N2L equation relating to the object in which
			T, m and a are in linear combination
	$T + 1.5g\sin 21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerical
			value for a letter (excluding g), excess terms. Minimise error
			count.
(iii)	T - 1.5a = 5.71	M1	For solving the simultaneous equations in T and a for a.
	and $1.2a + T = 11.76$		
	$a = 2.24 \tag{AG}$	A1	Evidence of solving needed
		[2]	
(iva)	$v^2 = 2 \times 2.24 \times 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A1	Accept 3
		[2]	
(ivb)		M1	For using $T = 0$ to find a
	a = -3.81	A1	
	$v^2 = 2.99^2 + 2 \text{ x (-3.81) x 0.8}$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any
			value for a
	Speed of the block is 1.69ms ⁻¹	A1	Accept art 1.7 from correct work
		[4]	

1	70 - 0.0 - 70	D1	606
1	70 x 9.8 or 70g	B1	=686
	70 x 0.3	B1	=21
	686 + 21	M1	+ cvs [70(9.8+0.3) gets B1B1M1]
	707 N	A1	
		[4]	
2	+/ (40 ··· 4 · 60 ··· 2)	D1	Difference of towns account with a
2	+/-(40 x 4 - 60 x 3)	B1	Difference of terms, accept with g
	+/-([40 + 60] v	B1	Sum of terms, accept with g.
	$+/-(40 \times 4 - 60 \times 3) = +/-([40 + 60] \text{ V}$	M1	Accept inclusion of g in equation.
	$Speed = 0.2 \text{ ms}^{-1}$	A1	Not if g used. SR $40x4-60x3=[40+60] v$;
			v=0.2, as heavier, award 5 marks
	Same as heavier or opposite lighter/"she"	B1	"Left" requires diagram for B1
		[5]	If same direction before collision award
			B0B1M1A0B0
3i		M1	Applies Pythagoras, requires +.
	$\sqrt{(12^2+15^2)}$	A1	
	19.2 N	A1	
	17.21	M1	trig and R included between X and Y
	$tan\theta = 12/15$ $tan\theta = 15/12$ $sin\theta = 12/10.2$ $cas\theta = 15/10.2$	A1	Accept cv 19.2
	$\tan\theta = 12/15$, $\tan\theta = 15/12$, $\sin\theta = 12/19.2$, $\cos\theta = 15/19.2$	A1 A1	
	Bearing = 038.7°		Accept 039 or 39 or art 39 from below
2::	E = 10.2	[6]	(not given if X and Y transposed)
3ii	E = 19.2	B1ft	ft cv 19.2
	Bearing = $180 + 38.7 = 219^{\circ}$	B1ft	180+cv 38.7(-360) or correct answer
		[2]	
4i	v = dx/dt	M1	Uses differentiation, may be seen in (ii)
	$v = 4t^3 - 8 \times 2t$	A1	Accept with +c
	$v(2) = 4x2^3 - 8x2x2$	M1	Substitutes 2 in cv v, explicit
	=0 AG	A1	A0 if +c
	$x(2) = 2^4 - 8 \times 2^2 + 16 = 0$ AG	B1	Substitutes 2 in displacement, explicit
		[5]	
4ii	a = dv/dt	M1	Uses differentiation of v formula
	$a = 12t^2 - 16$	A1	Accept with +c
	$a(2) = 12 \times 2^2 - 16 = 32 \text{ ms}^{-2}$	A1	A0 with +c
		[3]	Tio William
5ia	250a = -150	M1	Values used in N2L for trailer F=+/-150
	$a = -0.6 \text{ ms}^{-2}$ AG	A1	Or -ve convincingly argued
		[2]	
5ib		M1	Applies N2L to car or car/trailer with
	900 x - 0.6 = D - 600 or (900 + 250) x - 0.6 = D - 600 - 150	A1	correct number of forces
	D = 60 N	A1	(including T if T=0 used later)
		[3]	
5ic	$15^2 = 18^2 + 2x (-0.6)s$	M1	Uses $v^2 = u^2 + 2(+/-0.6)$ s with 15, 18
	s = 82.5 m	A1	Positive, allow from $18^2 = 15^2 + 2x0.6s$
		[2]	
5iia		M1	Applies N2L to car+trailer with F(driving)
			F(resisting), F(wt cmpt-allow without g),
			or each part, as above and T.
	(900+250)a = 980 - 600 - 150	A1	900a = 980 - 600 + -900x9.8sin3 - T
5iib	+ /-(900+250)x9.8sin3	A1	250a = T - 150 + -250x9.8sin3
	$a = 0.713 \text{ ms}^{-2}$	A1	Allow (art) 0.71 from correct work
		[4]	
		M1	N2L for trailer, cv a, with correct number
	$250 \times 0.713 = T - 150 + 250 \times 9.8 \sin 3$	A1	of forces of correct type. Or for car
			$900 \times 0.713 = -T-600 + 900 \times 9.8 \sin 3 + 980$
	T = 200 N	A1	Anything rounding to 200 (3sf)
		[3]	J 3 3 - 0 - 2 - 0 (
L	I.	[-]	1

6i	$4.9 = \mu \times 14.7$		M1	Uses $F = \mu R$
	$\mu = 1/3$	AG	A1	Allow 0.333 or 0.3 recurring
			[2]	_
6iia			M1	3 force vertical equation
	$R + 4.9\sin 30 = 14.7$		A1	_
	R = 12.25 N		A1	Accept 12.2 or 12.3
	$F = 12.25 \times 1/3$		M1	Uses $F = \mu R$ with new R {may be seen in
	F = 4.08(333) N [or 49/12 N]		A1	{part b
			[5]	
6iib	m = 14.7/9.8 = 1.5kg		B1	
			M1	N2L horizontally with 2 relevant forces,
				including 4.9sin/cos30
	$4.9\cos 30 - 4.08(333) = 1.5a$		A1	Allow $cv(F)$ SR Award A1 if $m=14.7$ used
	$a = 0.107 \text{ ms}^{-2}$		A2	SR A1 for 0.11, 0.109
6iii			[5]	or art 0.011 from $m = 14.7$
	$\mu R = (14.7 - 4.9\cos 30)/3$		B1	3.49, accept 3.5
	Horizontal component of force = 4.9sin30		B1	2.45, accept 2.4 or 2.5
	Horizontal component of force < ③R		M1	Comparing two values
	Friction = 2.45 N		A1	Not 2.4 or 2.5; Explicit (M1 essential)
			[4]	
			[4]	

7i	$s = 0.5 \times 1.4 \times 0.8^2$	M1	Uses $s = 0.5x1.4t^2$
	s = 0.448 m	A1	Not 0.45
	$v = 1.4 \times 0.8$	M1	Uses $v = 1.4t$
	$v = 1.12 \text{ ms}^{-1}$	A1	
		[4]	
7ii	$0^2 = 1.12^2 - 2 \times 9.8s$	M1	Uses $0^2 = u^2 - 2gs$ or $u^2 = 2gs$
	s = 0.064 m	A 1	Allow verification
	0 = 1.12 - 9.8t $(t = 0.114s)$	M1	or $0.064=1.12t-4.9t^2$
	t = (0.114 + 0.8) = 0.914s	A1	Allow 0.91 {or $0=1.12t-4.9t^2$ and halve t
		[4]	
7iii	Scalene triangle, base on t axis	B1	NB Award A1 for 0.91 on t axis if total
	right edge steeper and terminates on axis, or crosses	B1	time not given in (ii)
	axis at $t = 0.91$	[2]	_
7iv		M1	Uses N2L for A or B with attempt at
			2 forces
		A1	Either
	1.4xA = 9.8xA - 5.88 or $1.4xB = 5.88 - 9.8xB$	A1	
	A = 0.7	A1	Not 0.53
7va	B = 0.525	[4]	
		M1	Uses tension and 0.5g without particle
	$T = 0.5 \times 9.8 + 2 \times 5.88$		weights
7vb	T = 16.66 N	A1	Allow 16.7
		[2]	
	T = 4.9 N	B1	
		[1]	

		1	
1(i)	900a = 600 - 240	M1	N2L with difference of 2 forces, accept 360
	$a = 0.4 \text{ ms}^{-2} $ AG	A1	
(**)	0 5 0 4	[2]	
(ii)	9 = 5 + 0.4t t = 10 s	M1	v = u + 0.4t or $v = u + (cv 0.4)t$
	1 = 10 s $9^2 = 5^2 + 2 \times 0.4 \text{ s}$	A1 M1	or $s=(u+v)t/2$ or $s=ut+0.5xcv(0.4)t^2$
	$\begin{vmatrix} 9 &= 3 + 2x0.4s \\ s &= 70 \text{ m} \end{vmatrix}$	A1	01 S = (u+v)u/2 01 S = u(+0.3 2 C
	3 – 70 m	[4]	
		L . J	
2(i)	Resolves a force in 2 perp. directions	M1*	Uses vector addition or subtraction
	Uses Pythagoras R ² =	D*M	
	$(14\sin 30)^2 +$	A1	$14^2 + 12^2$ -
	$(12+14\cos 30)^2$	A1	2x14x12cos150
	$\{ \text{or } R^2 = (12\sin 30)^2 + (14+12\cos 30)^2 \}$	A 1	cso (Treat $R^2 = 14^2 + 12^2 + 2x14x12cos30$
(ii)	R = 25.1 AG	A1	`
(II)	Trig to find angle in a valid triangle	[5] M1	as correct) Angle should be relevant
	tanB=7/24.1,sinB=7/25.1,cosB=24.1/25.		sinB/14 = $sin150/25.1$. Others possible.
	$B = 016, (0)16.1^{\circ} \text{ or } (0)16.2^{\circ}$	A1	Cosine rule may give (0)16.4, award A1
	2 010, (0)10.1 01 (0)10.2	[3]	Cosme rate may give (o) for it, award fir
3(i)	a = 6/5	M1	Acceleration is gradient idea, for portion of graph
	$a = 1.2 \text{ ms}^{-2}$	A1	Accept 6/5
(ii)		[2]	
	$s = (6x10/2)$ {or $(6x5/2)$	M1	Area under graph idea or a formula used correctly
(***)	x2 x4}	M1	Double {Quadruple} journey
(iii)	s = 60 m	A1 [3]	
		M1	v=u+at idea, t not equal to 17 (except v=1.2t-24)
	v = -6 + 1.2(17-15)	A1	$0 = v + cv(1.2)(20-17), v^2 - 2.4v - 21.6 = 0, etc$
	$v = -3.6 \text{ ms}^{-1}$	A1	SR v=3.6 neither A1, but give both A1 if final answer
		[3]	given is -3.6
470		3.61	D'65 (01) 1 1 1 15
4 (i)	E 15: 50 15: 20 200 N		Difference of 2 horizontal components, both < 15
	$F = 15\sin 50 - 15\sin 30 = 3.99 \text{ N}$		Not 4 or 4.0
	Left	B1 [3]	Accept reference to 30 degree string May be given in ii if not attempted in i
(ii)		M1	Equating 4 vertical forces/components
(11)	$R = f(30, 15\cos 50, 15\cos 30)$	A1	30g is acceptable
	$R = 30-15\cos 50, 15\cos 50$	A1	=7.36(78), treat 30g as a misread
	$\mu = 3.99/7.36(78)$	M1	Using $F = \mu R$, with cv(3.99) and cv(7.36(78))
	$\mu = 0.541 \text{ or } 0.542 \text{ or } 0.543$	A1	Accept 0.54 from correct work, e.g. 4/7.4
		[5]	
- (A)	2400 5 2500 2		1.6 . 1.1
5 (i)	2400x5 - 3600x3	B1	Award if g included
	2400v + 3600v 2400x5 - 3600x3 = 2400v + 3600v	B1	Award if g included Equating momentums (equand if g included)
	$v = 0.2 \text{ ms}^{-1}$	M1 A1	Equating momentums (award if g included) Not given if g included or if negative.
	V = 0.2 IIIS B	B1	1400 given ii g included of ii negative.
		[5]	
(ii)(a)	+/-(-2400v + 3600v)		No marks in(ii) if g included
(11)(41)	2400x5 - 3600x3 = -2400v + 3600v	M1	Equating momentums if "after" signs differ
	$v = 1 \text{ ms}^{-1}$	A1	Do not accept if - sign "lost"
(b)	I = 2400 x (5+/-1) or 3600 x (3+/-1)	M1	Product of either mass and velocity change
(·-/	I = 14400 kgms ⁻¹	A1	Accept -14400
		[5]	•

[5]

6(i)	$x = 0.01t^4 - 0.16t^3 + 0.72t^2.$		
	v = dx/dt	M1	Uses differentiation, ignore +c
	$v = 0.04t^3 - 0.48t^2 + 1.44t.$	A1	or $v = 4(0.01t^3) - 3(0.16t^2) + 2(0.72t)$
	$v(2)=1.28 \text{ ms}^{-1}$ AG	A1	Evidence of evaluation needed
		[3]	
(ii)	a = dv/dt	M1	Uses differentiation
	$a = 0.12t^2 - 0.96t + 1.44$	A1	or $a = 3(0.04t^2) - 2(0.48t) + 1.44$
	$t^2 - 8t + 12 = 0$ AG	A1	Simplifies $0.12t^2 - 0.96t + 1.44 = 0$, (or verifies the roots
		[3]	of QE make acceleration zero)
(iii)	(t-2)(t-6)=0	M1	Solves quadratic (may be done in ii if used to find $v(6)$)
	t=2	A1	Or Factorises v into 3 linear factors M1
	t = 6	A1	$v = 0.04t(t-6)^2$ A1 Identifies $t=6$ A1
	$v(6) = 0 \text{ ms}^{-1}$	B1	Evidence of evaluation needed
		[4]	
(iv)		B1	Starts at origin
		B1	Rises to single max, continues through single min
		B1	Minimum on t axis, non-linear graph
	Away from A	B1	
		[4]	
(v)	$AB = 0.01x6^4 - 0.16x6^3 + 0.72x6^2$	M1	Or integration of $v(t)$, with limits 0, 6 or substitution,
	AB = 4.32 m	A1	using cv(6) from iii
		[2]	

7(i)	(R=)0.2x9.8cos45	M1	Not $F = 0.2x9.8\cos 45$ or $0.2x9.8\sin 45$ unless followed
7(1)	F=1xR=1x.2x9.8cos45=1.386 N AG		by (eg) Fr =1x F = 1.386 when M1A1
	F-13K-13.239.000843-1.300 N AU	[2]	by (eg) F1 = 1x F = 1.560 when WIAI
(**)	A 1 1' CNOL // 1		Must use some on out of suricht
(ii)	Any 1 application of N2L // to plane	M1	Must use component of weight
	with correct mass and number of forces		
	0.4a=0.2gsin45+0.2gsin45-1.38(592)	A1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A1	
	$0.2a = 0.2g\sin 45 - T$ or		Accept with 3.465 (or close) instead of a
	$0.2a = T + [0.2g\sin 45 - 1.38(592)]$	M1	Accept omission of [term] for M1
	T = 0.693 N	A1	Accept 0.69
		[5]	
	OR		
	Any 1 application of N2L // to plane		
	with correct mass and number of forces		Must use component of weight
	0.2a = 0.2gsin45 - T or	M1	Either correct
	$0.2a = T + [0.2g\sin 45 - 1.38(592)]$	A1	Both correct. Accept omission of [term] for A1 only
	Eliminates a or T	M1	Both correct. Therefore simpsion of [term] for the only
	$a = 3.465 \text{ ms}^{-2}$ AG	A1	
	T = 0.693 N	A1	
	1 = 0.093 IV	AI	
(iii)	$v^2 = 2 \times 3.465 \times 0.5$	M1	Using $v^2 = 0^2 + 2xcv(3.465)s$
(111)	$v = 2.85 \text{ ms}^{-1}$	A1	Using $V = 0 + 2\lambda CV(3.403)S$
	V = 1.80 IIIS		
(*)	For O	[2]	
(iv)	For Q	3.61	
	$(0.2)a = (0.2)g\sin 45 - (1)(0.2)g\cos 45.$	M1	Attempting equation to find a for Q
	a=0 [AG]	A 1	Accept from 0.2gsin45 - 1.386
	T = (3/1.86) = 1.6(12)	B1	Accept 2 sf
	For P	B1	
	$a = 9.8\sin 45$		a= 6.93
	$2.5 = 1.86(14)t + 0.5 \times (9.8\sin 45)t^2$		Using $2.5 = \text{cv}(1.86)\text{t} + 0.5\text{cv}(6.93)\text{t}^2$ [not 9.8 or 3.465]
	t = 0.6(223)		Accept 1sf
	time difference $1.612 - 0.622 = 0.99(0)$ s	A1	Accept art 0.99 from correct work
		[7]	•

1 (i)		M1	Uses CoLM
1 (1)	0.5x6 = 0.5x0.8 + 4m	A1	USES COLIVI
	m = 0.65	A1	If g used throughout, possible 3 marks
	111 – 0.03	[3]	if g used throughout, possible 3 marks
		M1	After momentums ennesite signs
(::)	0.5x6 = -0.5x0.8 + 4m	A1	After momentums opposite signs
(ii)			If a seed of the s
	m = 0.85	A1	If g used throughout, 0 marks
2 (1)	T. 400 N	[3]	
2 (i)	T = 400 N	B1	Order immaterial
	D = 400 + 900	M1	Or T + 900; sign correct
	= 1300 N	A1	
(**)		[3]	/A 13/ 1 :: 1 1 1:
(ii)			(Award M marks even if g included in ma terms.
		3.71	M marks require correct number forces)
	500 0 C T 400	M1	Uses N2L one object only
	$500 \times 0.6 = T - 400$	A1	
	T = 700 N	A1	
	1070 0 4 7 000 700	M1	Uses N2L other object
	1250x0.6 = D - 900 - 700	A1ft	ft cv(T from (ii)); allow T instead of its value
	D = 2350 N	A1	
	OR		
		M1	Uses N2L for both objects
	$(500 + 1250) \times 0.6 = D - 400 - 900$	A1	
	D = 2350 N	A1	
		[6]	
3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded in
	5cos 60 or 5sin30 or 2.5	B1	(ii) if no attempt in (i)
		[2]	
(ii)		M1*	Subtracts either component from either force
	7-4.33 = 2.67 and $9-2.5 = 6.5$	A1	-
	$R^2 = 2.67^2 + 6.5^2$	D*M	
	R = 7.03	1	3sf or better
	$\tan\theta = 6.5/2.67$	A1	Valid trig for correct angle
	$\theta = 67.6, 67.7 \text{degrees}$	D*M	3sf or better
		1	
		A1	
		[6]	
4 (i)	20cos 30	M1	Resolves 20 (accept 20 sin30)
	$20\cos 30 = 3a$	M1	Uses N2L horizontally, accept g in ma term
	$a = 5.77 \text{ ms}^{-2}$	A1	
		[3]	
(ii)		M1	Resolves vertically (accept -, cos if sin in i);
	$R = 3x9.8 + 20 \sin 30 (= 39.4)$	A1	correct no. terms
	$F = 20\cos 30 (= 17.3)$	B1	Correct (Neither R nor F need be evaluated)
	$17.3 = 39.4 \mu$	M1	Uses $F = \mu R$
	$\mu = 0.44$	A1	·
1	ļ ·	[5]	

5 (i)	$V = \int 0.8t dt$	M1*	Attempt at integration
	$v = 0.8t^2/2 (+c)$	A1	Award if c omitted
	t = 0, v = 13, (c = 13)	M1	
	$v = 0.4x 6^2 (+c)$	D*M1	
	$v = 27.4 \text{ ms}^{-1}$	A1	
		[5]	
(ii)	$s = \int 0.4t^2 (+c)dt$	M1*	Attempt at integration of v(t)
	$s = 0.4t^3/3 + 13t (+k)$	A1ft	ft cv(v(t) in (i))
	t=0, s=0, (k=0)	M1	
	$s = 0.4x6^3/3 + 13x6$	D*M1	
	s = 106.8 m	A1	Allow if k=0 assumed. Accept 107 m.
		[5]	
(iii)	Fig. 2	B1	
		[1]	
	Fig.1 has zero initial velocity/gradient	B1	
	Fig. 3 does not have a increasing	B1	
	velocity/gradient	[2]	
6 (i)	$2.5 = 9.8t^2/2$	M1	Uses $s = 0 + -gt^2/2$
a	t = 0.714 s or better or $5/7$	A1	Not awarded if - sign "lost"
b		[2]	
	$v^2 = 2x9.8x2.5 \ OR \ v = 9.8 \ x \ 0.714$	M1	Uses $v^2 = 0 + /-2gs$ or $v = u + /-gt$
	$v = 7 \text{ ms}^{-1} \text{ or } 6.99 \text{ or art } 7.00$	A1	Not awarded if - sign "lost"
		[2]	
(ii)	$R = 2x9.8\sin 60 (= 16.97 = 17)$	B1	With incorrect angle, e.g
		M1	$R = 2x9.8\cos 60 (=9.8) B0$
	F = 0.2x16.97 (=3.395 or 3.4)	A1ft	F = 0.2x9.8 (=1.96) M1A1
	Cmpt weight = $2x9.8\cos 60 (= 9.8)$	B1	Cmpt wt = $2x9.8\sin 60$ (=16.97) B0
	2a = 9.8 - 3.395	M1	2a = 16.97 - 1.96 M1
	$a = 3.2 \text{ ms}^{-2}$	A1ft	$a = 7.5 \text{ A}1\sqrt{\text{ ft cv(R and Cmpt weight)}}$
	Distance down ramp = 5 m	B1	2 2555
	$v^2 = 2x3.2x5$	M1	$v^2 = 2x7.5x5$
	v = 5.66 or 5.7	A1ft	$v = 8.66 \text{ or } 8.7 \text{ A}1$ ft $cv(\sqrt{10a})$
7 (*)		[9]	III.
7 (i)	. 4 2-0 4 (2.2)	M1	Use of $v = u - 0.4t$
	p = 4 - 2x0.4 (= 3.2)	A1	A
	q = 1 - 2x0.4 (= 0.2)	A1	Accept $q = -0.2$ from $-1+2*0.4$
	0.7-2.2.0.2-0.2.(1)	M1	Uses CoLM on reduced velocities
	0.7x3.2 - 0.3x0.2 = (1x)v $v = 2.18 \text{ ms}^{-1}$	A1 A1	
	V = 2.18 ms		
		[6]	

(ii)		B1	Straight line with larger y intercept slopes
a			towards t axis, but does not reach it.
		B1	Straight line with negative y intercept slopes
			towards t axis,
		B1	and gets to t axis before other line ends.
		[3]	SR if t=2 in ii give B1 if line stops before axis
b	0 = 1 - 0.4t	M1	Finds when Q comes to rest (any method)
	t = 2.5 s	A1	
		M1	Uses $s = ut - 0.4t^2/2$
	$P = 4x3 - 0.5x0.4x3^2$	A1	
	$Q = 1x2.5 - 0.5x0.4x2.5^2$	A1	(nb $0^{(2)} = 1^{(2)} - 0.4Q^2/2$ B1; convincing
	PQ = 10.2 + 1.25 = 11.45 m	A1	evidence (graph to scale, or calculation that Q
		[6]	comes to rest and remains at rest at t less than
			3, M1A1;graph A1 needs –ve v intercept)
			SR if t=2 in iib, allow M1 for s= ut - $0.4t^2/2$
			And A1 for PQ=8.4

Alternative for Q3 where 7 N and 9N forces combined initially

3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded
	5cos 60 or 5sin30 or 2.5	B1	in (ii) if no attempt in (i)
		[2]	_
(ii)	$Z^2 = 7^2 + 9^2 (= 130, Z = 11.4017)$		Z is resultant of 7N and 9N forces only
	cos(angle of Z with y axis) = 9/11.4017		
	angle of Z with y axis = 37.8746		
	Angle opposite R in triangle of forces =		R is resultant of all 3 forces
	180 -(37.8746+90+30)	M1*	Complete method
	= 22.125 (Accept 22)	A1	-
	$R^2 = 5^2 + 11.4017^2 - 2x5x11.4017\cos 22.125$	D*M1	Cosine rule to find R
	R (= 7.0269) = 7.03 N	A1	
	$11.4017^2 = 5^2 + 7.0269^2 - 2x5x7.0269\cos A$		Or Sine Rule. A is angle between R and 5N
	(A = 142.33)		forces
	Angle between R and y axis = $142.33-30$ -	D*M1	
	90 (=22.33)		Complete method
	$\theta (= 90-22.33) = 67.7 \text{ degrees}$	A1	θ is angle between R and x axis
	1 (11 11 11 11 11 11 11 11 11 11 11 11	[6]	

1 i	$x^{2} + (3x)^{2} = 6^{2}$ $10x^{2} = 36$ $x = 1.9(0) (1.8973)$	M1 A1 A1 [3]	Using Pythagoras, 2 squared terms May be implied Not surd form unless rationalised $(3\sqrt{10})/5$, $(6\sqrt{10})/10$
ii	$\tan\theta = 3x/x \ (= 3 \times 1.9/1.9) = 3$ $\theta = 71.6^{\circ}$ (71.565)	M1 A2 [3]	Must target correct angle. Accept $\sin \theta = 3 \times 1.9/6$ or $\cos \theta = 1.9/6$ which give $\theta = 71.8^{\circ}$, $\theta = 71.5^{\circ}$ respectively, A1. SR $\theta = 71.6^{\circ}$ from $\tan \theta = 3x/x$ if x is incorrect; x used A1, no evidence of x used A2
2 i		B1 B1 [2]	Inverted V shape with straight lines. Starts at origin, ends on <i>t</i> -axis, or horizontal axis if no labelling evident
ii	$6 = 3v/2$ $v = 4 \text{ ms}^{-1}$	M1 A1 A1 [3]	Not awarded if special (right angled, isosceles) triangle assumed, or $s = (u+v)t/2$, or max v at specific t .
iii	T accn = $4/2.4$ or s accn = $16/(2x2.4)$ T accn = $12/3$ s or s accn = $10/3$ Deceleration = $4/(3 - 12/3)$ or $16/2(6-10/3)$ Deceleration = 3 ms^{-2}	M1* A1 D*M1 A1 [4]	Uses $t = v/a$ or $s = v^2/2a$. May be implied Accept $4/(3 - 1.67)$ or $16/2(6-3.33)$ Accept 3.01; award however $v = 4$ obtained in (ii). $a = -3$ gets A0.
3 i	0.8gsin30 0.8x0.2 $0.8 \times 9.8sin30 - T = 0.8x0.2$ T = 3.76 N AG	B1 B1 M1 A1 [4]	Not for 3.92 stated without justification Or 0.16 Uses N2L // to slope, 3 non-zero terms, inc <i>ma</i> Not awarded if initial B1 withheld.
ii	$3.76 - F = 3 \times 0.2$ $F = 3.16$ $3.16 = \mu x 3 \times 9.8$ $\mu = 0.107 (0.10748)$	M1 A1 A1 M1 A1 [5]	Uses N2L, B alone, 3 non-zero terms Needs <i>correct value</i> of T . May be implied. Uses $F = \mu R$ (Accept with $R = 3$, but not with $R = 0.8$ g(cos30), $F = 0.6$, $F = 3.76$, $F = f(mass P)$) Not 0.11, 0.108 (unless it comes from using g=9.81 consistently through question.

4 i	$v^2 = 7^2 - 2 \times 9.8 \times 2.1$	M1	Uses $v^2 = u^2 - 2gs$. Accept $7^2 = u^2 + 2gs$
71	v = 7.255.052.1 $v = 2.8 \text{ ms}^{-1}$	A1	Oses v = u 2gs. recept v = u + 2gs
	, 2.0 1.1.0	A1	
		[3]	
ii	v = 0	B1	Velocity = 0 at greatest height
	$0^2 = 7^2 - 2 \times 9.8s$	M1	Uses $0 = u^2 - 2gs$. Accept $7^2 = 2 \times 9.8s$.
	s = 2.5 m	A1 [3]	
·			
iii	v = -5.7 (or $t = 0.71$ oef to reach greatest	B1 M1	Allows for change of direction
	height) $-5.7 = 7 - 9.8t \text{ or } 5.7 = (0+) 9.8T$	A1	Uses $v = u + \text{or } - gt$. Not 1.29 unless obtained from g=9.81
	t = 1.3(0) s (1.2959)	[3]	consistently
		[5]	Consistently
5 i	$0.5 \times 6 = 0.5v + m(v+1)$	M1	Uses CoLM. Includes g throughout MR-1
	3 = 0.5v + mv + m v(m + 0.5) = -m + 3 AG	A1 A1	
	V(m+0.5) = -m+5 AG	[3]	
		[2]	
ii	Momentum before = $\pm - (4m - 0.5 \times 2)$	B1	Includes g throughout MR-1
	$+/- (4m - 0.5 \times 2) = mv + 0.5(v+1)$	M1	Needs opposite directions in CoLM on
	$4m - 0.5 \times 2 = mv + 0.5(v+1)$	A1 A1	"before" side only.
	v(m+0.5) = 4m - 1.5	[4]	RHS in format am + b or b + am. Ignore values for a and b if quoted.
		[+]	values for a and b if quoted.
iii	4m - 1.5 = -m + 3	M1	Attempts to obtain eqn in 1 variable from
	5m = 4.5		answers in (i) and (ii)
	m = 0.9 kg AG	A1	Ignore $m = -0.5$ if seen
	$0.9 + v(0.9+0.5) = 3 \text{ or } 4 \times 0.9 - 1.5 = v(0.9+0.5)$	M1	Substitutes for m =0.9 in any m , v equation obtained earlier.
	v = (3-0.9)/(0.9+0.5) = 2.1/1.4		obtained carrier.
	$v = 1.5 \text{ ms}^{-1}$	A1	
		[4]	
6 ia	Perp = 10cos20 (= 9.3967 or 9.4)	B1	Includes g, MR -1 in part (i). Accept –ve
	$// = 10\sin 20 (= 3.4202)$	B1	values.
		[2]	
b	$\mu = 10\sin 20/10\cos 20 = \tan 20 \ (= 3.42/9.4)$	M1	Must use $ F = \mu R $
	$\mu = 0.364$ (0.36397)	A1	Accept after inclusion of g twice
		[2]	
ii	No misread, and resolving of 10 and T	M1*	3 term equation perp plane, 2 unknowns
	required	A1	9.4 + 0.707T (accept $9.4 + .71T$)
	$R = 10\cos 20 + T\cos 45$	M1*	3 term equation // plane, 2 unknowns
	$F = T\cos 45 - 10\sin 20 \text{ or } T\cos 45 = \mu R +$	A1 D*M1	0.707 <i>T</i> - 3.42 (accept 0.71 <i>T</i> - 3.4) Substitutes for <i>F</i> and <i>R</i> in <i>F</i> =0.364 <i>R</i>
	$F = 1\cos 43 - 10\sin 20 \text{ of } 1\cos 43 = \mu R + 10\sin 20$	A1	Substitutes for T and It III T =0.304It
	$T\cos 45 - 3.42 = 0.364(9.4 + T\cos 45)$		
	0.707T - 3.42 = 3.42 + 0.257T	A1	Award final A1 only for $T = 149 N$ after using
	0.45T = 6.84		10g for weight
	T = 15.2 N (15.209)	[7]	
		<u> </u>	

7 i	$a = \frac{dv}{dt}$ $a = 6 - 2t \text{ ms}^{-2}$	M1 A1 [2]	Differentiation attempt. Answer 6- <i>t</i> implies division by <i>t</i>
ii	$s = \int vdt$ $s = \int 6t - t^{2} dt$ $s = 3 t^{2} - t^{3}/3 (+c)$ $t = 0, v = 0, c = 0$ $t = 3, s = 3x3^{2} - 3^{3}/3$ $s = 18 m$ AG	M1* A1 B1 D*M1 A1 [5]	Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	Distance remaining (= 100 -18) = 82 Total time = $3 + 82/9$ T = 12.1 s (12 1/9)	B1 M1 A1 [3]	Numerator not 100 Not 109/9
iv	Distance before slows = $18 + (22 - 3)x9$ Distance while decelerating = $200 - 189 = 11$ $11 = 9t - 0.3t^2$ or $11 = (9 + 8.23)t/2$ or $8.23 = 9 - 0.6t$ t = 1.28 (1.2765, accept 1.3) T = 23.3 s (23.276)	M1* A1 D*M1 A1 D*M1 A1 A1 A1 A1	(=189 m) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s = ut$ - 0.5x0.6 t^2 , or $v^2 = u^2$ -2x0.6 s with $s = (u+v)t/2$ or $v = u+at$ Finds t . (If QE, it must have 3 terms and smaller positive root chosen.)

1 i	$v = 4.2 + 9.8 \times 1.5$	M1	Uses $v = u + gt$
	$v = 18.9 \text{ ms}^{-1}$.	A1	18.9(15) from $g = 9.81$
		[2]	
ii	$s = 4.2 \times 1.5 + 9.8 \times 1.5^{2}/2 \text{ or}$ $18.9^{2} = 4.2^{2} + 2 \times 9.8s$	M1	Uses $s = ut + gt^2/2$ or $v^2 = u^2 + 2gs$
	s = 17.325 m	A1 [2]	Accept 17.3
iii	$v^2 = 4.2 + 2 \times 9.8 \times (17.3(25) - 5)$	M1	$18.9^2 = u^2 + 2 \times 9.8 \times 5$
	$v = 16.1 \text{ ms}^{-1}$	A1	$u = 16.1 \text{ ms}^{-1}$.
		[2]	Accept answers close to 16.1 from correct working
2 i	Resolves a force in 2 perpendicular directions	M1	Diagram for vector addition/subtraction
	Uses Pythagoras	DM1	Uses Cosine Rule
	$R^2 = (12+19\cos 60)^2$	A1	$R^2 = 12^2 + 19^2$ -
	$+(19\sin 60)^2$	A1	$2 \times 12 \times 19 cos 120$
	R = 27.1 N	A1	R = 27.1
	$\{R = \sqrt{((19+12\cos 60)^2 + (12\sin 60)^2}) = 27.1\}$	[5]	
ii	Trig on a valid triangle for correct angle	M1	Either Pythagoras or vector add/sub triangle
	$\tan\theta = (19\sin 60)/(12 + 19\cos 60)$ etc	A1	$sin\theta/19 = sin120/(27.1) etc$
	Angle is 37.4°, 37.5°	A1	
		[3]	
3ia	$+/-(9m + 2 \times 0.8)$ { $+/-(3.5 \times 0.8 - 2 \times 0.8)$ }	B1	Before mom, or mom change Q, OK with g
	$+/-(-3.5m + 3.5 \times 0.8) $ { $+/-(9m + 3.5m)$ }	B1	After mom, or mom change P, OK with g
	$+/-(9m + 2 \times 0.8) = +/-(-3.5m + 3.5 \times 0.8)$	M1	Equates moms, or changes, accept with g
.,	m = 0.096 kg	A1	Do not award if g used
ib	+/-0.096(9+/-3.5) <i>OR</i> +/-0.8(3.5 -2)	[4] M1	Using before & after speeds of P or Q, no g
	+/-1.2 kgms ⁻¹	A1ft	ft $12.5 \times \text{cv}(0.096)$
		[2]	,
ii	(0.8+0.4)v or $0.8v + 0.4v$	M1	Using Q and R common speed after, no g
	$3.5 \times 0.8 + 0.4 \times 2.75 = (0.8 + 0.4)v$	A1	2.8 + 1.1 = 1.2v
	$v = 3.25 \text{ ms}^{-1}$	A1 [3]	
4:0	0.2gagg 60 and 0.2ggin 60		Accept use of "m = 0.1 kg" for M1 and
4ia	0.3gcos 60 and 0.3gsin60 0.4gcos60 and 0.4gsin60	B1 B1	Accept use of " $m = 0.1 \text{ kg}$ " for M1 and $0.1 \text{gcos} 60 \text{ (B1)} 0.1 \text{gsin} 60 \text{ (B1)}$
	Calculates either relevant difference	M1	0.150000 (D1) 0.150m00 (D1)
	Perp = 0.1 gcos 60 and Para = $+/-0.1$ gsin 60	A1	= 0.49 and = 0.849 (accept 0.85 and 0.84)
	-	[4]	
ib	$0.1 g \sin 60 = \mu 0.1 g \cos 60$	M1	$F = \mu R, F > R > 0$
	$= 1.73 \ (= \sqrt{3})$	A1 [2]	From correct R, F values
		[4]	

	etc
$ \begin{array}{c cccc} T-0.4g=0.4a & & A1 \\ a=1.09 \text{ ms}^{-2} & & B1 \\ T=4.36 \text{ N} & & B1 \end{array} $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
T = 4.36 N B1	
5 i $11 = 3 + 20a$	
8 = 3 + (11-3)t/20 M1 Their a>0. $t/20 = (8-3)/(11-3)$ is M1M	1
t = 12.5	
[3]	
ii $s(A,20) = 8 \times 20 \ (=160)$ B1 Or $s(A) = 8T$	
$s(B,20) = (3+11) \times 20/2 = 3 \times 20 + 0.4 \times 20^2/2 \ (=140)$ B1 or as stage of $s(B) = (3+11) \times 20/2 + 11 \times 20/2 = 140$	(T 20)
$8T = (3+11) \times 20/2 + 11 \times (T-20)$ M1 3 part equation balancing distances	(1-20)
or $(160 - 140) = 11t - 8t$	
T = 262/3 Accept 26.6 or 26.7	
[5]	
iii B1 Linear rising graph (for A) starting at 1	
Non-linear rising graph for B below A	
B1 initially. Accept 2 straight lines as non	
B1 Single valued graphs graphs intersect a	ına
[3] Continue	
6 i $a = 2 \times 0.006t - 0.18$ M1 Differentiates v (not v/t)	
a = 0.012t - 0.18 Al Award for unsimplified form, accept +	c, not
ii $0.012t - 0.18 = 0$	
$\begin{vmatrix} \mathbf{n} & 0.012t & 0.10 = 0 \\ \mathbf{t} = 15 & \mathbf{A}1 \end{vmatrix}$ Sets $\mathbf{u} = 0$, and solves for \mathbf{t}	
D*M1 Substitutes t(v(min)) in v(t)	
$0.006 \times 15^2 - 0.18 \times 15 + k = 0.65$	
k=2 AG A1	
[5]	1.10
iii $s = 0.006t^3/3 - 0.18t^2/2 + 2t (+c)$ M1A1 Integrates v (not multiplies by t). Aware the second left of the second left o	'd 1f +c
$(s = 0.002t^3 - 0.09t^2 + 2t (+c))$ $t = 0, s = 0 \text{ hence } c = 0$ $B1 \qquad \text{omitted, accept kt}$ $Explicit, not implied (or uses limits 0, to be considered as a constant of the constant of$	28.4)
$L = 0.002 \times 28.4^3 - 0.09 \times 28.4^2 + 2 \times 28.4$ M1 Explicit, not implied (or uses limits 0, Substitutes 28.4 or 14.2 in s(t), (and k=	
L = 30.0 m Accept a r t 30(.0), accept +c	-,
[5]	

7 i	$(Fr =) 0.15 \times 600g\cos 10$ $(Wt cmpt =) 600g\sin 10$ $600 \times 0.11 = T - 0.15 \times 600g\cos 10 -$ $600g\sin 10$ (66 = T - 868.6 - 1021)	B1 B1 M1	Implied by Fr = $0.15 \times 600 \text{gcos} 10$ (=868.6) N2L. T with at least 1 resolved forces and 600×0.11
	T = 1960 N	A1 [5]	1955.6
ii a	$a(up) = +/-(600g\sin 10 + .15 \times 600g\cos 10)/600$ $a(up) = +/-3.15 \text{ ms}^{-2}$ AG	M1 A1 [2]	2 resolved forces and 600a or "unit mass" Disregard sign, accept 3.149
b	UP $v^2 = 2 \times 0.11 \times 10$ v = 1.48 when cable breaks t = 1.48/3.149 ($t = 0.471$ time for log to come to rest) $s = 1.48^2/(2 \times 3.149)$ s = 0.349 distance for log to come to	M1 A1 M1 M1 A1	Correct, need not be accurate Or $1.48 = 0 + 3.15t$ Correct, need not be accurate
	DOWN $a(down) = (600gsin10-0.15\times600gcos10)/600$ $10+0.349=0.254t^{2}/2$ $t = 9.025$ $T = (9.025 + 0.471) = 9.5 s$	B1 M1 A1 A1 [9]	= 0.254 Needs a< 3.15, s>10. Or V^2 = 2×0.254× (10+0.349) [V= 2.29], V=0.254t Correct, need not be accurate Accept 9.49

1	. 5/1.0	3.71	5 12 0 5 12
1	t = 5/1.2	M1	5=1.2t or 0=5-1.2t
i	t = 4.17 s	A1	4 1/6 s, 4.166 or better, 4.16 recurring.
		[2]	
ii	$s = (-5)^2/2x1.2$	M1	$s = 5^2/2x1.2 \text{ or } 5^2 = 2x1.2s \text{ or } 0 = 5^2 - 2x1.2s$
	s = 10.4 m	A1	Accept 10 5/12, but not 10
	OR(using(i))	[2]	1100pt 10 5/12, out not 10
	$s = 5x4.17 - 1.2x4.17^{2}/2$	M1	Time must be > 0. A count t from (i)
			Time must be > 0 . Accept t from (i)
	s = 10.4 m	A1	Award if -4.17 used.
	OR(using(i))		
	$s = (5 (+ 0))/2 \times 4.17$	M1	
	s = 10.4 m	A1	
iii	Fr = 3x1.2	B1	Accept 3.6, +/-
1	R = 3x9.8	B1	Accept 3g, +/-
	$\mu = (3x)1.2/(3x)9.8$	M1	Ratio of 2 positive numerical force terms
	$\mu = 0.122$	A1	Not 0.12
	OR	[4]	
	R = 3x9.8	B1	Accept 3g, +/-
	Mass x acceleration = $\pm -3x1.2$	B1	
	$+/-\mu \times 29.4 = +/-3\times 1.2$	M1	Either both positive or both negative.
	$\mu = 0.122$	A1	1
L	<u>I</u>	L	<u> </u>
2	1/(0.4v3 0.6v1.5)	B1	+/- 0.3
2	+/-(0.4x3 - 0.6x1.5)		
i	+/-(0.4x0.1 + 0.6v)	B1	Nb the terms have same signs
	(0.4x3 - 0.6x1.5) = +/-(0.4x0.1 + 0.6v)	M1	Equating their total mom before & after
	speed $ v = 0.433 \text{ ms}^{-1}$	A1	Accept 13/30 or 0.43 recurring, but not 0.43
	ÔR	[4]	
	+/-(0.4x3 - 0.4x0.1) = +/-1.16	B1	Momentum change of P
	(0.6v + 0.6x1.5) = 0.6v + 0.9	B1	Momentum change of Q
	$\begin{array}{c} (0.6v + 0.0x1.3) = 0.6v + 0.9 \\ 1.16 = +/-(0.6v + 0.9) \end{array}$	M1	Equating momentum changes
		A1	
	speed $ \mathbf{v} = 0.433 \text{ ms}^{-1}$		0.26/0.6 = v
ii	+/-(0.4x0.1 - 0.6v)	B1	Nb the terms have different signs
	(0.4x3 - 0.6x1.5) = +/-(0.6v - 0.4x0.1)	M1	Must use +/- same before momentum as in (i)
	v = 0.567	A1	May be implied, or in any format
	PQ = 0.1x3 + 0.567x3	M1	(0.1 + 0.567)x3
	PQ = 2 m	A1	Accept 2.00(1), 2.0, 2.00
	OR	[5]	, , , , ,
	+/-0.4x3 + 0.4x0.1 and $+/-0.6v + 0.6x1.5$	B1	Both must be correct
	1.24 = +/-0.6v + 0.9	M1	
			Equating change in momentum
	v = 0.567	A1	May be implied, or in any format
	etc		
_			-
3	$H = +/-(9 - 5\cos 60)$	M1	$+/-(9 + 5\cos 120)$
i	H = 6.5 N AG	A1	
		[2]	
ii	$V = +/-(12 - 5\sin 60)$	M1	$+/-(12 + 5\cos 150)$
	V = 7.67 N	A1	Accept 7.666 or better, or 7.6 recurring
		[2]	
iii	$R^2 = 6.5^2 + 7.67^2$	M1	Uses Pythagoras on forces V(ii) and 6.5
111	R = 0.3 + 7.07 R = 10.1 N	A1	10.053
	$\tan A = 6.5/7.67 \text{ or } 7.67/6.5$	M1	Uses trigonometry in relevant triangle
	A = 40(.3) or 49.7	A1	May be implied by final answer
			As this is not a final answer, exact accuracy is
			not an issue
	Bearing = 320°	A1	Or better
1	2341119 320	[5]	0. 00.001
	•	1 1.71	1

4	$3.2 - 0.2t^2 = 0$	M1	Puts 0 for v and attempts to solve QE
i	t = 4 s	A1	Accept dual solution +/-4
		[2]	
ii	a = -2x0.2t	M1*	Differentiates v
	a = -0.4x4	D*M1	Substitutes +ve t(i) in derivative of v
	$a = -1.6 \text{ ms}^{-2}$	A1	Negative only
		[3]	
iii		M1*	Integrates v, not multiplication by t
	$s = 3.2t - 0.2t^3/3 (+c)$	A1	
	t = 0, s = 0 so c = 0	B1	Or correct use of limits 0 and 4
	$s(4) = 3.2x4 - 0.2x4^3/3$	D*M1	Accept without/loss of c
	s = 8.53 m	A1	8 8/15 Accept with/without c
		[5]	

5	+/-3x20/2	M1	Use area of scalene triangle(s). Not suvat.
i	30 m	A1	Accept -30
		[2]	_
ii		M1	Equates scalene trapezium area to distance (i)
	(t+4)x3/2 = 30 or 3t/2 = 30 - 4x3	A1	[(T-60)+4]x3/2 = 30, award A2
	t = 16 or t = 12	A1	
	T = 76	A1	
		[4]	
iii	T(accn) = 3/0.4 (=7.5 s)	B1	
	decn = 3/([76-60] - 4 - 7.5)	M1	Or $3 = \text{decn } x ([76-60] - 4 - 7.5)$
	$decn = (+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring
	OR	[3]	
	$S(accn) = 3^2/(2x0.4)$ (= 11.25 m)	B1	
	$decn = 3^2 / [2x(30 - 3x4 - 11.25)]$	M1	
	$decn = (+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring

6	$T - 0.85g \sin 30 = 0.85a$	B1	Either equation correct
i	0.55g - T = 0.55a	B1	Both eqns correct and consistent 'a' direction
a	a = 1.225/1.4	M1	Solves 2 sim eqn
	a = 0.875	A1	_
	T = 4.91	A1	4.908 or better – has to be positive
		[5]	_
b	$F = 2T\cos 30$	M1	Or Pythagoras or cosine rule
	F = 8.5(02)	A1ft	$cv(4.91)x\sqrt{3}$
		[2]	
ii		M1	Uses $v^2 = u^2 + 2a(1.5)$, u non-zero, a from (i)
	$v^2 = 1.3^2 + 2x0.875x1.5 (=4.315)$	A1ft	$v = 2.077(v^2 = 1.69 + 3xev(0.875))$
	$a = +/-g\sin 30$	B1	a = +/-4.9
	0 = 4.315 - 2x4.9s	M1	Uses $0^2 = u^2 + /-2$ as, with a not g or (i), u not1.3
	(s = 0.44)	A1	May be implied – need not be 3sf
	S = 1.94	A1	-
		[6]	

7	$Fr = 4 + 5\sin 60$	M1	A11.4 + annount 5 (4 + 4.222(01))
1 .			All 4 + component 5 (4 + 4.333(01))
i	Fr = 8.33	A1	May be implied
	$R = 12 - 5\cos 60$	M1	+/-(All 12 – component 5 (12 – 2.5))
	R = 9.5	A1	May be implied, +ve from correct work
	$\mu = (4 + 5\sin 60)/(12 - 5\cos 60)$	M1	Friction/Reaction, Fr>4, R<12, both positive
	$\mu = 0.877$	A1	
	·	[6]	
ii	Upper block		
	$\mu = 5\sin 60/(9-5\cos 60)$ (=4.3/6.5)	M1	(Component 5)/(9-component 5)
	$\mu = 0.666$	A1	
		[2]	
iii	Upper mass = $9/g$	B1	0.918(36)
	$(9/g)a = 5\sin 60 - 0.1(9 - 5\cos 60)$	M1	N2L 0.918(36)a= 4.33(01) – 0.1x6.5
	(2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,		where friction = $0.1x(9$ -component 5)
	a = 4.01	A1	() where means over () component ()
	Lower mass	111	
	Tractive force = $4 + 0.1(9-5\cos 60)$ (= 4.65)	M1	Compares TF (tractive force) and max friction
	Max Friction = $0.877(3+(9-5\cos 60))$ (= 8.33)	1411	Compares 11 (tractive force) and max friction
		A 1	
	Tractive force < Max Friction	A1	
	a = 0	A1	
	OR for Lower Mass	[6]	
	$ma = 4 + 0.1(9 - 5\cos 60) - 0.877(3 + 9 - 5\cos 60)$	M1	N2L with 3 force terms:
	-ve a caused by friction impossible, hence	A1	
	a = 0	A1	

l	Δ Mom P = 0.5(2.4 + 0.2)	M1	$+/-0.5(2.4 \pm 0.2)$	MR P/Q +/-0.8(1.5+/-0.2) M1A0
	$\Delta \text{Mom P} = +/-1.3 \text{ kgms}^{-1}$	A1		
	-	[2]		
	Momentum before = $0.5x2.4 - 0.8x1.5$	B1	+/-(0.5x2.4 – 0.8x1.5)	Cont MR 0.5x2.4-0.8x1.5
		M1	Uses mom before = mom after	Uses mom before = mom after
	0.5x2.4+/-0.8x1.5 = +/-(-0.5x0.2 +/-0.8v)	A1ft	Cv(Expression for before momentum)	0.5x2.4 + /-0.8x1.5 = +/-(0.8x0.2 + /-0.5v)
	Speed = 0.125 ms^{-1}	A1	1/8, +ve (not 0.13)	0.32 B1 M1A1A1 ft
	OR	[4]		
	Δ Mom Q =+/- (+/-0.8v - 0.8x1.5)	B1		
		M1	Uses Δ Mom P = Δ Mom Q	
	1.3 = +/-(0.8v - 0.8x1.5)	A1ft	Cv(ans(i)) = +/-(+/-0.8v - 0.8x1.5)	
	Speed = 0.125 ms^{-1}	A1	1/8, +ve (not 0.13)	
		<u>.</u>		
	10 CorS $\alpha = 8$	M1	Component of $10 = 8$	CorS is Cos or Sin (passim)
	$10\cos\alpha = 8$	A1		
	$\alpha = 36.9^{\circ}$	A1	Accept 37 36.8 and 37 from 36.7	Do not accept 36.7
	OR	[3]		
	10 CorS $\alpha = F$	M1	Using value of F(ii)	
	$10\sin\alpha = 6$	A1ft	Using F(=6) from (ii)	
	$\alpha = 36.9^{\circ}$	A1		
	OR			
	$\tan\theta = F/8$	M1	OR $\tan\theta = 8/F$, using value of F from (ii)	
	$\tan\alpha = 6/8$	A1ft		
	$\alpha = 36.9^{\circ}$	A1		
		M1	$F = 10CorS\alpha$	
	- 101.010	1		

Accept 6.01 (or from 10Cos53.1) or 6.0

anything rounding to 6.0 from correct working.

Accept $F^2 = 8^2 + 10^2$

Allow 10Cos53.1

Pythagoras, 3 squared terms

A1ft

A1 [3]

M1

A1

A1

 $F = 10\sin 36.9$

 $F^2 + 8^2 = 10^2$

F = 6 N

F = 6 N

OR

3		M1	Uses $v^2 = u^2 \pm 2gs$, u non-zero	It is common to see the upwards and downwards
i	$v^2 = (+/-5)^2 + 2x9.8x2.5$	A1		motion treated separately. Both parts must be
	Speed (or v) = $8.6(0) \text{ ms}^{-1}$	A1 [3]	Accept $\sqrt{74}$ Do not accept -8.6(0)	attempted for M1, and both parts must be
	OR			attempted accurately with cvs for the A1
	$0 = 5^2 - 2x9.8xs$ with $v^2 = (0) + 2x9.8(s+2.5)$	M1	s = 1.2755	
	$v^2 = 2x9.8x(2.5+1.28)$	A1	19.8x3.7755	
	Speed = $8.6(0) \text{ ms}^{-1}$	A1	Or rounds to 8.6	
ii		M1	Uses v(from (i)) = $+/-5 +/-9.8t$	It is common to see the upwards and downwards
	8.6 = -5 + 9.8t	A1ft	Cv(8.60 from (i))	motion treated separately. Both parts must be
	Time = 1.39 s	A1		attempted for M1, and both parts must be
	OR	[3]		attempted accurately with cvs for the A1
		M1	$+/-2.5 = 5t +/- gt^2/2$	
	$9.8t^2 - 10t - 5 = 0$	A1		
	Time = 1.39 s	A1		
	OR			
		M1	$2.5 = +/- (5 - \text{Speed from (i)}) \times t / 2$	
	2.5 = (8.6-5)t/2	A1ft	Cv(8.60 from (i))	
	Time = 1.39 s	A1		
	OR			
		M1	Times to top and ground found and added	
	t = 5/9.8 + 8.6/9.8	A1ft	Cv(8.60 from (i))	
	Time = 1.39	A1		
		D1	Contract to the state of the st	1
iii	v, ms^{-1}	B1	Straight descending line to t axis	Ignore values written on diagrams
a)	I L	B1	Continues straight below t axis	
	t, s			
b)		B1	Inverted "parabolic" curve, starts anywhere on t=0	
0)	<i>x, m</i>	<i>D</i> 1	involted parabolic curve, states any where on to	
		B1	Ends below $t = 0$ level, need not be below t axis	
	t, s	[4]		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

4	$2 - F = 0.8 \times 0.2$	M1	N2L 2 force terms and ma $(F = 1.84 \text{ N})$	m is the block mass, award if T not F
i	$F = T\cos 10$	M1	F = TCorS10	
	T = 1.87 N	A1	1.8683	
	OR	[3]		
		M1	N2L 2 force terms and ma	
	$2 - T\cos 10 = 0.8 \times 0.2$	M1	TCorS10	
	T = 1.87 N	A1		
ii	R - 0.3x9.8 + TCorS10 = 0	M1	3 term equation, vertically	Treat as a mis-read R-0.8x9.8-TCorS10 = 0
	$R = 0.3x9.8 - 1.87\sin 10$	A1ft	cv(T(i))	leading to R=8.16 (i.e.works on block[2/3]
	R = 2.62	A1ft	2.61(5) seen or implied	
	$T\cos 10 - Fr = 0.3x0.2$	M1	N2L 2 forces for P, component of T	OR N2L 2 forces for P+Q:
	Fr = 1.78	A1ft	cv(T(i)) seen or implied	$2 - Fr = (0.8 + 0.3) \times 0.2$
	$\mu = 1.78 / 2.62 \text{ OR } 1.78 = 2.62 \mu$	M1	both terms same sign	R, Fr unequal to T
	$\mu = 0.68$	A1	_	From correct value of $T = 1.87$ only
		[7]		·

5 ia	$s(P) = 4.9T + 0.5x + 4.9T^{2}$ $y(Q) = (0) + 0.5x9.8T^{2}$	M1 A1 A1	s=ut+0.5at ² used along plane or vertically, with u = 4.9 or 0, and a = 4.9 or 9.8 appropriately Accept use of t or T Allow g in Y(Q)	
b	$(m)x4.9 = (m)gsin\theta$ $\theta = 30$	[3] M1* A1 [2]	Allow CorSθ	$Sin\theta = (0.5x9.8T^2)/(4.9T + 0.5x 4.9T^2)$ gets M1, but in ic. Beware circular argument.
С	$\begin{array}{l} y(Q)/s(P) = sin\theta & OR & y(Q) = s(P) sin\theta \\ 0.5x9.8(2/3)^2 / (4.9x2/3 + 2.45(2/3)^2 = 0.5 \\ OR & 0.5x9.8T^2 / (4.9T + 2.45T^2) = sin30 \\ T = 2/3 \ s & AG \end{array}$	D*M1 A1 [3]	Uses appropriate trigonometry to relate distances Verification needs explicit value of sin(cv(θib)) Ratio of distances considered using cv (30)	This may appear in b) $0.5x9.8(2/3)^2 = (4.9x2/3 + 2.45(2/3)^2 \times 0.5$ OR $0.5x9.8T^2 = (4.9T + 2.45T^2) \times \sin 30$
ii	v = 4.9 + 4.9x2/3 OR v = (0) + 9.8x2/3 $v = 8.17 \text{ ms}^{-1}$ $w = 9.8x2/3 = 6.53 \text{ ms}^{-1}$	M1 A1 A1 [3]	Uses $v = u + at$, with appropriate u, a values once 8.2 6.5	

6 i	$x = \int t^2 - 9 dt$ $x = t^3/3 - 9t (+c)$ Finds x(2) Displacement = 15½ m OR $x(2) = \left[t^3/3 - 9t\right]_0^2$	M1* A1 D*M1 B1 [4] D*M1	Uses integration of v(t) Award if +c omitted Allow + c or c omitted Accept 15.3, 46/3. Must be +ve Uses $\lim_{x\to 0} x ^2$ on integrated x(t)	Awarded if c omitted or assumed 0
	Displacement = 15½ m	B1	Must be +ve	
ii	t=0 s=0 or s=46/3 hence x(0) or c= 0 or 46/3 Solves $t^2 - 9 = 0$ t = (±)3 x(3) = $3^3/3 - 9x3 (+ 15.3)$ x(3) = -18 (or -2.67) Dist = 18 m	B1* M1* A1 D*M1 M1 D*B1 [6]	Needs explanation, may be seen in part i May be implied Value of t when direction of motion changes Substitutes cv(t) >2 in integrated x(t) Evaluates c - 18 may be implied award if Accept 18(.0) [c=0 assumed]	B1* awarded if limits 0 and 3 used correctly Awarded if limits used correctly
iii	$a = d(t^{2} - 9)/dt$ $a = 2t$ $10 = 2t$ $t = 5$ $x(5) (= 5^{3}/3 - 9x5 + 15.3) = 12 \text{ m}$ OR $[t^{3}/3 - 9t]_{2}^{5} = 12 \text{ m}$	M1* A1 D*M1 A1 A1 [5] A1	Uses differentiation of v(t)	

7	Wt cmpts: // plane 0.6gsin30	B1	+/-2.94	
i	Perp plane 0.6gcos30	B1	+/-5.09(22.) = R	
		M1	N2L // plane, 2 force terms and ma (allow no g)	
	$0.6g\sin 30 + /-X = 0.6x10$	A1ft	Both weight cmpt and accn signs same	Accept Fr for X
	X = +/-3.06	A1	May be implied ($Fr = 0.6x10 - 0.6gsin30$ used)	
	$\mu = 3.06 / 5.09(22)$	M1	Uses $\mu = Fr/R$ both terms same sign	Accept $Fr = X $
	$\mu = 0.601$	A1	0.6	
	OR	[7]		
	$3.06 = \mu \times 5.09(22)$	M1	Uses $Fr = \mu R$ both terms same sign	Accept $Fr = X $
	$\mu = 0.601$	A1	0.6	
ii	$C^2 = 3.06^2 + 5.09^2$	M1	Pythagoras with Fr and R, to find hypotenuse	
a)	C = 5.94 N	A1	Accept 5.9, 5.95 but not 6(.0)	
	$\tan\theta = 3.06/5.09(22)$	M1*	Or $tan\theta = \mu$	
	Angle = $(31) + 90$	D*M1		
	Angle = 121°	A1	Not 120	
	OR	[5]		
	$\tan \varphi = 5.09(22)/3.06$	M1*	$\tan \varphi = 1/\mu$	
	Angle = $180 - (59)$	D*M1		
	Angle = 121°	A1	Not 120	
b)	C = 0.6x9.8 = 5.88 N	B1	5.9	No working needed as C is vertical
	Angle = 60°	B1		No working needed as C is vertical
		[2]		

Que	estion		Expected Answer	Mark	Rationale/Additional Guidance
1			$R^2 = 8^2 + 15^2$ R = 17 N	M1 A1	Uses Pythagoras 3 squared terms, addition
			$\cos\theta = 15/17$ $\theta = 28.1^{\circ}$	M1 A1 [4]	Uses trig appropriately and targets either angle Accept 28°, 0.49 rad
2	i	Also if in ii		M1 A1 [2]	N2L on 0.45 kg, weight - tension and +/-0.98m Not 4.9, 4.8 (4.851 is exact, but 4.85 acceptable) {g=9.81→ T=4.85 or 4.86 or better}
	ii	Also If in i	mg - 4.85(1) = 0.98m m = 4.85(1)/(9.8-0.98) or $m(g - 0.98) = 4.85(1)m = 0.55OR0.98 = g (m-0.45)/(m+0.45)m = (g+0.98)/(g-0.98) \times 0.45m = 0.55$	M1 A1ft A1 [3] M1 A1	N2L on Q, weight – tension, tension=T(i), and 0.98m Simplified to a single term in m, ft cv(T(i)) art 0.550 $ \{g{=}9.81{\rightarrow} m{=}0.55(0) \text{ or better} \} $ a = g x Δ (masses)/ Σ (masses)
	iii		$v^2 = (0 +) 2x0.98x0.36$ $v = 0.84 \text{ ms}^{-1}$	M1 A1 [2]	Uses $v^2 = u^2 + 2as$, a not 9.8, 2as>0, $u = 0$ or omitted
	iv		$0 = 0.84^2 - 2x9.8s$ (s = 0.036) S = 0.036 + 2x0.36 = 0.756 m	M1 A1 A1 [3]	$0 = (cv(iii))^2 - 2gs$, or $t = cv(iii)/g$ and $s = ut + /-gt^2/2$ May be implied by final answer (eg 0.396) Must be 3 sf (exact) $\{g=9.81 \rightarrow s=0.756 \text{ or better}\}$

		Frequent mis-read "horizont	tal/vertical" MR version in {}		Allow all A1 marks in (i) and (ii) except final A1 in (ii).
3	i	$R = 0.8g - 6\cos 60$ {F	$R = 0.8g - 6\sin 60$	M1	Resolves vertically, (R=) difference of 2 forces
			•		inc. component of 6
		$R = 4.84$ {F	R = 2.64	A1	Accept 4.8 {2.6}
				[2]	{g=9.81→ R=4.848 {2.65}; accept 4.8 {2.6 or 2.7} }
	ii	Fr = 0.2x4.84 (=0.968) {	Fr = 0.2x2.64(=0.5287)	M1	Uses F=0.2(cv(i)) or F=0.2x(R found in (ii) by a method
					which would be given M1 in (i))
				M1	Uses N2L, 3 terms inc. component of 6
			6cos60 - 0.5287 = 0.8a}	A1	Fr need not be evaluated
		$a = 5.29 \text{ ms}^{-2}$	$a = 3.09 \text{ ms}^{-2}$ A0}	A1	Accept 5.3
				[4]	{g=9.81→ a=5.28 {3.09 A0} Accept 5.3 {3.1 A0}
	iii	Fr = 0.2x0.8x9.8 (= 1.568)		B1	Uses Fr = 0.2x0.8g
		0.8a = -0.2x0.8x9.8		M1*	N2L, Fr only, accept use of Fr from (ii)
					Accept 0.8a = 0.2x0.8x9.8, (a = (-)1.96)
		0 = 4.9 - 1.96t		D*M1	Accept 4.9/1.96, not 0 = 4.9 + 1.96t
		t = 2.5 s		A1	Accept art 2.50
				[4]	{g=9.81→ t=2.50 Accept art 2.50}
4	i	a = 15/6 or d = 15/2		M1	Uses a = speed change/time
		$a = 2.5 \text{ ms}^{-2}$		A1	
		$d = 7.5 \text{ ms}^{-2}$		A1	Accept -7.5
				[3]	
	ii	T = 6+11+2 (=19)		M1	Accounts for totality of car journey (may be implied)
		x = 15(11+19)/2 or $15x6/2+3$	15x11+15x2/2	M1	Idea area = distance SR Accept 15x(13+17)/2 M1M1
		x = 225 m		A1	
				[3]	
	iii	Walks = $20x(-)2 = (-)40 \text{ m}$		M1	Finds distance walked
		Jogs = 40/5 = 8 s		A1	
		$T_s = 60 - (\{6+11+2\} + 20 + 8)$	8)	M1	$T_s + (\{6+11+2\} + 20 + 8) = 60$, needs all time elements
		$T_s = 13 s$		A1	
				[4]	

5	1 i	$V_P = 3 - 2.5 \times 0.4 (= 2)$	M1	Calculation of either speed, either directions, a =2.5
 		$V_0 = 3 - 2.5 \times 0.4 (= 2)$ $V_0 = 2.5 \times 0.4 (= 1)$	A1	Both magnitudes correct (disregard signs)
		+/-(0.5x2 - 0.2x1) (=+/-0.8)	B1	Momentum before
		0.5x2 - 0.2x1 = 0.5v + 0.2x3.2	M1	Uses conservation of momentum in collision
		0.5X2 - 0.2X1 = 0.5V + 0.2X3.2	IVI I	
		(0.00) 0.00 -1		(not both $v_P = 3$ and $v_Q = 0$)
		$(v = 0.32) 0.32 \text{ ms}^{-1} \text{ up}$	A1	Accept "same", value positive
			[5]	
	ii	$V_Q = 3.2 - 2.5 \times 0.6 $ (=1.7)	M1	Calculation of either speed with its correct time, a =2.5
		$V_R = 2.5 \times (0.4 + 0.6) \ (= 2.5)$	A1	Both magnitudes correct (disregard signs)
			M1	Uses momentum conservation in collision
				(not both $v_Q = 3.2$ and $v_R = 0$)
		0.2x1.7 - 0.3x2.5 = (0.2+0.3)v	A1ft	LHS different signs, RHS same signs,
				ft cv(speeds Q, R)
		$(v = -0.82) 0.82 \text{ ms}^{-1} \text{ down}$	A1	Value positive
			[5]	1
6	i	"smooth ring", "no friction at ring"	B1	If a variety of reasons is offered, "smooth ring" must
		g , a and a g	[1]	be the last
	ii	$T\cos\theta + 5 = T\cos(90-\theta)$	M1	"Resolves horiz" equation, needs TCorS0, 3 terms, 2 of
		$T\cos\theta + 5 = T\sin\theta$ (a)	A1	which are T resolved
		$T\sin\theta + T\sin(90-\theta) = 7$	M1	
		$T\sin\theta + T\cos\theta = 7$ (b)	A1	"Resolves vert" equation, needs TCorSθ, 3 terms, 2 of
		(5)	[4]	which are T resolved
			1	Which are 1 received
				(Allow candidates solving for (iii) to begin in (ii))
	iii	uses (b)+(a) and (b)-(a) for example	M1*	Attempts to solve 2 equations in 2 unknowns
		$T\sin\theta = 6$ or $2T\sin\theta = 12$, $T\cos\theta = 1$ or $2T\cos\theta = 2$	A1	Both terms have values correct
		$T^2 = 6^2 + 1^{(2)}$	D*M1	
		T = 6.08 N	A1	Accept √37, 6.1
		$Tan\theta = 6(/1)$	D*M1	Uses a correct trig identity
		$\theta = 80.5^{\circ}$	A1	Accept 81°, 1.4 rad, 1.41 rad
		0 = 80.3 OR	[6]	ποσορίοι, π. τιαα, π. τι ταα
		(b) gives $T=7/(\sin\theta+\cos\theta)$, subs in (a) for example	M1*	Attempts to solve 2 equations in 2 unknowns
		(b) gives $1=7/(\sin\theta+\cos\theta)$, subs in (a) for example $12\cos\theta = 2\sin\theta$		
			A1	Correct two term equation in one variable
		then mark as 6(iii) below for D*M1 A1 D*M1 A1		

7	i	v = dx/dt	M1	Uses differentiation of x
		$v = 0.3t^2 - 0.6t + 0.2$	A1	
		a = dv/dt	M1	Uses differentiation of v
		a = 0.6t - 0.6	A1ft	Correct differentiation of candidate's v(t)
			[4]	
	ii	0.6t - 0.6 = 0 (t = 1)	M1*	Attempts to solve a=0
		$x(1) = 0.1x1^3 - 0.3x1^2 + 0.2x1$	D*M1	Puts solution in x formula
		x(1) = 0 AG	A1	
		OR	[3]	
		$0.1t^3 - 0.3t^2 + 0.2t = 0$ (t=1, and disregard others)		Attempts to solve x=0
		a(1) = 0.6x1 - 0.6		Puts solution in a formula
		a(1) = 0		
	iii	$0.3t^2 - 0.6t + 0.2 = 0$	M1	Attempts to solve 3 term QE v = 0, accept imperfect
				attempt at formula, completing square or factorisation
		t = 0.423 s	A1	Accept 1 - $1/\sqrt{3}$, 0.42, 0.422, or better
		t = 1.58 s	A1	Accept 1 + $1/\sqrt{3}$, 1.6, 1.57, or better
			[3]	
	iv	$x = \int 0.2t^2 - 0.4dt$	M1*	Uses integration, ignore omission of k
		$x = 0.2t^3/3 - 0.4t (+k)$	A1	$x = 2t^3/30 - 4/10 t$ (+k), or coeff t^3 0.067 or better
		$0.1t^3 - 0.3t^2 + 0.2t = 0.2t^3/3 - 0.4t (+k)$	D*M1	Equates expressions for distance
		$t^3 - 9t^2 + 18t = 0$	D*M1	3 terms with different powers of t, no constant
		$t^2 - 9t + 18 = 0$ AG	A1	Explains T is non-zero, or explains division by t
		(t-3)(t-6)=0	M1	Tries to solve given quadratic, accept imperfect
				attempt at completing square, formula or factorisation,
				and chooses smaller positive root
		T = 3 s	A1	
			[7]	
		Total	[72]	

Continued

C	uestic	n	Answer		Marks	Guidance
1	(i)	Mom	momentum before = $0.3 \times 2.2 + 0.5 \times 0.8$ P after = $0.3 \times 2.2/2$ $2.2 + 0.5 \times 0.8 = 0.3 \times 2.2/2 + 0.5v$ 1.6 ms ⁻¹		B1 B1 M1 A1 [4]	Allow inclusion of g 0.33, accept 0.33 g and negative term Allow 0.33 g = 0.5 g v - 0.5 g × 0.8 M1 Allow from inclusion of g
1	(ii)	PQ = 3 PQ = 3	3 × 1.46 – 3 × 2.2/2 1.08 m		M1 A1 [2]	3(1.46 – 2.2/2) Accept 3 × 1.46 – 2.2/2
2	(i)	$a = \pm 4$ OR $U = \pm 4$	$+/- a24^{2}/2$ $- 0.125 \text{ ms}^{-2}$ $24a \text{ and } 0^{2} = (24a)^{2} \pm 2a36$ $0.125 \text{ms}^{-2} = \pm \frac{1}{8} \text{ms}^{-2}$		M1 A1 [2] M1	$s = vt - at^2/2 = 0^+/- at^2/2 \text{ OR } s = ut^+/- at^2/2$ Use both $0 = u \pm 24a$ and $0^2 = u^2 \pm 2a36$ $U = 3 \text{ ms}^{-1}$
2	(ii)	`			M1 A1 M1 A1 [4]	Mass = 18.367kg. Regard $180a = Fr$ as MR May be implied. $Fr = 22.5$ MR -1 Fr and R both +ve or both -ve, $\mu = 22.5/(180 \times 9.8)$ if MR Award if MR
3	(i)	v = +/-		AG	M1 A1 A1 [3]	Integrates accn or decn (Although only $v = -8t + 0.6t^2/2$ (+ c) is correct) ONLY FROM $v = \int -8 + 0.6t$ dt OR $v = -\int 8 - 0.6t$ dt and explicit $t = 0$, $v = 32.5$ so $c = 32.5$
3	(ii)	$0.3t^2 - t = 5$	8t + 32.5 = 0		M1 A1 [2]	Starts to solve 3 term QE, either the given ans in (i) or the candidate's answer in (i) with v set = 0. Needs valid formula or factors which give 2 correct coefficients Accept as one of a pair only if the other value is $65/3 = 21.66$

C	uestic	on	Answer	Marks	Guidance
3	(iii)		$s = \int 0.3t^2 - 8t + 32.5 \mathrm{d}t$	M1	Integrates an expression for velocity
			$s = 0.3t^{3}/3 - 8t^{2}/2 + 32.5t (+ c)$ $D = 0.3 \times 5^{3}/3 - 8 \times 5^{2}/2 + 32.5 \times 5 (+ c)$	A1 M1	Accept omission of c Substitutes cv(smaller and +ve ans(ii)) or uses limits, $\begin{bmatrix} \\ \end{bmatrix}_0^{smaller+vecv(ii)}$
			D = 75 AG	A1 [4]	Explicit evaluation needed. Accept $+ c$
4	(i)		$(X=)15 - 20\cos 60, 15 - 20\sin 30$ $OR(Y=)8 - 20\cos 30, 8 - 20\sin 60$	M1	Accept $(X =) 15 + 20\cos 120$, $(Y =) 8 + 20\cos 150$, and R A = 100°
			(X =) 5 N (34.048 if in rad mode)	A1	Must be +ve
			(Y =) -9.32 N (4.9149 if in rad mode)	A1 [3]	Must be –ve. Allow $8-10\sqrt{3}$
4	(ii)		$R^2 = (+/-9.32)^2 + 5^2$ R = 10.6 N $\tan\theta = (+/-9.32)/5$	M1 A1 ft M1	Uses Pythagoras on ans(i), neither component 8 or 15 $\sqrt{(X(i)^2 + Y(i)^2)}$ Finds any relevant angle with 8 N or 15 N, neither component 8 or
			Angle = 152°	A1 [4]	15 CAO, must be 3sf or better
4	(iii)		(Greatest =) 43 N (Least =) 0 N	B1 B1 [2]	
5	(i)		$S_{\text{dec}} = 15 \times 4 - 1.75 \times 4^2 / 2$ $S_{\text{dec}} = 46$ $100 - 46 = 15T/2 + 15(10 - 4 - T)$ (= $15 \times 6 - 15T/2$) 54 = 90 - 7.5T T = 4.8	M1 A1 M1 A1ft A1 [5]	Or $v = 15 - 1.75 \times 4$ and $s = (15 + v)/2 \times 4$ May be implied Any attempt at combined 3 stage distances being 100 Simplification not essential. ft $cv(S_{dec}(\mathbf{i}), \text{ numerical})$
5	(ii)		$V_R = d(3t^2 - 0.2t^3)/dt$ $V_R = 6t - 0.6t^2$ $V_R(5) (= 6 \times 5 - 0.6 \times 5^2) = 15 \text{ ms}^{-1}$ AG	M1 A1 A1 [3]	Attempt at differentiating S_R Accept $V_R = 2 \times 3t - 3 \times 0.2t^2$ Must show explicit substitution

C	uestion	Answer	Marks	Guidance
5	(iii)	$A_R = d(6t - 0.6t^2)/dt$ $6 - 1.2t = -1.75$ $t = 6.46$	M1* D*M1 A1 [3]	Attempt at differentiating V_R Must be -1.75 or $1.2t - 6 = 1.75$ (i.e. employs <u>deceleration</u>)
5	(iv)	$S_R (10) = 3 \times 10^2 - 0.2 \times 10^3$ $S_R (10) = 100$ OR $3t^2 - 0.2t^3 = 100$ t = 10 which is how long the athlete takes to finish	M1 A1 [2] M1 A1	Substitutes 10 into S_R formula Sets up and tries to solve equation for robot Needs comment about athlete or both finishing race in 10 s
6	(i)	$R = 0.3g\cos 30$ $Fr = 0.15 \times 0.3g\cos 30$ $0.3a = -0.3g\sin 30 - 0.15 \times 0.3g\cos 30$ $a = -6.17$ $0 = 4^2 - 2 \times 6.17s$ $s = 1.3(0) \text{ m}$	B1 M1 M1 A1 M1 A1ft [6]	$R = 2.546$ N. May be shown on diagram $0.15 \times \text{cv}(R)$, $Fr = 0.382$ N2L, two forces inc. $0.3g\text{CorS}30$ and friction Accept positive value Using a from above $\text{ft}(8/ \text{cv}(a))$ CorS30 means $\cos 30$ or $\sin 30$
6	(ii)	$0.3a = 0.3g\sin 30 - 0.382$ $a = 3.63$ $1.3 = 3.63t^{2}/2$ $t = 0.845 \text{ s}$	M1 A1 M1 A1 [4]	N2L, diff. of two forces inc. $0.3g$ CorS30 and friction Using $cv(s(\mathbf{i}))$, and a not $a(\mathbf{i})$ nor 9.8 Rounds to 0.85 if 2 sig fig. CorS30 means $cos30$ or $sin30$
6	(iii)	$V = 3.63 \times 0.845 \ OR \ V = \sqrt{(2 \times 3.63 \times 1.3)} \ OR \ V = 2 \times 1.3/0.845$ (V = 3.07) Mom change = +/-($0.3 \times 4 + 0.3 \times 3.07$) Mom change = +/-2.12 kgms ⁻¹	M1 M1 A1 [3]	$cv(a(ii) \times t(ii))$ OR $cv(\sqrt{2} \times a(ii) \times s(i))$ OR $cv(2 \times s(i) / t(ii))$, $a(ii)$ not $a(i)$ nor 9.8 +/-(0.3 × 4 +/- 0.3 × speed(return)), 0 <speed(return) 4,="" <="" <math="">g omitted</speed(return)>

C	Questi	on	Answer	Marks	Guidance
7	(i)	(a)	$0.45a = 0.45g - 2.52$ $a = 4.2 \text{ ms}^{-2}$	M1 A1 [2]	N2L for R. 2 vertical forces. Accept $+/-0.45a = 0.45g +/-2.52$ Accept -4.2
7	(i)	(b)	$0.05 \times 4.2 = 0.05g + 2.52 - T$ $T = 0.05 \times 9.8 + 2.52 - 0.05 \times 4.2$ $T = 2.8 \text{ N}$	M1 A1 ft A1	N2L for Q, 3 vertical forces, $0.05 \times 4.2 = 0.05g + /-2.52 + /-T$ accn not 9.8; 0.5g is TWO vertical forces $(0.45g + 0.05g)$ not MR ft cv($a(\mathbf{i})$). Any equivalent form of equation $ACCEPT\ A\ COMBINED\ Q\ AND\ R\ METHOD$ $(0.45 + 0.05) \times 4.2 = 0.45g + 0.05g + /-T \qquad \text{M1}$ $(0.45 + 0.05) \times 4.2 = 0.45g + 0.05g - T \qquad \text{A1ft}$ $T = 2.8\ \text{N} \qquad \qquad \text{A1}$
7	(ii)		$\pm 4.2m = T - mg$ OR $\pm 4.2 = (0.05g + 0.45g - mg)/(0.05 + 0.45 + m)$ $4.2m = 2.8 - mg OR 9.8m + 4.2m = 2.8$ $m = 0.2$	A1 ft A1 [3]	N2L for P, difference of 2 vertical forces, accn $cv(a(\mathbf{i}))$ $\pm cv(a(\mathbf{i})) = (\text{wt } P + \text{wt } Q - \text{wt } R) / \text{sum of masses}$ ft $cv(T(\mathbf{ib}))$ Any equivalent form of equation with $cv(a(\mathbf{i}))$
7	(iii)		BEFORE R STRIKES SURFACE $v = 4.2 \times 0.5$ v = 2.1 $s = 2.1^2/(2 \times 4.2) = 4.2 \times 0.5^2/2$ AFTER R STRIKES SURFACE +/-0.2a = T - 0.2g OR $+/-0.05a = 0.05g - T+/-0.2a = T - 0.2g$ AND $+/-0.05a = 0.05g - Ta = +/-5.88S = 2.1^2/(2 \times 5.88)TOTAL\ JOURNEYDistance = (0.375 + 0.525) = 0.9m$	M1* A1 M1 A1 A1 A1 D*M1	Find Speed when R hits surface, using $a(\mathbf{i})$ Distance R falls (0.525 m) . Accept $+/-4.2 \times 0.5^2/2$ N2L for either P (with $cv(m)$) or Q Correct equations for both P and Q OR combination $0.05g(-T+T) - 0.2g = +/-(0.2a + 0.05a)$ M1A1 Distance P rises after R hits ground (0.375) , a not $a(\mathbf{i})$ or 9.8

Qı	uestion	Answer	Marks	Guidance
1	(i)	$F^2 = 17^2 - 8^2$	M1	$F^2 = 17^2 + / -8^2$
		F = 15	A1	Exact accept 15.0
		$\cos\alpha = 8/17$	M1	Correct method for angle between 8 N and 17 N forces
		$\alpha = 61.9^{\circ}$	A1	Accept 62° from correct work
			[4]	
1	(ii)	E=17	B1	Exact
		Angle = $118(.1)^{\circ}$ OR 242° (241.9°)	B1 FT	$180 - \text{cv}(\alpha(\mathbf{i})) \text{ OR } 180 + \text{cv}(\mathbf{a}(\mathbf{i})) \text{ Must be 3sf or better}$
			[2]	
2	(i)	$v = 7 - 0.4 \times 9.8$	M1	v = 7 + / -0.4g
		$v = 3.08 \text{ ms}^{-1}$	A1	Exact, or correct to 3sf from g=9.81(3.076) or 10 (3)
		$s = 7 \times 0.4 - 9.8 \times 0.4^2/2$	M1	$s = 7 \times 0.4 + -g0.4^2/2$
		s = 2.016 m	A1	Exact but accept 2.02. g=9.81 (2.0152) or g=10 (2)
		OR	[4]	
		$3.08^2 = 7^2 - 2 \times 9.8s$	M1	$(cv(v))^2 = 7^2 + /-2gs$
		s = 2.016 m	A1	Exact but accept 2.02. g=9.81 (2.0152) or g=10 (2)
		OR		
		$v^2 = 7^2 - 2 \times 9.8 \times 2.016$	M1	$v^2 = 7^2 + /- 2g(cv(s))$
		$v = 3.08 \text{ ms}^{-1}$	A1	Exact or correct to 3sf. Accept v=3.07 from s=2.02. From
				g=9.81(3.076 or 3.06 from s=2.02) or 10 (3)
2	(ii)	$H = \pm 7^2/(2 \times 9.8) \ (= \pm 2.5)$	B1	Greatest Height, g=9.81 (2.497 accept 2.5) g=10 (2.45)
		$S = \pm (7 \times 0.9 - \frac{1}{2} \times 9.8 \times 0.9^{2}) (= \pm 2.331)$	B1	Height when $t = 0.9$, $g=9.81$ (2.32695) $g=10$ (2.25)
		D = 2.5 + (2.5 - 2.331)	M1	$2 \times \text{greatest height} - S(0.9)$
		D = 2.669 m	A1	Exact but accept 2.67, g=9.81 (2.66705) g=10 (2.65)
		OR (Using $t_U = 7/9.8 = 0.7143$, $t_D = 0.9 - 0.7143 = 0.1857$ s)	[4]	"OR" method uses distance from greatest height.
		$H = \pm (7x0.7143 - 9.8x0.7143^{2}/2) $ (= ±2.5)	B1	OR $\pm 9.8 \times 0.7143^2/2$. Gains B1 for H as above
		$s_D = \pm 9.8 \times 0.1857^2 / 2 \ (= \pm 0.169)$ D = 2.5 + 0.169	B1 M1	Equivalent to B1 for S as above Greatest height + Descent distance << H
		D = 2.5 + 0.169 D = 2.669 m	M1 A1	Exact but accept 2.67, g=9.81 (2.66705) g=10 (2.65)
		D – Δ.007 III	AI	Linuit out accept 2.01, g-7.01 (2.00103) g-10 (2.03)

C	Question	Answer	Marks	Guidance
3	(i)	$(10-8)/5 = T_{\text{dec}} \text{ OR } 8 = 10 - 5T_{\text{dec}}$	M1	Attempt to find $T_{dec} = \pm 0.4 = \pm 2/5$
		t = (2 - 0.4) = 1.6	A1	Exact. Accept 1 3/5, not 8/5, www
			[2]	
3	(ii)	$S_B = \frac{1}{2} \times 8 \times 2$	B1	$S_B = 8$
		$S_A = 10 \times 1.6 + \frac{1}{2} \times (10+8) \times 0.4$ OR $S_A = 10 \times 2 - \frac{1}{2} \times (2-1.6) \times (10-8)$	M1	Using area under graph is distance (at least two parts) Complete method for S_A run in the first 2s, using $cv(t)$
		$S_A = 19.6$	A1	Accept as $16+3.6$ or $20-0.40$, from $t = 1.6$ (however obtained)
		AB = 19.6 - 8 + 1	M1	$AB = +/-(S_A - S_B +/-1)$
		AB = 12.6 m	A1	Exact Or $AB = -12.6 \text{ m}$
			[5]	
4	(i)	$Fr = 14\cos 30$	B1	12.1(24)
		$R = 28 - 14\sin 30$	B1	21
		$(14\cos 30) = \mu (28 - 14\sin 30)$	M1	12.1(24)/21. Allow component of 14 / cv(R) for M1
		$\mu = 0.577 AG$	A1	0.577(35)
			[4]	
4	(ii)	Mass = 28/g	B1	2.857 Award here if seen in (i) and used in (ii)
		$Fr = 0.577 \times 28$	B1	16.156 or 0.57735 x 28 = 16.1658
		$(28/9.8)a = \pm 0.577 \times 28$	M1	Award also for $cv(m)$, $m = 28$. Must be only one force (friction), allow $Fr(i)$.
		$a = \pm 5.66$ from exact μ , $a = \pm 5.65$ from $\mu = 0.577$	A1	g=10 (±5.77)
		$0 = u^2 - 2 \times 5.66 \times 3.2$	M1	Valid signs with cv(5.66)
		$u = 6.02 \text{ m s}^{-1}$	A1	Accept any answer rounding to 6.0 (inc 6.0, not 6) or 6.1 from g=10
			[6]	

(Question	Answer	Marks	Guidance
5	(i)		M1	N2L on P, two vertical forces, accept with 0.4x2.45g
		$T - 0.4g = 0.4 \times 2.45$	A1	Correct terms and signs
		T = 4.9 N	A1	Exact, g=9.81 (4.904, accept 4.9) g=10 (4.98, not 5.0)
			[3]	
5	(ii)	$mg - T = \pm 2.45m$	M1	Correct terms (possible incorrect signs), and use of cv(T(i))
		m = 2/3 kg	A1 FT	FT $cv(T(i))/7.35$, $g=9.81$ (FT $cv(T(i))/7.351 = 0.667$) $g=10$ (FT $cv(T(i))/7.55 = 0.6596 = 0.66$)
				This may be seen in (i). The M1A1 pair of marks may be awarded only in part (ii) when the candidate uses the value of m which was found in (i).
		$v = 2.45 \times 0.3 \ (= 0.735)$	B1	Must be positive
		Momentum = $(2/3) \times (2.45 \times 0.3)$	M1	Accept \pm . $cv(m) \times cv(v)$
		$Momentum loss = 0.49 kgms^{-1}$	A1	Exact, but accept any value which rounds to ± 0.490 . $g=9.81~(0.49)~g=10~(0.4848=0.485,~not~0.48)$
			[5]	
5	(iii)	$S = 2.45 \times 0.3^2/2$	M1	Distance while <i>Q</i> descends. Watch for $s = vt-at^2/2$. If $v=0$, M0A0
		$S = \pm 0.11(025)$	A1	
		OR S (0 + 0.735) + 0.2 / 2		M1 Using landing aread from (ii)
		$S = (0 + 0.735) \times 0.3 / 2$		M1 Using landing speed from (ii) A1
		$S = \pm 0.11(025)$ 0 = $(2.45 \times 0.3)^2 \pm 2 \times 9.8s$	M1	Distance P ascends while Q at rest, must use g
		$s = \pm 0.027(56)$	A1	May be implied, $g=9.81 (0.02753) g=10 (0.0270)$
		OR (using $t_A = 0.735/9.8 = 0.075$)	711	Calculating ascend time after string goes slack
		$s = 0.735 \times 0.075 - 9.8 \times 0.075^{2} / 2$		M1 Using candidate's values of speed and t_A to find $\pm s$
		$s = \pm 0.027(56)$		A1 May be implied
		Distance = 0.248 m	A1 FT	$2 \times cv(S) + cv(s) $. Accept 0.25. g=9.81 (0.248) g=10 (0.247511)
			[5]	

(Question	Answer	Marks	Guidance
6	(i)	$mg = 6.4\cos 40$	M1	One cmpt of 6.4 N force (allow 6.4 x sin/cos 40 or 50), mg not resolved
		m = 0.5(00)	A1 [2]	Accept 0.5, g=9.81 (0.49976=0.5) g=10 (0.49026 = 0.49)
6	(ii)	$H = 6.4 + 6.4\sin 40$ OR $2 \times 6.4\cos 25 = 0.5g\cos 65 + H\cos 25$ H = 10.5	M1 A1 [2]	Resolves horizontally, all necessary terms (allow e.g. $6.4 \pm 6.4\cos 40$) Resolves parallel to bisector of strings, inc cmpt weight Accept 11
6	(iii)	$R = 32\cos 30 - 6.4\sin 30$ $R = 24.5$ $Fr = 32\sin 30 + 6.4\cos 30$ $Fr = 21.5$ $\mu = (32\sin 30 + 6.4\cos 30)/(32\cos 30 - 6.4\sin 30)$ $\mu = 0.879$ AG	M1 A1 M1 A1 M1	Difference of Wt cmpt and Tension ($\underline{not}\ H$) cmpt May be implied Sum of Wt cmpt and Tension ($\underline{not}\ H$) cmpt May be implied Either Fr or R obtained from 2 term numerical expressions, in Fr = μ R
6	(iv)	$F_{\rm max} = 0.879 \times 32\cos 30 \ (= 24.4 \ {\rm N})$ Wt cmpt down slope = $32\sin 30 \ (= 16 \ {\rm N})$ Remains in eqbm OR $\pm ma = 32\sin 30 - 0.879 \times 32\cos 30$ Finds acceleration Remains in eqbm OR angle of friction = $\tan^{-1}0.879 = 41^{\circ}$ Slope is 30° Remains in eqbm	[6] B1* D*M1 A1 [3] B1* D*M1 A1 B1* D*M1 A1	May be described simply as F or friction Finding Wt component down slope and comparing with friction Needs Wt cmpt = $16 < F_{\text{max}}$ For friction calculation Sets up and solves N2L for a Needs a clearly in direction of friction (impossible) Must be explicit Values of angle of friction and slope stated in 6 (iv)

	uesti	on	Answer	Marks	Guidance
7	(i)		Before mom = $0.2 \times 4 + 0.3 \times 2.5$	B1	Accept with g
-	(-)		$0.2 \times 4 + 0.3 \times 2.5 = (0.2 + 0.3)v$	M1	Accept with g
			$v = 3.1 \text{ ms}^{-1}$	A1	Exact. Award if g used and cancelled.
				[3]	
7	(ii)	(a)	$V_0 = 3.1$	B1 FT	$FT \operatorname{cv}(v(i))$
				[1]	
7	(ii)	(b)	$s = \int 3.1 - 3t^2 dt$	M1*	Uses integration of velocity(t)
			$s = 3.1t - 3t^3/3 \ (+c)$	A1 FT	FT $cv(v(i))$ or $cv(V_0(iia))$
			$CR = [3.1t - t^3]_0^{0.3}$	D*M1	Uses their $s(0.3)$. Award if $+c$ never shown or assumed $=0$
			CR = 0.903 m	A1	Ans <u>not</u> given, so explicit substitution not needed. Allow 0.90, not
					0.9
				[4]	
7	(ii)	(c)	$a = d(V_0 - 3t^2)/dt$	M1*	Uses differentiation of <i>v</i>
			$a = -6 \times 0.3$	D*M1	Substitutes $t = 0.3$ (no other value acceptable)
			$a = -1.8 \text{ ms}^{-2}$	A1	Exact. Must be negative (accept deceleration is -1.8). Award if V_0 wrong but not if V_0 omitted.
				[3]	
	(iii)		Mom $C = (0.2 + 0.3)(3.1 - 3 \times 0.3^2)$	B1	1.415
			Conservation of momentum used, no g	M1	Before momentum must be numerical, after momentum needs two terms in v (accept 2v or v)
			$(0.2 + 0.3)(3.1 - 3 \times 0.3^2) = 1.5v - 0.5v$	A1FT	FT cv(before momentum)
			$v = 1.415 \text{ ms}^{-1}$	A1	Exact. Accept 1.41 or 1.42.
				[4]	

	Question	Answer		Marks	Guidance
1		X = 14 - 5		B1	Or 5 – 14
		$R^2 = (14 - 5)^2 + 12^2$		M1	Pythagoras, <i>R</i> as hypotenuse, 3 squared terms
		R = 15 N		A1	
		$\tan\theta = (14 - 5)/12$		M1	Any correct trig, angle between 12 and R targetted.
		$\theta = 36.9^{\circ}$		A1	Accept 37, 037
				[5]	
2	(i)	$v = d(t^4 - 2t^3 + 5)/dt$		M1*	Differentiates displacement, one wrong term max, ignore +c
		$v = 4 \times 1.5^3 - 6 \times 1.5^2$		D*M1	Substitutes $t = 1.5$ in $v(t)$ OR solves $4t^3$ - $6t^2$ =0 for a +ve root
		v = 0	AG	A1	0+c is A0 unless c is discarded
				[3]	
2	(ii)	$a = d(4t^3 - 6t^2)/dt$		M1*	Differentiates velocity, one wrong term max, ignore +c
		$a(1.5) = 12 \times 1.5^2 - 12 \times 1.5$		D*M1	Substitutes $t = 1.5$ in $a(t)$ OR solves $12t^2$ -12 t =9 for a +ve root
		$a = 9 \text{ m s}^{-2}$	AG	A1	9+c is A0 unless c is discarded
				[3]	
3	(i)	TCorS20 = 0.25gCorS30		M1	Equates cmpt T and cmpt wt // plane (doubt, see diagram and/or
					(ii))
		$T\cos 20 = 0.25g\sin 30$		A1	1.225
		T = 1.3(0)		A1	
				[3]	
3	(ii)	R + - TCorS20 = + - 0.25 g CorS30		M1	Resolves perp plane, accept letter T
		$R + 1.3\sin 20 = 0.25g\cos 30$		A1 ft	ft(cv(T))
		R = 1.68 N		A1	
				[3]	
3	(iii)	(m)accn = +/- (m)9.8sin30		M1*	N2L with single force a cmpt wt (accept cos)
		a = +/-4.9		A1	
		$u = +/-9.8\sin 30 \times 0.4$		D*M1	
		u = 1.96		A1	Must be +ve (accept loss of – sign)
				[4]	

	Question	Answer	Marks	Guidance
4	(i)	(t-3)(t-6) = 0	M1	Solve 3 term QE, 2 correct coefficients if factorising, or using formula $9+/-\sqrt{9}/2$
		t = 3, 6	A1	"By inspection" both values M1A1, one value M0A0
			[2]	
4	(ii)	$v = \int (t^2 - 9t + 18) \mathrm{d}t$	M1*	Attempts integration of $a(t)dt$, maximum one wrong term
		$v = t^3/3 - 9t^2/2 + 18t (+ c)$	A1	Accept omission of $+c$
		$3^3/3 - 9 \times 3^2/2 + 18 \times 3 + c = 9$	D*M1	Uses $v(3) = 9$
		$(v =) -13.5 \text{ m s}^{-1}$	A1	Must be negative, and goes beyond c=-13.5
			[4]	
4	(iii)	v(1) = 1/3 - 9/2 + 18 - 13.5 = 0.333	M1	Finds $v(1) (=1/3)$
		Changed sign so direction of motion has changed	A1	Accurate values $(v(0) = -13.5, v(0.5) = -5.58, v(0.9) = -0.702)$
			[2]	
5	(i)	$1.4^2 = 2 \times a \times 0.2$	M1	Any use of $a = g$ is M0
		OR		
		0.2=(0+1.4)t/2 and $1.4=0+at$		$t=2/7$ hence $1.4=a \times 2/7$
		$a = 4.9 \text{ m s}^{-2}$	A1	
		$0.3g - T = +/-0.3 \times 4.9$	M1	N2L diff of weight and tension. Any use of $a = g$ is M0
		T = 1.47 N	A1	
			[4]	
5	(ii)	+/-4.9m = 1.47 - mg	M1	N2L for Q using values from (i), a not g; accept $a = g\Delta M/\Sigma M$
		4.9m = 1.47 - mg	A1ft	Diff $cv(T)$ and mg correct way round; ft $cv(T,a)$
				4.9 = g(0.3 - m)/(0.3 + m) M1A1; ftcv(a)
		m = 0.1	A1	
			[3]	
5	(iii)	$1.4^2 = 2gs$	M1	Accn = g
		s = 0.1	A1	may be implied (eg $H = 0.3$) BoD sign uncertainty
		H = 0.2 + 0.2 + 0.1	M1	Needs 0.2 twice
		H = 0.5 m	A1	
			[4]	

(Questic	on	Answer	Marks	Guidance
5	(iv)	(a)	$Tension = 0.5g + 2 \times 1.47$	M1	
			Tension = 7.84 N	A1	
				[2]	
5	(iv)	(b)	Tension (= $0.5g$) = 4.9 N	B1	
				[1]	
6	(i)			M1	Cons of momentum, no g^* , common v "after" term
			0.3x4 - 0.2x5 = +/- (0.3+0.2)v	A1	0.3x4 + 0.2x5 = +/- (0.3+0.2)v is M1A0A0
			$v = 0.4 \text{ m s}^{-1}$	A1	Must be positive
				[3]	*Allow g if fully cancelled in first line BOD
6	(ii)	(a)	Q (or P at rest)	B1	If P moves, allow 0.3vwhen considering M1
				M1	Cons of momentum, no g^* , one "after" term
			0.3x4 - 0.2x5 = 0.2v	A1	0.3x4 + 0.2x5 = 0.2v is M1A0A0
			$v = 1 \text{ m s}^{-1}$	A1	
				[4]	*Allow g if fully cancelled in first line BOD
6	(ii)	(b)	4t + 5t = 3.6	M1	Or $9t = 3.6$, Or both $3.6-x = 4t$ and $x = 5t$
			t = 0.4	A1	
			$x_{\rm Q} = 5 \times 0.4 \ (=2)$	A1	Finds initial Q distance. 3.6 x 5 /(4+5) is M1A1A1
			T = (2/1 =) 2 s	A1	
			OR	[4]	
			(Time =)	M1	Equates pre-collision times
			x/5 = (3.6 - x)/4	A1	x is distance Q travels before collision
			x = 2 m	A1	
	(**)	()	T = 2/1 = 2 s	A1	
6	(ii)	(c)	_	B1	One horizontal, +ve v intercept
			V = P	B1	One horizontal, –ve <i>v</i> intercept, terminates at same <i>t</i>
			4 Q	B1	One along <i>t</i> -axis, starts at same <i>t</i> as +ve line ends, label P
			<u> </u>	B1	One horizontal above <i>t</i> -axis, starts at same <i>t</i> as –ve line ends.
			t		(Ignore any values put on graphs)
			-5 <u>Q</u>	F43	
			·	[4]	

	Questic	on	Answer	Marks	Guidance
7	(i)		$Fr = 0.2 \times 0.4g\cos 45$	M1	Fr = 0.554(37)
	. ,		$0.4a = 0.4g\sin 45 - 0.554(37)$ (= 2.21748)	M1	N2L, their Fr value and cmpt wt, opposite signs
			a = 5.54(37)	A1	May be implied
			$v^2 = 5^2 + 2 \times 5.54 \times 2$	M1	$v^2 = u^2 + 2as$, a is not 0.2g. 0 <a<g .="" consistent="" signs<="" th=""></a<g>
			$v = 6.87 \text{ m s}^{-1}$	A1	
			6.87 = 5 + 5.54t	M1	$2 = 5t + 5.54t^2/2$, a is not 0.2g. 0 <a<g< th=""></a<g<>
			t = 0.337 s	A1	
				[7]	
7	(ii)	(a)	$+/-0.4a = -0.4g\sin 45 - 0.55437$ (= 3.3262)	M1	N2L, Fr and cmpt wt same sign (accept +ve)
			a = +/-8.31(557)	A1	Accept +ve value
			$0^2 = 5^2 - 2 \times 8.32 \times s$		$5^2 = 2 \times 8.32 \times s$, a is not g or 0.2g. Consistent signs.
			s = 1.5(0) (so does not reach B)	A1	cso
			OR	[3]	
			$v^2 = 5^2 - 2 \times 8.32 \times 2$		
			$v^2 = -\text{ve }(-8.28)$ so does not reach B	A1	Some comment on impossibility
7	(ii)	(b)	$v^2 = 2 \times 5.54(37) \times 1.5$	M1*	No A1 to be given for $s = 1.5$ (if last A1 not given in iia), a is
					not g or $0.2g$ or their a in 7iia allow $a > g$
			v = +/-4.08	A1	
			Momentum change = $\pm -0.4(4.08 + 5)$	D*M1	Must be a sum of 5 and a speed meaningfully less than 5
			Change = $+/-3.63 \text{ kg m s}^{-1}$	A1	
				[4]	

(Question	Answer	Marks	Guidance
1	(i)		M1	Momentum for Q/R , no g , at least 3 correct terms
		$0.3u + 0.6 \times 0.8 = (0.3 + 0.6) \times 1$	A1	NB 0.48 in "before" from 0.8×0.6 ; not $1.5 \times 0.1 + 1.1 \times 0.3$ (A0)
		$u = 1.4 \text{ m s}^{-1}$	A1	
			[3]	
1	(ii)	$0.1 \times 1.5 + 0.3 \times 1.1 = \pm 0.1 v + 0.3 \times 1.4$	M1	P,Q +ve "before", allow P –ve "after". Accept cv (1.4)
		v = 0.6	A1	Velocity of P , will be –ve if –0.1 ν in momentum equation, accept $\nu = \pm 0.6$
		Momentum change = $\pm 0.09 \text{ kg m s}^{-1}$	A1	Tolerate loss of – sign if "small – large" has +ve answer
		OR	[3]	
		Momentum change $Q = \pm 0.3(1.4 - 1.1) = \pm 0.09$	M1A1	Change for P is the change for Q
		Momentum change $P = \pm 0.09$ OR	A1	
		$0.1 \times 1.5 + 0.3 \times 1.1 + 0.6 \times 0.8 = (\pm)0.1\nu + 0.9(\times 1)$	M1A1	Overall equation
		Momentum change $P = \pm 0.09$	A1	From \pm (0.9 ×1 – 0.3 ×1.1 – 0.6 × 0.8)
2	(i)	U = 0.5g OR $U - 0.5g = 0$	M1	Consider descent OR ascent. $v = u + at$ with consistent signs for non-zero terms. $U + 0.5g = 0$ is M0 hence A0.
		$U = 4.9 \text{ m s}^{-1}$	A1	Allow use of 4.9 without penalty in (ii) and (iii) even if 0/2 here.
			[2]	
2	(ii)	$U^2 = \pm 2gs$	M1	$v^2 = u^2 + 2as$
		$4.9^2 = \pm 2 \times 9.8 \times s$	A1	
		s = 1.225 m	A1	+ve, 49/40, 1.22 or 1.23 BoD loss of – sign in final answer
			[3]	
		OR		2
		$s = \pm (ut \pm gt^2/2) OR s = \pm gt^2/2$	M1	Rise to/fall from greatest height. $S = \pm (vt \pm g \frac{t^2}{2})$ is similar.
		$s = \pm (4.9 \times 0.5 - g \times 0.5^2/2) \ OR \ s = \pm g \times 0.5^2/2$	A1	
		s = 1.225 m	A1	+ve, 1.22 or 1.23 BoD loss of – sign in final answer
		OR		
		$s = \pm Ut/2$	M1	s = (u+v)t/2
		$s = \pm 4.9 \times 0.5/2$	A1	
		s = 1.225 m	A1	+ve, 1.22 or 1.23 BoD loss of – sign in final answer

Question		on	Answer		Guidance
2	(iii)		$v^2 = 2g(s \pm 0.539)$	M1	Overall descent, zero initial speed
			$v^2 = 2 \times 9.8 \times (0.539 + 1.225)$	A1ft	ft cv (1.225), tolerate sign change from (ii)
			$v = 5.88 \text{ ms}^{-1}$	A1	Exact, isw rounding of 5.88 to 5.9 if 5.88 seen
			OR	[3]	
			$v^2 = u^2 \pm 2g \times 0.539$	M1	Motion from projection level down, non-zero initial speed
			$v^2 = 4.9^2 + 2g \times 0.539$	A1ft	ft cv (4.9), tolerate sign change from (i)
			$v = 5.88 \text{ ms}^{-1}$	A1	Exact, isw rounding of 5.88 to 5.9 if 5.88 seen
3	(i)	(a)	$\tan \theta = 8/12$	M1	Must be correct angle.
			$\theta = 33.7^{\circ}$	A1	
				[2]	
			OR correct trig using ans (i)(b)		
			$\sin \theta = 8/\text{cv}(14.4) \text{ or } \cos \theta = 12/\text{cv}(14.4)$	M1	Must be correct angle
			$\theta = 33.7^{\circ}$	A1	A1 needs 2/2 in (i)(b). $\cos \theta = 12/14.4$ gives $\theta = 33.6$ A1
3	(i)	(b)	$R^2 = 8^2 + 12^2$	M1	Pythagoras, 3 squared terms, <i>R</i> as hypotenuse
			R = 14.4 N	A1	Accept $4\sqrt{13}$ not $\sqrt{208}$
				[2]	
3	(ii)	(a)	$12\operatorname{CorS}\theta = \pm 8$	M1	Either angle.
			$12\sin\theta = 8$	A1	If other angle is targeted, this A1 requires "90 –". OR
					$12\cos\theta = 8.94, 8.94\tan\theta = 8.$
			$\theta = 41.8^{\circ}$	A1	cao
				[3]	
			OR correct trig using (ii)(b)		
			12CorS θ = cv(8.94), cv(8.94)tan θ = 8, or 8tan θ = cv(8.94)	M1	Either angle
			$12\cos\theta = 8.94 \text{ or } 8.94\tan\theta = 8$	A1	If other angle is targeted, this A1 requires "90 –"
			$\theta = 41.8^{\circ}$	A1	Both A1 marks require 2/2 in (ii)(b)
3	(ii)	(b)	$R = 12\cos 41.8$	M1	Using candidate's angle from 3iia. $OR \ R^2 = 12^2 - 8^2, R^2 + 8^2 = 12^2$
			R = 8.94 N	A1	Accept 8.9 or 8.95, $4\sqrt{5}$, not 9 or 9.0 not $\sqrt{80}$. For A1, the trig
					solution requires 3/3 in (ii)(a)
				[2]	

	Questic	on Answer	Marks	Guidance
4	(i)	$v = 18 + 2.4 \times 5$	M1	v = u + at
		v = 30	A1	
			[2]	
4	(ii)	Distance while accelerating = $(18 + 30) \times 5/2$	B1	Or $30 \times 5 - (30 - 18) \times 5/2$ etc = 120, or $45 + 75$. Numerical.
		Distance at constant speed = $30(t-5)$	B1	Tolerate 30t. Algebraic.
			M1	Adds their areas to get 300
		$30(t-5) + (18+30) \times 5/2 = 300$	A1	30T = 300 - 120, $30t + 45 + 75 = 300$, etc
		t = 11	A1	
			[5]	
		OR		
		Distance while accelerating = $(18 + 30) \times 5/2$ (=120)	B1	Or $30 \times 5 - (30 - 18) \times 5/2$ etc = 120, or $45 + 75$. Numerical.
		Distance at constant speed = $300 - cv(120)$	M1	Subtracts their area from 300
		Time at constant speed = $\frac{(300 - \text{cv}(120))}{200}$	B1	Equivalent to "distance at constant speed algebraic"
		Time at constant speed = ${30}$		
		Time at constant speed $= 6$	A1	
		t = 11	A1	
		OR		
		Distance = $30t$	B1	Rectangle, comprising 300 + area of "missing triangle"
		Distance = $(30 - 18) \times 5/2$	B1	"Missing triangle", to be removed
		$30t - (30 - 18) \times 5/2 = 300$	M1A1	Subtracts their areas to get 300
		t = 11	A1	
		OR		
		Distance while accelerating = $(18 + 30) \times 5/2$	B1	120
		Distance at constant speed = $30(t-5)$	B1	May be implied. Tolerate 30t. Algebraic.
		Distance at constant speed = $300 - 120 = 30(t - 5)$	M1A1	$OR\ 180 = 30t\ M1,\ t = 6\ A1$
		t = 11	A1	

(Questi	on	Answer	Marks	Guidance
4	(iii)		$S = 30^2/(2 \times (\pm 6))$	M1	$0^2 = 30^2 \pm 2 \times 6S$, with candidate's $v(i)$
			<i>S</i> = 75	A1	
			Distance = 375 m	A1ft	300 + cv(75)
				[3]	
			OR	M1	Accept $T = 5$ if no working or from 30/–6, with candidate's $v(i)$
			T = 30/6 and $S = 30T/2$		
			S = 75	A1	
			Distance = 375m	A1ft	300 + cv(75)
5	(i)		$d = 3u + 4 \times 3^2/2 \ (= 3u + 18)$	B1	
			$2d = 5u + 4 \times 5^2/2 \ (= 5u + 50)$	B1	$OR \ d = (5-3)(u+3\times 4) + 4\times 2^2/2$ for lower half of slope
					(d=2u+32)
			6u + 36 = 5u + 50	M1	Attempts to solve 2 SE in u and d , at least one with 3 terms.
					Tolerate u , d switch to x , y for solving reasons
			$u = 14 \text{ ms}^{-1}$	A1	
			$2d = 5 \times 14 + 4 \times 5^2 / 2$	M1	Substitutes in 3 term eqn, starts <i>suvat</i> again, or solves SEs again.
			$OR d = 3 \times 14 + 18 OR d = 2 \times 14 + 32$		If u is negative, allow substitution of +ve equivalent.
			Length = 120 m	A1	
	(44)			[6]	
5	(ii)		$4(m) = (m)g\sin\theta$	M1	Mass may be omitted on both sides. Allow $4(m) = (m)g\cos\theta$
			$\theta = 24.1^{\circ}$	A1	
				[2]	
5	(iii)		$6 = mg\cos 24.1$	M1	Or $6 = mg\sin 24.1$, uses numerical answer referring to (ii)
			m = 0.671 kg	A1	www
				[2]	
6	(i)		$V = d(0.06t^3 - 0.45t^2 - 0.24t)/dt$	M1	Differentiates displacement
			$V = 0.18t^2 - 0.9t - 0.24$	A1	Accept with $+c$, unsimplified coefficients
			$A = d(0.18t^2 - 0.9t - 0.24)/dt$	M1	Differentiates velocity
			A = 0.36t - 0.9	A1	Accept with $+c$, unsimplified coefficients
			$V(0) = -0.24 \text{ m s}^{-1}$	A1	cao, if coeffs in $V(t)$ wrong A0
			$A(0) = -0.9 \text{ m s}^{-2}$	A1 ft	ft cv(-0.9), the constant in expression for A. Tolerate wrong coeff t
L				[6]	

	Question	Answer	Marks	Guidance
6	(ii)	Solves $A = 0$ for t	M1	Not if $A(t)$ includes $+c$ in this section
		0.36t - 0.9 = 0	A1	
		t = 2.5	A1	
		x(2.5) = -2.475	A1	Final answer must be negative. Accept –2.47 and –2.48.
		Speed = $ v(2.5) = 1.365 \text{ m s}^{-1}$	A1	Final answer must be positive. Accept 1.36 or 1.37.
			[5]	
6	(iii)	Uses $v = 0$	M1	
		$0.18t^2 - 0.9t - 0.24 = 0$	A1ft	Forms and offers solution of 3 term QE using $cv(V(i))$
		t = 5.25 s	A1	Must select +ve answer explicitly. Accept 5.3, not 5.2
			[3]	
7	(i)	$0.5g - T = \pm 0.5 \times 1.4$	M1	N2L for Q, difference of 2 force terms
		$0.5g - T = 0.5 \times 1.4$	A1	
		T = 4.2 N	A1	
			[3]	
7	(ii)	$4.2 - F - 0.6g\sin 30 = 0.6 \times 1.4 \ OR$	M1	N2L for P, 3 forces including a component of weight of P and
		$4.2 - \mu R - 0.6g \sin 30 = 0.6 \times 1.4$		cv(4.2)
		Friction (= $4.2 - 0.6g\sin 30 - 0.6 \times 1.4$) = 0.42	A1	May be implied
		Reaction = $0.6 g cos 30$	B1	May be implied
		$0.42 = 0.6 \text{gcos} 30 \mu \ OR \ \mu = 0.42 / \ 0.6 \text{gcos} 30$	M1	$F = \mu R$, R a component of weight of P and F has been found using a component of the weight of P . Tolerate F –ve and $ -\text{veF} $.
		$\mu = 0.0825$	A1	Accept 0.082, not 0.083.
		$\mu = 0.0823$		Accept 0.082, 110t 0.083.
7	(iii)	$R = (0.6a + 7) \cos 20$	[5] M1	Includes weight cmpts of P and B , allow $7g$
'	(111)	$R = (0.6g + 7)\cos 30$ $R = 11.2$	A1	11.154 May be implied
		R = 11.2 $Fr = 7\sin 30 - 0.42$	M1*	Wt cmpt B (allow $7g$) – Fr(ii) must be difference.
		FI = ISIII30 - 0.42	IVII	wt clipt B (allow $/g$) – Fi(ii) must be difference.
		Fr = 3.08	A1	May be implied.
		$\mu = 3.08/11.2$	D*M1	Both quantities +ve, F and R both from 2 term equations
		$\mu = 0.276$	A1	Value of μ , accept 0.28, disregard inequality sign
		$\mu \ge 0.276$	B1 ft	ft cv (μ found in (iii)) direction of greater than or equal to sign; isw any work relating to an upper limit for μ
			[7]	

4728 Mark Scheme June 2014

	Question	Answer	Marks	Guidan	ace
1	(i)	$v^2 = 3.5^2 + 2g \times 5$	M1	Uses $v^2 = 3.5^2 + /-2g5$	Accept -3.5^2 for $(-3.5)^2$ etc
		$v = 10.5 \text{ ms}^{-1}$	A1	_	
			[2]		
	(ii)		M1	$+/-5 = 0.87u +/-g \cdot 0.87^2 /2$	May come from $s = vt - gt^2/2$
		$5 = 0.87u - g \times 0.87^2 / 2$	A1		, c
		$u = 10.0 \text{ m s}^{-1}$	A1		
			[3]		
	(iii)	Change = $0.2 \times 10.5 + 0.2 \times 10$	M1	Or +/- 0.2(Ans(i) +/- Ans(ii))	
		Change = $4.1(0)$ kg m s ⁻¹	A1	It is OK get -4.1 from correct work	
			[2]		
2	(i)	$2.5\sin\theta = 2.4$	M1	2.5 CorS $\theta = 2.4$	$2.5\cos\theta = 2.4$ M1 hence
		$\theta = 73.7$	A1	Accept 74	$\theta = 16.3 \text{ A}0$
		$2.5\cos\theta = F$	M1	$F = 2.5 \text{ SorC}\theta$, opposite to that above	$2.5\sin\theta = F$ M1 hence
		F = 0.7	A1	Exact, but allow 0.702 (3 sf) $\theta = 73.7$	F = 0.7(00) A1 SC
		OR	[4]		
		$2.4^2+F^2=2.5^2 \text{ or } F^2=2.5^2-2.4^2$	M1		
		F = 0.7	A1		F can then be used to find θ
	(ii)	2.4 = 0.2a	M1	N2L, Any horizontal force other than F , 0.7,	Including g, automatically M0
				2.5 (Do not treat removing/using 2.5 as a	
		$a = 12 \text{ ms}^{-2}$	A 1	MR)	
			A1	12.0 from 2.5sin73.7 /0.2	Harimantal in DO (analisamena)
		Bearing (0)90° OR "To right" "opposite old 2.4 N force" atc	B1	Angle value other than exectly 00° or 0° DO	Horizontal is B0 (ambiguous)
		"To right"," opposite old 2.4 N force" etc		Angle value other than exactly 90° or 0° B0	
			[3]	Allow B1 for force dirn, if accn not found	

	Question	Answer	Marks	Guidan	ice
3	(i)	3 ms ⁻¹	B1 [1]		MR $(0.6t^3 + 3)$, award B1 here
	(ii)	$x = \int \left(0.6t^2 + 3\right) dt$	M1*	Integrates v	MR $(0.6t^3 + 3)$
		$x = 0.6t^3/3 + 3t (+ c)$ Substitutes 1.5 in expression for x	A1 D*M1	Accept with/without $+ c$ Needs integration and 2 terms in t	$0.6t^4/4 + 3t$ is A0
		x(1.5) = 5.175 m	A1 [4]	Only without +c. Accept 5.17, 5.18	MR 5.26 only gets A1ft
	(iii)	$a = d(0.6t^2 + 3)/dt$	M1*	Differentiates v	MR $(0.6t^3 + 3)$ gives t=1.82(57)
		$6 = 2 \times 0.6t$	D*M1	Plus attempt to solve $a(t) = 6$	
		$v(5) = 18 \text{ ms}^{-1}$	A1 [3]		v(1.8257) = 6.65 (3 sf)
4	(i)	Calculation for both "before" Momentum (magnitudes)	M1	Must not include g	
		Compares both terms without arithmetic error	A1*		
		Shows direction of after total momentum conflicts with the before velocity/momentum of Q	D*A1	Vector nature of momentum by word or sign (+/-)	Explicit reference to after momentum or conservation of momentum essential.
			[3]		
	(ii)	$TMB = +/-(0.2 \times 4 + 0.3 \times (-2))$	B1	Accept inclusion of g	
		0.8 - 0.6 = 0.2v + 0.3v	M1	Allow if <i>g</i> included in all terms	LHS must be difference for both M1 marks
		$v = 0.4 \text{ m s}^{-1}$	A1	Not awarded if g included	
		0.8 - 0.6 = -0.2v + 0.3v	M1	Allow if <i>g</i> included in all terms	SC 0.8 - 0.6 = 0.2v - 0.3v M1
		$v = 2 \text{ m s}^{-1}$	A1	Not awarded if g included	Speed = 2 and the direction of motion of Q is reversed A1
			[5]		

Q	uestic	n	Answer	Marks	Guidan	ce
5	(i)		$5/(T-3) = -4 \ OR \ 5/(3-T) = 4$	M1	Accept verification, $4 \times (3 - 1.75) \text{ M}1$	
			T = 1.75	A1	= 5 A1 OR 5/(3-1.75) M1 = 4 A1	
				[2]		
	(ii)	(a)	-4 ms^{-1}	B1		
				[1]		
		(b)	4 ms ⁻¹	B1		
				[1]		
		(c)	4 ms ⁻¹	B1		
				[1]		
	(iii)		$2 \times (-)4, 2 \times 4, (1 \times)4$	M1*	Calculates any one unknown distance	Allow if only one calc. correct
			d = (-)5 + (-)8 + 8 + 4	D*M1	Adds 5 and "3 other" distances or -5 and "3 other" displacements	Note t=5 to t=9, t=5 to t=10 etc, may be one term
			d = 25 m	A1	Correctly comes from $4x(1.25+4+1)$ 3/3	
				[3]		
	(iv)		$v = d(20t - t^2 - 96)/dt$	M1*	Differentiates x , accept $20 - t$ as	
			v = 20 - 2t	A1	"differentiation"	
			20 - 2t = -4	D*M1	20 - 2t + c = -4 is DM0	
			t = 12 (ignore any solutions less than 10)	A1	Only from $20-2t = -4$. This answer can arise fortuitously from solving $20t - t^2 - 96 = 0$.	SC Verifying that t=12 gives v= -4 can gain final M1A1 (A special case of
				[4]		trial and refinement)

Q	uestio	n	Answer	Marks	Guidan	ce
6	(i)		$3=8\mu$	M1	Uses $F = \mu R$, Allow R is 8 or 8g, $Fr = 3$ only	
			$\mu = 0.375$	A1	3/8 (fraction), not 3÷8 (division)	
				[2]		
	(ii)		$C^2 = 3^2 + 8^2$	M1	Uses Pythagoras with 3 and 8 or 8g	
			C = 8.54 N	A1	Accept 8.5 or $\sqrt{73}$	
			$\tan\theta = 3/8 \text{ or } \tan\theta = 8/3$	M1	Uses tan with 3 and 8 or 8g	Or CorS with answer for C
			$\theta = 20.6^{\circ}$ with vertical or 69.4° with	A1	Accept 21 or 69, direction clear by words or	isw work after correct angle magnitude
			horizontal		diagram.	found
				[4]		
	(iii)	(a)	$T(\cos 0) - 3 = +/-3$	M1	$T(\cos 0) - 3 = 0$ is M0	$T\cos 0$ –3= -3 assumes Fr direction has
			T=6	A1	Answer alone is sufficient for M1A1	not changed
				[2]		
	(iii)	(b)	$R = +/-(8 - T \times SorC30)$	M1	Accept 8g with cmpt T	(This is required also in the SC case)
			$R = 8 - T\sin 30$	A1	oe	
			$Fr = +/- (T \times \text{CorS}30 - 3)$	M1	Accept 3 with cmpt T , not $T \times \text{CorS}(30+/-3) = 0$	SC Does not allow for change in
						direction of Friction
			$Fr = T\cos 30 - 3$	A1	oe	$Fr = 3 - T\cos 30$ A1
			$0.375 = (T\cos 30 - 3) / (8 - T\sin 30)$	M1	Accept use of μ from (i). For forming an	$0.375 = (3-T\cos 30) / (8 - T\sin 30)$ M1
					equation in T alone.	
			T = 5.70	A1		T = 0 A0
			OR Alternative for last 4 marks	[6]		SC (Alternative)
			$Fr = 0.375(8 - T\sin 30)$	-	Accept use of μ from (i).	$Fr = 0.375(8 - T\sin 30)$
			$Fr = +/- (T \times \text{CorS}30 - 3)$	M1		$Fr = +/- (T \times \text{CorS}30 - 3)$ M1
			$Fr = T\cos 30 - 3$	A1 M1	For forming an equation in <i>T</i> alone.	$Fr = 3-T\cos 30$ A1
			$0.375(8 - T\sin 30) = T\cos 30 - 3$ T = 5.70	A1	1 of forming an equation in 1 atome.	$0.375(8-T\sin 30) = (3-T\cos 30) \text{ M1}$
			1 – 3.70	AI		T=0 A0

4728 Mark Scheme June 2014

Q	uestion	Answer	Marks	Guidar	nce
7	(i)	$s = 0.6 \times 2 + 0.9 \times 2^2 / 2$	M1	Uses $s = ut + at^2/2$, $u \neq 0$, $a \neq g$ or g CorS30	
		s=3	A1		
		AB = 6 m	A1		
			[3]		
	(ii)	$V_M = 0.6 + 0.9 \times 2 \ OR$		2.4	Award if found in (i) and used in (ii)
		$V_M^2 = 0.6^2 + 2 \times 0.9 \times 3$	B1	5.76	
		$a = g\sin 30$	B1	4.9	
		$V_B^2 = 2.4^2 + 2(9.8\sin 30) \times 3$	M1	Uses $v^2 = u^2 + 2as$, $u \neq 0$ or 0.6, $a \neq g$ or 0.9,	If $AB(i) = 3$, allow its use for final
				$s \neq AB(i)$	M1A1
		$V_B = 5.93 \text{ ms}^{-1}$	A1	Accept 5.9	
			[4]		
	(iii)		M1	N2L, $0.3 \times 0.9 = +/-(0.3 \text{gCorS} 30 - T)$	a = 0.9 essential, $m = 0.3$ but if 0.4
		$0.3 \times 0.9 = 0.3 \text{gsin} 30 - T$	A1		used in (iii) AND 0.3 used in (iv), treat
		T 1037			as a single mis-read
		T = 1.2 N	A1		
			[3]		
	(iv)	0.4 × 0.0 × 0.4 × 20 × 1.2 F	M1*	N2L, 3 forces inc \pm (0. 4gCorS30 + T)	a = 0.9 or value used in (iii), $m=0.4$
		$0.4 \times 0.9 = 0.4g \sin 30 + 1.2 - Fr$	A1ft	ft $cv(T)$ in (iii)	but if 0.4 used in (iii) AND 0.3 used in
		Fr = 2.8	A1	May be shown by my calculation	(iv), treat as a single mis-read
			B1	May be shown by mu calculation	
		$R = 0.4g\cos 30$		May be implied, 3.39(48)	Assembled only if M1 for NOI acception
		$\mu = 2.8/3.39$	D*M1	$2.8 = 3.39(48) \mu$, both forces positive	Awarded only if M1 forN2L equation
		$\mu = 0.825$	A1	Accept 0.82, not 0.83 or 0.826	
			[6]		