Edexcel Maths S1

Mark Scheme Pack

2005-2013



**GCE** 

**Edexcel GCE** 

Statistics S1 (6683)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)



### June 2005 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                       |                                                                                                      | Marks       |                |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------|----------------|
| 1.                 | Diagram A: $y & x$ : $r = -0.79$ ; As $x$ increases, $y$ decreases or most points lie in the $2^{nd}$ and $4^{th}$ quadrant. |                                                                                                      | B1;B1dep    |                |
|                    | Diagram B : $v \& u$ : $r = 0.08$ ; No real pattern. Several valor or points lie in all four quadrates.                      |                                                                                                      | B1;B1dep    |                |
|                    | Diagram C: $t \& s$ : $r = 0.68$ ; As $s$ increases, $t$ increases of and $3^{rd}$ quadrants                                 | or most points lie in the 1 <sup>st</sup>                                                            | B1;B1dep (6 | 5)             |
| 2. (a)             | Distance is a continuous.                                                                                                    | continuous                                                                                           | B1          | 1)             |
| (b)                | F.D = freq/class width $\Rightarrow$ 0.8, 3.8, 5.3, 3.7, 0.75, 0.1                                                           | or the same multiple of                                                                              | M1 A1 (1    |                |
| (c)                | $Q_2 = 50.5 + \frac{(67 - 23)}{53} \times 10 = 58.8$                                                                         | awrt 58.8/58.9                                                                                       | M1 A1       | 2)             |
|                    | $Q_1 = 52.48;  Q_3 = 67.12$                                                                                                  | awrt 52.5/52.6 67.1/67.3                                                                             | A1 A1       |                |
|                    | Special case : no working B1 B1 B1 ( ≡ A's on the epen                                                                       | )                                                                                                    | (4          | 4)             |
| (d)                | $\overline{x} = \frac{8379.5}{134} = 62.5335$                                                                                | awrt 62.5                                                                                            | B1          |                |
|                    | $\bar{x} = \frac{8379.5}{134} = 62.5335$ $s = \sqrt{\frac{557489.75}{134} - \left(\frac{8379.5}{134}\right)^2}$              |                                                                                                      | M1 A1√      |                |
|                    | $s = 15.8089 (S_{n-1} = 15.86825)$                                                                                           | awrt 15.8 (15.9)                                                                                     | A1          | 4)             |
|                    | Special case : answer only B1 B1 ( ≡ A's on the epen)                                                                        |                                                                                                      | (4          | <del>+</del> ) |
| (e)                | $\frac{Q_3 - 2Q_2 + Q_1}{Q_3 - Q_1} = \frac{67.12 - 2 \times 58.8 + 52.48}{67.12 - 52.48}$                                   | subst their $Q_1,Q_2$ & $Q_3$ need to show working for $A1$ and have reasonable values for quartiles | M1 A1√      |                |
| <b>(f</b> )        | $= 0.1366 \implies ; +\text{ve skew}$                                                                                        | awrt 0.14                                                                                            | A1; B1      |                |
| (f)                | For +ve skew Mean > Median & $62.53 > 58.80$<br>or $Q_3 - Q_2(8.32) > Q_2 - Q_1(6.32)$<br>Therefore +ve skew                 |                                                                                                      | B1 (1       |                |

| Question<br>Number | Scheme                                                        |                                              | Mark   | (S  |
|--------------------|---------------------------------------------------------------|----------------------------------------------|--------|-----|
| 3. (a)             | $S_{xy} = 8880 - \frac{130 \times 48}{8} = (8100)$            | may be implied                               | B1     |     |
|                    | $S_{xx} = 20487.5$                                            |                                              |        |     |
|                    | $b = \frac{s_{xy}}{s_{xx}} = \frac{8100}{20487.5} = 0.395363$ | allow use of their $S_{xy}$ for M awrt 0.395 | M1 A1  |     |
|                    | $a = \frac{48}{8} - (0.395363) \frac{130}{8} = -0.424649$     | allow use of their b for M awrt -0.425       | M1 A1  |     |
|                    | y = -0.425 + 0.395x                                           | 3s.f.                                        | B1 √   | (6) |
|                    | Special case answer only B0 M0 B1 M0 B1 B1(fully corr         | rect 3sf)                                    |        | (0) |
|                    | ( $\equiv$ to B0 M0 A1 M0 A1 B1 on the epen)                  |                                              |        |     |
| (b)                | f - 100 = -0.424649 + 0.395(m - 250)                          | subst f - 100 & m - 250                      | M1 A1√ |     |
|                    | f = 0.735 + 0.395m                                            | 3 s.f.                                       | A1     | (3) |
| (c)                | $m = 235 \Rightarrow f = 93.64489$                            | awrt 93.6/93.7                               | B1     | (1) |
|                    |                                                               |                                              |        |     |
|                    |                                                               |                                              |        |     |
|                    |                                                               |                                              |        |     |
|                    |                                                               |                                              |        |     |
|                    |                                                               |                                              |        |     |
|                    |                                                               |                                              |        |     |
|                    |                                                               |                                              |        |     |
|                    |                                                               |                                              |        |     |
|                    |                                                               |                                              |        |     |

| B1             |     |
|----------------|-----|
| M1,<br>A1      |     |
| A1             |     |
| M1<br>A1<br>A1 |     |
|                | (7) |
| B1; B1         | (2) |
| B1             | (1) |
|                |     |
|                |     |
|                |     |
|                |     |

| 5.(a) | $k + 2k + 3k + 5k + 6k = 1$ use of $\sum P(X = x) = 1$                                                                                                                                               | M1       |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|       | $17k = 1$ $k = \frac{1}{17} = 0.0588$                                                                                                                                                                | A1       | (2) |
| (b)   | $E(X) = 1 \times \frac{1}{17} + 2 \times \frac{2}{17} + \dots + 5 \times \frac{6}{17} = \frac{64}{17}$ use of $\sum xP(X = x)$ and at least 2 prob correct                                           | M1       |     |
|       | $= 3\frac{13}{17}$ Do not ignore subsequent working                                                                                                                                                  | A1       |     |
| (c)   | $E(X^{2}) = 1^{2} \times \frac{1}{17} + 2^{2} \times \frac{2}{17} + \dots + 5^{2} \times \frac{6}{17} = \left(\frac{266}{17} = 15.6\right)$ use of $\sum x^{2} P(X = x)$ and at least 2 prob correct | M1 A1    |     |
|       | Var $(X) = \frac{266}{17} - \left(\frac{64}{17}\right)^2$ use of $\sum x^2 P(X = x)$ -                                                                                                               | M1<br>A1 |     |
|       | $(E(X))^2$ = 1.4740 awrt 1.47                                                                                                                                                                        |          | (4) |
| (d)   | $Var(4-3X) = 9 Var(X) = 9 \times 1.47 = 13.23 \Rightarrow 13.2$ cao $9 Var X$ or $9 \times 1.4740 = 13.266 \Rightarrow 13.3$                                                                         | M1 A1    | (2) |
|       |                                                                                                                                                                                                      |          |     |
|       |                                                                                                                                                                                                      |          |     |
|       |                                                                                                                                                                                                      |          |     |
|       |                                                                                                                                                                                                      |          |     |
|       |                                                                                                                                                                                                      |          |     |
|       |                                                                                                                                                                                                      |          |     |

|      |                            |                                               |                                        |                                   |                                                                                               |             | 1   |
|------|----------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|-------------|-----|
| 6(a) | $M \sim N(155, 3.$         | $.5^2$ )                                      |                                        |                                   |                                                                                               |             |     |
|      | P(M > 160) =               | $= P\left(z > \frac{160}{2}\right)$           | $\frac{-155}{5}$                       |                                   | standardising $\pm (160-155)$ , $\sigma$ , $\sigma^2$ , $\sqrt{\sigma}$                       | M1          |     |
|      |                            | = P(z > 1.43)                                 | .5                                     |                                   |                                                                                               | A1          |     |
|      |                            | = 0.0764                                      |                                        |                                   |                                                                                               | A1          | (2) |
|      |                            |                                               |                                        |                                   |                                                                                               |             | (3) |
| (b)  | $P(150 \le M \le 1)$       | = 0.715                                       | 7 - (1 - 0.9236)                       |                                   | awrt -1.43, 0.57<br>p>0.5                                                                     | B1 B1<br>M1 |     |
|      |                            | = 0.6393                                      | 3                                      |                                   | 0.6393 - 0.6400 4dp                                                                           | A1          | (4) |
|      | special case : a           | answer only E                                 | 80 B0 M1 A1                            |                                   |                                                                                               |             | (4) |
| (c)  | $P(M \le m) = 0$           | $0.3 \Rightarrow \frac{m-155}{3.5}$           | $\frac{5}{1} = -0.5244$                |                                   | -0.5244 att stand = z value for A1 may use awrt to - 0.52.                                    | B1<br>M1 A1 |     |
|      |                            | n                                             | n = 153.2                              |                                   | cao                                                                                           | A1          | (4) |
| 7.   |                            | Glasses                                       | No Glasses                             | Totals                            |                                                                                               |             |     |
|      | Science<br>Arts            | 18<br><b>27</b>                               | 12<br>23                               | 30<br><b>50</b>                   | 50 may be seen in (a)                                                                         |             |     |
|      | Humanities                 | 44                                            | 24                                     | 68                                | 23 may be seen in (b)                                                                         | B1          |     |
|      | Totals                     | 89                                            | 59                                     | 148                               |                                                                                               | B1          |     |
| (a)  | 50                         | 25 0.224                                      | 0                                      |                                   | 1 440                                                                                         | 261.44      |     |
| ,    | $P(Arts) = \frac{50}{148}$ | $=\frac{1}{74}=0.338$                         | 8                                      |                                   | a number/148                                                                                  | M1 A1       | (4) |
| (b)  | P(No glasses /             | Arts) = $\frac{\frac{23}{12}}{\frac{50}{12}}$ | $\frac{48}{48} = \frac{23}{50} = 0.46$ |                                   | $\frac{\text{prob}}{\text{their(a)prob}} \text{ or } \frac{\text{number}}{\text{their}} = 50$ | M1 A1       | (2) |
| (c)  | P(Right Hande              | $ed) = (\frac{30}{148} \times 0)$             | $(0.8) + (\frac{50}{148} \times 0.7)$  | $(1) + (\frac{68}{148} \times 6)$ | 0.75) attempt add three prob                                                                  | M1 A1       | V   |
|      |                            | 148                                           | 148                                    | 148                               | A1 $$ on their (a)                                                                            |             |     |
|      |                            | $=\frac{55}{74}=0.7$                          | 743                                    |                                   | awrt 0.743                                                                                    | A1          | (3) |
|      |                            |                                               | $\frac{30}{100} \times 0.8$            |                                   |                                                                                               |             |     |
| (d)  | P (Science /R              | ight handed) =                                | $= \frac{30}{148} \times 0.8$ (c)      | $\frac{12}{55} = 0.218$           | $\sqrt{\text{ on their (c)}}$                                                                 | M1 A1v      | (3) |

| Question<br>Number | Schei                                                                                                                                                                                                                         | me                                                | Marks                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|
| 1. (a)             | Mode is 56                                                                                                                                                                                                                    |                                                   | B1 (1) B1,B1,B1             |
| (b)                | $Q_1 = 35, Q_2 = 52, Q_3 = 60$<br>$\overline{x} = \frac{1335}{27} = 49.4 \text{ or } 49\frac{4}{9}$                                                                                                                           | exact or awrt 49.4                                | (3)<br>B1                   |
|                    | $\sigma^2 = \frac{71801}{27} - \left(\frac{1335}{27}\right)^2 = 214.5432$                                                                                                                                                     |                                                   | M1A1ft                      |
|                    | $\sigma = 14.6 \text{ or } 14.9$                                                                                                                                                                                              | awrt 14.6(5) or 14.9                              | A1 (4)                      |
| (d)                | $\frac{49.4-56}{14.6} = -0.448$                                                                                                                                                                                               | awrt range -0.44 to -0.46                         | M1A1 (2)                    |
| (e)                | For negative skew; Mean <median<mode (49.4<52<56="" 3="" <math="" not="" required)="">Q_3-<math>Q_2</math>&lt;<math>Q_2</math>-<math>Q_1</math> 8 and 17 Accept other valid reason eg. 3(mean-median)/sd as all</median<mode> | 2 compared correctly compared correctly tfor M1A1 | M1<br>A1<br>M1<br>A1 ft (4) |
|                    |                                                                                                                                                                                                                               |                                                   | Total 14 marks              |
| 2. (a)             | p + q = 0.4<br>2 p + 4q = 1.3                                                                                                                                                                                                 | Consider with (b).                                | B1<br>M1A1 (3)              |
| (b)                | Attempt to solve $p = 0.15, q = 0.25$                                                                                                                                                                                         | If both seen, award 3.                            | M1 A1A1 (3)                 |
| (c)                | $E(X^{2}) = 1^{2} \times 0.10 + 2^{2} \times 0.15 + \dots + 5^{2} \times 0.30 = $ $Var(X) = 14 - 3.5^{2} = 1.75$                                                                                                              | 14                                                | M1A1ft<br>M1A1<br>(4)       |
| (d)                | Var(3-2X) = 4Var(X) = 7.00                                                                                                                                                                                                    |                                                   | M1A1ft (2) Total 12 marks   |
|                    |                                                                                                                                                                                                                               |                                                   |                             |
|                    |                                                                                                                                                                                                                               |                                                   |                             |

1



| 4. (a) | $\frac{8}{11}$ Blue                                                                                                                                                                                                                |                                  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|        | $\frac{9}{12}$ Blue                                                                                                                                                                                                                |                                  |
|        | $\frac{3}{11}$ Red Tree                                                                                                                                                                                                            | M1                               |
|        | $\frac{9}{11}$ Red Red $\frac{9}{12}, \frac{3}{12}$                                                                                                                                                                                | A1                               |
|        | $\frac{2}{11}$ Red Complete & labels                                                                                                                                                                                               | A1 (3)                           |
| (b)    | P(Second ball is red)= $\frac{9}{12} \times \frac{3}{11} + \frac{3}{12} \times \frac{2}{11} = \frac{1}{4}$                                                                                                                         | M1A1 (2)                         |
| (c)    | P(Both are red   Second ball is red)= $\frac{\frac{3}{12} \times \frac{2}{11}}{\frac{1}{4}} = \frac{2}{11}$ exact or awrt 0.182                                                                                                    | M1A 1 (2) Total 7 marks          |
| 5. (a) | To simplify a real world problem To improve understanding / describe / analyse a real world problem Quicker and cheaper than using real thing To predict possible future outcomes Refine model / change parameters possible  Any 2 | B1B1                             |
| (b)    | (i) e.g.s height, weight (ii) score on a face after tossing a fair die                                                                                                                                                             | (2)<br>B1B1 (2)<br>Total 4 marks |
|        |                                                                                                                                                                                                                                    |                                  |
|        |                                                                                                                                                                                                                                    |                                  |
|        |                                                                                                                                                                                                                                    |                                  |





GCE
Edexcel GCE
Statistics S1 (6683)

June 2006

advancing learning, changing lives

Mark Scheme (Results)



### June 2006 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                        | Marks                            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1(a)               | Indicates max / median / min / upper quartile/ lower quartile (2 or more) Indicates outliers (or equivalent description) Illustrates skewness (or equivalent description e.g. shape) Any 3 rows Allows comparisons Indicates range / IQR / spread                                             | B1<br>B1<br>B1                   |
| (b)(i)<br>(ii)     | 37 (minutes) Upper quartile or $Q_3$ or third quartile or $75^{th}$ percentile or $P_{75}$                                                                                                                                                                                                    | (3)<br>B1<br>B1<br>(2)           |
| (c)                | Outlier's How to calculate correctly 'Observations that are very different from the other observations and need to be treated with caution' These two children probably walked / took a lot longer  Any 2                                                                                     | B1<br>B1                         |
| (d)                | 20 30 40 50 60<br>Time (School B)                                                                                                                                                                                                                                                             | (2)                              |
|                    | Box & median & whiskers<br>Sensible scale<br>30,37,50<br>25,55                                                                                                                                                                                                                                | M1<br>B1<br>B1<br>B1<br>(4)      |
| (e)                | Children from school A generally took less time Any correct 4 lines 50% of B $\leq$ 37 mins, 75% of A < 37 mins (similarly for 30) Median/Q1/Q3 of A < median/Q1/Q3 of B (1 or more) A has outliers, (B does not) Both positive skew IQR of A <iqr a="" b,="" of="" range="">range of B</iqr> | B1<br>B1<br>B1<br>B1<br>Total 15 |

| Question<br>Number | Scheme                                                                                                                                              | Marks            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 2. (a)             | P(both longer than 24.5)= $\frac{11}{55} \times \frac{10}{54} = \frac{1}{27}$ or $0.\dot{0}\dot{3}\dot{7}$ or $0.037$ 2 fracs x w/o rep. awrt 0.037 | M1A1             |
| (b)                | Estimate of mean time spent on their conversations is                                                                                               | (2)              |
|                    | $\overline{x} = \frac{1060}{55} = 19\frac{3}{11}$ or $19.\dot{2}\dot{7}$ or $19.3$ 1060/total, awrt 19.3 or 19mins 16s                              | M1A1             |
| (c)                | $\frac{1060 + \sum fy}{80} = 21$ 21x80=1680                                                                                                         | (2)<br>B1        |
| (6)                | $\sum_{y=620} fy = 620$ Subtracting 'their 1060'                                                                                                    | M1               |
|                    | $\therefore \overline{y} = \frac{620}{25} = 24.8$ Dividing their 620 by 25                                                                          | M1A1             |
| (d)                | Increase in mean value.  Length of conversations increased considerably                                                                             | (4)<br>B1        |
|                    | during 25 weeks relative to 55 weeks context - ft only from <b>comment</b> above                                                                    | $B1\int (2)$     |
|                    |                                                                                                                                                     | Total 10         |
| 3. (a)             | $\sum x = \sum t = 337.1$ , $\sum y = 16.28$ Can be implied                                                                                         | B1,B1            |
|                    | $S_{xy} = 757.467 - \frac{337.1 \times 16.28}{8} = 71.4685$ either method, awrt 71.5                                                                | M1A1             |
|                    | $S_{xx} = 15965.01 - \frac{337.1^2}{8} = 1760.45875$ awrt 1760                                                                                      | <b>A1</b>        |
| (b)<br>M1A1        | $b = \frac{71.4685}{1760.45875} = 0.04059652$ / correct way up, awrt 0.0406                                                                         | (5)              |
|                    | $a = \frac{16.28}{8} - b \times \frac{337.1}{8} = 0.324364$ using correct formula, awrt 0.324                                                       | M1A1             |
|                    | y = 0.324 + 0.0406x 3 sf or better but award for copying from above                                                                                 | A1 <b>∫</b>      |
| (c)                | At $t = 40$ , $x = 40$ , $y = 1.948$ , $l = 2461.948$ sub $x = 40$ , awrt 1.95, awrt 2461.95                                                        | (5)<br>M1A1A1∫   |
| (d) A1             | l-2460=0.324+0.0406t LHS required awrt 2460.32, f.t. their 0.0406, $l$ and                                                                          | (3)<br>M1        |
| (e)                | At $t = 90$ , $l = 2463.978$ awrt 2464                                                                                                              | (2)<br>B1<br>(1) |
| (f)                | $90^{\circ}\mathrm{C}$ outside range of data unlikely to be reliable                                                                                | B1 .             |

| I                    |                                                                                                                                                                                                      | T                                                |                                 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------|
| 4 (a)                | E(X) = 3;<br>$Var(X) = \frac{25-1}{12} = 2 **AG**$ $Var(X) = 1^{2} \times \frac{1}{5} + 2^{2} \times \frac{1}{5} + 3^{2} \times \frac{1}{5} \dots - 3^{2} = 11$ Accept (55/5)-9 as minimum evidence. | -9=2 ** <b>AG</b> **                             | B1<br>M1A1                      |
|                      |                                                                                                                                                                                                      |                                                  | (3)                             |
| (b)<br>M1A1 <b>∫</b> | E(3X-2) = 3E(X) - 2 = 7                                                                                                                                                                              |                                                  |                                 |
| (c)                  | $Var(4-3x) = 3^2 Var(X) = 18$                                                                                                                                                                        |                                                  | (2)<br>M1A1<br>(2)<br>— Total 7 |
| 5(a)                 |                                                                                                                                                                                                      |                                                  |                                 |
|                      | 2 separate sketches OK.                                                                                                                                                                              | 0.2  Bell Shape 1.78 & 0.2 1.65 & 0.3            | B1<br>B1<br>B1                  |
|                      | Accept <b>clear</b> alternatives to 0.3: 0.                                                                                                                                                          | 7/0.5/0.2                                        | (3)                             |
| (b)                  | $\frac{1.78 - \mu}{\sigma} = 0.8416 \Rightarrow 1.78 - \mu = 0.8416\sigma$                                                                                                                           | either for method                                | M1                              |
|                      | $\sigma$                                                                                                                                                                                             | 0.8416                                           | В1                              |
|                      | $\frac{1.65 - \mu}{\sigma} = -0.5244 \Rightarrow 1.65 - \mu = -0.5244\sigma$                                                                                                                         | (-)0.5244                                        | В1                              |
|                      | Solving gives $\mu = 1.70, \sigma = 0.095$                                                                                                                                                           | N.B. awrt 0.84, 0.52 B1B0<br>awrt 1.7, 0.095 cao | M1A1A1<br>(6)                   |
| (c)                  | $P(\text{height} \ge 1.74) = 1 - P(\text{height} < 1.74)$                                                                                                                                            | 'one minus'                                      | M1                              |
|                      | $=1-P\left(Z<\frac{1.74-1.70}{0.095}\right)$                                                                                                                                                         | standardise with their mu and sigma              |                                 |
|                      | = 1 - P(Z < 0.42) = 0.3372                                                                                                                                                                           |                                                  | M1                              |

Total 17





## Mark Scheme (Results) January 2007

advancing learning, changing lives

**GCE** 

**GCE** Mathematics

Statistics (6683)

### January 2007 6683 Statistics S1 Mark Scheme

| Question<br>number | Scheme                                                                                                                           | Marks                         |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| 1. (a)             | (£) 17 Just <u>17</u>                                                                                                            | B1 (1)                        |  |
| (b)                | $\sum t = 212$ and $\sum m = 61$ (Accept as totals under each column in qu.)                                                     | B1, B1                        |  |
|                    | $S_{tm} = 2485 - \frac{61 \times 212}{10}$ , = 1191.8 awrt <u>1190</u> or 119 (3sf)                                              | M1, A1                        |  |
|                    | $S_{tt} = 983.6 \text{ (awrt } \underline{984)} \text{ and } S_{mm} = 1728.9 \text{ (awrt } \underline{1730)}$ (or 98.4 and 173) |                               |  |
| (c)                | $r = \frac{1191.8}{\sqrt{983.6 \times 1728.9}}$                                                                                  | M1, A1f.t.                    |  |
|                    | = $0.913922$ awrt <u><b>0.914</b></u>                                                                                            | A1 	(3)                       |  |
| (d)                | 0.914 (Must be the same as (c) or awrt 0.914)                                                                                    | B1f.t. $( r  < 1)$            |  |
|                    | e.g. linear transformation, coding does not affect coefficient (or recalculate)                                                  | dB1 (2)                       |  |
| (e)                | 0.914 suggests longer spent shopping the more spent. (Idea more time, more spent)                                                | B1                            |  |
|                    | 0.178 different amounts spent for same time.                                                                                     | B1 (2)                        |  |
| (f)                | e.g. might spend short time buying 1 expensive item <u>OR</u> might spend a long time                                            |                               |  |
|                    | checking for bargains, talking, buying lots of cheap items.                                                                      | B1g (1)                       |  |
|                    |                                                                                                                                  | 15 marks                      |  |
| (b)                | M1 for one correct formula seen, f.t. their $\sum t$ , $\sum m$ [Use 1 <sup>st</sup> A1 for 1 correct, 2                         | 2 <sup>nd</sup> A1 for 2 etc] |  |
| (c)                | M1 for attempt at correct formula, $\frac{2485}{\sqrt{2101 \times 5478}}$ scores M1A0A0                                          |                               |  |
|                    | A1ft f.t. their values for $S_{tt}$ etc from (b) but don't give for $S_{tt} = 5478$ etc (see about 1)                            | oove)                         |  |
|                    | Answer only (awrt 0.914) scores 3/3, 0.913 (i.e. truncation) can score M1A1ft by i                                               | mplication.                   |  |
| (d)                | $2^{\text{nd}}$ B1 dependent on $1^{\text{st}}$ B1 Accept $\sum m = 261, \sum m^2 = 8541, \sum tm = 6725 \rightarrow 0.9$        | 14                            |  |
| (e)                | One mark for a sensible comment relating to each coefficient                                                                     |                               |  |
|                    | For 0.178 allow "little or no link between time and amount spent". Must be                                                       | e in context.                 |  |
|                    | Just saying 0.914 is strong +ve correlation between amount spent and time shopping and                                           |                               |  |
|                    | 0.178 is weak correlationscores B0B0.                                                                                            |                               |  |
| (f)                | B1g for a sensible, practical suggestion showing that other factors might affect t                                               | the amount spent.             |  |
|                    | E.g. different day (weekend vs weekday) or time of day (time spent queuin                                                        | g if busy)                    |  |

| Question<br>number | Scheme                                                                                                                                 | Marks           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 2. (a)             | 0.03 - D  (0.0105) Correct tree shape                                                                                                  | M1              |
|                    | $0.35$ $\overline{D}$ $A$ , $B$ and $C$ and $0.35$ and $0.25$ $0.06$ $D$ $(0.015)$                                                     | A1              |
|                    | O.25 B $D(x3)$ and $0.03, 0.06, 0.05$                                                                                                  | A1 (3)          |
|                    | $\bar{D}$ (May be implied by seeing                                                                                                    |                 |
|                    | 0.05 $D$ (0.02) $P(A \cap D)$ etc at the ends)                                                                                         |                 |
|                    | C                                                                                                                                      |                 |
|                    | $ar{D}$                                                                                                                                |                 |
| (b)(i)             | $P(A \cap D) = 0.35 \times 0.03$ , $= \underline{0.0105}$ or $\frac{21}{2000}$                                                         | M1, A1          |
|                    | P(C) = 0.4 (anywhere)                                                                                                                  | B1              |
| (ii)               | $P(D) = (i) + 0.25x \ 0.06 + (0.4x0.05)$                                                                                               | M1              |
|                    | $= 0.0455$ or $\frac{91}{2000}$                                                                                                        | A1 (5)          |
| (c)                | $P(C D) = \frac{P(C \cap D)}{P(D)}, = \frac{0.4 \times 0.05}{\text{(ii)}}$                                                             | M1, A1ft        |
|                    | = 0.43956 or $\frac{40}{91}$                                                                                                           | A1 (3)          |
|                    | [Correct answers only score full marks in each part]                                                                                   | 11 marks        |
| (a)                | M1 for tree diagram, 3 branches and then two from each. At least one probabili                                                         | ty attempted.   |
| (b)                | 1 <sup>st</sup> M1 for 0.35x0.03. Allow for equivalent from their tree diagram.                                                        |                 |
|                    | B1 for $P(C) = 0.4$ , can be in correct place on tree diagram or implied by $0.4 \times 0.00$                                          |                 |
|                    | 2 <sup>nd</sup> M1 for all 3 cases attempted and <u>some</u> correct probabilities seen, including +. C                                |                 |
|                    | Condone poor use of notation if correct calculations seen. E.g. $P(C D)$ for                                                           |                 |
| (c)                | M1 for attempting correct ratio of probabilities. There must be an attempt to sul                                                      |                 |
|                    | values in a correct formula. If no correct formula and ration not correct ft so                                                        | core MU.        |
|                    | Writing $P(D C)$ and attempting to find this is M0.<br>Writing $P(D C)$ but calculating correct ratio – ignore notation and mark ratio | og.             |
|                    | A1ft must have their $0.4 \times 0.05$ divided by their (ii).                                                                          | Jo.             |
|                    | If ratio is incorrect ft $(0/3)$ unless correct formula seen and part of ratio is co                                                   | orrect then M1. |
|                    |                                                                                                                                        |                 |

| Question<br>number | Scheme                                                                                                                                              | Marks                           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 3. (a)             | N.B. Part (a) doesn't have to be in a table, could be a list $P(X = 1) =$ etc $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | B1, B1, B1                      |
|                    | 0.0278, 0.0833, 0.139, 0.194, 0.25, 0.306 (Accept awrt 3 s.f)                                                                                       | (3)                             |
| (b)                | $P(3) + P(4) + P(5) = \frac{21}{36} \text{ or } \frac{7}{12} \text{ or awrt } 0.583$                                                                | M1, A1 (2)                      |
| (c)                | $E(X) = \frac{1}{36} + 2 \times \frac{3}{36} + \dots, = \frac{161}{36}$ or $4.47\dot{2}$ or $4\frac{17}{36}$                                        | M1, A1 (2)                      |
| (d)                | $E(X^2) = \frac{1}{36} + 2^2 \times \frac{3}{36} + \dots, = \frac{791}{36}$ or full expression or $21\frac{35}{36}$ or awrt 21.97                   | M1, A1                          |
|                    | $Var(X) = \frac{791}{36} - \left(\frac{161}{36}\right)^2$ , = <b>1.9714</b> *                                                                       | M1, A1c.s.o. (4)                |
| (e)                | $Var(2-3X) = 9 \times 1.97 \text{ or } (-3)^2 \times 1.97, = 17.73$ awrt <u>17.7</u> or $\frac{2555}{144}$                                          |                                 |
| (a)                | 1 <sup>st</sup> B1 for $x = 1, 6$ and at least one correct probability N.B. $\frac{3}{36} = \frac{1}{12}$ and $\frac{9}{36} = \frac{1}{4}$          | 13 marks                        |
| (4)                | 2 <sup>nd</sup> B1 for at least 3 correct probabilities                                                                                             |                                 |
|                    | 3 <sup>rd</sup> B1 for a fully correct probability distribution.                                                                                    |                                 |
| (b)                | M1 for attempt to add the correct three probabilities, ft their probability distribu                                                                | ution                           |
| (c)                | M1 for a correct attempt at $E(X)$ . Minimum is as printed. Exact answer only so                                                                    |                                 |
|                    | [Division by 6 at any point scores M0, no ISW. Non-exact answers with no worki                                                                      |                                 |
| (d)                | 1 <sup>st</sup> M1 for a correct attempt at $E(X^2)$ . Minimum as printed. $\frac{791}{36}$ or awrt 21.97 so                                        | cores M1A1.                     |
|                    | $2^{\text{nd}} \text{ M1 for their } E(X^2) - \left(\text{their } E(X)\right)^2$ .                                                                  |                                 |
|                    | $2^{\text{nd}}$ A1 cso needs awrt 1.97 and $\frac{791}{36} - \left(\frac{161}{36}\right)^2$ or $\frac{2555}{1296}$ or any fully correct expression. | ssion seen.                     |
|                    | Can accept <u>at least 4 sf</u> for both. i.e. 21.97 for $\frac{791}{36}$ , 4.472 for $\frac{161}{36}$ , 20.00 for $\left(\frac{163}{36}\right)$    | $\left(\frac{61}{6}\right)^2$ . |
| (e)                | M1 for correct use of $Var(aX + b)$ formula or a <u>full</u> method.                                                                                |                                 |
|                    | NB $-3^2 \times 1.97$ followed by awrt 17.7 scores M1A1 <u>BUT</u> $-3^2 \times 1.97$ alone, or f                                                   | followed by                     |
|                    | – 17.7, scores M0A0.                                                                                                                                |                                 |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                 | Mar           | rks                 |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|
| 4. (a)             | Positive skew (both bits)                                                                                                                                                                                                                                                                                              | B1            | (1)                 |
| (b)                | $19.5 + \frac{(60-29)}{43} \times 10$ , = 26.7093 awrt <u>26.7</u>                                                                                                                                                                                                                                                     | M1, A1        | (2)                 |
|                    | (N.B. Use of 60.5 gives 26.825 so allow awrt 26.8)                                                                                                                                                                                                                                                                     |               |                     |
| (c)                | $\mu = \frac{3550}{120} = 29.5833$ or $29\frac{7}{12}$ awrt <b>29.6</b>                                                                                                                                                                                                                                                | B1            |                     |
|                    | $\sigma^2 = \frac{138020}{120} - \mu^2$ or $\sigma = \sqrt{\frac{138020}{120} - \mu^2}$                                                                                                                                                                                                                                | M1            |                     |
|                    | $\sigma = 16.5829$ or $(s = 16.652)$ awrt <u>16.6</u> (or $s = 16.7$ )                                                                                                                                                                                                                                                 | A1            | (3)                 |
| (d)                | $\frac{3(29.6-26.7)}{16.6}$ = 0.52 awrt <u>0.520</u> (or with s awrt 0.518)                                                                                                                                                                                                                                            | M1A1ft        |                     |
|                    | = 0.52 awrt $\underline{0.520}$ (or with s awrt 0.518)<br>(N.B. 60.5 in (b)awrt 0.499[or with s awrt 0.497])                                                                                                                                                                                                           | A1            | (3)                 |
| (e)                | 0.520 > 0 correct statement about their (d) being >0 or < 0 ft their (d)                                                                                                                                                                                                                                               | B1ft<br>dB1ft | (2)                 |
| (f)                | Use Median Since the data is skewed or less affected by outliers/extreme values                                                                                                                                                                                                                                        | B1<br>dB1     | (2)                 |
| (g)                | If the data are <u>symmetrical</u> or <u>skewness is zero</u> or <u>normal/uniform distribution</u> ("mean =median" or "no outliers" or "evenly distributed" all score B0)                                                                                                                                             | B1 14         | (1)<br>marks        |
| (b)                | M1 for $(19.5 \text{ or } 20) + \frac{(60-29)}{43} \times 10$ or better. Allow 60.5 giving awrt 26.8 for                                                                                                                                                                                                               | M1A1          |                     |
|                    | Allow their $0.5n$ [or $0.5(n+1)$ ] instead of 60 [or 60.5] for M1.                                                                                                                                                                                                                                                    |               |                     |
| (c)                | M1 for a correct expression for $\sigma$ , $\sigma^2$ , $s$ or $s^2$ . NB $\sigma^2 = 274.99$ and $s^2 = 277.30$ Condone poor notation if answer is awrt16.6 (or 16.7 for $s$ )                                                                                                                                        | )             |                     |
| (d)                | M1 for attempt to use this formula using their values to any accuracy. Condone 1 <sup>st</sup> A1ft for using their values to at least 3sf. Must have the 3.  2 <sup>nd</sup> A1 for using accurate enough values to get awrt 0.520 (or 0.518 if using s)  NB Using only 3 sf gives 0.524 and scores M1A1A0            | missing 3     |                     |
| (e)                | <ul> <li>1<sup>st</sup> B1 for saying or implying correct sign for their (d). B1g and B1ft. Ignore "co</li> <li>2<sup>nd</sup> B1 for a comment about consistency with their (d) and (a) being positive skew This is dependent on 1<sup>st</sup> B1: so if (d)&gt;0, they say yes, if (d)&lt;0 they say no.</li> </ul> | rrelation" i  | if seen.<br>l) only |
| (f)                | 2 <sup>nd</sup> B1 is dependent upon choosing median.                                                                                                                                                                                                                                                                  |               |                     |

| Question<br>number | Scheme                                                                                                                                | Mark                | (S       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|
| 5. (a)             | Time is a <u>continuous</u> variable <u>or</u> data is in a <u>grouped</u> frequency table                                            | B1                  | (1)      |
| (b)                | Area is proportional to frequency $\underline{or}  A \propto f  \text{or } A = kf$                                                    | B1                  | (1)      |
| (c)                | $3.6 \times 2 = 0.8 \times 9$                                                                                                         | M1<br>dM1           |          |
|                    | 1 child represented by 0.8                                                                                                            | A1 cso              | (3)      |
| (d)                | $(Total) = \frac{24}{0.8}, = \underline{30}$                                                                                          | M1, A1              | (2)      |
|                    |                                                                                                                                       | 7 m                 | arks     |
| (b)                | 1 <sup>st</sup> B1 for one of these correct statements.  "Area proportional to frequency density" or "Area = frequency" is B0         |                     |          |
| (c)                | 1 <sup>st</sup> M1 for a correct combination of any 2 of the 4 numbers: 3.6, 2, 0.8 and 9                                             |                     |          |
|                    | e.g. $3.6 \times 2$ or $\frac{3.6}{0.8}$ or $\frac{0.8}{2}$ etc BUT e.g. $\frac{3.6}{2}$ is M0                                        |                     |          |
|                    | 2 <sup>nd</sup> M1 dependent on 1 <sup>st</sup> M1 and for a correct combination of 3 numbers leading t                               | o 4 <sup>th</sup> . |          |
|                    | May be in separate stages but must see all 4 numbers  Alcso for fully correct solution. Both Ms scored, no false working seen and com | ment require        | -d       |
|                    | Treso for fairy correct solution. Both this scored, no faise working seen and com                                                     | ment require        | <u> </u> |
| (d)                | M1 for $\frac{24}{0.8}$ seen or implied.                                                                                              |                     |          |
|                    |                                                                                                                                       |                     |          |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                         |                     | Marks                     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|
| 6. (a)             | Used to simplify <u>or</u> represent a real world problem Cheaper <u>or</u> quicker <u>or</u> easier (than the real situation) <u>or</u> more ea To improve understanding of the real world problem Used to predict outcomes from a real world problem (idea of pr                             | •                   | (any two lines) B1 B1 (2) |
| (b)                | (3 or 4) Model used to make predictions. (Idea of predictions on the model)                                                                                                                                                                                                                    |                     | B1                        |
|                    | (4 or 3) (Experimental) data collected                                                                                                                                                                                                                                                         | aci)                | B1                        |
|                    | (7) Model is refined.                                                                                                                                                                                                                                                                          |                     | B1 (3)<br>5 marks         |
| (a)                | 1 <sup>st</sup> B1 For one line 2 <sup>nd</sup> B1 For a second line Be generous for 1 <sup>st</sup> B1 but stricter for B1B1                                                                                                                                                                  |                     |                           |
| (b)                | 1 <sup>st</sup> & 2 <sup>nd</sup> B1 These two points can be interchanged.  Idea of values from (experimental) data and pred  1 <sup>st</sup> B1 for predicted values from model e.g. "model used to gain  2 <sup>nd</sup> B1 for data collected. Idea of experimental data but "experimental" | in suitable data"   |                           |
|                    | 3 <sup>rd</sup> B1 This should be stage 7. Idea of refinement or re                                                                                                                                                                                                                            | vision or adjustmen | t                         |
|                    |                                                                                                                                                                                                                                                                                                |                     |                           |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks                       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 7. (a)             | $P(X < 91) = P(Z < \frac{91 - 100}{15})$ Attempt standardisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1                          |
|                    | = P(Z < -0.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1                          |
|                    | = 1 - 0.7257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1                          |
|                    | = 0.2743 awrt <u>0.274</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 (4)                      |
| (b)                | 1 - 0.2090 = 0.7910 		 0.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1                          |
|                    | P(X > 100+k) = 0.2090 or $P(X < 100+k) = 0.7910$ (May be implied)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                          |
|                    | Use of tables to get $z = 0.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                          |
|                    | $\frac{100 + k - 100}{15}$ ,=0.81 (ft their $z = 0.81$ , but must be $z$ not prob.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1, A1ft                    |
|                    | $\underline{k=12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1 cao (6)                  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 marks                    |
| (a)                | $1^{\text{st}}$ M1 for attempting standardisation. $\pm \frac{(91-\mu)}{\sigma \text{ or } \sigma^2}$ . Can use of 109 instead of 91.Us $1^{\text{st}}$ A1 for $-0.6$ (or $+0.6$ if using 109) $2^{\text{nd}}$ M1 for $1-$ probability from tables. Probability should be $>0.5$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e of 90.5 etc is M0         |
| (b)                | 1 <sup>st</sup> B1 for 0.791 seen or implied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                    | $1^{\text{st}}$ M1 for a correct probability statement, but must use X or Z correctly. Shown of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on diagram is OK            |
|                    | 2 <sup>nd</sup> B1 for awrt 0.81 seen (or implied by correct answer - see below) (Calculator g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ives 0.80989)               |
|                    | $2^{\text{nd}}$ M1 for attempting to standardise e.g. $\frac{100+k-100}{15}$ or $\frac{k}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|                    | $\frac{X-100}{15}$ scores 2 <sup>nd</sup> M0 until the 100+ k is substituted to give k, but may imply 1 <sup>st</sup> M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 if <i>k</i> = 112.15 seen |
|                    | $1^{\text{st}}$ A1ft for correct equation for $k$ (as written or better). Can be implied by $k = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.15 (or better)            |
|                    | $2^{\text{nd}} \text{ A1}$ for $k = 12$ only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                    | Answers only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|                    | k = 112 or 112.15 or better scores 3/6 (on EPEN give first 3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|                    | k = 12.15 or better (calculator gives 12.148438) scores 5/6 (i.e loses last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1 only)                    |
|                    | k = 12 (no incorrect working seen) scores 6/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| NB                 | Using 0.7910 instead of 0.81 gives 11.865 which might be rounded to 12. This shapes the state of | nould score no              |
|                    | more than B1M1B0M1A0A0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |



### Mark Scheme (Results) Summer 2007

**GCE** 

**GCE Mathematics** 

Statistics S1 (6681)



### June 2007 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                          | Marks                       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1. (a)             | $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{-808.917}{\sqrt{113573 \times 8.657}}$                                                                                                                                          | M1                          |
|                    | = -0.81579                                                                                                                                                                                                                      | A1 (2)                      |
| (b)                | Houses are <u>cheaper</u> further away from the station or equivalent statement <b>B1</b>                                                                                                                                       | (1)                         |
| (c)                | -0.816                                                                                                                                                                                                                          | B1∫<br>(1)<br>Total 4 marks |
| Notes:             |                                                                                                                                                                                                                                 |                             |
| 1(a)               | M1 for knowing formula and clear attempt to sub in correct values from question. Root required for method. Anything that rounds to -0.82 for A1. Correct answer with no working award 2/2                                       |                             |
| (b)                | Context based on negative correlation only required.  Accept <u>Houses</u> are <u>more expensive</u> closer to the <u>station</u> or equivalent statement.  Require 'house prices' or 'station' and a clear correct comparison. |                             |
| (c)                | Accept anything that rounds to -0.82 or 'the same' or 'unchanged' or equivalent. Award B1 if value quoted same as answer to (a).                                                                                                |                             |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                            | Marks         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 2(a)               | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                     | B1            |
| (b)                | 54                                                                                                                                                                                                                                                                                                                                                                | B1 (1)        |
| (c)                | + is an 'outlier' or 'extreme value' Any heavy musical instrument or a statement that the instrument is heavy  B1                                                                                                                                                                                                                                                 | B1 (1)        |
| (d)                | $Q_3 - Q_2 = Q_2 - Q_1$<br>so symmetrical or no skew Dependent – only award if B1 ab                                                                                                                                                                                                                                                                              |               |
| (e)                |                                                                                                                                                                                                                                                                                                                                                                   | B1 (2) ram M1 |
|                    | $\frac{54-45}{\sigma} = 0.67$                                                                                                                                                                                                                                                                                                                                     | M1B1          |
|                    | $\sigma = 13.43$                                                                                                                                                                                                                                                                                                                                                  | A1 (4)        |
|                    | Т                                                                                                                                                                                                                                                                                                                                                                 | otal 10 marks |
| Notes 2(a)         | Accept 50% or half or 0.5. Units not required.  Correct answer only. Units not required.                                                                                                                                                                                                                                                                          |               |
| (c)                | 'Anomaly' only award B0 Accept '85kg was heaviest instrument on the trip' or equivalent for second B1. Examples of common acceptable instruments; double bass, cello, harp, piano, drums, tuba Examples of common unacceptable instruments: violin, viola, trombone, trumpet, french h                                                                            |               |
| (d)                | 'Quartiles equidistant from median' or equivalent award B1 then symmetrical or no skew for B1 Alternative:  'Positive tail is longer than negative tail' or 'median closer to lowest value' or equivalent so slight positive skew.  B0 for 'evenly' etc. instead of 'symmetrical'  B0 for 'normal' only                                                           |               |
| (e)                | Please note that B mark appears first on ePEN First line might be missing so first M1 can be implied by second. Second M1 for standardising with sigma and equating to z value NB Using 0.7734 should not be awarded second M1 Anything which rounds to 0.67 for B1. Accept 0.675 if to 3sf obtained by interpolation Anything that rounds to 13.3 – 13.4 for A1. |               |

| 3(a)   | Use overlay                                                                                                                                                                      | B2 (2)                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| (b)    | $S_{xy} = 28750 - \frac{315 \times 620}{8} = 4337.5$ **answer given** so award for method                                                                                        | M1                             |
|        | $S_{xx} = 15225 - \frac{315^2}{8} = 2821.875$                                                                                                                                    | M1A1                           |
| (c)    | $b = \frac{4377.5}{S_{xx}}, = 1.537 = 1.5$                                                                                                                                       | (3)<br>M1,A1                   |
|        | $a = \overline{y} - b\overline{x} = \frac{620}{8} - b\frac{315}{8} = 16.97 = 17.0$                                                                                               | M1,A1                          |
| (d)    | Use overlay                                                                                                                                                                      | B1 (4)<br>B1                   |
| (e)    | Brand D, since a long way above / from the line dependent upon 'Brand D' above Using line: $y = 17 + 35 \times 1.5 = 69.5$                                                       | (2)<br>B1<br>B1<br>M1A1<br>(4) |
|        | 7                                                                                                                                                                                | otal 15 marks                  |
| Notes: |                                                                                                                                                                                  |                                |
| 3(a)   | Points B2, within 1 small square of correct point, subtract 1 mark each error minimum 0.                                                                                         |                                |
| (b)    | Anything that rounds to 2820 for A1                                                                                                                                              |                                |
| (c)    | Anything that rounds to 1.5 and 17.0 (accept 17)                                                                                                                                 |                                |
| (d)    | Follow through for the intercept for first B1 Correct slope of straight line for second B1.                                                                                      |                                |
| (e)    | Anything that rounds to 69p-71p for final A1. Reading from graph is acceptable for M1A1. If value read from graph at $x = 35$ is answer given but out of range, then award M1A0. |                                |
|        |                                                                                                                                                                                  |                                |
|        |                                                                                                                                                                                  |                                |

| 4(a)   | $P(Q \cup T) = 0.6$ $P(Q) + P(T) - P(Q \cap T) = 0.6$ $P(Q \cap T) = 0.1$                                                                                                                                                                                                                                                 | B1<br>M1<br>A1<br>(3)     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| (b)    | Q 0.15                                                                                                                                                                                                                                                                                                                    | M1<br>A1∫                 |
| (c)    | $P(Q \cap T' Q \cup T) = \frac{0.15}{0.60} = \frac{1}{4}$ or 0.25 or 25%                                                                                                                                                                                                                                                  | M1A1∫A1 (3) Total 9 marks |
| Notes: |                                                                                                                                                                                                                                                                                                                           |                           |
| 4(a)   | B1 for 0.6<br>M1 for use of $P(Q) + P(T) - P(Q \cap T) = P(Q \cup T)$<br>0.1 Correct answer only for A1<br>Alternative:<br>(25+45+40=)110% B1<br>110-100=10% M1A1<br>0.1 stated clearly as the final answer with no working gets 3/3                                                                                      |                           |
| (b)    | Two intersecting closed curves for M1, no box required. At least one label (Q or T) required for first A1. Follow through (0.25-'their 0.1') and (0.45-'their 0.1') for A1. 0.4 and box required, correct answer only for B1 Using %, whole numbers in Venn diagram without % sign, whole numbers in correct ratio all OK |                           |
| (c)    | Require fraction with denominator 0.6 or their equivalent from Venn diagram for M1 Follow through their values in fraction for A1 Final A1 is correct answer only.  No working no marks.                                                                                                                                  |                           |

| <b>5</b> (a) | 18-25 group, area=7x5=35<br>25-40 group, area=15x1=15                                                                                                                                                                                  | B1<br>B1<br>(2)                           |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| (b)          | (25-20)x5+(40-25)x1=40                                                                                                                                                                                                                 | M1A1 (2)                                  |
| (c)          | Mid points are 7.5, 12, 16, 21.5, 32.5 $\sum f = 100$                                                                                                                                                                                  | M1<br>B1                                  |
|              | $\frac{\sum ft}{\sum f} = \frac{1891}{100} = 18.91$                                                                                                                                                                                    | M1A1                                      |
| (d)          | $\sigma_t = \sqrt{\frac{41033}{100} - \overline{t}^2} \qquad \qquad \sqrt{\frac{n}{n-1} \left(\frac{41033}{100} - \overline{t}^2\right)} \text{ alternative OK}$                                                                       | (4)<br>M1                                 |
|              | $\sigma_t = \sqrt{52.74} = 7.26$                                                                                                                                                                                                       | M1<br>A1                                  |
| (e)          | $Q_2 = 18$ or 18.1 if (n+1) used                                                                                                                                                                                                       | B1 (3)                                    |
|              | $Q_1 = 10 + \frac{15}{16} \times 4 = 13.75$ or 15.25 numerator gives 13.8125                                                                                                                                                           | M1A1                                      |
|              | $Q_3 = 18 + \frac{25}{35} \times 7 = 23$ or 25.75 numerator gives 23.15                                                                                                                                                                | A1                                        |
| (f)          | 0.376 Positive skew                                                                                                                                                                                                                    | (4)<br>B1<br>B1∫<br>(2)<br>Total 17 marks |
| Notes:       |                                                                                                                                                                                                                                        |                                           |
| 5(b)         | 5x5 is enough evidence of method for M1. Condone 19.5, 20.5 instead of 20 etc. Award 2 if 40 seen.                                                                                                                                     |                                           |
| (c)          | Look for working for this question in part (d) too. Use of some mid-points, at least 3 correct for M1. These may be tabulated in (d).                                                                                                  |                                           |
|              | Their $\frac{\sum ft}{\sum f}$ for M1 and anything that rounds to 18.9 for A1.                                                                                                                                                         |                                           |
|              |                                                                                                                                                                                                                                        |                                           |
| (d)          |                                                                                                                                                                                                                                        |                                           |
| (d)          | Clear attempt at $\frac{41033}{100} - \bar{t}^2$ or $\frac{n}{n-1} \left( \frac{41033}{100} - \bar{t}^2 \right)$ alternative for first M1.  They may use their $\bar{t}$ and gain the method mark.  Square root of above for second M1 |                                           |
| (d)<br>(e)   | Clear attempt at $\frac{41033}{100} - \overline{t}^2$ or $\frac{n}{n-1} \left( \frac{41033}{100} - \overline{t}^2 \right)$ alternative for first M1. They may use their $\overline{t}$ and gain the method mark.                       |                                           |

| 6(a) (b) | $P(X > 25) = P\left(Z > \frac{25 - 20}{4}\right)$ $= P(Z > 1.25)$ $= 1 - 0.8944$ $= 0.1056$ $P(X < 20) = 0.5 \text{ so } P(X < d) = 0.5 + 0.4641 = 0.9641$ $P(Z < z) = 0.9641, z = 1.80$ $\frac{d - 20}{4} = 1.80$ $d = 27.2$ | M1  M1  A1  (3)  B1  B1  M1  A1  (4)  Total 7 marks |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Notes:   |                                                                                                                                                                                                                               |                                                     |
| (a)      | Standardise with 20 and 4 for M1, allow numerator 20-25 1- probability for second M1 Anything that rounds to 0.106 for A1. Correct answer with no working award 3/3                                                           |                                                     |
| (b)      | 0.9641 seen or implied by 1.80 for B1 1.80 seen for B1 Standardise with 20 and 4 and equate to z value for M1 Z=0.8315 is M0 Anything that rounds to 27.2 for final A1. Correct answer with no working 4/4                    |                                                     |

| 7(a)       | p+q=0.45  .                                                                                                     | B1             |
|------------|-----------------------------------------------------------------------------------------------------------------|----------------|
|            | $\sum x P(X = x) = 4.5$                                                                                         | M1             |
|            | $\overline{3p} + 7q = 1.95$                                                                                     | A1             |
| 4)         |                                                                                                                 | (3)            |
| (b)        | Attempt to solve equations in (a) $q = 0.15$                                                                    | M1<br>A1       |
|            | p = 0.30                                                                                                        | A1             |
|            | 1                                                                                                               | (3)            |
| (c)        | P(4 < X < 7) = P(5) + P(7)                                                                                      | M1             |
|            | =0.2+q=0.35                                                                                                     | A1)            |
| <b>(1)</b> | V (V) P(V) [P(V)] 27.4 4.7                                                                                      | (2)            |
| (d)        | $Var(X) = E(X^2) - [E(X)]^2 = 27.4 - 4.5^2$<br>= 7.15                                                           | M1             |
|            | = 7.15                                                                                                          | A1 (2)         |
| (e)        | $E(19-4X) = 19-4\times4.5 = 1$                                                                                  | B1 (-)         |
|            | 71 (40 AV) 4671 (YD                                                                                             | (1)            |
| (f)        | Var(19-4X) = 16Var(X)                                                                                           | M1             |
|            | $=16\times7.15=114.4$                                                                                           | A1 (2)         |
|            |                                                                                                                 | Total 13 marks |
| Notes:     |                                                                                                                 |                |
| 7(a)       | 0.55 + p + q = 1 award B1. Not seen award B0.                                                                   |                |
| (-)        | 0.2 + 3p + 1 + 7q + 1.35 = 4.5 or equivalent award M1A1                                                         |                |
|            | 3p + 7q + k = 4.5 award M1.                                                                                     |                |
| (b)        | Attempt to solve must involve 2 linear equations in 2 unknowns                                                  |                |
|            | Correct answers only for accuracy.                                                                              |                |
|            | Correct answers with no working award 3/3                                                                       |                |
| (c)        | Follow through accuracy mark for their $q$ , $0 < q < 0.8$                                                      |                |
| (d)        | Attempt to substitute given values only into correct formula for M1.                                            |                |
| (u)        | 7.15 only for A1                                                                                                |                |
|            | 7.15 seen award 2/2                                                                                             |                |
| (f)        | Accept 'invisible brackets' i.e. $-4^2$ Var $(X)$ provided answer positive. Anything that rounds to 114 for A1. |                |
|            |                                                                                                                 |                |
|            |                                                                                                                 |                |
|            |                                                                                                                 |                |
|            |                                                                                                                 |                |
|            |                                                                                                                 |                |
|            |                                                                                                                 |                |



# Mark Scheme (Results) January 2008

**GCE** 

GCE Mathematics (6683/01)

### January 2008 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1.<br>(a)          | $r = \frac{10 \times 56076 - 773 \times 724}{\sqrt{(10 \times 60475 - 773^2)(10 \times 53122 - 724^2)}}$ o.e.                                                                                                                                                                                                                                                                                                                             | B1, B1<br>M1 A1ft                |
| (b)                | r = 0.155357  Both weak correlation  Neither score is a good indication of future performance  Interview test is slightly better since correlation is positive                                                                                                                                                                                                                                                                            | A1 (5) B1g B1h (2) Total 7 marks |
| NB                 | $S_{xx} = 60475 - \frac{(773)^2}{10} = 722.1,  S_{yy} = 53122 - \frac{(724)^2}{10} = 704.4,  S_{xy} = 56076 - \frac{773 \times 724}{10} = 110.8$                                                                                                                                                                                                                                                                                          |                                  |
| (a)                | $1^{\text{st}} B1 \text{ for } \sum x \text{ and } 2^{\text{nd}} B1 \text{ for } \sum y \text{ , should be seen or implied.}$                                                                                                                                                                                                                                                                                                             |                                  |
| (b)                | <ul> <li>M1 for at least one correct attempt at one of S<sub>xx</sub>, S<sub>yy</sub> or S<sub>xy</sub> and then using in the correct formula</li> <li>1<sup>st</sup> A1ft for a fully correct expression. (ft their Σx and their Σy) or 3 correct expressions for S<sub>xx</sub>, S<sub>xy</sub>, and S<sub>yy</sub> but possibly incorrect values for these placed correctly in r.</li> <li>2<sup>nd</sup> A1 for awrt 0.155</li> </ul> |                                  |
|                    | If $ r  > 0.5$ they can score B1g in (b) for saying that it (skills test) is not a good guide to performance but B0h since a second acceptable comment about both tests is not possible.  Give B1 for one correct line, B1B1 for any 2.  If the only comment is the test(s) are a good guide: scores B0B0                                                                                                                                 |                                  |
|                    | If the only comment is the tests are not good: scores B1B0 (second line)  The third line is for a comment that suggests that the interview test is OK but the skills test is not since one is positive and the other is negative.                                                                                                                                                                                                         |                                  |
|                    | Treat 1 <sup>st</sup> B1 as B1g and 2 <sup>nd</sup> as B1h  An answer of "no" alone scores B0B0                                                                                                                                                                                                                                                                                                                                           |                                  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 2.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
| (a)                | mean is $\frac{2757}{12}$ , = 229.75 AWRT 230                                                                                                                                                                                                                                                                                                                                                                                         | M1, A1                            |
|                    | sd is $\sqrt{\frac{724961}{12}} - (229.75)^2$ , = 87.34045 AWRT 87.3                                                                                                                                                                                                                                                                                                                                                                  | M1, A1                            |
|                    | [Accept $s = AWRT 91.2$ ]                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| (b)                | Ordered list is: 125, 160, 169, 171, 175, 186, 210, 243, 250, 258, 390, 420 $Q_2 = \frac{1}{2} (186 + 210) = 198$                                                                                                                                                                                                                                                                                                                     | (4)<br>B1                         |
|                    | $Q_1 = \frac{1}{2}(169 + 171) = 170$                                                                                                                                                                                                                                                                                                                                                                                                  | B1                                |
|                    | $Q_3 = \frac{1}{2}(250 + 258) = 254$                                                                                                                                                                                                                                                                                                                                                                                                  | B1                                |
| (c)                | $Q_3 + 1.5(Q_3 - Q_1) = 254 + 1.5(254 - 170), = 380$ Accept AWRT (370-392)<br>Patients $F$ (420) and $B$ (390) are outliers.                                                                                                                                                                                                                                                                                                          | (3)<br>M1, A1<br>B1ft B1ft<br>(4) |
| (d)                | $\frac{Q_1 - 2Q_2 + Q_3}{Q_3 - Q_1} = \frac{170 - 2 \times 198 + 254}{254 - 170}, = 0.3$ AWRT 0.33                                                                                                                                                                                                                                                                                                                                    | M1, A1                            |
|                    | Positive skew.                                                                                                                                                                                                                                                                                                                                                                                                                        | A1ft                              |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3)<br>Total 14 marks             |
| (a)                | 1 <sup>st</sup> M1 for using $\frac{\sum x}{n}$ with a credible numerator and $n = 12$ .                                                                                                                                                                                                                                                                                                                                              |                                   |
| NB                 | for using a correct formula, root required but can ft their mean Use of $s = \sqrt{8321.84} = 91.22$ is OK for M1A1 here.  Answers only from a calculator in (a) can score full marks                                                                                                                                                                                                                                                 |                                   |
| (b)                | 1 <sup>st</sup> B1 for median= 198 only, 2 <sup>nd</sup> B1 for lower quartile 3 <sup>rd</sup> B1 for upper quartile                                                                                                                                                                                                                                                                                                                  |                                   |
| s.c.               | If all $Q_1$ and $Q_3$ are incorrect but an ordered list (with $\geq 6$ correctly placed) is seen and used then award B0B1 as a special case for these last two marks.                                                                                                                                                                                                                                                                |                                   |
| (c)                | M1 for a clear attempt using their quartiles in given formula, A1 for any value in the range 370 - 392  1 <sup>st</sup> B1ft for any one correct decision about <i>B</i> or <i>F</i> - ft their limit in range (258, 420)  2 <sup>nd</sup> B1ft for correct decision about both <i>F</i> and <i>B</i> - ft their limit in range (258, 420)  If more points are given score B0 here for the second B mark.  ( Can score M0A0B1B1 here) |                                   |
| (d)                | M1 for an attempt to use their figures in the correct formula – must be seen (≥ 2 correct substitutions)  1 <sup>st</sup> A1 for AWRT 0.33  2 <sup>nd</sup> A1ft for positive skew. Follow through their value/sign of skewness.  Ignore any further calculations.  "positive correlation" scores A0                                                                                                                                  |                                   |

| 3. | Width Freq. Density                                                      | 1 1<br>6 7                                                              | 4 2                    | 6               | 3<br>5.5  | 5 2      | 3 1.5    | 12 0.5               | M1                 |
|----|--------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-----------------|-----------|----------|----------|----------------------|--------------------|
|    | Total area is (1×                                                        |                                                                         | ×2)+                   | .,= 70          |           | 0.       | .5 ×12   | or 6                 | A1                 |
|    | $(90.5 - 78.5) \times \frac{1}{2} \times \frac{1}{2}$<br>Number of runne |                                                                         |                        |                 |           | w        | 70 seen  | anywhei              | M1<br>re" B1<br>A1 |
|    |                                                                          |                                                                         |                        |                 |           |          |          |                      | Total 5 marks      |
|    | [Maybe o for $0.5 \times 1$ of the bar                                   | ot at width of to<br>n histogram or<br>2 or 6 (may be<br>above 78.5 - 9 | in table seen or 00.5. | e]<br>n the his | stogram   |          | be relat | ed to the            | e area             |
|    | B1 for 70 see                                                            | oting area of co<br>on anywhere in<br>t answer of 12                    | their w                |                 | r 70      |          |          |                      |                    |
|    | Minimum workin Beware 90.5 - 78                                          |                                                                         |                        |                 |           | 2 should | d come   | from $\frac{14}{70}$ | 0                  |
|    | Common answer                                                            |                                                                         |                        |                 |           | 30A0)    |          |                      |                    |
|    | If unsure send to                                                        | review e.g. 2                                                           | <0.5 ×                 | 12=12 v         | vithout ' | 70 bein  | g seen   |                      |                    |
|    |                                                                          |                                                                         |                        |                 |           |          |          |                      |                    |
|    |                                                                          |                                                                         |                        |                 |           |          |          |                      |                    |
|    |                                                                          |                                                                         |                        |                 |           |          |          |                      |                    |
|    |                                                                          |                                                                         |                        |                 |           |          |          |                      |                    |
|    |                                                                          |                                                                         |                        |                 |           |          |          |                      |                    |
|    |                                                                          |                                                                         |                        |                 |           |          |          |                      |                    |

| 4      | -                                        |                                                             |                                                 |                               | 1          |       |
|--------|------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|-------------------------------|------------|-------|
| 4. (a) | .5 -                                     | $=1818.5 - \frac{41 \times 406}{10}, =153.9$                | (could be seen in (b))                          | AWRT 154                      | M1, A1     |       |
| (a)    |                                          |                                                             | (could be seen in (b))                          | AWKI 134                      | WII, AI    |       |
|        | $S_{xx} =$                               | $=188 - \frac{41^2}{10} = 19.9$                             | (could be seen in (b))                          |                               | A1         |       |
|        |                                          | 153.9                                                       |                                                 |                               |            | (3)   |
| (b)    |                                          | $\frac{153.9}{19.9}$ ,= 7.733668                            |                                                 | AWRT 7.73                     | M1, A1     |       |
|        |                                          | $40.6 - b \times 4.1 (= 8.89796)$ $8.89 + 7.73x$            |                                                 |                               | M1<br>A1   |       |
|        |                                          |                                                             |                                                 |                               |            | (4)   |
| (c)    | A ty                                     | pical car will travel 7700 mile                             | es every year                                   |                               | B1ft       | (1)   |
| (d)    |                                          | $5, y = 8.89 + 7.73 \times 5 (= 47.5 - 4)$                  | 47.6)<br>AWRT 48000                             |                               | M1<br>A1   |       |
|        | 30 11                                    | nileage predicted is                                        | AWKI 46000                                      |                               |            | (2)   |
|        |                                          |                                                             |                                                 |                               | Total 10 m | narks |
|        |                                          | Accept calculation                                          | as for $S_{xx}$ and $S_{xy}$ in (a) or (b)      | )                             |            |       |
| (a)    | M1                                       | for correct attempt or expre                                | ession for either                               |                               |            |       |
| ()     | 1 <sup>st</sup> A1<br>2 <sup>nd</sup> A1 | for one correct                                             |                                                 |                               |            |       |
|        | 2 A1                                     | for both correct                                            |                                                 |                               |            |       |
| (b)    | Ignore                                   | the epen marks for part (b)                                 | they should be awarded as                       | per this scheme               |            |       |
|        | 1 <sup>st</sup> M1                       | for $\frac{\text{their S}_{xy}}{\text{their S}_{xx}}$       |                                                 |                               |            |       |
|        | 1 <sup>st</sup> A1                       | their $S_{xx}$ for AWRT 7.73                                |                                                 |                               |            |       |
|        | $2^{\text{nd}} \text{M1}$                |                                                             | ula for $a$ (minus required). Ft                | their b.                      |            |       |
|        | and A 1                                  |                                                             | but making one slip in sub.eg                   | g. $\overline{y} = 406$ is OK |            |       |
|        | 2 <sup>nd</sup> A1                       | for correct equation with 2 Accept $a = 8.89$ , and $b = 7$ | dp accuracy.<br>.73 even if not written as fina | al equation.                  |            |       |
|        | Correct                                  | answers only (from calc) sc                                 | ore 4/4 if correct to 2dp or 3                  | 3/4 if AWRT 2dp               |            |       |
| (c)    | B1ft                                     | for their $b \times 1000$ to at least                       | 2 sf. Accept "7.7 thousand"                     | but value is neede            | ed         |       |
| (d)    | M1                                       | for substituting $x = 5$ into t                             | heir final answer to (b).                       |                               |            |       |
|        | A1                                       | for AWRT 48000 (Accept                                      | "48 thousands")                                 |                               |            |       |
|        |                                          |                                                             |                                                 |                               |            |       |
|        |                                          |                                                             |                                                 |                               |            |       |
|        |                                          |                                                             |                                                 |                               |            |       |



| 6.<br>(a) | 200 or 200g                                                                                                                                                                                                                                             | B1                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| (b)       | P(190 < X < 210) = 0.6 or $P(X < 210) = 0.8$ or $P(X > 210) = 0.2$ or diagram (Correct use of 0.8 or                                                                                                                                                    | <i>'</i>             |
|           | $Z = (\pm) \frac{210 - 200}{\sigma}$                                                                                                                                                                                                                    | M1                   |
|           | 10                                                                                                                                                                                                                                                      | 3416 <b>B1</b>       |
|           | $\sigma = 11.882129$ AWRT 11                                                                                                                                                                                                                            | .9 <b>A1</b>         |
|           | ( 100 200)                                                                                                                                                                                                                                              | (5)                  |
| (c)       | $P(X < 180) = P\left(Z < \frac{180 - 200}{\sigma}\right)$                                                                                                                                                                                               | M1                   |
|           | = P(Z < -1.6832) $= 1 - 0.9535$ $= 0.0465  or  AWRT  0.046$                                                                                                                                                                                             | M1<br>A1             |
|           | - 0.0403 Of AWKI 0.040                                                                                                                                                                                                                                  | (3)<br>Total 9 marks |
| (a)       | "mean = 200g" is B0 but "median = 200" or just "200" alone is B1                                                                                                                                                                                        |                      |
|           | <b>Standardization in (b) and (c).</b> They must use $\sigma$ not $\sigma^2$ or $\sqrt{\sigma}$ .                                                                                                                                                       |                      |
| (b)       | 1 <sup>st</sup> M1 for a correct probability statement (as given or eg $P(200 < X < 210) = 0.3$ or shaded diagram - must have values on z-axis and probability areas shaded for correct use of 0.8 or $p = 0.2$ . Need a correct probability statement. | *                    |
|           | May be implied by a suitable value for z seen (e.g. $z = 0.84$ )  for attempting to standardise. Values for x and $\mu$ used in formula.  Don't need $z =$ for this M1 nor a z-value, just mark standardization.                                        |                      |
|           | B1 for $z = 0.8416$ (or better) [ $z = 0.84$ usually just loses this mark in (a)] $2^{\text{nd}}$ A1 for AWRT 11.9                                                                                                                                      |                      |
| (c)       | 1 <sup>st</sup> M1 for attempting to Standardise with 200 and their sd(>0) e.g. $(\pm)\frac{180-1}{1}$                                                                                                                                                  | 200                  |
|           | 2 <sup>nd</sup> M1 <b>NB on epen this is an A mark ignore and treat it as 2<sup>nd</sup> M1</b> for 1 – a probability from tables provided compatible with their                                                                                        | 0                    |
|           | probability statement. A1 for 0.0465 or AWRT 0.046 (Dependent on both Ms in part (c))                                                                                                                                                                   |                      |
|           |                                                                                                                                                                                                                                                         |                      |
|           |                                                                                                                                                                                                                                                         |                      |
|           |                                                                                                                                                                                                                                                         |                      |

| 7.(a) | P(R =                                    | $=3\cap B=0)=\frac{1}{4}$                                                  | $\times \frac{1}{4}, = \frac{1}{16}$                             |                                       |                                         |                    |                                                       | M1, A1         | (2)            |
|-------|------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|-----------------------------------------|--------------------|-------------------------------------------------------|----------------|----------------|
| (b)   |                                          | 3                                                                          | 0                                                                | 3                                     | 6                                       | 9                  |                                                       |                |                |
|       |                                          | 2                                                                          | 0                                                                | 2                                     | 4                                       | 6                  |                                                       |                |                |
|       |                                          | 1                                                                          | 0                                                                | 1                                     | 2                                       | 3                  | All 0s<br>All 1,2,3s<br>All 4,6,9s                    | B1<br>B1<br>B1 |                |
|       |                                          | 0                                                                          | 0                                                                | 0                                     | 0                                       | 0                  |                                                       |                | (3)            |
|       |                                          | В                                                                          | R 0                                                              | 1                                     | 2                                       | 3                  |                                                       |                |                |
| (c)   | $a = \frac{7}{16}$                       | $\frac{1}{6}, b = c = d = \frac{1}{16}$                                    | 5                                                                |                                       |                                         |                    |                                                       | B1, B1         | B1             |
| (d)   | E( <i>T</i> )                            | $=\left(1\times\frac{1}{16}\right)+\left($                                 | $2 \times \frac{1}{8} + 3$                                       | $\times \frac{1}{8} + \left(4\right)$ | $4 \times \frac{1}{16} + .$             |                    |                                                       | M1             | (3)            |
|       |                                          | $=2\frac{1}{4}$ or exact                                                   | et equivalen                                                     | t e.g. 2.25                           | $\frac{9}{4}$                           |                    |                                                       | A1             | (2)            |
| (e)   | Var(7                                    | $T = \left(1^2 \times \frac{1}{16}\right) + \left(1 + \frac{1}{16}\right)$ | $\left(2^2 \times \frac{1}{8}\right) + \left(\frac{1}{8}\right)$ | $\left(3^2 \times \frac{1}{8}\right)$ | $-\left(4^2 \times \frac{1}{16}\right)$ | +,                 | $\left(\frac{9}{4}\right)^2$                          | M1A1,          | (2)<br>M1      |
|       |                                          | $=\frac{49}{4} - \frac{81}{16} = 7$                                        | $\frac{3}{16}$ or $\frac{11}{16}$                                | $\frac{5}{6}$ (o.e                    | e.)                                     |                    | AWRT 7.19                                             | A1 Total 14    | (4)<br>marks   |
| (a)   | M1                                       | for $\frac{1}{4} \times \frac{1}{4}$                                       |                                                                  |                                       |                                         |                    |                                                       |                |                |
| (c)   | 1 <sup>st</sup> B1<br>2 <sup>nd</sup> B1 | for $\frac{7}{16}$ ,                                                       | ror in <i>b, c,</i> (                                            | d(b=c=                                | $=d\neq \frac{1}{16}$ of                | or $b = c =$       | $\frac{1}{16} \neq d$ etc), 3 <sup>rd</sup> B1 all of | b, c, d =      | $\frac{1}{16}$ |
| (d)   | M1                                       | for attempting                                                             | $\sum t \mathbf{P}(T = t$                                        | t), 3 or m                            | ore terms                               | correct or         | correct ft. Must Attemp                               |                | ~              |
| (e)   | 1 <sup>st</sup> M1                       | for attempt at 1                                                           | $E(T^2)$ , 3 or                                                  | more terr                             | ns correct                              | or correct         |                                                       |                |                |
|       | 1 <sup>st</sup> A1                       | for $\frac{49}{4}$ (o.e.) or                                               | r a fully cor                                                    | rect expre                            | ession (all                             | non-zero           | terms must be seen)                                   |                |                |
|       | 2 <sup>nd</sup> M1                       | -                                                                          |                                                                  |                                       |                                         |                    | square $-\frac{9}{4}$ is M0 but $-\frac{9}{10}$       | could be       | M1             |
|       | 2 <sup>nd</sup> A1                       | for correct frac<br>Full marks can                                         |                                                                  |                                       | and (e) if                              | <i>a</i> is incorr | rect                                                  |                |                |



## Mark Scheme (Results) June 2008

**GCE** 

GCE Mathematics (6683/01)

#### June 2008 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                    | Marks         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Q1<br>(a)          | 0.95 Positive Test                                                                                                                                                                                                                                                                                                                                                                                        |               |
|                    | 0.02 Disease (0.05) Negative Test                                                                                                                                                                                                                                                                                                                                                                         |               |
|                    | (0.98) No Disease O.03 Positive Test                                                                                                                                                                                                                                                                                                                                                                      |               |
|                    | (0.97) Negative Test                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                    | Tree without probabilities or labels 0.02(Disease), 0.95(Positive) on correct branches                                                                                                                                                                                                                                                                                                                    | M1<br>A1      |
|                    | 0.03(Positive) on correct branch.                                                                                                                                                                                                                                                                                                                                                                         |               |
| (b)                | P(Positive Test) = $0.02 \times 0.95 + 0.98 \times 0.03$                                                                                                                                                                                                                                                                                                                                                  | [3]<br>M1A1ft |
|                    | =0.0484                                                                                                                                                                                                                                                                                                                                                                                                   | A1 [3]        |
| (c)                | P(Do not have disease Postive test) = $\frac{0.98 \times 0.03}{0.0484}$ $= 0.607438$ awrt 0.607                                                                                                                                                                                                                                                                                                           | M1<br>A1      |
| (d)                | Test not very useful OR High probability of not having the disease for a person with a positive test                                                                                                                                                                                                                                                                                                      | [2]<br>B1 [1] |
|                    | Notes:  (a) M1:All 6 branches.  Bracketed probabilities not required.  (b) M1 for sum of two products, at least one correct from their diagram A1ft follows from the probabilities on their tree  A1 for correct answer only or $\frac{121}{2500}$ (c) M1 for conditional probability with numerator following from their tree and denominator their answer to part (b).  A1 also for $\frac{147}{242}$ . | Total 9       |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mark           | S   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| Q2<br>(a)<br>(b)   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1             | [1] |
| (6)                | $Q_1 = 45$ $Q_2 = 50.5$ $Q_3 = 63$ ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1<br>B1<br>B1 | [3] |
| (c)                | Mean = $\frac{1469}{28}$ = 52.464286 awrt 52.5<br>Sd = $\sqrt{\frac{81213}{28} - \left(\frac{1469}{28}\right)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                | M1A1           |     |
| (d)                | =12.164 or 12.387216for divisor <i>n</i> -1 awrt 12.2 or 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1             | [4] |
| (e)                | $\frac{52.4650}{sd} = \text{awrt } 0.20 \text{ or } 0.21$ 1. mode/median/mean Balmoral>mode/median/mean Abbey                                                                                                                                                                                                                                                                                                                                                                                                                    | M1A1           | [2] |
|                    | <ol> <li>Balmoral sd &lt; Abbey sd or similar sd or correct comment from their values, Balmoral range<abbey balmoral="" iqr="" range,="">Abbey IQR or similar IQR</abbey></li> <li>Balmoral positive skew or almost symmetrical AND Abbey negative skew, Balmoral is less skew than Abbey or correct comment from their value in (d)</li> <li>Balmoral residents generally older than Abbey residents or equivalent.</li> </ol>                                                                                                  |                |     |
|                    | Only one comment of each type max 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1B1B  Total 1 | [3] |
|                    | Notes:  (c) M1for their 1469 between 1300 and 1600, divided by 28, A1 for awrt 52.5  Please note this is B1B1 on Epen M1 use of correct formula including sq root A1 awrt 12.2 or 12.4  Correct answers with no working award full marks.  (d) M1 for their values correctly substituted A1 Accept 0.2 as a special case of awrt 0.20 with 0 missing (e) Technical terms required in correct context in lines 1 to 3 e.g. 'average' and 'spread' B0 1 correct comment B1B0B0 2 correct comments B1B1B0 3 correct comments B1B1B1 |                |     |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks                              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Q3<br>(a)          | $-1 \times p + 1 \times 0.2 + 2 \times 0.15 + 3 \times 0.15 = 0.55$ $p = 0.4$ $p + q + 0.2 + 0.15 + 0.15 = 1$ $q = 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1dM1<br>A1<br>M1<br>A1            |
| (b)                | $Var(X) = (-1)^{2} \times p + 1^{2} \times 0.2 + 2^{2} \times 0.15 + 3^{2} \times 0.15, -0.55^{2}$ $= 2.55 - 0.3025 = 2.2475$ awrt 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1A1,M1<br>A1                      |
| (c)                | E(2X-4) = 2E(X)-4 = -2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [4]<br>M1<br>A1<br>[2]<br>Total 11 |
|                    | (a) M1 for at least 2 correct terms on LHS Division by constant e.g. 5 then M0 dM1 dependent on first M1 for equate to 0.55 and attempt to solve.  Award M1M1A1 for p=0.4 with no working M1 for adding probabilities and equating to 1. All terms or equivalent required e.g. p+q=0.5  Award M1A1 for q=0.1 with no working  (b) M1 attempting E(X²) with at least 2 correct terms  A1 for fully correct expression or 2.55  Division by constant at any point e.g. 5 then M0 M1 for subtracting their mean squared A1 for awrt 2.25  Award awrt 2.25 only with no working then 4 marks  (c) M1 for 2x(their mean) -4  Award 2 marks for -2.9 with no working |                                    |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark           | S        |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|
| Q4<br>(a)          | $S_{tt} = 10922.81 - \frac{401.3^2}{15} = 186.6973$ awrt 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1A1           |          |
|                    | $S_{vv} = 42.3356 - \frac{25.08^2}{15} = 0.40184$ awrt 0.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1             |          |
|                    | $S_{tv} = 677.971 - \frac{401.3 \times 25.08}{15} = 6.9974$ awrt 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1             | [4]      |
| (b)                | $r = \frac{6.9974}{\sqrt{186.6973 \times 0.40184}}$ $= 0.807869$ awrt 0.808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1A1ft         | t<br>[3] |
| (c)                | t is the explanatory variable as we can control temperature but not frequency of noise or equivalent comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1<br>B1       | [2]      |
| (d)                | High value of r or r close to 1 or Strong correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1             | [1]      |
| (e)                | $b = \frac{6.9974}{186.6973} = 0.03748$ awrt 0.0375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1A1           |          |
|                    | $a = \frac{25.08}{15} - b \times \frac{401.3}{15} = 0.6692874$ awrt 0.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1A1           | [4]      |
| (f)                | t= 19, $v$ =0.6692874+0.03748x19=1.381406 awrt 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1<br>Total 1: | [1]      |
|                    | Notes:  (a) M1 any one attempt at a correct use of a formula.  Award full marks for correct answers with no working.  Epen order of awarding marks as above.  (b) M1 for correct formula and attempt to use  A1ft for their values from part (a)  NB Special Case for   677.971  √10922.81 × 42.3356  A1 awrt 0.808  Award 3 marks for awrt 0.808 with no working  (c) Marks are independent. Second mark requires some interpretation in context and can be statements such as 'temperature effects / influences pitch or noise'  B1 'temperature is being changed' BUT B0 for 'temperature is changing'  (e) M1 their values the right way up  A1 for awrt 0.0375  M1 attempt to use correct formula with their value of b  A1 awrt 0.669  (f) awrt 1.4 |                |          |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                     | Marks                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Q5<br>(a)          | 3 closed intersecting curves with labels 100 100,30 12,10,3,25 Box                                                                                                                                                                                                                                                                                                                         | M1 A1 A1 B1 [4]                    |
| (b)                | P(Substance C) = $\frac{100 + 100 + 10 + 25}{300} = \frac{235}{300} = \frac{47}{60}$ or exact equivalent                                                                                                                                                                                                                                                                                   | M1A1ft [2]                         |
| (d)                | P(All 3 $ A  = \frac{10}{30+3+10+100} = \frac{10}{143}$ or exact equivalent<br>P(Universal donor) = $\frac{20}{300} = \frac{1}{15}$ or exact equivalent                                                                                                                                                                                                                                    | M1A1ft [2]  M1A1 cao [2]  Total 10 |
|                    | Notes:  (a) 20 not required. Fractions and exact equivalent decimals or percentages.  (b) M1 For adding their positive values in C and finding a probability A1ft for correct answer or answer from their working  (c) M1 their 10 divided by their sum of values in A  A1ft for correct answer or answer from their working  (d) M1 for 'their 20' divided by 300  A1 correct answer only |                                    |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                               | Marks                    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Q6<br>(a)          | F(4)=1<br>$(4+k)^2 = 25$<br>k = 1  as  k > 0                                                                                                                                                                                                                                                                         | M1<br>A1                 |
| (b)                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                | [2] B1ftB1B1 [3] Total 5 |
|                    | Notes:  (a) M1 for use of F(4) = 1 only If F(2)=1 and / or F(3)=1 seen then M0.  F(2)+F(3)+F(4)=1 M0  A1 for k=1 and ignore k= -9  (b) B1ft follow through their k for P(X=2) either exact or 3sf between 0 and 1 inclusive.  B1 correct answer only or exact equivalent  B1 correct answer only or exact equivalent |                          |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks                                  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Q7<br>(a)          | $z = \frac{53 - 50}{2}$ Attempt to standardise $P(X > 53) = 1 - P(Z < 1.5)$ 1-probability required can be implied $= 1 - 0.9332$ $= 0.0668$ $P(X \le x_0) = 0.01$                                                                                                                                                                                                                                                                                                                                                                                                      | M1<br>B1<br>A1<br>M1                   |
| (c)                | $\frac{x_0 - 50}{2} = -2.3263$ $x_0 = 45.3474$ awrt 45.3 or 45.4  P(2 weigh more than 53kg and 1 less) = $3 \times 0.0668^2 (1 - 0.0668)$ $= 0.012492487$ awrt 0.012                                                                                                                                                                                                                                                                                                                                                                                                   | M1B1 M1A1 [5] B1M1A1ft A1 [4] Total 12 |
|                    | Notes: (a) M1 for using 53,50 and 2, either way around on numerator B1 1- any probability for mark A1 0.0668 cao (b) M1 can be implied or seen in a diagram or equivalent with correct use of 0.01 or 0.99 M1 for attempt to standardise with 50 and 2 numerator either way around B1 for $\pm$ 2.3263 M1 Equate expression with 50 and 2 to a z value to form an equation with consistent signs and attempt to solve A1 awrt 45.3 or 45.4 (c) B1 for 3, M1 $p^2(1-p)$ for any value of $p$ A1ft for $p$ is their answer to part (a) without 3 A1 awrt 0.012 or 0.0125 |                                        |



# Mark Scheme (Results) January 2009

**GCE** 

GCE Mathematics (6683/01)

### January 2009 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                      | Marks          | S                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|
| 1 (a)              | $S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$ 21.4 \times 96                                                                                                                                                                                                                                                                                                                              | M1<br>A1       | (2)               |
| (b)                | $b = \frac{S_{xy}}{S_{xx}} = 9.4765$                                                                                                                                                                                                                                                                                                                                                        | M1 A1<br>M1 A1 | (3)               |
| (c)                | $a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$<br>y = -10.7 + 9.48x<br>Every (extra) <u>hour</u> spent using the programme produces about <u>9.5 marks improvement</u>                                                                                                                                                                                                        | B1ft           | (4)               |
| (d)                | $y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21                                                                                                                                                                                                                                                                                                                                                | M1,A1          | (2)               |
| (e)                | Model may not be valid since [8h is] outside the range [0.5 - 4].                                                                                                                                                                                                                                                                                                                           | B1 [           | (1)<br><b>11]</b> |
| (a)                | M1 for a correct expression $1^{\text{st}}$ A1 for AWRT 11.4 for $S_{xx}$ $2^{\text{nd}}$ A1 for AWRT 108 for $S_{xy}$                                                                                                                                                                                                                                                                      |                |                   |
| (b)                | Correct answers only: One value correct scores M1 and appropriate A1, both correct M1. $1^{st}$ M1 for using their values in correct formula $1^{st}$ A1 for AWRT 9.5 $2^{nd}$ M1 for correct method for $a$ (minus sign required) $2^{nd}$ A1 for equation with $a$ and $b$ AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine)  Must have a full equation with $a$ and $b$ correct to awrt 3 sf | A1A1           |                   |
| (c)                | B1ft for comment conveying the idea of <u>b</u> marks per hour. Must mention value of b of their value of b. No need to mention "extra" but must mention "marks" and "le.g. "9.5 times per hour" scores B0                                                                                                                                                                                  |                |                   |
| (d)                | M1 for sub $x = 3.3$ into their regression equation from the end of part (b)<br>A1 for awrt 21                                                                                                                                                                                                                                                                                              |                |                   |
| (e)                | for a statement that says or implies that it may <u>not</u> be valid because <u>outside the re</u><br>They do not have to mention the values concerned here namely 8 h or 0.5 - 4                                                                                                                                                                                                           | ange.          |                   |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks               |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| 2 (a)              | E = take regular exercise B = always eat breakfast<br>$P(E \cap B) = P(E \mid B) \times P(B)$ $= \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1<br>A1 (2)        |  |
| (b)                | $P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25}  \text{or}  P(E' \mid B')  \text{or}  P(B' \cap E)  \text{or}  P(B \cap E')$ $= \frac{62}{75}  = \frac{13}{25}  = \frac{12}{75}  = \frac{32}{75}$ $P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75}  \text{or}  0.17\dot{3}$ $P(E \mid B) = 0.36 \neq 0.40 = P(E)  \text{or}  P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1 A1 M1 A1 (4)     |  |
| (c)                | $P(E \mid B) = 0.36 \neq 0.40 = P(E)  \text{or}  P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So E and B are <u>not</u> statistically independent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1<br>A1 (2)<br>[8] |  |
| (a)                | M1 for $\frac{9}{25} \times \frac{2}{3}$ or $P(E B) \times P(B)$ and at least one correct value seen. A1 for 0.24 or example NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | act equiv.          |  |
| (b)                | 1 <sup>st</sup> M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a)  Or a full method for $P(E' B')$ requires 1 - $P(E B')$ and equation for $P(E B')$ : (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                   |  |
|                    | Or a full method for $P(B' \cap E)$ or $P(B \cap E')$ [ or other valid method] $2^{nd}$ M1 for a method leading to answer e.g. $1 - P(E \cup B)$ or $P(B') \times P(E' \mid B')$ or $P(B') - P(B' \cap E)$ or $P(E') - P(B \cap E')$ Or $P(B') \times P(E' \mid B')$ or $P(B') - P(B' \cap E)$ or $P(E') - P(B \cap E')$ Or $P(B') \times P(B')$ or | an ft their (a)     |  |
| (c)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | scores M1A0         |  |

| Ques<br>Num |     |                                                                                       | Scheme                                                           |                                 |                                   | Mark                                             | (S          |
|-------------|-----|---------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|-----------------------------------|--------------------------------------------------|-------------|
| 3           | (a) | $E(X) = 0 \times 0.4 + 1 \times 0.3 +$                                                | $+3 \times 0.1, = 1$                                             |                                 |                                   | M1, A1                                           | (2)         |
|             | (b) | $F(1.5) = [P(X \le 1.5) =] P($                                                        | $X \le 1),  = \ 0.4 + 0.3 = 0$                                   | .7                              |                                   | M1, A1                                           | (2)         |
|             | (c) | $E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3$                                            | $3 + \dots + 3^2 \times 0.1$ , = 2                               |                                 |                                   | M1, A1                                           |             |
|             |     | $Var(X) = 2 - 1^2$ , = 1                                                              | (*)                                                              |                                 |                                   | M1, A1c                                          | (4)         |
|             | (d) | $Var(5-3X) = (-3)^2 Var($                                                             | X), = 9                                                          |                                 |                                   | M1, A1                                           | (2)         |
|             | (e) | Total                                                                                 | Cases                                                            | Probability                     | ]                                 |                                                  |             |
|             |     | Total                                                                                 | $(X=3) \cap (X=1)$                                               | $0.1 \times 0.3 = 0.03$         |                                   |                                                  |             |
|             |     | 4                                                                                     | $(X=1)\cap(X=3)$                                                 | $0.3 \times 0.1 = 0.03$         |                                   |                                                  |             |
|             |     |                                                                                       | $(X=2)\cap (X=2)$                                                | $0.2 \times 0.2 = 0.04$         |                                   |                                                  |             |
|             |     |                                                                                       | $(X=3)\cap(X=2)$                                                 | $0.1 \times 0.2 = 0.02$         |                                   | B1B1B1                                           |             |
|             |     | 5                                                                                     | $(X=2)\cap (X=3)$                                                | $0.2 \times 0.1 = 0.02$         |                                   | M1                                               |             |
|             |     | 6                                                                                     | $(X=3)\cap(X=3)$                                                 | $0.1 \times 0.1 = 0.01$         |                                   | A1                                               |             |
|             |     | Total probability = $0.03 + 0$                                                        | .03+0.04 +0.02 + 0.02 + 0                                        | 0.01 = 0.15                     |                                   | A1                                               | (6)<br>[16] |
|             | (a) | M1 for at least 3 terms se                                                            | een. Correct answer only                                         | scores M1A1. Dividing           | by $k \neq 1$ i                   | s M0.                                            | [10]        |
|             | (b) | M1 for $F(1.5) = P(X \le 1)$                                                          | .[Beware: $2 \times 0.2 + 3 \times 0$                            | .1 = 0.7 but scores M0A         | <b>v</b> 0]                       |                                                  |             |
|             | (c) | 1 <sup>st</sup> M1 for at least 2 non-zero                                            | $E(V^2) = 2$                                                     | alama is MO. Candana a          | alling $\mathbf{E}(\mathbf{V}^2)$ | - Vor (V                                         | ^           |
|             | ` , | 1 M1 for at least 2 hon-zero<br>1st A1 is for an answer of 2                          |                                                                  |                                 | alling E(A                        | $\int -\mathbf{v} \operatorname{ar}(\mathbf{A})$ | ).          |
| ALT         |     | $2^{\text{nd}}$ M1 for $-\mu^2$ , condone 2                                           | -                                                                |                                 | 1 even if E                       | $\mathcal{L}(X) \neq 1$                          |             |
| / \_ !      |     | 2 <sup>nd</sup> A1 for a fully correct so                                             | -                                                                | · ·                             |                                   |                                                  |             |
|             |     | $\sum (x - \mu)^2 \times P(X = x)$                                                    |                                                                  |                                 |                                   |                                                  |             |
|             |     | 1 <sup>st</sup> M1 for an attempt at a fu                                             | $\frac{111}{11}$                                                 | 1 1 . 1 . 1 . 1                 | 1                                 |                                                  |             |
|             |     |                                                                                       | •                                                                |                                 |                                   |                                                  |             |
|             |     | 2 <sup>nd</sup> M1 for at least 2 non-ze                                              | ro terms of $(x - \mu)^2 \times P($                              | $X = x$ ) seen. $2^{nd}$ A1 for | or 0.4 + 0.2 -                    | + 0.4 = 1                                        |             |
|             | (d) | M1 6                                                                                  | t formula. $-3^2 \operatorname{Var}(X)$ is                       | M0 1 41 - 6 1                   |                                   |                                                  |             |
|             | (e) | M1 for use of the correc<br>Can follow through                                        | ` ,                                                              | Wio unless the linal ansv       | ver is >0.                        |                                                  |             |
|             | (0) |                                                                                       | ` ,                                                              |                                 |                                   |                                                  |             |
|             |     | 1 <sup>st</sup> B1 for all cases listed to 2 <sup>nd</sup> B1 for all cases listed to | for a total of 4 or 5 or 6.                                      | e.g. (2,2) counted twice        | for a total of                    | of 4 is B0                                       |             |
| ALT         |     | 3 <sup>rd</sup> B1 for a complete list of                                             |                                                                  | These may be high               | lighted in a                      | table                                            |             |
|             |     | Using Cumulative probabili                                                            |                                                                  |                                 |                                   |                                                  |             |
|             |     | 1 <sup>st</sup> B1 for one or more cur<br>2 <sup>nd</sup> B1 for both cumulative      | mulative probabilities use probabilities used. 3 <sup>rd</sup> B | 1 for a complete list 1.3       | s; 2, >2; 3, >                    | nore<br>1                                        |             |
|             |     | M1 for one correct pair                                                               | of correct probabilities m                                       | ultiplied                       |                                   |                                                  |             |
|             |     |                                                                                       | babilities listed (0.03, 0.0) quivalent only as the final        |                                 | needn't be                        | added.                                           |             |
|             |     | 2 111 101 0.13 01 CAACI CC                                                            | 1 or varent only as the illar                                    | 4115 W C1.                      |                                   |                                                  |             |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                       | Marks                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>4</b> (a)       | $Q_2 = 53$ , $Q_1 = 35$ , $Q_3 = 60$                                                                                                                                                                                                                                                                                                                                                                         | B1, B1,B1            |
| (b)                | $Q_3 - Q_1 = 25 \Rightarrow Q_1 - 1.5 \times 25 = -2.5$ (no outlier)                                                                                                                                                                                                                                                                                                                                         | M1 (3)               |
|                    | $Q_3 + 1.5 \times 25 = 97.5$ (so 110 is an outlier)                                                                                                                                                                                                                                                                                                                                                          | A1 (2)               |
| (c)                |                                                                                                                                                                                                                                                                                                                                                                                                              | M1                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | A1ft                 |
|                    | 0 10 20 30 40 50 60 70 80 90 100 110 120 yminutes                                                                                                                                                                                                                                                                                                                                                            | A1ft (3)             |
| (d)                | $461^{2}$                                                                                                                                                                                                                                                                                                                                                                                                    | B1, B1,              |
|                    | $\sum y = 461, \sum y^2 = 24 \ 219 :: S_{yy} = 24219 - \frac{461^2}{10} , = 2966.9 (*)$                                                                                                                                                                                                                                                                                                                      | B1cso                |
| (e)                |                                                                                                                                                                                                                                                                                                                                                                                                              | (3)                  |
| (f)                | $r = \frac{-18.3}{\sqrt{3463.6 \times 2966.9}}$ or $\frac{-18.3}{3205.64} = -0.0057$ AWRT - 0.006 or -6×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                     | M1 A1 (2)            |
|                    | r suggests correlation is close to zero so parent's claim is not justified                                                                                                                                                                                                                                                                                                                                   | B1 (1) [14]          |
| (a)                | 1 <sup>st</sup> B1 for median 2 <sup>nd</sup> B1 for lower quartile 3 <sup>rd</sup> B1 for upper quartile                                                                                                                                                                                                                                                                                                    |                      |
| (b)                | M1 for attempt to find one limit A1 for both limits found and correct. No explicit comment about outliers needed.                                                                                                                                                                                                                                                                                            |                      |
| (c)                | M1 for a box and two whiskers  1 <sup>st</sup> A1ft for correct position of box, median and quartiles. Follow through their values.  2 <sup>nd</sup> A1ft for 17 and 77 or "their" 97.5 and *. If 110 is not an outlier then score A0 here Penalise no gap between end of whisker and outlier. Must label outlier, needn't be wire Accuracy should be within the correct square so 97 or 98 will do for 97.5 | •                    |
| (d)                | 1 <sup>st</sup> B1 for $\sum y$ N.B. $(\sum y)^2 = 212521$ and can imply this mark                                                                                                                                                                                                                                                                                                                           |                      |
|                    | $2^{\text{nd}}$ B1 for $\sum y^2$ or at least three correct terms of $\sum (y - \overline{y})^2$ seen.                                                                                                                                                                                                                                                                                                       |                      |
|                    | $3^{\text{rd}}$ B1 for complete correct expression seen leading to 2966.9. So all 10 terms of $\sum$                                                                                                                                                                                                                                                                                                         | $(y-\overline{y})^2$ |
| (e)                | M1 for attempt at correct expression for $r$ . Can ft their $S_{yy}$ for M1.                                                                                                                                                                                                                                                                                                                                 |                      |
| (f)                | B1 for comment <u>rejecting</u> parent's claim on basis of <u>weak or zero</u> correlation  Typical error is "negative correlation so comment is true" which scores B0  Weak negative or weak positive correlation is OK as the basis for their rejection                                                                                                                                                    |                      |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mar                    | ks          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|
| <b>5</b> (a)       | 8-10 hours: width = 10.5 - 7.5 = 3 represented by 1.5cm<br>16-25 hours: width = 25.5 - 15.5 = 10 so represented by 5 cm<br>8-10 hours: height = fd = 18/3 = 6 represented by 3 cm<br>16-25 hours: height = fd = 15/10 = 1.5 represented by 0.75 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1<br>M1<br>A1         | (3)         |
| (b)                | $Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1<br>A1               |             |
|                    | $Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1                     |             |
|                    | $Q_3 = 10.5 + \frac{(78 - 54)}{25} \times 5 = 15.3$ or $10.5 + \frac{(78.75 - 54)}{25} \times 5 = 15.45 \times 15.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1<br>A1ft             | (5)         |
| (c)                | $ \begin{array}{ll} 25 & 25 \\ IQR = (15.3 - 6.3) = 9 \end{array} $ $ \sum fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} = \qquad \qquad \text{AWRT } \underline{12.8} $ $ \sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} \qquad \text{AWRT } \underline{9.88} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1 A1                  |             |
| (d)                | $\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \bar{x}^2} = \sqrt{262.05 - \bar{x}^2} $ AWRT <u>9.88</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 A1                  | (4)         |
| (e)                | $Q_3 - Q_2 = 5.1 > Q_2 - Q_1 = 3.9$ or $Q_2 < \overline{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1ft<br>dB1            | (2)         |
|                    | Use median and IQR, since data is skewed or not affected by extreme values or outliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1<br>B1               | (2)<br>[16] |
| (a)                | M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$ , and $\frac{15}{10} \times SF$ , where $SF \neq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : 1                    |             |
| (b)                | NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11A0                   |             |
|                    | M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$ . Condone 52.3 $1^{\text{st}}$ A1 for 10.2 for median. Using $(n+1)$ allow awrt 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |             |
|                    | $2^{\text{nd}}$ A1 for a correct expression for either $Q_1$ or $Q_3$ (allow 26.25 and 78.75) Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>NB</u> :<br>ist see |             |
|                    | $3^{\text{rd}}$ A1 for correct expressions for both $Q_1$ and $Q_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | some                   |             |
| (c)                | d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nethod                 |             |
|                    | $1^{\text{st}} M1$ for attempting $\sum fx$ and $\overline{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |             |
| (d)                | $2^{\text{nd}} \text{ M1}$ for attempting $\sum fx^2$ and $\sigma_x$ , $\sqrt{}$ is needed for M1. Allow $s = \text{awrt } 9.93$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |             |
|                    | 1 <sup>st</sup> B1ft for suitable test, values need not be seen but statement must be compatible with values used. Follow through their values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ith                    |             |
| (e)                | 2 <sup>nd</sup> dB1 Dependent upon their test showing positive and for stating positive skew If their test shows negative skew they can score 1 <sup>st</sup> B1 but lose the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |             |
|                    | 1 <sup>st</sup> B1 for choosing median and IQR. Must mention <u>both</u> . } Award independence of the property of the propert | <u>dently</u>          |             |
|                    | e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |

| Question<br>Number | Scheme                                                                                                                                                                  | Mai      | rks  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| <b>6</b> (a)       | $P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$                                                                                                                       | M1       |      |
|                    | = P(Z < 1.8) = 0.9641  (allow awrt 0.964)                                                                                                                               | A1       | (2)  |
| (b)                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                   |          |      |
|                    | $P(X < d) = P\left(Z < \frac{d-30}{5}\right) = 0.1151$                                                                                                                  |          |      |
|                    | $1 - 0.1151 = 0.8849$ (allow $\pm 1.2$ )                                                                                                                                | M1<br>B1 |      |
|                    | $\Rightarrow z = -1.2$                                                                                                                                                  | M1A1     | (4)  |
|                    | $\therefore \frac{d-30}{5} = -1.2$ $\underline{d=24}$                                                                                                                   |          |      |
| (c)                | 20                                                                                                                                                                      |          |      |
|                    | $P(X>e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or $\frac{e-30}{5} = 1.2 \text{ or } - \text{their } z$                                                        | M1       |      |
|                    | e = 36                                                                                                                                                                  | A1       | (2)  |
| (d)                | $P(d < X < e) = 1 - 2 \times 0.1151$                                                                                                                                    | M1       |      |
|                    | = 0.7698 AWRT <u>0.770</u>                                                                                                                                              | A1       | (2)  |
|                    | Answer only scores all marks in each section BUT check (b) and (c) are in correct of                                                                                    | rder     | [10] |
| (a)                | M1 for standardising with $\sigma$ , $z = \pm \frac{39-30}{5}$ is OK                                                                                                    |          |      |
|                    | 3                                                                                                                                                                       |          |      |
|                    | A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A                                                                                    | 0        |      |
| (b)                | $1^{st}$ M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding d for $z = +1.2$ . They must state $z = +1.2$ or imply it is a z value by its use. |          |      |
|                    | This mark is only available in part (b).                                                                                                                                |          |      |
|                    | $2^{\text{nd}} \text{ M1 for } \left( \frac{d-30}{5} \right) = \text{their negative } z \text{ value (or equivalent)}$                                                  |          |      |
| (c)                | M1 for a full method to find e. If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$                                                                         | here     |      |
|                    | If they use symmetry about the mean $\mu + (\mu$ - their $d$ ) then ft their $d$ for M1 Must explicitly <u>see</u> the method used unless the answer is correct.        |          |      |
| (d)                | M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151                                                                                    |          |      |
|                    | or If their $d <$ their $e$ using their values with $P(X < e) - P(X < d)$<br>If their $d \ge$ their $e$ then they can only score from an argument like $1 - 2x0.1151$   |          |      |
|                    | A negative probability or probability $> 1$ for part (d) scores M0A0                                                                                                    |          |      |



## Mark Scheme (Results) Summer 2009

**GCE** 

GCE Mathematics (6683/01)



#### June 2009 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                               | Marks |            |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| Q1 (a)             | $(S_{pp}=) 38125 - \frac{445^2}{10}$                                                                                                                                                                                                                                                                                 | M1    |            |
|                    | = 18322.5 awrt 18300                                                                                                                                                                                                                                                                                                 | A1    |            |
|                    | $(S_{pt} =) 26830 - \frac{445 \times 240}{10}$                                                                                                                                                                                                                                                                       |       |            |
|                    | = 16150 awrt 16200                                                                                                                                                                                                                                                                                                   | A1 (3 | 3)         |
| (b)                | $r = \frac{"16150"}{\sqrt{"18322.5" \times 21760}}$ Using their values for method                                                                                                                                                                                                                                    | M1    |            |
|                    | = 0.8088 awrt 0.809                                                                                                                                                                                                                                                                                                  | A1 (2 | <u>'</u> ) |
| (c)                | As the temperature increases the pressure increases.                                                                                                                                                                                                                                                                 | B1 (1 |            |
| Notes              |                                                                                                                                                                                                                                                                                                                      |       | _          |
|                    | 1(a) M1 for seeing a correct expression $38125 - \frac{445^2}{10}$ or $26830 - \frac{445 \times 240}{10}$                                                                                                                                                                                                            |       |            |
|                    | If no working seen, at least one answer must be exact to score M1 by implication. 1(b) Square root and their values with 21760 all in the right places required for method. Anything which rounds to (awrt) 0.809 for A1. 1(c) Require a correct statement in <b>context</b> using temperature/heat and pressure for |       |            |
|                    | B1. Don't allow "as t increases p increases".                                                                                                                                                                                                                                                                        |       |            |
|                    | Don't allow proportionality.                                                                                                                                                                                                                                                                                         |       |            |
|                    | Positive correlation only is B0 since there is no interpretation.                                                                                                                                                                                                                                                    |       |            |
|                    |                                                                                                                                                                                                                                                                                                                      |       |            |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar               | ks          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| Q2 (a)             | $ \frac{1}{2}  C  \frac{1}{5}  L $ Correct tree All labels Probabilities on correct branches $ \frac{1}{3}  R  \frac{1}{10}  R  R  R  R  R  R  R  R  R  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1<br>B1          | (3)         |
| (b)(i)             | $\frac{1}{3} \times \frac{1}{10} = \frac{1}{30}$ or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1 A1             |             |
| (ii)               | CNL + BNL + FNL = $\frac{1}{2} \times \frac{4}{5} + \frac{1}{6} \times \frac{3}{5} + \frac{1}{3} \times \frac{9}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                | (2)         |
|                    | $=\frac{4}{5}$ or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1                | (2)         |
| (c)                | $P(F'/L) = \frac{P(F' \cap L)}{P(L)}$ Attempt correct conditional probability <b>but see notes</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                |             |
|                    | $= \frac{\frac{1}{6} \times \frac{2}{5} + \frac{1}{2} \times \frac{1}{5}}{1 - (ii)}$ $\frac{\text{numerator}}{\text{denominator}}$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{A1}{A1ft}$ |             |
|                    | $= \frac{\frac{3}{30}}{\frac{1}{5}} = \frac{5}{6} \qquad \text{or equivalent} $ cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                | (4)<br>[11] |
| Notes              | Exact decimal equivalents required throughout if fractions not used e.g. 2(b)(i) 0.03 Correct path through their tree given in their probabilities award Ms 2(a) All branches required for first B1. Labels can be words rather than symbols for second B1. Probabilities from question enough for third B1 i.e. bracketed probabilities not required. Probabilities and labels swapped i.e. labels on branches and probabilities at end can be awarded the marks if correct.  2(b)(i) Correct answer only award both marks.  2(b)(ii) At least one correct path identified and attempt at adding all three multiplied pairs award M1  2(c) Require probability on numerator and division by probability for M1.Require numerator correct for their tree for M1.  Correct formula seen and used, accept denominator as attempt and award M1  No formula, denominator must be correct for their tree or 1-(ii) for M1  1/30 on numerator only is M0, P(L/F') is M0. |                   |             |



| Que: | stion<br>ber | Scheme                                                                                                                                                                                                | Marks  |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Q3   | (a)          | 1(cm) cao                                                                                                                                                                                             | B1     |
|      | (b)          | 10 cm <sup>2</sup> represents 15<br>10/15 cm <sup>2</sup> represents 1 or 1cm <sup>2</sup> represents 1.5                                                                                             |        |
|      |              | Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $x \frac{2}{3}$ or $\div 1.5$ height = 6(cm)                                                                          | M1     |
|      |              | neight o(chi)                                                                                                                                                                                         | A1 [3] |
| Note | es           | If 3(a) and 3(b) incorrect, but their (a) x their (b)=6 then award B0M1A0 3(b) Alternative method: f/cw=15/6=2.5 represented by 5 so factor x2 award M1 So f/cw=9/3=3 represented by 3x2=6. Award A1. |        |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Q4 (a)             | $Q_2 = 17 + \left(\frac{60 - 58}{29}\right) \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                      |
|                    | = 17.1 (17.2  if use  60.5) awrt 17.1 (or17.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1 (2)                  |
| (b)                | $\sum fx = 2055.5 \qquad \sum fx^2 = 36500.25 \qquad \text{Exact answers can be seen below or implied}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1 B1                   |
|                    | by correct answers.  Evidence of attempt to use midpoints with at least one correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                      |
|                    | Mean = $17.129$ awrt $17.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1                      |
|                    | $\sigma = \sqrt{\frac{36500.25}{120} - \left(\frac{2055.5}{120}\right)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                      |
|                    | = 3.28  (s=3.294) awrt 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1 (6)                  |
| (c)                | $\frac{3(17.129-17.1379)}{3.28} = -0.00802$ Accept 0 or awrt 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1 A1                   |
|                    | 3.28 No skew/ slight skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1 (3)                  |
| (d)                | The skewness is very small. Possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1 B1dep<br>(2)<br>[13] |
| Notes              | 4(a) Statement of $17 + \frac{\text{freq into class}}{\text{class freq}} \times \text{cw}$ and attempt to sub or $\frac{m-17}{19-17} = \frac{60(.5)-58}{87-58} \text{ or equivalent award M1}$ $\text{cw=2 or 3 required for M1.}$ $17.2 \text{ from cw=3 award A0.}$ $4(b) \text{ Correct } \sum fx \text{ and } \sum fx^2 \text{ can be seen in working for both B1s}$ $\text{Midpoints seen in table and used in calculation award M1}$ $\text{Require complete correct formula including use of square root and attempt to sub for M1. No formula stated then numbers as above or follow from (b) for M1}$ $(\sum fx)^2, \sum (fx)^2 or \sum f^2 x \text{ used instead of } \sum fx^2 \text{ in sd award M0}$ $\text{Correct answers only with no working award } 2/2 \text{ and } 6/6$ $4(c) \text{ Sub in their values into given formula for M1}$ $4(d) \text{ No skew } / \text{ slight skew } / \text{ 'Distribution is almost symmetrical' } /  'Mean approximately equal to median' or equivalent award first B1. Don't award second B1 if this is not the case. Second statement should imply 'Greg's suggestion that a normal distribution is suitable is possible' for second B1 dep. If B0 awarded for comment in (c).and (d) incorrect, allow follow through from the comment in (c).$ |                         |



| Ques<br>Num |      | Scheme                                                                                                                                                                                                                                                                                      | Marks                |
|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Q5          | (a)  | $b = \frac{59.99}{33.381}$                                                                                                                                                                                                                                                                  | M1                   |
|             |      | = 1.79713 1.8 or awrt 1.80                                                                                                                                                                                                                                                                  | A1                   |
|             |      | $a = 32.7 - 1.79713 \times 51.83$<br>= -60.44525 awrt -60<br>w = -60.445251 + 1.79713l l and w required and awrt 2sf                                                                                                                                                                        | M1<br>A1<br>A1ft (5) |
|             | (b)  | $w = -60.445251 + 1.79713 \times 60$<br>= 47.3825 In range 47.3 – 47.6 inclusive                                                                                                                                                                                                            | M1 (2)               |
|             | (c)  | It is extrapolating so (may be) unreliable.                                                                                                                                                                                                                                                 | B1, B1dep            |
|             |      |                                                                                                                                                                                                                                                                                             | (2)<br>[9]           |
| Note        | PS . | 5(a) Special case $b = \frac{59.99}{120.1} = 0.4995 \text{ M0A0}$ $a = 32.7 - 0.4995 \times 51.83 \text{ M1A1}$ $w = 6.8 + 0.50l \text{ at least 2 sf required for A1}$ 5(b) Substitute into their answer for (a) for M1 5(c) 'Outside the range on the table' or equivalent award first B1 |                      |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks             |                   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| Q6 (a)             | 0     1     2     3       3a     2a     a     b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1                | (1)               |
| (b)                | 3a + 2a + a + b = 1 or equivalent, using Sum of probabilities =1 or equivalent, using E(X)=1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1<br>M1          |                   |
|                    | 14a = 1.4 $a = 0.1$ $b = 0.4$ Attempt to solve cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1dep<br>B1<br>B1 | <b>(5)</b>        |
| (c)                | P(0.5 < x < 3) = P(1) + P(2) 3a or their $2a$ +their $a= 0.2 + 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                | (5)               |
|                    | = $0.3$ Require $0 < 3a < 1$ to award follow through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1 ft             | <b>(2)</b>        |
| (d)                | E(3X-2) = 3E(X) - 2<br>= 3 \times 1.6 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                | (2)               |
|                    | = 2.8 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                | (2)               |
| (e)                | $E(X^2) = 1 \times 0.2 + 4 \times 0.1 + 9 \times 0.4 (= 4.2)$<br>Var $(X) = "4.2" - 1.6^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1<br>M1          |                   |
|                    | = 1.64 **given answer** cso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1                | (3)               |
| (f)                | Var(3X-2) = 9 Var(X)<br>= 14.76 awrt 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1<br>A1          | (2)<br><b>15]</b> |
| Notes              | 6(a) Condone $a$ clearly stated in text but not put in table. 6(b) Must be attempting to solve 2 different equations so third M dependent upon first two Ms being awarded.  Correct answers seen with no working B1B1 only, $2/5$ Correctly verified values can be awarded M1 for correctly verifying sum of probabilities =1, M1 for using $E(X)$ =1.6 M0 as no attempt to solve and B1B1 if answers correct.  6(d) 2.8 only award M1A1  6(e) Award first M for at least two non-zero terms correct. Allow first M for correct expression with $a$ and $b$ e.g. $E(X^2) = 6a + 9b$ Given answer so award final A1 for correct solution.  6(f) 14.76 only award M1A1 |                   |                   |



| Question<br>Number | Scheme                                                                                                                                                                                                                                     | Marks | 5          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| Q7(a) (i)          | $P(A \cup B) = a + b$ cao                                                                                                                                                                                                                  | B1    |            |
| (ii)               | $P(A \cup B) = a + b - ab$ or equivalent                                                                                                                                                                                                   | B1    | (2)        |
| (b)                | $P(R \cup Q) = 0.15 + 0.35$<br>= 0.5                                                                                                                                                                                                       | B1    | (1)        |
| (c)                | $P(R \cap Q) = P(R Q) \times P(Q)$<br>= 0.1 \times 0.35                                                                                                                                                                                    | M1    |            |
|                    | = 0.035 <b>0.035</b>                                                                                                                                                                                                                       | A1    |            |
|                    |                                                                                                                                                                                                                                            |       | (2)        |
| (d)                | $P(R \cup Q) = P(R) + P(Q) - P(R \cap Q)  OR  P(R) = P(R \cap Q') + P(R \cap Q)$ $= 0.15 + their (c)$                                                                                                                                      | M1    |            |
|                    | 0.5 = P(R) + 0.35 - 0.035<br>P(R) = 0.185<br>= 0.15 + 0.035<br>= 0.185<br>= 0.185                                                                                                                                                          | A1    | (2)<br>[7] |
| Notes              | 7(a) (i) Accept $a + b - 0$ for B1  Special Case  If answers to (i) and (ii) are  (i) $P(A)+P(B)$ and (ii) $P(A)+P(B)-P(A)P(B)$ award B0B1  7(a)(i) and (ii) answers must be clearly labelled or in correct order for marks to be awarded. |       | [,1]       |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                              | M        | arks        |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| Q8 (a)             | Let the random variable X be the lifetime in hours of bulb $P(X \in \mathbb{R}^{20}) = P(Z \in \pm (830 - 850))$                                                                                                                                                                                    |          |             |
|                    | $P(X < 830) = P(Z < \frac{\pm (830 - 850)}{50})$ $= P(Z < -0.4)$ $= 1 - P(Z < 0.4)$ Using 1-(probability>0.5)                                                                                                                                                                                       | M1<br>M1 |             |
|                    | = 1 - 0.6554 = 0.3446 or 0.344578 by calculator awrt 0.345                                                                                                                                                                                                                                          | A1       | _           |
| (b)                | $0.3446 \times 500$ Their (a) x 500<br>= 172.3 Accept 172.3 or 172 or 173                                                                                                                                                                                                                           | M1<br>A1 | (3)         |
| (c)                | Standardise with 860 and $\sigma$ and equate to z value $\frac{\pm (818-860)}{\sigma} = z$ value                                                                                                                                                                                                    | M1       | ( )         |
|                    | $\frac{818-860}{\sigma} = -0.84(16)$ or $\frac{860-818}{\sigma} = 0.84(16)$ or $\frac{902-860}{\sigma} = 0.84(16)$ or equiv.                                                                                                                                                                        | A1       |             |
|                    | $\pm 0.8416(2)$ $\sigma = 49.9$ 50 or awrt 49.9                                                                                                                                                                                                                                                     | B1<br>A1 |             |
| (d)                | Company $Y$ as the <u>mean</u> is greater for $Y$ . both They have (approximately) the same <u>standard deviation</u> or <u>sd</u>                                                                                                                                                                  | B1<br>B1 | (4)         |
|                    |                                                                                                                                                                                                                                                                                                     |          | (2)<br>[11] |
| Notes              | 8(a) If 1-z used e.g. 1-0.4=0.6 then award second M0 8(c) M1 can be implied by correct line 2 A1 for completely correct statement or equivalent. Award B1 if 0.8416(2) seen Do not award final A1 if any errors in solution e.g. negative sign lost. 8(d) Must use statistical terms as underlined. |          |             |



### Mark Scheme (Results) January 2010

**GCE** 

Statistics S1 (6683)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010
Publications Code UA023026
All the material in this publication is copyright
© Edexcel Ltd 2010

### 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Q1 (a)             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1<br>A1<br>A1<br>(3) |
| (b)                | P(Blue bead and a green bead) = $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right) = \frac{1}{6}$ (or any exact equivalent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1 A1 (2)             |
| Q1 (a)             | M1 for shape and labels: 3 branches followed by 3,2,2 with some $R$ , $B$ and $G$ seen Allow 3 branches followed by 3, 3, 3 if 0 probabilities are seen implying that 3, Allow blank branches if the other probabilities imply probability on blanks is zero Ignore further sets of branches  1st A1 for correct probabilities and correct labels on 1st set of branches.  2nd A1 for correct probabilities and correct labels on 2nd set of branches.  (accept 0.33, 0.67 etc or better here)  M1 for identifying the 2 cases $BG$ and $GB$ and adding 2 products of probabilities.  These cases may be identified by their probabilities e.g. $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right)$ NB $\frac{1}{6}$ (or exact equivalent) with no working scores 2/2 |                       |
| Special<br>Case    | With Replacement (This oversimplifies so do not apply Mis-Read: max mark 2/5)  (a) B1 for 3 branches followed by 3, 3, 3 with correct labels and probabilities of $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ .  (b) M1 for identifying 2, possibly correct cases and adding 2 products of probabilities wrong answer $\left[\left(\frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{4}\right)\right]$ will be sufficient for M1A0 here but $\frac{1}{4} \times \frac{1}{2} + \dots$ would sco                                                                                                                                                                                                                                                                                            | but A0 for            |

| Ques<br>Num |     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks                     |  |
|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
| Q2          | (a) | Median is 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1 (1)                    |  |
|             | (b) | $Q_1 = 24, Q_3 = 40, IQR = 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1 B1 B1ft (3)            |  |
|             | (c) | $Q_1$ – IQR=24–16 = 8<br>So 7 is only outlier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1<br>A1ft                |  |
|             | (d) | Box Outlier Whisker  0 5 10 15 20 25 30 35 40 45 50 55 60  Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2)<br>B1ft<br>B1<br>B1ft |  |
|             |     | (accept either whisker)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total [9]                 |  |
| Q2          | (b) | 1 <sup>st</sup> B1 for $Q_1 = 24$ and 2 <sup>nd</sup> B1 for $Q_3 = 40$<br>3 <sup>rd</sup> B1ft for their IQR based on their lower and upper quartile.<br>Calculation of range $(40 - 7 = 33)$ is B0B0B0<br>Answer only of IQR = 16 scores 3/3. For any other answer we must see working in (b) or on stem and leaf diagram                                                                                                                                                                                                                                             |                           |  |
|             | (c) | M1 for evidence that $Q_1$ -IQR has been attempted, their "8" (>7) seen or clearly at sufficient  A1 ft must have seen their "8" and a suitable comment that only one person scored                                                                                                                                                                                                                                                                                                                                                                                     |                           |  |
|             | (d) | 1st B1ft for a clear box shape and ft their $Q_1, Q_2$ and $Q_3$ readable off the scale. Allow this mark for a box shape even if $Q_3 = 40$ , $Q_1 = 7$ and $Q_2 = 33$ are used $2^{\text{nd}}$ B1 for only one outlier appropriately marked at 7 $3^{\text{rd}}$ B1ft for either lower whisker. If they choose the whisker to their lower limit for out follow through their "8". (There should be no upper whisker unless their $Q_3 < 40$ , in which case there sh whisker to 40)  A typical error in (d) is to draw the lower whisker to 7, this can only score B1B |                           |  |

| Ques<br>Num |     | Scheme                                                                                                                                                                                                                                                                                                                                                   | Marks             |  |
|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Q3          | (a) | 2.75 or $2\frac{3}{4}$ , 5.5 or 5.50 or $5\frac{1}{2}$                                                                                                                                                                                                                                                                                                   | B1 B1 (2)         |  |
|             | (b) | Mean birth weight = $\frac{4841}{1500}$ = 3.2273 awrt 3.23                                                                                                                                                                                                                                                                                               | M1 A1 (2)         |  |
|             | (c) | Standard deviation = $\sqrt{\frac{15889.5}{1500} - \left(\frac{4841}{1500}\right)^2} = 0.421093$ or $s = 0.4212337$                                                                                                                                                                                                                                      | M1 A1ft A1 (3)    |  |
|             | (d) |                                                                                                                                                                                                                                                                                                                                                          | M1 A1 (2)         |  |
|             | (e) | Mean(3.23) < Median(3.25) (or very close)                                                                                                                                                                                                                                                                                                                | B1ft              |  |
|             |     | Negative Skew (or symmetrical)                                                                                                                                                                                                                                                                                                                           | dB1ft             |  |
|             |     |                                                                                                                                                                                                                                                                                                                                                          | (2)<br>Total [11] |  |
| Q3          | (b) | M1 for a correct expression for mean. Answer only scores both.                                                                                                                                                                                                                                                                                           |                   |  |
|             | (c) | M1 for a correct expression (ft their mean) for sd or variance. Condone mis-labelling eg sd= with no square root or no labelling $1^{st}$ A1ft for a correct expression (ft their mean) including square root and no mis-labelling Allow $1^{st}$ A1 for $\sigma^2 = 0.177 \rightarrow \sigma = 0.42$ $2^{nd}$ A1 for awrt 0.421. Answer only scores 3/3 |                   |  |
|             | (d) | M1 for a correct expression (allow 403.5 i.e. use of $n + 1$ ) but must have 3.00, 820 and 0.5 for awrt 3.25 provided M1 is scored.  NB 3.25 with no working scores 0/2 as some candidates think mode is 3.25.                                                                                                                                           |                   |  |
|             | (e) | 1 <sup>st</sup> B1ft for a comparison of their mean and median (may be in a formula but if $\pm$ (mean - median) is calculated that's OK. We are not checking the <u>value</u> but the <u>sign</u> must be consistent.) Also allow for use of quartiles <u>provided correct values seen:</u> $Q_1 = 3.02, Q_3 = 3.47$                                    |                   |  |
|             |     | [They should get $(0.22 =) Q_3 - Q_2 < Q_2 - Q_1 (= 0.23)$ and say (slight) negative skew or symmetric]                                                                                                                                                                                                                                                  |                   |  |
|             |     | 2 <sup>nd</sup> dB1ft for a compatible comment based on their comparison. Dependent upon a suitable, correct comparison. Mention of "correlation" rather than "skewness" loses this mark.                                                                                                                                                                |                   |  |

| Ques<br>Numl |     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks                      |  |
|--------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| 4            | (a) | S  3 closed curves and 4 in centre Evidence of subtraction  31,36,24 41,17,11 Labels on loops, 16 and box                                                                                                                                                                                                                                                                                                                                                                                                                             | M1<br>M1<br>A1<br>A1<br>B1 |  |
|              | (b) | P(None of the 3 options)= $\frac{16}{180} = \frac{4}{45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (5)<br>B1ft (1)            |  |
|              | (c) | $P(\text{Networking only}) = \frac{17}{180}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1ft (1)                   |  |
|              | (d) | P(All 3 options/technician)= $\frac{4}{40} = \frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1 A1 (2) Total [9]        |  |
| 4            | (a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |  |
|              | (b) | B1ft for $\frac{16}{180}$ or any exact equivalent. Can ft their "16" from their box. If there is no value for their "16" in the box only allow this mark if they have <u>shown</u> some working.                                                                                                                                                                                                                                                                                                                                      |                            |  |
|              | (c) | B1ft ft their "17". Accept any exact equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |  |
|              | (d) | If a probability greater than 1 is found in part (d) score M0A0 M1 for clear sight of $\frac{P(S \cap D \cap N)}{P(S \cap N)}$ and an attempt at one of the probabilities, ft their values.                                                                                                                                                                                                                                                                                                                                           |                            |  |
|              |     | Allow P(all 3   $S \cap N$ ) = $\frac{4}{36}$ or $\frac{1}{9}$ to score M1 A0.  Allow a correct ft from their diagram to score M1A0 e.g. in 33,3,9 case in (a): $\frac{4}{44}$ or $\frac{1}{11}$ is M1A0  A ratio of probabilities with a <u>product</u> of probabilities on top is M0, even with a correct formula.  A1 for $\frac{4}{40}$ or $\frac{1}{10}$ or an exact equivalent  Allow $\frac{4}{40}$ or $\frac{1}{10}$ to score both marks if this follows from their diagram, otherwise some explanation (method) is required. |                            |  |

| Ques<br>Num |     | Scheme                                                                                                                                                                                                                                                                                                                                                                                            | Marks         |  |
|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Q5          | (a) | k + 4k + 9k = 1 $14k = 1$                                                                                                                                                                                                                                                                                                                                                                         | M1            |  |
|             |     | $k = \frac{1}{14} **given** $ cso                                                                                                                                                                                                                                                                                                                                                                 | A1 (2)        |  |
|             | (b) | $P(X \ge 2)$ = 1-P(X = 1) or $P(X = 2) + P(X = 3)$                                                                                                                                                                                                                                                                                                                                                | M1            |  |
|             | (c) | $=1-k = \frac{13}{14} \text{ or } 0.92857$ $E(X) = 1 \times k + 2 \times k \times 4 + 3 \times k \times 9 \text{ or } 36k$ awrt 0.929                                                                                                                                                                                                                                                             | A1 (2) M1     |  |
|             | (0) | $= \frac{36}{14} = \frac{18}{7} \text{ or } 2\frac{4}{7} $ (or exact equivalent)                                                                                                                                                                                                                                                                                                                  | A1 (2)        |  |
|             | (d) | $Var(X) = 1 \times k + 4 \times k \times 4 + 9 \times k \times 9, -\left(\frac{18}{7}\right)^2$                                                                                                                                                                                                                                                                                                   | M1 M1         |  |
|             |     | Var(1-X) = Var(X)                                                                                                                                                                                                                                                                                                                                                                                 | M1            |  |
|             |     | $=\frac{19}{49}$ or 0.387755 awrt <b>0.388</b>                                                                                                                                                                                                                                                                                                                                                    | A1 (4)        |  |
| Q5          | (a) | M1 for clear attempt to use $\sum p(x) = 1$ full expression needed and the "1" must be                                                                                                                                                                                                                                                                                                            | Total [10]    |  |
|             | (4) | <ul> <li>M1 for clear attempt to use ∑p(x) = 1, full expression needed and the "1" must be clearly seen. This may be seen in a table.</li> <li>A1cso for no incorrect working seen. The sum and "= 1" must be explicitly seen somewhere.</li> <li>A verification approach to (a) must show addition for M1 and have a suitable comment e.g. "therefore k = ½" for A1 cso</li> </ul>               |               |  |
|             | (b) | M1 for 1- $P(X \le 1)$ or $P(X = 2) + P(X = 3)$<br>A1 for awrt 0.929. Answer only scores 2/2                                                                                                                                                                                                                                                                                                      |               |  |
|             | (c) | M1 for a full expression for E(X) with at least two terms correct.  NB If there is evidence of division (usually by 3) then score M0  for any exact equivalent - answer only scores 2/2                                                                                                                                                                                                           |               |  |
|             | (d) | $1^{\text{st}}$ M1 for clear attempt at $E(X^2)$ , need at least 2 terms correct in $1 \times k + 4 \times 4k + 9 \times 9k$ $2^{\text{nd}}$ M1 for their $E(X^2)$ –(their $\mu$ ) <sup>2</sup> $3^{\text{rd}}$ M1 for clearly stating that $Var(1 - X) = Var(X)$ , wherever seen accept awrt 0.388. All 3 M marks are required. Allow 4/4 for correct answer only but must be for $Var(1 - X)$ . | or $E(X^2)=7$ |  |

| Ques<br>Num |          | Scheme                                                                                                                                                                                                                                                                                                                                 | Marks              |
|-------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Q6          | (a)      | $S_{pp} = 106397 - \frac{833^2}{7} = 7270$                                                                                                                                                                                                                                                                                             | M1 A1              |
|             |          | $S_{tp} = 42948 - \frac{341 \times 833}{7} = 2369$ , $S_{tt} = 18181 - \frac{341^2}{7} = 1569.42857$ or $\frac{10986}{7}$                                                                                                                                                                                                              | A1 A1 (4)          |
|             | (b)      | $r = \frac{2369}{\sqrt{7270 \times 1569.42857}}$                                                                                                                                                                                                                                                                                       | M1 A1ft            |
|             |          | = 0.7013375 	 awrt (0.701)                                                                                                                                                                                                                                                                                                             | A1 (3)             |
|             | (c)      | (Pmcc shows positive correlation.) Older patients have higher blood pressure                                                                                                                                                                                                                                                           | B1 (1)             |
|             | (d)<br>+ | (d) Points plotted correctly on graph: -1 each error or omission (within one square of correct position)                                                                                                                                                                                                                               | B2                 |
|             | (f)      | * see diagram below for correct points  (f) Line drawn with correct intercept, and gradient                                                                                                                                                                                                                                            | B1ft B1 (2+2)      |
|             | (e)      | $b = \frac{2369}{1569.42857} = 1.509466$                                                                                                                                                                                                                                                                                               | M1 A1              |
|             |          | $a = \frac{833}{7} - b \times \frac{341}{7} = 45.467413$                                                                                                                                                                                                                                                                               | M1                 |
|             |          | p = 45.5 + 1.51t                                                                                                                                                                                                                                                                                                                       | A1 (4)             |
|             | (g)      | t = 40, p = 105.84 from equation or graph. <b>awrt 106</b>                                                                                                                                                                                                                                                                             | M1 A1 (2)          |
| Q6          | (a)      | M1 for at least one correct expression                                                                                                                                                                                                                                                                                                 | Total [18]         |
|             | ()       | $1^{\text{st}}$ A1 for $S_{pp} = 7270$ , $2^{\text{nd}}$ A1 for $S_{tp} = 2369$ or 2370, $3^{\text{rd}}$ A1 for $S_{tt} = \text{awrt } 1570$                                                                                                                                                                                           |                    |
|             | (b)      | M1 for attempt at correct formula and at least one correct value (or correct ft) M0 for $\frac{1}{\sqrt{106}}$                                                                                                                                                                                                                         | 42948<br>397×18181 |
|             |          | A1ft All values correct or correct ft. Allow for an answer of 0.7 or 0.70  Answer only: awrt 0.701 is 3/3, answer of 0.7 or 0.70 is 2/3                                                                                                                                                                                                | 37/ \ 10101        |
|             | (c)      | B1 for comment in context that <u>interprets</u> the fact that correlation is positive, as in scheme. Must mention age and blood pressure in words, not just "t" and "p".                                                                                                                                                              |                    |
|             | (d)      | Record 1 point incorrect as B1B0 on epen. [NB overlay for (60, 135) is slightly wrong]                                                                                                                                                                                                                                                 |                    |
|             | (e)      | $1^{\text{st}}$ M1 for use of the correct formula for $b$ , ft their values from (a) $1^{\text{st}}$ A1 allow 1.5 or better $2^{\text{nd}}$ M1 for use of $\overline{y} - b\overline{x}$ with their values $2^{\text{nd}}$ A1 for full equation with $a = \text{awrt } 45.5$ and $b = \text{awrt } 1.51$ . Must be $p$ in terms of $t$ | not r and v        |
|             | (f)      | 1 <sup>st</sup> B1ft ft their intercept (within one square). You may have to extend their line.                                                                                                                                                                                                                                        | , 110000 mid y.    |
|             | ` ′      | $2^{\text{nd}}$ B1 for correct gradient i.e. parallel to given line (Allow 1 square out when $t = 80$ )                                                                                                                                                                                                                                | )                  |
|             | (g)      | M1 for clear use of their equation with $t = 40$ or correct value from their graph.<br>A1 for awrt 106. Correct answer only (2/2) otherwise look for evidence on graph to a                                                                                                                                                            | award M1           |



| Ques<br>Num |     | Scheme                                                                                                                                                                                                          | Marks                |
|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Q7          | (a) | bell shaped, must have inflexions                                                                                                                                                                               | B1                   |
|             |     | 30% 154,172 on axis                                                                                                                                                                                             | B1                   |
|             |     | 5% and 30%                                                                                                                                                                                                      | B1 (3)               |
|             |     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                           | (3)                  |
|             | (b) | P(X < 154) = 0.05                                                                                                                                                                                               |                      |
|             |     | $\frac{154 - \mu}{\sigma} = -1.6449$ or $\frac{\mu - 154}{\sigma} = 1.6449$                                                                                                                                     | M1<br>B1             |
|             |     | $\mu = 154 + 1.6449\sigma$ **given**                                                                                                                                                                            | A1 cso (3)           |
|             | (c) | $172 - \mu = 0.5244\sigma \text{ or } \frac{172 - \mu}{\sigma} = 0.5244$ (allow $z = 0.52$ or better here but                                                                                                   | B1                   |
|             |     | must be in an equation) Solving gives $\sigma = 8.2976075$ (awrt 8.30) and $\mu = 167.64873$ (awrt 168)                                                                                                         | M1 A1 A1 (4)         |
|             | (d) | P(Taller than 160cm) = $P\left(Z > \frac{160 - \mu}{\sigma}\right)$                                                                                                                                             | M1                   |
|             |     | = P(Z < 0.9217994)                                                                                                                                                                                              | B1                   |
|             |     | = 0.8212 <b>awrt 0.82</b>                                                                                                                                                                                       | A1                   |
|             |     |                                                                                                                                                                                                                 | (3)<br>Total [13]    |
| (a)         |     | $2^{\text{nd}}$ B1 for 154 and 172 marked but 154 must be $< \mu$ and 172 $> \mu$ . But $\mu$ need not be                                                                                                       | marked.              |
|             |     | Allow for $\frac{154-\mu}{\sigma}$ and $\frac{172-\mu}{\sigma}$ marked on appropriate sides of the peak.<br>3 <sup>rd</sup> B1 the 5% and 30% should be clearly indicated in the correct regions i.e. LH tail a | nd DU toil           |
| (b)         |     |                                                                                                                                                                                                                 |                      |
| (b)         |     | M1 for $\pm \frac{(154 - \mu)}{\sigma} = z$ value (z must be recognizable e.g. 1.64, 1.65, 1.96 but NOT                                                                                                         | 0.5199 etc)          |
|             |     | B1 for $\pm$ 1.6449 seen in a line before the final answer.<br>A1cso for no incorrect statements (in $\mu$ , $\sigma$ ) equating a z value and a probability or incorrect.                                      | correct signs        |
|             |     | e.g. $\frac{154-\mu}{\sigma} = 0.05$ or $\frac{154-\mu}{\sigma} = 1.6449$ or $P(Z < \frac{\mu-154}{\sigma}) = 1.6449$                                                                                           | offeet signs         |
| (c)         |     | B1 for a correct 2 <sup>nd</sup> equation (NB $172 - \mu = 0.525\sigma$ is B0, since z is incorrect)                                                                                                            |                      |
|             |     | M1 for solving their two linear equations leading to $\mu =$ or $\sigma =$                                                                                                                                      |                      |
|             |     | 1 <sup>st</sup> A1 for $\sigma$ = awrt 8.30, 2 <sup>nd</sup> A1 for $\mu$ = awrt 168 [NB the 168 can come from false w These A marks require use of correct equation from (b), and a z value for "0.52"         |                      |
|             |     | NB use of $z = 0.52$ will typically get $\sigma = 8.31$ and $\mu = 167.67$ and score B1M                                                                                                                        | \ / <b>-</b>         |
|             |     | No working and both correct scores 4/4, only one correct scores 0/4 Provided the M1 is scored the A1s can be scored even with B0 (e.g. for $z = 0.52$                                                           | 25)                  |
| (d)         |     | M1 for attempt to standardise with 160, their $\mu$ and their $\sigma$ (> 0). Even allow with symbols for $z = \operatorname{awrt} \pm 0.92$                                                                    | $\mu$ and $\sigma$ . |
|             |     | No working and a correct answer can score 3/3 provided $\sigma$ and $\mu$ are correct to                                                                                                                        | 2sf.                 |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA023026 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH



# Mark Scheme (Results) Summer 2010

GCE

Statistics S1 (6683)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010
Publications Code UA024765
All the material in this publication is copyright
© Edexcel Ltd 2010

### **General Marking Guidance**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - B marks are unconditional accuracy marks (independent of M marks)

### 3. Abbreviations

These are some of the marking abbreviations that will appear in the mark scheme

- ft follow through
- awrt answers which round to
- oe or equivalent (and appropriate)
- isw ignore subsequent working
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- SC: special case

### Statistics S1 6683 Mark Scheme

|                    |                                                                                                                                                                         | 1     | 1      |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| Question<br>Number | Scheme                                                                                                                                                                  | Mark  | ss     |
| Q1 (a)             | $r = \frac{8825}{\sqrt{1022500 \times 130.9}},$ = awrt <u><b>0.763</b></u>                                                                                              | M1 A1 | (2)    |
| (b)                | Teams with high attendance scored more goals (oe, statement in context)                                                                                                 | B1    | (1)    |
| (c)                | 0.76(3)                                                                                                                                                                 | B1ft  | (1)    |
|                    |                                                                                                                                                                         | Т.    | otal 4 |
| (a)                | M1 for a correct expression, square root required Correct answer award 2/2                                                                                              | I     |        |
| (b)                | Context required (attendance and goals). Condone causality. B0 for 'strong positive correlation between attendance and goals' on its own oe                             |       |        |
| (c)                | Value required.  Must be a correlation coefficient between -1 and +1 inclusive.  B1ft for 0.76 or better or same answer as their value from part (a) to at least 2 d.p. |       |        |
|                    |                                                                                                                                                                         |       |        |
|                    |                                                                                                                                                                         |       |        |
|                    |                                                                                                                                                                         |       |        |
|                    |                                                                                                                                                                         |       |        |
|                    |                                                                                                                                                                         |       |        |
|                    |                                                                                                                                                                         |       |        |
|                    |                                                                                                                                                                         |       |        |

CCE CL-11-11-- C4 (///D) C ------ 204/

| Question<br>Number  | Scheme                                                                                                                                                                                                       | Marks          |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Q2 (a)              | P(R) and $P(B)$                                                                                                                                                                                              | B1             |  |  |
|                     | $5/12$ $1/3$ $T$ $1/2$ $H$ $2^{\text{nd}}$ set of probabilities                                                                                                                                              | B1             |  |  |
|                     | $7/12$ B $\frac{1}{2}$ T                                                                                                                                                                                     |                |  |  |
|                     |                                                                                                                                                                                                              | (2)            |  |  |
| (b)                 | $P(H) = \frac{5}{12} \times \frac{2}{3} + \frac{7}{12} \times \frac{1}{2}, = \frac{41}{72} \text{ or awrt } 0.569$                                                                                           | M1 A1          |  |  |
| (0)                 | 12 3 12 2 72                                                                                                                                                                                                 | (2)            |  |  |
| (c)                 | $P(R H) = \frac{\frac{5}{12} \times \frac{2}{3}}{\frac{41}{12}}, = \frac{20}{41}$ or awrt 0.488                                                                                                              | M1 A1ft A1     |  |  |
|                     |                                                                                                                                                                                                              | (3)            |  |  |
| (d)                 | $\left(\frac{5}{12}\right)^2 + \left(\frac{7}{12}\right)^2$                                                                                                                                                  | M1 A1ft        |  |  |
|                     | $= \frac{25}{144} + \frac{49}{144} = \frac{74}{144}  \text{or}  \frac{37}{72} \text{ or awrt } 0.514$                                                                                                        | A1 (3)         |  |  |
|                     | 144 144 144 72                                                                                                                                                                                               |                |  |  |
| (2)                 |                                                                                                                                                                                                              | Total 10       |  |  |
| (a)                 | 1 <sup>st</sup> B1 for the probabilities on the first 2 branches. Accept 0.416 and 0.583                                                                                                                     |                |  |  |
|                     | $2^{\text{nd}}$ B1 for probabilities on the second set of branches. Accept $0.\dot{6}$ , $0.\dot{3}$ , $0.5$ and $\frac{1.5}{3}$ Allow exact decimal equivalents using clear recurring notation if required. |                |  |  |
| (b)                 |                                                                                                                                                                                                              | ios from their |  |  |
| (6)                 | tree diagram                                                                                                                                                                                                 | ics from their |  |  |
| (c)                 | _5_                                                                                                                                                                                                          |                |  |  |
| Formula<br>seen     | M1 for $\frac{P(R \cap H)}{P(H)}$ with denominator their (b) substituted e.g. $\frac{P(R \cap H)}{P(H)} = \frac{\frac{5}{12}}{\text{(their (b))}}$ away                                                      | ard M1.        |  |  |
| Formula<br>not seen | M1 for $\frac{\text{probability} \times \text{probability}}{\text{their } b}$ but M0 if fraction repeated e.g. $\frac{\frac{5}{12} \times \frac{2}{3}}{\frac{2}{3}}$ .                                       |                |  |  |
|                     | $1^{\text{st}}$ A1ft for a fully correct expression or correct follow through $2^{\text{nd}}$ A1 for $\frac{20}{41}$ o.e.                                                                                    |                |  |  |
| (d)                 | (12) (12)                                                                                                                                                                                                    | n              |  |  |
|                     | 1 <sup>st</sup> A1 for both values correct or follow through from their original tree and + 2 <sup>nd</sup> A1 for a correct answer                                                                          |                |  |  |
|                     | Special Case $\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{6}{11}$ seen award M1A0A0                                                                                                      |                |  |  |

CCE C1-11-11-- C4 /// (2) C ------ 2040

| Question<br>Number | Scheme                                                                                                                                                                                                                                                      | Marks       |    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|
| Q3 (a)             | $2a + \frac{2}{5} + \frac{1}{10} = 1$ (or equivalent)                                                                                                                                                                                                       | M1          |    |
|                    | $a = \frac{1}{4} \underline{\text{or } 0.25}$                                                                                                                                                                                                               | A1 (2       | 2) |
| (b)                | $E(X) = \underline{1}$                                                                                                                                                                                                                                      | B1 (1       | 1) |
| (c)                | $E(X^{2}) = 1 \times \frac{1}{5} + 1 \times \frac{1}{10} + 4 \times \frac{1}{4} + 9 \times \frac{1}{5} $ (= 3.1)                                                                                                                                            | M1          |    |
|                    | $Var(X) = 3.1 - 1^2$ , $= 2.1 \text{ or } \frac{21}{10} \text{ oe}$                                                                                                                                                                                         | M1 A1 (3    | 3) |
| (d)                | $\operatorname{Var}(Y) = (-2)^2 \operatorname{Var}(X), \qquad = \underline{8.4 \text{ or } \frac{42}{5} \underline{\text{oe}}}$                                                                                                                             | M1 A1 (2    | 2) |
| (e)                | $X \ge Y$ when $X = 3$ or 2, so probability = " $\frac{1}{4}$ " + $\frac{1}{5}$                                                                                                                                                                             | M1 A1ft     |    |
|                    | $=\underline{\frac{9}{20}}\underline{\mathbf{oe}}$                                                                                                                                                                                                          | A1 (3       | 3) |
|                    |                                                                                                                                                                                                                                                             | Total 1     | 1  |
| (a)                | M1 for a clear attempt to use $\sum P(X = x) = 1$<br>Correct answer only 2/2.<br>NB Division by 5 in parts (b), (c) and (d) seen scores 0. Do not apply ISW.                                                                                                |             |    |
| (b)                | B1 for 1                                                                                                                                                                                                                                                    |             |    |
| (c)                |                                                                                                                                                                                                                                                             |             |    |
| (6)                | 1 <sup>st</sup> M1 for attempting $\sum x^2 P(X = x)$ at least two terms correct. Can follow through. $2^{nd}$ M1 for attempting $E(X^2) - [E(X)]^2$ or allow subtracting 1 from their attempt at $E(X^2)$ incorrect formula seen. Correct answer only 3/3. | provided no |    |
| (d)                | M1 for $(-2)^2 \operatorname{Var}(X)$ or $4\operatorname{Var}(X)$<br>Condone missing brackets provided final answer correct for their $\operatorname{Var}(X)$ .<br>Correct answer only $2/2$ .                                                              |             |    |
| (e)                | Allow M1 for distribution of $Y = 6 - 2X$ and correct attempt at $E(Y^2) - [E(Y)]^2$<br>M1 for identifying $X = 2$ , 3<br>$1^{st}$ A1ft for attempting to find their $P(X=2) + P(X=3)$<br>$2^{nd}$ A1 for $\frac{9}{20}$ or 0.45                            |             |    |

CCE C1-11-11-1 C4 (///2) C ----- 2040

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                      | Marks    |      |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| Q4 (a)             | $\frac{2+3}{\text{their total}} = \frac{5}{\text{their total}} = \frac{1}{6}  (** given answer**)$                                                                                                                                                                                                                          | M1 A1cso | (2)  |
| (b)                | $\frac{4+2+5+3}{\text{total}}$ , $=\frac{14}{30}$ or $\frac{7}{15}$ or $0.4\dot{6}$                                                                                                                                                                                                                                         | M1 A1    | (2)  |
| (c)                | $P(A \cap C) = 0$                                                                                                                                                                                                                                                                                                           | B1       | (1)  |
| (d)                | $P(C \text{ reads at least one magazine}) = \frac{6+3}{20} = \frac{9}{20}$                                                                                                                                                                                                                                                  | M1 A1    | (2)  |
| (e)                | $P(B) = \frac{10}{30} = \frac{1}{3}, P(C) = \frac{9}{30} = \frac{3}{10}, P(B \cap C) = \frac{3}{30} = \frac{1}{10} \text{ or } P(B C) = \frac{3}{9}$                                                                                                                                                                        | M1       |      |
|                    | $P(B) \times P(C) = \frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = P(B \cap C)$ or $P(B C) = \frac{3}{9} = \frac{1}{3} = P(B)$                                                                                                                                                                                            | M1       |      |
|                    | So yes they are statistically independent                                                                                                                                                                                                                                                                                   | A1cso    | (3)  |
|                    |                                                                                                                                                                                                                                                                                                                             | Tota     | l 10 |
| (a)                | M1 for $\frac{2+3}{\text{their total}}$ or $\frac{5}{30}$                                                                                                                                                                                                                                                                   |          |      |
| (b)                | M1 for adding at least 3 of "4, 2, 5, 3" and dividing by their total to give a probability Can be written as separate fractions substituted into the completely correct Addition Rule                                                                                                                                       |          |      |
| (c)                | B1 for 0 or 0/30                                                                                                                                                                                                                                                                                                            |          |      |
| (d)                | M1 for a <b>denominator of 20</b> or $\frac{20}{30}$ leading to an answer with denominator of 20                                                                                                                                                                                                                            |          |      |
|                    | $\frac{9}{20}$ only, 2/2                                                                                                                                                                                                                                                                                                    |          |      |
| (e)                | <ul> <li>1<sup>st</sup> M1 for attempting all the required probabilities for a suitable test</li> <li>2<sup>nd</sup> M1 for use of a correct test - must have attempted all the correct probabilities.</li> <li>Equality can be implied in line 2.</li> <li>A1 for fully correct test carried out with a comment</li> </ul> |          |      |
|                    |                                                                                                                                                                                                                                                                                                                             |          |      |

CCE C1-11-11-- C4 (((12) C ------ 2040

| Question | Scheme                                                                                                                                                    | Marks      |      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| Number   | Scheme                                                                                                                                                    | marks      |      |
| Q5 (a)   | 23, 35.5 (may be in the table)                                                                                                                            | B1 B1      | (2)  |
| (b)      | Width of 10 units is 4 cm so width of 5 units is <u>2 cm</u>                                                                                              | B1         |      |
|          | $Height = 2.6 \times 4 = \underline{10.4 \text{ cm}}$                                                                                                     | M1 A1      | (3)  |
| (c)      | $\sum fx = 1316.5 \Rightarrow \bar{x} = \frac{1316.5}{56} = \text{awrt } \underline{23.5}$                                                                | M1 A1      |      |
|          | $\sum fx^2 = 37378.25 \text{ can be implied}$                                                                                                             | B1         |      |
|          | So $\sigma = \sqrt{\frac{37378.25}{56} - \overline{x}^2} = \text{awrt} \underline{10.7}$ allow $s = 10.8$                                                 | M1 A1      | (5)  |
| (d)      | $Q_2 = (20.5) + \frac{(28-21)}{11} \times 5 = 23.68$ awrt <u>23.7 or 23.9</u>                                                                             | M1 A1      | (2)  |
| (e)      | $Q_3 - Q_2 = 5.6$ , $Q_2 - Q_1 = 7.9$ (or $\overline{x} < Q_2$ )                                                                                          | M1         |      |
|          | [7.9 > 5.6 so ] <u>negative skew</u>                                                                                                                      | A1         | (2)  |
|          |                                                                                                                                                           | Tota       |      |
| (b)      | M1 for their width x their height=20.8. Without labels assume width first, height second and award marks accordingly.                                     |            |      |
| (c)      | 1 <sup>st</sup> M1 for reasonable attempt at $\sum x$ and /56                                                                                             |            |      |
|          | $2^{\text{nd}}$ M1 for a method for $\sigma$ or $s$ , $\sqrt{}$ is required                                                                               |            |      |
|          | Typical errors $\sum (fx)^2 = 354806.3 \text{ M0}, \sum f^2 x = 13922.5 \text{ M0} \text{ and } (\sum fx)^2 = 1733172$                                    | M0         |      |
|          | Correct answers only, award full marks.                                                                                                                   |            |      |
| (d)      | Use of $\sum f(x-\bar{x})^2 = \text{awrt } 6428.75 \text{ for B1}$                                                                                        |            |      |
|          | lcb can be 20, 20.5 or 21, width can be 4 or 5 and the fraction part of the formula correct for M1 - Allow 28.5 in fraction that gives awrt 23.9 for M1A1 |            |      |
| (e)      |                                                                                                                                                           |            |      |
|          | Provided median greater than 22.55 and less than 29.3 award for M1 for $Q_3 - Q_2 < Q_2 - Q_3$                                                            | without va | lues |
|          | as a valid reason.  SC Accept mean close to median and no skew oe for M1A1                                                                                |            |      |
|          | SC Accept mean close to median and no skew oe for M1A1                                                                                                    |            |      |

CCE C1-11-11-1 C4 (///2) C ----- 2040

| Question<br>Number |     | Scheme                                                                                                                                                                                                                                                                                                                                                                          |             | Marks |       |
|--------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|-------|
| Q6                 | (a) | See overlay                                                                                                                                                                                                                                                                                                                                                                     |             | B1 B1 | (2)   |
|                    | (b) | The <b>points</b> lie reasonably close to a straight <b>line</b> (o.e.)                                                                                                                                                                                                                                                                                                         |             | B1    | (1)   |
|                    | (c) | $\sum d = 27.7, \qquad \sum f = 146 $ (both, may be im)                                                                                                                                                                                                                                                                                                                         | plied)      | B1    |       |
|                    |     | $S_{dd} = 152.09 - \frac{(27.7)^2}{6} = 24.208$ awrt 24                                                                                                                                                                                                                                                                                                                         | <u>4.2</u>  | M1 A1 |       |
|                    |     | $S_{fd} = 723.1 - \frac{27.7 \times 146}{6} = 49.06$ awrt                                                                                                                                                                                                                                                                                                                       | <u>49.1</u> | A1    | (4)   |
|                    |     | $b = \frac{S_{fd}}{S_{dd}} = 2.026$ awrt 2.0                                                                                                                                                                                                                                                                                                                                    | 03          | M1 A1 |       |
|                    |     | $a = \frac{146}{6} - b \times \frac{27.7}{6} = 14.97$ so $\underline{f} = 15.0 + 2.03d$                                                                                                                                                                                                                                                                                         |             | M1 A1 | (4)   |
|                    | (e) | A flight costs £2.03 (or about £2) for every extra 100km or about 2p per km.                                                                                                                                                                                                                                                                                                    |             | B1ft  | (1)   |
|                    | (f) | $15.0 + 2.03d < 5d \qquad \text{so}  d > \frac{15.0}{(5 - 2.03)} = 5.00 \sim 5.05$                                                                                                                                                                                                                                                                                              |             | M1    |       |
|                    |     | So $t > 500 \sim 505$                                                                                                                                                                                                                                                                                                                                                           |             | A1    | (2)   |
|                    |     |                                                                                                                                                                                                                                                                                                                                                                                 |             | Tota  | ıl 14 |
|                    | (a) | 1 <sup>st</sup> B1 for at least 4 points correct (allow <u>+</u> one 2mm square) 2 <sup>nd</sup> B1 for all points correct (allow <u>+</u> one 2 mm square                                                                                                                                                                                                                      |             |       |       |
|                    | (b) | Ignore extra points and lines Require reference to points and line for B1.                                                                                                                                                                                                                                                                                                      |             |       |       |
|                    | (c) | M1 for a correct method seen for either - a correct expression $1^{\text{st}} \text{ A}1$ for $S_{dd}$ awrt 24.2                                                                                                                                                                                                                                                                |             |       |       |
|                    | (d) | $2^{\text{nd}}$ A1 for $S_{fd}$ awrt 49.1<br>$1^{\text{st}}$ M1 for a correct expression for $b$ - can follow through their answers from (c) $2^{\text{nd}}$ M1 for a correct method to find $a$ - follow through their $b$ and their means $2^{\text{nd}}$ A1 for $f$ = in terms of $d$ and all values awrt given expressions. Accept 15 as rounding from correct answer only. |             |       |       |
|                    | (e) | Context of cost and distance required. Follow through their value of b                                                                                                                                                                                                                                                                                                          |             |       |       |
|                    | (f) | M1 for an attempt to find the intersection of the 2 lines. Value of <i>t</i> in range 500 to 505 seen award M1. Value of <i>d</i> in range 5 to 5.05 award M1. Accept <i>t</i> greater than 500 to 505 inclusive to include graphical solution for M 1A1                                                                                                                        |             |       |       |

CCE C1-11-11-- C4 /// (2) C ------ 2040

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                            | Marks     |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Q7 (a)             | $P(D > 20) = P\left(Z > \frac{20 - 30}{8}\right)$                                                                                                                                                                                                                                                 | M1        |  |
|                    | = P(Z > -1.25)                                                                                                                                                                                                                                                                                    | A1        |  |
|                    | = <u>0.8944</u> <u>awrt 0.894</u>                                                                                                                                                                                                                                                                 | A1 (3)    |  |
| (b)                | $P(D < Q_3) = 0.75$ so $\frac{Q_3 - 30}{8} = 0.67$                                                                                                                                                                                                                                                | M1 B1     |  |
|                    | $Q_3 = \mathbf{awrt} \ \underline{35.4}$                                                                                                                                                                                                                                                          | A1 (3)    |  |
| (c)                | $35.4 - 30 = 5.4$ so $Q_1 = 30 - 5.4 = $ <b>awrt</b> $24.6$                                                                                                                                                                                                                                       | B1ft (1)  |  |
| (d)                | $Q_3 - Q_1 = 10.8$ so $1.5(Q_3 - Q_1) = 16.2$ so $Q_1 - 16.2 = h$ or $Q_3 + 16.2 = k$                                                                                                                                                                                                             | M1        |  |
|                    | h=8.4  to  8.6 and $k=51.4  to  51.6$ both                                                                                                                                                                                                                                                        | A1 (2)    |  |
| (e)                | 2P(D > 51.6) = 2P(Z > 2.7)                                                                                                                                                                                                                                                                        | M1        |  |
|                    | $= 2[1 - 0.9965] = \text{awrt } \underline{0.007}$                                                                                                                                                                                                                                                | M1 A1 (3) |  |
|                    |                                                                                                                                                                                                                                                                                                   | Total 12  |  |
| (a)                | M1 for an attempt to standardise 20 or 40 using 30 and 8.<br>$1^{st}$ A1 for $z = \pm 1.25$<br>$2^{nd}$ A1 for awrt 0.894                                                                                                                                                                         |           |  |
| (b)                | M1 for $\frac{Q_3 - 30}{8}$ = to a z value                                                                                                                                                                                                                                                        |           |  |
|                    | M0 for 0.7734 on RHS.<br>B1 for (z value) between 0.67 $\sim$ 0.675 seen.<br>M1B0A1 for use of z = 0.68 in correct expression with awrt 35.4                                                                                                                                                      |           |  |
| (c)                | Follow through using their of quartile values.                                                                                                                                                                                                                                                    |           |  |
| (d)                | M1 for an attempt to calculate 1.5(IQR) and attempt to add or subtract using one of the formulae given in the question - follow through their quartiles                                                                                                                                           |           |  |
| (e)                | 1 <sup>st</sup> M1 for attempting $2P(D > \text{their } k)$ or $(P(D > \text{their } k) + P(D < \text{their } h))$<br>2 <sup>nd</sup> M1 for standardising their $h$ or $k$ (may have missed the 2) so allow for standardising $P(D > 51.6)$ or $P(D < 8.4)$<br>Require boths Ms to award A mark. |           |  |

CCE C1-11-11-1 C4 (///2) C ----- 2040

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024765 Summer 2010

For more information on Edexcel qualifications, please visit <a href="www.edexcel.com/quals">www.edexcel.com/quals</a>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH



# Mark Scheme (Results) January 2011

**GCE** 

GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011
Publications Code UA026664
All the material in this publication is copyright
© Edexcel Ltd 2011

### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - **B** marks are unconditional accuracy marks (independent of M marks)
  - Marks should not be subdivided.

#### 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark

## January 2011 Statistics S1 6683 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                          | Marks               |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| 1. (a)             | $S_{ll} = 327754.5 - \frac{4027^2}{50} = 3419.92$ $S_{lw} = 29330.5 - \frac{357.1 \times 4027}{50} = 569.666$                                                                                                                                                                   | M1 A1<br>A1         |  |  |
|                    | $r = \frac{569.666}{\sqrt{3419.92 \times 289.6}} = 0.572$ awrt 0.572 or 0.573                                                                                                                                                                                                   | (3)<br>M1 A1<br>(2) |  |  |
| (c)                | As the length of the salmon increases the weight increases                                                                                                                                                                                                                      | B1ft (1) [6]        |  |  |
|                    | <u>Notes</u>                                                                                                                                                                                                                                                                    | - <u></u>           |  |  |
| (a)                | M1 for at least one correct expression $1^{\text{st}} \text{ A1 for } S_{ll} = \text{awrt } 3420  \text{(Condone } S_{xx} = \dots \text{ or even } S_{yy} = \dots \text{)}$ $2^{\text{nd}} \text{ A1 for } S_{lw} = \text{awrt } 570  \text{(Condone } S_{xy} = \dots \text{)}$ |                     |  |  |
| (b)                | M1 for attempt at correct formula. Must have their $S_{ll}$ , $S_{lw}$ and given $S_{ww}$ in the correct places  If $S_{ll}$ , $S_{lw}$ are correct and an answer of awrt 0.57 is seen then award M1A0  M0 for $\frac{29330.5}{\sqrt{327754.5 \times 289.6}}$                   |                     |  |  |
| (c)                | Diff for a commont mentioning "length" and "weight" not just land w and the idea of                                                                                                                                                                                             |                     |  |  |

1

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks                |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2. (a)             | 2.8 + 5.6 + 2.3 + 9.4 + 0.5 + 1.8 + 84.6 = 107<br>mean = $107 / 28$ (= 3.821) (awrt 3.8)                                                                                                                                                                                                                                                                                                                                                                                                            | M1<br>A1<br>(2)      |
| (b)                | It will have no effect since one is 4.5 under what it should be and the other is 4.5 above what it should be.                                                                                                                                                                                                                                                                                                                                                                                       | B1<br>dB1 (2)<br>[4] |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
| (a)                | M1 for a clear attempt to add the two sums. Accept a full expression or 2.8 + 5.6 ++ 84.6 = x where 100 < x < 110 i.e. seeing at least two correct terms of Keith's and the 84.6 with a slip.  A1 for awrt 3.8 (Condone 1 dp/2sf here since data is given to 1 dp or 2 sf)  Accept \frac{107}{28} \text{ or } 3\frac{23}{28} \text{ or any exact equivalent}  Correct answer implies M1A1                                                                                                           |                      |
| (b)                | <ul> <li>1<sup>st</sup> B1 for clearly stating that it will have no effect. ("roughly the same" is B0 2<sup>nd</sup> dB1 for a supporting reason that mentions the fact that the increase and decressame and gives some numerical value(s) to support this.</li> <li>e.g. Sum of Keith's observations is still 22.4 (or mean is still 3.2)</li> <li>or Sum is still 107</li> <li>or 9.4-4.9=5-0.5 (o.e.)</li> <li>This second B1 is dependent on their saying there is no effect so B0B1</li> </ul> | ease are the         |

| Question<br>Number | Scheme                                                                                                                  | Marks        |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| 3.                 |                                                                                                                         |              |  |  |  |  |  |
| (a)                | Outliers                                                                                                                |              |  |  |  |  |  |
| ()                 | $14 + 1.5 \times (14 - 7) = 24.5$                                                                                       | M1           |  |  |  |  |  |
|                    | $7 - 1.5 \times (14 - 7) = -3.5$                                                                                        |              |  |  |  |  |  |
|                    | $I = 1.3 \times (14 - I) = -3.3$                                                                                        |              |  |  |  |  |  |
|                    | Outline 25                                                                                                              |              |  |  |  |  |  |
|                    | Outlier 25 either upper limit acceptable on diagram                                                                     |              |  |  |  |  |  |
|                    | ettilet upper innit acceptable on diagram                                                                               | M1           |  |  |  |  |  |
|                    |                                                                                                                         | <i>7</i> (1) |  |  |  |  |  |
|                    | V V                                                                                                                     | A 1 £ £      |  |  |  |  |  |
|                    |                                                                                                                         | A1ft         |  |  |  |  |  |
|                    |                                                                                                                         | B1           |  |  |  |  |  |
|                    |                                                                                                                         | DI           |  |  |  |  |  |
|                    |                                                                                                                         |              |  |  |  |  |  |
|                    | 0 5 10 15 20 25                                                                                                         |              |  |  |  |  |  |
|                    | Sales in £'000                                                                                                          | (5)          |  |  |  |  |  |
|                    | Sales III & 000                                                                                                         | (0)          |  |  |  |  |  |
| (b)                | Since $Q_3 - Q_2 < Q_2 - Q_1$ . Allow written explanation                                                               | B1           |  |  |  |  |  |
|                    | negatively skew                                                                                                         | dB1          |  |  |  |  |  |
|                    |                                                                                                                         | (2)          |  |  |  |  |  |
|                    |                                                                                                                         | •            |  |  |  |  |  |
| (c)                | not true                                                                                                                | B1           |  |  |  |  |  |
|                    | since the lower quartile is 7000 and therefore 75% above 7000 not 10000                                                 | dB1          |  |  |  |  |  |
|                    | or 10 is inside the box or any other sensible comment                                                                   |              |  |  |  |  |  |
|                    | (2)                                                                                                                     |              |  |  |  |  |  |
|                    | [9]                                                                                                                     |              |  |  |  |  |  |
|                    | Notes : Notes                                                                                                           |              |  |  |  |  |  |
| (a)                | A fully correct box-plot (either version) with no supporting work scores 5/5. Otherwise                                 |              |  |  |  |  |  |
| , ,                | read on                                                                                                                 |              |  |  |  |  |  |
|                    | 1 <sup>st</sup> M1 for at least one correct calculation seen                                                            |              |  |  |  |  |  |
|                    | 1 <sup>st</sup> A1 for 24.5 and -3.5 (or just negative noted) seen. May be read off the graph.                          |              |  |  |  |  |  |
|                    | If both values are seen but no calculation is given then M1A1, one value M1A0.                                          |              |  |  |  |  |  |
|                    | 2 <sup>nd</sup> M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked) | iues         |  |  |  |  |  |
|                    | 2 <sup>nd</sup> A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off th                           | eir scale    |  |  |  |  |  |
|                    | If both upper whiskers are seen A0                                                                                      | on bout      |  |  |  |  |  |
|                    | Apply ft for their whiskers being compatible with their outlier limits                                                  |              |  |  |  |  |  |
|                    | e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 is OK                                        |              |  |  |  |  |  |
|                    | B1 for only one outlier appropriately marked at 25                                                                      |              |  |  |  |  |  |
|                    | Apply $\pm 0.5$ square accuracy for diagram                                                                             |              |  |  |  |  |  |
| (b)                | $1^{\text{st}} B1$ for $Q_3 - Q_2 < Q_2 - Q_1$ statement or an equivalent statement in words                            |              |  |  |  |  |  |
|                    | Use of $Q_3 - Q_2 < Q_2 - Q_1$ does not require differences to be seen.                                                 |              |  |  |  |  |  |
|                    | 2 <sup>nd</sup> dB1 for "negative skew" dependent on suitable reason given above. "correlation" is B0                   |              |  |  |  |  |  |
|                    | "positive skew" with a supporting argument based on whiskers can score B1B1                                             |              |  |  |  |  |  |
|                    | e.g. "right hand whisker is longer than LH one so positive skew"                                                        |              |  |  |  |  |  |
|                    | $Q_3 - Q_2 < Q_2 - Q_1$ followed by "positive skew" is B1B0                                                             |              |  |  |  |  |  |
|                    | ast Total                                                                                                               |              |  |  |  |  |  |
| (c)                | 1 <sup>st</sup> B1 for rejecting the company's claim                                                                    |              |  |  |  |  |  |
|                    | 2 <sup>nd</sup> dB1 for an appropriate supporting reason. Dependent on rejecting company                                | y's claim.   |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                    | Marks             |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| 4.                 | $b = \frac{1.688}{5.753} = 0.293$ $a = 3.22 - 4.42 \times 0.293 = 1.9231$ $p = 1.92 + 0.293v$                                                                                                                                                                                             | M1A1<br>M1<br>A1  |  |
| (b)                | $v = \frac{85 - 5}{10} = 8$ $p = 1.92 + 0.293 \times 8 = 4.3$ (awrt 4.3)                                                                                                                                                                                                                  | (4)<br>M1<br>A1   |  |
|                    |                                                                                                                                                                                                                                                                                           | (2)<br><b>[6]</b> |  |
|                    | <u>Notes</u>                                                                                                                                                                                                                                                                              |                   |  |
| (a)                | Can ignore (a) and (b) labels here $1^{\text{st}} \text{ M1}$ for a correct expression for b. $\frac{1.688}{1.168}$ is M0 $1^{\text{st}} \text{ A1}$ for awrt 0.29                                                                                                                        |                   |  |
|                    | $2^{\text{nd}}$ M1 for use of $a = p - bv$ follow through their value of $b$ (or even just the $2^{\text{nd}}$ A1 for a complete equation with $a = \text{awrt } 1.92$ and $b = \text{awrt } 0.293$ $y \text{ or } p = 1.92 + 0.293x \text{ is A0}$ Correct answer with no working is 4/4 | letter b)         |  |
| (b)                | M1 for an attempt to find the value of $v$ when $x = 85$ ( at least 2 correct terms in $\pm \frac{85-5}{10}$ )  or for an attempt to find an equation for $p$ in terms of $x$ and using $x = 85$ ( $x = 5$ )                                                                              |                   |  |
|                    | Attempt at equation of $p$ in $x$ requires $p = 1.92 + 0.293 \frac{(x-5)}{10}$<br>A1 for awrt 4.3 (award when first seen and apply ISW)<br>N.B. $p = 1.92 + 0.293 \times 85$ (o.e.) is M0A0                                                                                               |                   |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                           | Marks                                                                                                                      |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 5.                 | N. 1: 20/2 16th (16.5)                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |  |  |  |
| (a)                | Median = $32/2 = 16^{th}$ term (16.5)<br>x-39.5 	 16-14 	 (2 	 1)                                                                                                                                                                                                                                                                                                                |                                                                                                                            |  |  |  |
|                    | $\frac{x-39.5}{49.5-39.5} = \frac{16-14}{25-14} \text{ or } x = 39.5 + \left(\frac{2}{11} \times 10\right)$                                                                                                                                                                                                                                                                      | M1                                                                                                                         |  |  |  |
|                    | Median = $41.3$ (use of $n + 1$ gives $41.8$ ) (awrt $41.3$ )                                                                                                                                                                                                                                                                                                                    | A1 (2)                                                                                                                     |  |  |  |
| (b)                | Mean= $\frac{1414}{32}$ = 44.1875 (awrt 44.2)                                                                                                                                                                                                                                                                                                                                    | B1                                                                                                                         |  |  |  |
|                    | Standard deviation = $\sqrt{\frac{69378}{32} - \left(\frac{1414}{32}\right)^2}$                                                                                                                                                                                                                                                                                                  | M1                                                                                                                         |  |  |  |
|                    | = 14.7 	 (or s = 14.9)                                                                                                                                                                                                                                                                                                                                                           | A1 (2)                                                                                                                     |  |  |  |
| (c)                | mean > median therefore positive skew                                                                                                                                                                                                                                                                                                                                            | B1ft B1ft                                                                                                                  |  |  |  |
|                    | mean median diererore positive skew                                                                                                                                                                                                                                                                                                                                              | (2)<br>[7]                                                                                                                 |  |  |  |
|                    | <u>Notes</u>                                                                                                                                                                                                                                                                                                                                                                     | L- 1                                                                                                                       |  |  |  |
| (a)                | M1 for an attempt to use interpolation to find the median. Condone use of                                                                                                                                                                                                                                                                                                        |                                                                                                                            |  |  |  |
|                    | e.g. allow $39 + \frac{2}{11} \times 10$ (o.e.) or $40 + \frac{2}{11} \times 10$ (o.e.) to score M1A0 but mu                                                                                                                                                                                                                                                                     | e.g. allow $39 + \frac{2}{11} \times 10$ (o.e.) or $40 + \frac{2}{11} \times 10$ (o.e.) to score M1A0 but must have the 10 |  |  |  |
|                    | A1 for awrt 41.3 (or awrt 41.8 if using $(n + 1)$ )                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |  |  |  |
| (b)                | B1 for awrt 44.2 M1 for a correct expression including square root. (Allow ft of their mean) A1 for awrt 14.7 (If using s for awrt 14.9)                                                                                                                                                                                                                                         |                                                                                                                            |  |  |  |
|                    | You may see $\sum t = 1339 \rightarrow \bar{t} = 41.8$ and $\sum t^2 = 62928 \rightarrow \sigma 14.7$ or $s = 14.9$                                                                                                                                                                                                                                                              |                                                                                                                            |  |  |  |
| Mid-points         | ans.                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |  |  |  |
|                    | Correct answer only in (a) and (b) can score full marks but check (n +                                                                                                                                                                                                                                                                                                           | 1) case in (a)                                                                                                             |  |  |  |
| (c)                | 1 <sup>st</sup> B1ft for a correct comparison of their mean and their median (may be in a formula)  Calculating median – mean as negative is OK for this B1 but must say +ve skew for 2 <sup>nd</sup> B1                                                                                                                                                                         |                                                                                                                            |  |  |  |
|                    | Only allow comparison to be $\approx 0$ if $\left  \text{mean} - \text{median} \right  \le 0.5$                                                                                                                                                                                                                                                                                  |                                                                                                                            |  |  |  |
|                    | 2 <sup>nd</sup> B1ft for a correct description of skewness <u>based on their values of mean</u> ft their values for mean and median not their previous calculation Must be compatible with their previous comparison (if they have "Positive skew" with no reason is B0B1 provided you can see the imply that.  Description should be "positive" or "negative" or "no" skew or " | /comparison<br>one)<br>eir values that                                                                                     |  |  |  |
| Quartiles          | "Positive correlation" is B0  1 <sup>st</sup> B1ft if $Q_1$ = awrt 32 and $Q_3$ = awrt 49 seen and a correct comparison in                                                                                                                                                                                                                                                       | made. ft $Q_2$                                                                                                             |  |  |  |
|                    | $2^{\text{nd}}$ B1ft if $Q_1$ = awrt 32 or $Q_3$ = awrt 49 seen and a correct description ba                                                                                                                                                                                                                                                                                     |                                                                                                                            |  |  |  |
|                    | quartiles and their comparison is made. (Should get "negative sk                                                                                                                                                                                                                                                                                                                 |                                                                                                                            |  |  |  |

| Question<br>Number | Scheme                                                                                  | Marks              |
|--------------------|-----------------------------------------------------------------------------------------|--------------------|
| 6.<br>(a)          | k+2k+3k+4k=1 or $10k=1k=0.1$ (*) [allow verification with a comment e.g. "so $k=0.1$ "] | B1cso (1)          |
| (b)                | $E(X) = 1 \times 0.1 + 2 \times 0.2 + 3 \times 0.3 + 4 \times 0.4 = 3$                  | M1 A1 (2)          |
| (c)                | $E(X^2) = 1 \times 0.1 + 4 \times 0.2 + 9 \times 0.3 + 16 \times 0.4 = 10$              | M1 A1 (2)          |
| (d)                | Var(X) = 10 - 9(=1)<br>$Var(2-5X) = 5^2 Var(X) = 25$                                    | M1<br>M1 A1<br>(3) |
| (e)                | $P(1,3)+P(2,2)=2\times0.1\times0.3+0.2\times0.2=0.1$ (*)                                | M1 A1cso (2)       |
| (f)                | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                    | B1 B1 (2)          |
| (g)                | P(2)+P(3)=0.05                                                                          | M1A1 (2) [14]      |

| Question<br>Number                                                                   | Scheme                                                                                                           | Marks                |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
|                                                                                      | Notes                                                                                                            |                      |  |  |  |
| (a)                                                                                  | B1 for a clear attempt to use sum of probabilities = 1. Must see previous line                                   | as well as $k = 0.1$ |  |  |  |
|                                                                                      | A correct expression for $E(X)$ or $E(X^2)$ that is later divided by 4                                           | scores M0            |  |  |  |
| (b)                                                                                  | M1 for a completely correct expression. May be implied by correct answer of 3 or 30k                             |                      |  |  |  |
|                                                                                      | A1 for 3 only.                                                                                                   |                      |  |  |  |
| (c)                                                                                  |                                                                                                                  | r of 10 or 100k      |  |  |  |
|                                                                                      | A1 for 10 only.                                                                                                  |                      |  |  |  |
|                                                                                      | [ For $E(X^2) = 0.1 + 0.8 + 2.7 + 6.4 - 9 = 1$ scores M0A0 but accept this as                                    | Var(X) in (d)]       |  |  |  |
|                                                                                      |                                                                                                                  |                      |  |  |  |
| (d)                                                                                  |                                                                                                                  |                      |  |  |  |
|                                                                                      | Allow this mark for $Var(X) = 10 - 9$ or better. May be implied if this is seen in (c).                          |                      |  |  |  |
|                                                                                      | $2^{\text{nd}}$ M1 for $5^2$ Var(X) or $25$ Var(X) can f.t. their Var(X). Allow $-5^2$ if it later becomes $+25$ |                      |  |  |  |
|                                                                                      | A1 for 25 only. Dependent upon both Ms                                                                           |                      |  |  |  |
|                                                                                      | Forming distribution for $Y = 2-5X$ gets M1 for E( $Y^2$ )=194 then M1A                                          | 1 for 194-169=25     |  |  |  |
|                                                                                      |                                                                                                                  |                      |  |  |  |
| (e) M1 for correctly identifying $(1, 3)$ or $(3, 1)$ and $(2, 2)$ as required cases |                                                                                                                  |                      |  |  |  |
| $(3k^2 + 4k^2)$ or better)                                                           |                                                                                                                  |                      |  |  |  |
|                                                                                      | A1 cso for 0.1 only but must see evidence for M1                                                                 |                      |  |  |  |
| (f)                                                                                  | 1 <sup>st</sup> B1 for 0.2 correctly assigned. May be in table.                                                  |                      |  |  |  |
|                                                                                      | 2 <sup>nd</sup> B1 for 0.16 correctly assigned. May be in table                                                  |                      |  |  |  |
|                                                                                      | , ,                                                                                                              |                      |  |  |  |
| (g)                                                                                  | (g) M1 for $P(2) + P(3)$ . May be implied by correct answer of 0.05                                              |                      |  |  |  |
|                                                                                      | A1 for 0.05 only.                                                                                                |                      |  |  |  |
|                                                                                      | Correct answer only can score full marks in parts (b), (c), (f) a                                                | and (g)              |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                 | Marks           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 7. (a)             | $\frac{2}{3} R \frac{2}{15}$                                                                                                                                                                                                                                                           | D1              |
|                    | both $\frac{2}{3}$ , $\frac{1}{3}$ $\frac{3}{5}$ $r$ $\frac{3}{9}$ $r$ $\frac{4}{9}$ $r$                                                                                                                                                                                               | B1              |
|                    | $\frac{5}{9} \qquad R \qquad \frac{1}{6} \qquad \qquad \frac{4}{9}$                                                                                                                                                                                                                    | B1              |
|                    | both $\frac{3}{5}$ , $\frac{2}{5}$                                                                                                                                                                                                                                                     | B1              |
|                    | $\frac{5}{9}  \text{f}  \left(\frac{1}{9}\right)$ all three of $\frac{4}{9}, \frac{4}{9}, \frac{5}{9}$                                                                                                                                                                                 | B1 (4)          |
| (b)                | $P(A) = P(RR) + P(YY) = \frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times \frac{2}{5} = \frac{2}{5}$ B1 for $\frac{1}{2} \times \frac{2}{5}$ (oe) seen at least once                                                                                                                 | B1 M1 A1<br>(3) |
| (c)                | P(B) = P(RRR) + P(RYR) + P(YRR) + P(YYR) M1 for at least 1 case of 3 balls identified. (Implied by 2 <sup>nd</sup> M1)                                                                                                                                                                 | M1              |
|                    | $\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) = \frac{5}{9}  (*)$ | M1,A1cso (3)    |
| (d)                | $P(A \cap B) = P(RRR) + P(YYR)$ M1 for identifying both cases and + probs.<br>may be implied by correct expressions                                                                                                                                                                    | M1              |
|                    | $= \left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) \qquad \underline{= \frac{2}{9}}  (*)$                                                                                                              | A1cso (2)       |
| (e)                | $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Must have some attempt to <u>use</u>                                                                                                                                                                                                         | M1              |
|                    | $= \frac{2}{5} + \frac{5}{9} - \frac{2}{9} = \frac{11}{15}$                                                                                                                                                                                                                            | A1cao (2)       |
|                    |                                                                                                                                                                                                                                                                                        | . , ,           |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                    |                             |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| (f)                | $\frac{P(RRR)}{P(RRR) + P(YYY)} = \frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)} = \frac{6}{11}$ Probabilities must come from the product of 3 probs. from their tree diagram. | M1<br>A1ft<br>A1 cao<br>(3) |  |
|                    | <u>Notes</u>                                                                                                                                                                                                                                                                                                              |                             |  |
| (b)                | M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.                                                                                                                                                                                                                        |                             |  |
| (c)                | 2 <sup>nd</sup> M1 for all 4 correct expressions, ft their values from tree diagram. A1 is cso                                                                                                                                                                                                                            |                             |  |
| (e)                | M1 for clear attempt to <u>use</u> the correct formula, must have some correct substitution. ft their (b)                                                                                                                                                                                                                 |                             |  |
| (f)                | M1 for identifying the correct probabilities and forming appropriate fraction 1 <sup>st</sup> A1ft for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except (d)                                                                            | -                           |  |

| Question<br>Number | Scheme                                                                                                                                       | Marks                     |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| 8.                 |                                                                                                                                              |                           |  |  |
| (a)                | $P(X > 168) = P(Z > \frac{168 - 160}{5})$                                                                                                    | M1                        |  |  |
|                    | = P(Z > 1.6)                                                                                                                                 | A1                        |  |  |
|                    | = 0.0548 awrt <b>0.0548</b>                                                                                                                  | A1                        |  |  |
|                    | - 0.0340 awit 0.0340                                                                                                                         | (3)                       |  |  |
| (b)                | $P(X < w) = P\left(Z < \frac{w - 160}{5}\right)$                                                                                             |                           |  |  |
|                    |                                                                                                                                              | M4 D4                     |  |  |
|                    | $\frac{w-160}{5} = -2.3263$                                                                                                                  | M1 B1                     |  |  |
|                    | w = 148.37 awrt 148                                                                                                                          | A1                        |  |  |
|                    | w =110.37                                                                                                                                    | (3)                       |  |  |
| (c)                | $160 - \mu$ 2.2262                                                                                                                           | M1                        |  |  |
|                    | $\frac{160 - \mu}{\sigma} = 2.3263$                                                                                                          | B1                        |  |  |
|                    | $\frac{152 - \mu}{1} = -1.2816$                                                                                                              | B1                        |  |  |
|                    | $\sigma$                                                                                                                                     |                           |  |  |
|                    | $160 - \mu = 2.3263\sigma$                                                                                                                   |                           |  |  |
|                    | $152 - \mu = -1.2816\sigma$                                                                                                                  | M1                        |  |  |
|                    | $8 = 3.6079 \sigma$<br>$\sigma = 2.21$ awrt 2.22                                                                                             | A1                        |  |  |
|                    | $\mu = 154.84$ awrt 155                                                                                                                      | A1 (6)                    |  |  |
|                    | μ – 134.04                                                                                                                                   | [12]                      |  |  |
|                    | <u>Notes</u>                                                                                                                                 |                           |  |  |
| (a)                | (168-160)                                                                                                                                    | or implied by 1.6         |  |  |
|                    | 1 $(5)$<br>1 <sup>st</sup> A1 for P(Z > 1.6) or P(Z < -1.6) ie $z = 1.6$ and a correct inequality or 1.6                                     |                           |  |  |
|                    | diagram                                                                                                                                      |                           |  |  |
| (b)                | Correct answer to (a) implies all 3 marks                                                                                                    |                           |  |  |
|                    | M1 for attempting $\pm \left(\frac{w-160}{5}\right)$ = recognizable z value ( z  > 1)                                                        |                           |  |  |
|                    | B1 for $z = \pm 2.3263$ or better. Should be $z = \dots$ or implied so: $1 - 2.3263 = \frac{v}{2}$                                           | $\frac{v-160}{5}$ is M0B0 |  |  |
|                    | A1 for awrt 148. This may be scored for other z values so M1B0A1 is poss                                                                     | sible                     |  |  |
| (c)                | For awrt 148 only with no working seen award M1B0A1 M1 for attempting to standardize 160 or 152 with $\mu$ and $\sigma$ (allow $\pm$ ) and e |                           |  |  |
|                    | ( $ z $ >1)                                                                                                                                  | equate to 2 varue         |  |  |
|                    | $1^{st}$ B1 for awrt + 2.33 or + 2.32 seen                                                                                                   |                           |  |  |
|                    | $2^{\text{nd}}$ B1 for awrt $\pm 1.28$ seen                                                                                                  |                           |  |  |
|                    | $2^{\rm nd}$ M1 for attempt to solve their two linear equations in $\mu$ and $\sigma$ leading to                                             | equation in just          |  |  |
|                    | one variable                                                                                                                                 |                           |  |  |
|                    | $1^{\text{st}} \text{ A1 } \text{ for } \sigma = \text{awrt } 2.22 \text{ . Award when } 1^{\text{st}} \text{ seen}$                         |                           |  |  |
|                    | $2^{\text{nd}}$ A1 for $\mu$ = awrt 155. Correct answer only for part (c) can score all 6 m                                                  |                           |  |  |
|                    | NB $\sigma$ = 2.21 commonly comes from $z$ = 2.34 and usually scores M1                                                                      |                           |  |  |
|                    | The A marks in (c) require both M marks to have been ear                                                                                     | ned                       |  |  |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA026664 January 2011

For more information on Edexcel qualifications, please visit <a href="www.edexcel.com/quals">www.edexcel.com/quals</a>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH



Mark Scheme (Results)

June 2011

GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: <a href="http://www.edexcel.com/Aboutus/contact-us/">http://www.edexcel.com/Aboutus/contact-us/</a>

June 2011
Publications Code UA028837
All the material in this publication is copyright
© Edexcel Ltd 2011



#### **EDEXCEL GCE MATHEMATICS**

# **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - B marks are unconditional accuracy marks (independent of M marks)
  - Marks should not be subdivided.

#### 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- · dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark



# June 2011 Statistics S1 6683 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks              |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1. (a)             | $S_{yy} = 4305 - \frac{181^2}{8}$ $= 209.875 $ 210) (awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1 A1 (2)          |
| (b)                | $r = \frac{(-)23726.25}{\sqrt{3535237.5} \times "209.875"} = -0.871040.871}$ (awrt -0.871)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1 A1 (2)          |
| (c)                | Higher towns have lower temperature or temp. decreases as height increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1 (1)             |
| (d)                | $S_{hh} = 3.5352375$ (awrt 3.54) (condone 3.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1 (1)             |
| (e)                | r = -0.87104 (awrt $-0.871$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1ft (1) (7 marks) |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (* 11101 115)      |
| (a)                | M1 for a correct expression. Allow one slip e.g. 4350 for 4305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| (b)                | M1 for a correct expression for $r$ , follow through their answer to (a). Condone no "-"  Allow M1 for $\pm$ 0.87 with no working. (-0.871 is M1A1)                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| (c)                | B1 Must mention temperature (o.e.) and height (above sea level) and interpret the relationship between them. Must be a correct and sensible comment. e.g. "As temperature increases the height of the sea decreases" is B0. BUT simply stating "As temperature increases the height decreases" is B1 although "As height increases the temperature decreases" would be better. Treat mention of 0.87 as ISW  "strong negative correlation between height and temp" is B0 (no interpretation) "as x increases y decreases" is B0 (no mention of height and temperature) |                    |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks             |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (d)                | B1 accept awrt 3.54 and condone 3.53 (i.e truncation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| (e)                | B1ft for awrt -0.871<br>or ft their final answer to part (b) to the same accuracy (or 3 sf)<br>< 1<br>Answer to part (e) must be a number "it's the same" is B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | provided $-1 < r$ |
| 2. (a)             | awrt ± 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                |
|                    | $\frac{23-\mu}{5}$ = "1.40" (o.e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1A1ft            |
|                    | $\frac{\mu = 16}{16.0)}$ (or awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1 (4)            |
| (b)                | 0.4192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)<br><b>5</b>   |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| (a)                | Notes  B1 for awrt $\pm$ 1.40 or better seen anywhere. Condone 1.4 instead of 1.40  M1 for attempting to standardise with 23 and 5 and $\mu$ , accept $\pm$ e.g. $\frac{23-\mu}{25}=1.40$ can score B1M0 (since using 25 not 5 for standardising) $\frac{23-\mu}{5}=0.9192$ can score B0M1 (since have correct standardisation)  Can accept equivalent equations e.g. $23-\mu=5\times$ "1.40"  1st A1ft for standardised expression = to a z value ( $ z  > 1$ ). Signs must be compatible.  Follow through their $z$ e.g. $\frac{23-\mu}{5}=$ their $z$ where $z>1$ or $\frac{\mu-23}{5}=$ their $z$ where $z<-1$ 2nd A1 for 16 or awrt 16.0 if they are using a more accurate $z$ Correct answer only scores 4/4 but if any working is seen apply scheme |                   |
| (b)                | B1 for 0.4192 (but accept 3sf accuracy if 0.9192 – 0.5 is seen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks          |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| 3. (a)             | $[F(3) = F(2) + P(Y=3) = (0.5 + 0.3)]$ $d = \underline{0.8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1<br>B1       |  |
|                    | $b = F(2) - a = 0.5 - 0.1 \qquad \underline{\text{or}}  a + b = 0.5$ $c = 1 - F(3)  \underline{\text{or}}  1 - (a + b + 0.3) \qquad \underline{\text{or}}  a + b + c = 0.7$ $c = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1<br>A1       |  |
|                    | <u>0.2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (5)            |  |
| (b)                | $P(3Y+2 \ge 8) = P(Y \ge 2) \qquad \text{or}  1 - P(Y \le 1) \\ = b + 0.3 + c \qquad \text{or}  1 - a \qquad = \underline{0.9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1<br>A1ft (2) |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |  |
| (a)                | Correct answers with no (or irrelevant) working score full marks  1 <sup>st</sup> B1 for $a = 0.1$ 2 <sup>nd</sup> B1 for $F(3) = 0.8$ or $d = 0.8$ M1 for a method for $b$ or $c$ . E.g. sight of $a + b = 0.5$ or $a + b + c = 0.7$ If their values satisfy one of these equations then score M1 provided their values  are genuine probabilities (i.e. $0 )  This M1 may be implied by a correct answer for b or c  1st A1 for b or b or$ |                |  |
| (b)                | M1 for rearranging to $P(Y \ge 2)$ or 1 - $P(Y \le 1)$ or selecting cases $Y = 2$ , 3 and 4 for $0.3$ + their $b$ + their $c$ or 1 - their $a$ , provided final answer < 1 and their values are probabilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |

| Question | Scheme                                                                                                      | Marks                     |
|----------|-------------------------------------------------------------------------------------------------------------|---------------------------|
| Number   |                                                                                                             |                           |
| 4. (a)   | $(z = \pm) \frac{15 - 16.12}{1.6} (= -0.70)$ $P(Z < -0.70) = 1 - 0.7580$                                    | M1                        |
|          | P(7 < -0.70) = 1 - 0.7580                                                                                   | M1                        |
|          | = 0.2420  (awrt 0.242)                                                                                      | A1                        |
|          | <u> </u>                                                                                                    | (3)                       |
|          |                                                                                                             |                           |
| (b)      | [P( $T < t$ )=0.30 implies] $z = \frac{t - 16.12}{1.6} = -0.5244$                                           | M1 A1                     |
|          | $\frac{t-16.12}{1.6} = -0.5244 \implies t = 16.12 - 1.6 \times "0.5244"$                                    | M1                        |
|          | t = awrt  15.28  (allow awrt  15.28/9)                                                                      | A1                        |
|          |                                                                                                             | (4)                       |
|          |                                                                                                             | 7                         |
|          | Notes                                                                                                       |                           |
|          | Allow slips e.g. 16.2 for 16.12 for 1 <sup>st</sup> M1 in (a) and (b)                                       |                           |
| (a)      | $1^{\text{st}}$ M1 for standardising expression with 15, 16.12 and 1.6 - allow $\pm$                        |                           |
|          | $2^{\text{nd}}$ M1 for 1 - a probability (> 0.5) from tables or calculator based on the                     | eir standardised          |
|          | value                                                                                                       |                           |
|          | Correct answer only scores 3/3                                                                              |                           |
|          | In part (b) they can use any letter or symbol instead of                                                    | t                         |
| (b)      | 1 <sup>st</sup> M1 for standardising with $t$ (o.e.), 16.12 and 1.6, allow $\pm$ , and setting              | g equal to a z            |
| (6)      | value                                                                                                       |                           |
|          | 1 <sup>st</sup> A1 for an equation with $z = \pm 0.5244$ or better                                          |                           |
|          | e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0)                                         |                           |
|          | $2^{\text{nd}}$ M1 for solving <u>their</u> linear equation as far as $t = a \pm b \times 1.6$ . Not dep M1 | endent on 1 <sup>st</sup> |
|          | e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this                   | s M1                      |
|          | Allow $\frac{t-16.12}{1.6^2} = 0.3$ to give $t = 16.12 + 1.6^2 \times 0.3$ to score M1 to                   | 00                        |
|          | 2 <sup>nd</sup> A1 dependent on both M marks. Allow awrt 15.28 or awrt 15.29                                |                           |
|          | Condone awrt 15.3 if a correct expression for $t =$ is seen.                                                |                           |
|          | Answers with no working:                                                                                    |                           |
|          | 15.28 is M1A1M1A1, 15.29 is M1A0M1A1, 15.3 is M1A0M                                                         | 1A0                       |
|          |                                                                                                             |                           |
|          |                                                                                                             |                           |

| Question<br>Number | Scheme                                                                                                                                                                                                             | Marks                                      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 5. (a)             | <u>10.5</u>                                                                                                                                                                                                        | B1 (1)                                     |
| (b)                | $(Q_2 =)$ (15.5+) $\frac{\frac{1}{2} \times 30 - 14}{8} \times 3$ or $\frac{\frac{1}{2} \times 31 - 14}{8} \times 3$                                                                                               | M1                                         |
|                    | = 15.875  or  16.0625                                                                                                                                                                                              | A1 (2)                                     |
| (c)                | $\overline{x} = \frac{477.5}{30} = \underline{15.9}$ (15.918) [Accept $\frac{191}{12}$ or $15\frac{11}{12}$ ] $\sigma = \sqrt{\frac{8603.75}{30} - \overline{x}^2}, = \underline{5.78} \text{ (accept } s = 5.88)$ | M1, A1                                     |
|                    | $\sigma = \sqrt{\frac{8603.75}{30} - \bar{x}^2}$ ,= $\frac{5.78}{30}$ (accept $s = 5.88$ )                                                                                                                         | M1A1ft, A1                                 |
| (d)                | Since mean and median are similar (or equal or very close) a normal distribution may be suitable. [Allow mean or median close to mode/modal class]                                                                 | B1 (5)                                     |
| (e)                | $Q_3 - Q_2 (= 8) > (4.5 =) Q_2 - Q_1$<br>Therefore <u>positive skew</u>                                                                                                                                            | (1)<br>M1<br>A1                            |
|                    |                                                                                                                                                                                                                    | (2)<br>(11 marks)                          |
|                    | Notes                                                                                                                                                                                                              |                                            |
| (a)                | In parts (a) to (c) a correct answer with no working scores full marks for 10.5 which may be in the table                                                                                                          | or that value.                             |
| (b)                | M1 for a correct ratio and times 3, ignore the lower boundary for this material for awrt 15.9 (if $n = 30$ used) or awrt 16.1 (if $n+1 = 31$ is used)                                                              | ark                                        |
| (c)                | 1 <sup>st</sup> M1 for attempt at $\sum fx$ (this may be seen in the table as $fx$ : 10, 73.5, 7                                                                                                                   |                                            |
|                    | [condone 1 slip] or awrt 500) and use of $\frac{\sum fx}{\sum f}$ or a correct expression for mean.                                                                                                                |                                            |
|                    | 1 <sup>st</sup> A1 for awrt 15.9                                                                                                                                                                                   |                                            |
|                    | $2^{\text{nd}}$ M1 for an attempt at $\sigma$ or $\sigma^2$ , can ft their mean, condone mis-labelling Allow use of their $\sum fx^2$ (awrt 9000)                                                                  | g $\sigma^2 = $ etc                        |
|                    | 2 <sup>nd</sup> A1ft for a correct expression including square root, ft their mean but not                                                                                                                         |                                            |
|                    | No label or correct label is OK but wrong label (e.g. $\sigma^2 = $ ) is                                                                                                                                           | A0                                         |
|                    | $3^{\text{rd}}$ A1 for awrt 5.78, allow $s = \text{awrt } 5.88$ . SC Allow M1A1A0 for awrt 5                                                                                                                       | $5.79 \text{ if } \bar{x} \text{ correct}$ |
| (d)                | B1 for a reason implying or stating symmetry. "Time is continuous" or "evenly B0                                                                                                                                   | distributed" is                            |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                              | Marks              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| (e)                | <ul> <li>M1 for a clear reason or comparison, values not essential but comparison have been found is required.</li> <li>A1 for stating "positive skew". Condone just "positive" but "positive cor Do not allow arguments based on mean and median since this part different set of data.</li> </ul> | relation" is A0    |
| 6. (a)             | $P(J \cup K) = 1 - 0.7$ or $0.1 + 0.15 + 0.05 = 0.3$                                                                                                                                                                                                                                                | B1 (1)             |
| (b)                | P(K) = 0.05 + 0.15 or "0.3" $-0.25 + 0.15$ or "0.3" $= 0.25 + P(K) - 0.15$                                                                                                                                                                                                                          | M1                 |
|                    | May be seen on Venn diagram $= 0.2$                                                                                                                                                                                                                                                                 | A1 (2)             |
| (c)                | $[P(K \mid J)] = \frac{P(K \cap J)}{P(J)}$                                                                                                                                                                                                                                                          | M1                 |
|                    | $=\frac{0.15}{0.25}$                                                                                                                                                                                                                                                                                | A1                 |
|                    | $=\frac{3}{5} \underline{\text{ or } 0.6}$                                                                                                                                                                                                                                                          | A1                 |
| (d)                | $P(J) \times P(K) = 0.25 \times 0.2 (= 0.05),  P(J \cap K) = 0.15  \text{or}$<br>$P(K   J) = 0.6, \ P(K) = 0.2  \text{or} \text{ may see } P(J   K) = 0.75 \text{ and } P(J) = 0.25$                                                                                                                | (3)<br>M1          |
|                    | not equal therefore not independent                                                                                                                                                                                                                                                                 | A1ft (2)           |
| (e)                | Not independent so confirms the teacher's suspicion <u>or</u> they are linked (This requires a statement about independence in (d) or in (e))                                                                                                                                                       | B1ft (1) (9 marks) |

| Question<br>Number | Scheme                                                                                                 | Marks                  |  |
|--------------------|--------------------------------------------------------------------------------------------------------|------------------------|--|
|                    | Notes                                                                                                  |                        |  |
| (b)                | M1 for a complete method, follow through their 0.3, leading to a linear equation for $P(K)$            |                        |  |
|                    | NB You may see this Venn diagram.                                                                      |                        |  |
|                    | A correct diagram (Venn or table) implies M1 in (b)                                                    | K                      |  |
|                    | Need not include box or 0.7                                                                            | 0.10 ( 0.15 ) 0.05     |  |
|                    | Correct answer only is 2/2                                                                             |                        |  |
|                    | In parts (c) and (d) they must have defined A and B                                                    | 0.7                    |  |
| (c)                | M1 for a correct expression (including ratio) in symbols.                                              |                        |  |
|                    | 1 <sup>st</sup> A1 for a correct ratio of probabilities (if this is seen the M1 is aw                  | varded by implication) |  |
|                    | Must be in (c). Condone no LHS but wrong LHS (e.g. $P(K)$                                              |                        |  |
|                    | 2 <sup>nd</sup> A1 for correct answer as printed only. Correct answer only 3/3                         |                        |  |
|                    | Mark (d) and (e) together                                                                              |                        |  |
| (d)                | M1 for a correct comparison of known probabilities for an independence test - ft their                 |                        |  |
|                    | values. E.g. $P(J) \times P(K)$ with $P(J \cap K)$ or $P(K J)$ with $P(K)$ [Must have                  |                        |  |
|                    | expressions                                                                                            |                        |  |
|                    | The values of these probabilities should be given unless they are in the question or stated elsewhere. |                        |  |
|                    | A1ft for correct calculations and correct comment for their probabilities                              |                        |  |
| (e)                | B1ft ft their conclusion on independence so not independent confin                                     | rms                    |  |
|                    | teacherindependent contradicts teacher.                                                                |                        |  |
|                    | Methods leading to negative probabilities should so                                                    | core M0                |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks              |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| 7.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |
| (a)                | $\left(S_{fh} = \right)25291 - \frac{186 \times 1085}{8} = \underline{64.75} $ (accept 64.8)                                                                                                                                                                                                                                                                                                                                       | M1                 |  |
|                    | $=$ $\underline{64.75}$ (accept 64.8)                                                                                                                                                                                                                                                                                                                                                                                              | A1 (2)             |  |
| (b)                | $b = \frac{\text{"64.75"}}{39.5}, = \underline{1.6392}$ $a = \frac{1085}{8} - b \times \frac{186}{8}, = \underline{97.512}$ (awrt 1.6) (awrt 97.5)                                                                                                                                                                                                                                                                                 | M1, A1             |  |
|                    | $a = \frac{1085}{9} - b \times \frac{186}{9}, = 97.512$ (awrt 97.5)                                                                                                                                                                                                                                                                                                                                                                | M1, A1             |  |
|                    | h = 97.5 + 1.64f                                                                                                                                                                                                                                                                                                                                                                                                                   | A1ft (dep on M1M1) |  |
| (c)                | $h = 97.5 + 1.64 \times 25$ , $= 138 \sim 139$ (final answer in [138, 139])                                                                                                                                                                                                                                                                                                                                                        | M1, A1 (5)         |  |
| (d)                | Should be reliable, since $25 \text{ cm}(\text{or } f \text{ or footlength})$ is within the range of the data                                                                                                                                                                                                                                                                                                                      | B1, B1 (2)         |  |
| (e)                | Line is for children – a different equation would apply to adults  or  Children are still growing, height will increase more than foot length                                                                                                                                                                                                                                                                                      | B1 (2)             |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1)<br><b>12</b>   |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |
| (a)                | [NB $r = 0.871$ so do not confuse this with question 1] M1 for attempting a correct expression [allow a copying slip e.g. 25921                                                                                                                                                                                                                                                                                                    | ]                  |  |
| (b)                | 1 <sup>st</sup> M1 for a correct expression for $b$ , ft their part (a) but not $S_{fh} = 25291$ 1 <sup>st</sup> A1 for awrt 1.6 2 <sup>nd</sup> M1 for use of $a = \overline{h} - b \times \overline{f}$ , ft their value for $b$ . Must use $\overline{h}$ and $\overline{f}$ not values from table.                                                                                                                             |                    |  |
|                    | $2^{\text{nd}}$ A1 for awrt 97.5 [NB $a = 135 - 1.63 \times 23 = 97.51$ but M0A0 since not using $\overline{h}$ and $\overline{f}$ ] $3^{\text{rd}}$ A1ft for an equation for $h$ and $f$ with their coefficients to 3sf. <b>Dependent on both Ms</b>                                                                                                                                                                              |                    |  |
|                    | Must be 3sf not awrt. Give this mark if seen in (c). Equation must be in $h$ and $f$ not $y$ and $x$ .                                                                                                                                                                                                                                                                                                                             |                    |  |
| (c)                | M1 for using their equation and $f = 25$ to find $h$<br>A1 for their final answer in [138, 139]. Can give if they have 137.7 but round to 138                                                                                                                                                                                                                                                                                      |                    |  |
| (d)                | 1 <sup>st</sup> B1 for suggesting it <u>is</u> reliable 2 <sup>nd</sup> B1 for mentioning that 25 cm is within range of data. "interpolation" or "not extrapol'B1 Use of "it" or a comment that height is in range is B0 but apply ISW                                                                                                                                                                                             |                    |  |
| (e)                | B1 for some comment that states a difference between children and teach Must mention teacher/adults and children e.g. ".teacher is not in same age group as the children", "equation is for che "children and adults are different populations"     "teacher will be taller" is B0 since no mention of children.     "equation is only valid for children" is OK since "only" implies not some Reference to different growth rates | ildren not adults" |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                  | Marks                        |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 8. (a)             | $1 = p + (0.25 + 0.25 + 0.2 + 0.2), \implies p = \frac{1}{10} \text{ or } 0.1$                                                                                                                                                          | M1, A1                       |
| (b)                | E(S) = $\frac{1}{4} + 2 \times \frac{1}{4} + 4 \times \frac{1}{5} + 5 \times \frac{1}{5}$ , (or equiv. in decimals) = $2.55$                                                                                                            | M1, A1                       |
| (c)                | $E\left(S^{2}\right) = \frac{1}{4} + \frac{2^{2}}{4} + \frac{4^{2}}{5} + \frac{5^{2}}{5}  \text{or}  0.25 + 1 + 3.2 + 5  = 9.45  (*)$                                                                                                   | M1, A1cso (2                 |
| (d)                | Var(S) = 9.45 - $(E(S))^2$ , = $\frac{2.9475 \text{ or}}{400} \frac{1179}{400}$ (accept awrt 2.95)                                                                                                                                      | M1, A1                       |
| (e)                | P(5 and 5) = $\left(\frac{1}{5}\right)^2$ , = $\frac{1}{25}$ or 0.04                                                                                                                                                                    | M1, A1 (2                    |
| <b>(f)</b>         | $P(4, 4, 2) = \left(\frac{1}{5}\right)^2 \times \frac{1}{4} \times 3 \qquad (= 0.03 \text{ or } \frac{3}{100})$                                                                                                                         | M1, M1                       |
|                    | $P(4, 4, 4) = \left(\frac{1}{5}\right)^3$ $(= 0.008 \text{ or } \frac{1}{125})$                                                                                                                                                         | B1                           |
|                    | P(Tom wins in 3 spins) = $0.038$                                                                                                                                                                                                        | A1 (4                        |
| (g)                | $P(\overline{5} \cap 5 \cap 5) + P(5 \cap \overline{5} \cap 5) = \frac{4}{5} \times \left(\frac{1}{5}\right)^{2} \times 2 = \underline{0.064 \text{ or }} \frac{8}{125}$                                                                | M1, M1, A1                   |
|                    |                                                                                                                                                                                                                                         | (3<br>1'                     |
|                    | Notes                                                                                                                                                                                                                                   |                              |
| (a)                | M1 for clear attempt to use sum of probabilities = 1 (fractions or decimals)                                                                                                                                                            | Ans only 2/2                 |
| <b>(b)</b>         | M1 for at least 2 correct terms $(\neq 0)$ of the expression. 2.55 with no working                                                                                                                                                      |                              |
| (c)                | Any division by $k$ (usually 5) in (b) or (c) or (d) scores M0 M1 for at least 3 correct, non-zero terms of the expression seen, allow decimals. A1cso for the full expression (with 9.45) seen. Must be cso but can ignore wrong $p$ . |                              |
| (d)                | M1 for a correct expression (9.45 seen), can ft their E(S). May see $\sum (x - 2.55)$                                                                                                                                                   | 5'') <sup>2</sup> × P(X = x) |
|                    | A1 accept awrt 2.95 Answer only can score M1 for correct ft and A1 for Answer only in (e) and (f) is full marks, in (g) is no marks                                                                                                     | awrt 2.95                    |
| (e)                | M1 for $\left(\frac{1}{5}\right)^2$ Condone P(5)×P(5) = 0.25×0.25. [Beware 0.4 is A0]                                                                                                                                                   |                              |
| <b>(f)</b>         | 1 <sup>st</sup> M1 for $\left(\frac{1}{5}\right)^2 \times \frac{1}{4}$ or 0.01 seen<br>2 <sup>nd</sup> M1 for multiplying a $p^2q$ probability by $3(p, q \in (0,1))$ . B1 for $(0.2)^3$ or                                             | hattar coon                  |
|                    | or $p \in \mathbb{R}^n$ in the multiplying a $p \neq q$ probability by $\mathfrak{I}(p, q \in (0,1))$ . By for $(0.2)$ or                                                                                                               | ocher seen                   |
| (g)                | $1^{\text{st}}$ M1 for $\frac{4}{5} \times \left(\frac{1}{5}\right)^2$ or all cases considered and correct attempt at probabilities                                                                                                     |                              |
|                    | $2^{\text{nd}}$ M1 for multiplying a $p^2(1-p)$ probability by 2. <b>Beware</b> $(0.4)^3 = 0.064$ i                                                                                                                                     | s M0M0A0                     |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA028837 June 2011

For more information on Edexcel qualifications, please visit  $\underline{www.edexcel.com/quals}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE









Mark Scheme (Results)

January 2012

GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: <a href="http://www.edexcel.com/Aboutus/contact-us/">http://www.edexcel.com/Aboutus/contact-us/</a>

#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

(But note that specific mark schemes may sometimes override these general principles).

#### Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c, \quad q \neq 0$ , leading to  $x = \dots$ 

#### Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

#### Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

# January 2012 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                          | Marks   |
|--------------------|-----------------------------------------------------------------|---------|
| 1 (a)              | 14, 5                                                           | M1 A1   |
|                    |                                                                 | (2)     |
| <b>(b)</b>         | 21 + 45 + 3 = 69                                                | M1 A1   |
|                    |                                                                 | (2)     |
|                    |                                                                 | Total 4 |
| NOTES              |                                                                 |         |
| (a)                | M1 for 2x7 or 14 or 5x1 or 5                                    |         |
|                    | A1 for both 14 and 5                                            |         |
| (b)                | M1 for 21+45+(0 <frequency <9)<="" td=""><td></td></frequency>  |         |
|                    | A1 for 69 only.                                                 |         |
|                    | 69 no working, award M1A1 Incorrect answer with no working M0A0 |         |

| Question<br>Number | Scheme                                                                                                                                                          | Marks   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2 (a)              | (R and S are mutually) exclusive.                                                                                                                               | B1 (1)  |
| (b)                | $\frac{2}{3} = \frac{1}{4} + P(B) - P(A \cap B)$ use of Addition Rule                                                                                           | M1      |
|                    | $\frac{2}{3} = \frac{1}{4} + P(B) - P(A \cap B)$ use of Addition Rule<br>$\frac{2}{3} = \frac{1}{4} + P(B) - \frac{1}{4} \times P(B)$ use of independence       | M1 A1   |
|                    | $\frac{5}{12} = \frac{3}{4} P(B)$                                                                                                                               |         |
|                    | $P(B) = \frac{5}{9}$                                                                                                                                            | A1      |
| (c)                | $P(A' \cap B) = \frac{3}{4} \times \frac{5}{9} = \frac{15}{36} = \frac{5}{12}$                                                                                  | M1A1ft  |
| (4)                | 1                                                                                                                                                               | (2)     |
| (d)                | $P(B' A) = \frac{(1-(b))\times 0.25}{0.25}$ or $P(B')$ or $\frac{\frac{1}{9}}{\frac{1}{4}}$                                                                     | M1      |
|                    | $=\frac{4}{9}$                                                                                                                                                  |         |
|                    | $-\frac{1}{9}$                                                                                                                                                  | A1 (2)  |
|                    |                                                                                                                                                                 | Total 9 |
| NOTES              |                                                                                                                                                                 |         |
| (a)                | B1 for '(mutually) exclusive' or 'cannot occur at the same time' seen or equivalent. 'Intersection is zero' or 'no overlaps' without further explanation is B0. |         |
| (b)                | M1 for use of Addition Formula, including an intersection, with at least one probability substituted. Intersection must be explicitly considered for this mark. |         |
|                    | Accept $\frac{2}{3} = \frac{1}{4} + P(B) - 0$ for M1.                                                                                                           |         |
|                    | M1 for $P(A \cap B) = \frac{1}{4}P(B)$                                                                                                                          |         |
|                    | A1 for completely correct equation or equivalent.                                                                                                               |         |
|                    | A1 for $\frac{5}{9}$ or exact equivalent                                                                                                                        |         |
|                    | Venn Diagram with 2 overlapping closed curves and correct values possibly without                                                                               |         |
|                    | $\frac{1}{3}$ , award M1M1A1.                                                                                                                                   |         |
| (c)                | M1 for $\frac{3}{4}$ x 'their P(B)' or 'their P(B)' - P(A \cap B) or P(AUB) - P(B) = $\frac{2}{3} - \frac{1}{4}$                                                |         |
|                    | Or $P(A' \cap B) = P(A') + \text{'their } P(B)' - P(A' \cup B) = \frac{3}{4} + \frac{5}{9} - \frac{8}{9}$                                                       |         |
|                    | A1 for $\frac{5}{12}$ or follow through from their method. Accept exact equivalent.                                                                             |         |
|                    | Correct answer only with no working M1A1 but must be clearly labelled (c).                                                                                      |         |

(d) M1 for using 1-'their P(B)' or  $(P(A \cup B) - P(A))/P(A)$  or  $(P(A) - P(A \cap B))/P(A)$  with a correct attempt at the numerator and denominator. If mutually exclusive is assumed then the last option gives  $\frac{1}{4}$  for M1.

A1 for  $\frac{4}{9}$  or exact equivalent.

For part (c) follow through their stated values; **do not** follow through incorrectly labelled regions on a Venn Diagram.

Throughout the question we require probabilities between 0 and 1 for method marks.

Venn Diagram:



| Question<br>Number  | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks          |                 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|
| 3 (a)               | $\frac{5}{21} + \frac{2k}{21} + \frac{7}{21} + \frac{k}{21} = 1$ $\frac{12 + 3k}{21} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1             |                 |
|                     | k = 3 * AG required for both methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1 (2          | 2)              |
| (b)                 | $\frac{11}{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1             |                 |
| (c)                 | $E(X) = 2 \times \frac{5}{21} + 3 \times \frac{6}{21} + 4 \times \frac{7}{21} + 6 \times \frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1             | 1)              |
|                     | $=3\frac{11}{21}$ or $\frac{74}{21}$ or awrt 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 (2          | 2)              |
| (d)                 | $E(X^{2}) = 2^{2} \times \frac{5}{21} + 3^{2} \times \frac{6}{21} + 4^{2} \times \frac{7}{21} + 6^{2} \times \frac{1}{7}$ $= 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1<br>A1       | 2)              |
| (e)                 | $Var(X) = 14 - \left(3\frac{11}{21}\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1             |                 |
|                     | $=1\frac{257}{441} \text{ or } \frac{698}{441} \text{ or awrt } 1.6$ $\text{Var } (7X - 5) = 7^2 \text{ Var } (X)$ $= 77\frac{5}{9} \text{ or } \frac{698}{9} \text{ or awrt } 77.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1<br>M1<br>A1 |                 |
| Nome                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total 1        | 4)<br><b>11</b> |
| (a) (b) (c) (d) (e) | M1 Award for verification. Sub in k=3 and show $\sum x P(X = x) = 1$ . Require at least three correct terms seen or line 2 of scheme.  A1 Correct solution only including verification.  B1 Award for exact equivalent.  M1 At least two correct terms required for method, follow through 'their $k$ ' for method. Correct answer only, award M1 A1.  M1 At least two correct terms required for method. M0 if probability is squared. Correct answer only, award M1 A1. Accept exact equivalent of 14 for A1.  M1 for use of correct formula in both. 1.6 can be implied by correct final answer. Working needs to be clearly labelled to award first method mark without second stage of calculation.  If a new table for values of $7X - 5$ is used, so $Y = 7X - 5$ $E(Y^2) = \frac{9751}{21}$ ; $Var(Y) = 77\frac{5}{9}$ or $\frac{698}{9}$ or awrt 77.6 Award M1A1; M1A1 |                |                 |
|                     | If any attempt to divide by 4 seen as part of working award M0 for that part.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                 |

| Question<br>Number | Scheme                                                                                                                                                                  | Mark           | (S    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| 4 (a)              | 60                                                                                                                                                                      | B1             |       |
| (b)                | $Q_1 = 46$ $Q_2 = 56$ $Q_3 = 64$                                                                                                                                        | B1<br>B1<br>B1 | (1)   |
| (c)                | mean = $55.48$ or $\frac{2497}{45}$ awrt $55.5$                                                                                                                         | B1             | (3)   |
|                    | $sd = \sqrt{\frac{143369}{45} - \left(\frac{2497}{45}\right)^2}$                                                                                                        | M1             |       |
|                    | = $10.342$ ( $s = 10.459$ ) anything which rounds to $10.3$ (or $s = 10.5$ )                                                                                            | A1             | (3)   |
| (d)                | Mean < median < mode or $Q_2 - Q_1 > Q_3 - Q_2$ with or without their numbers or median closer to upper quartile (than lower quartile) or (mean-median)/sd <0;          | B1             |       |
|                    | negative skew;                                                                                                                                                          | B1dep          |       |
|                    |                                                                                                                                                                         |                | (2)   |
| (e)                | $mean = (55-5) \times 0.9$                                                                                                                                              | M1             | (-)   |
|                    | = 45                                                                                                                                                                    | A1             |       |
|                    | $sd = 10 \times 0.9$                                                                                                                                                    | M1             |       |
|                    | = 9                                                                                                                                                                     | A1             |       |
|                    |                                                                                                                                                                         | Tota           | (4)   |
| NOTES              |                                                                                                                                                                         | Tota           | 11 13 |
| (a)                | B1 60 only                                                                                                                                                              |                |       |
| (b)                | Award each B1 for correct answer only in this order.                                                                                                                    |                |       |
| (c)                | M1 for use of correct formula, including square root. Correct answers with no                                                                                           |                |       |
| (1)                | working B1M1A1.                                                                                                                                                         |                |       |
| (d)                | B1 any correct comparison of a pair of mean, median and mode using their values.<br>B1 for 'negative skew' or allow (almost) symmetrical dependent upon correct reason. |                |       |
| (e)                | M1 for $(55 \text{ or } 55.5 - 5) \times 0.9$                                                                                                                           |                |       |
|                    | A1 for the correct answer only.                                                                                                                                         |                |       |
|                    | M1 for $(10 \text{ or } 10.3 \text{ or } 10.5)) \times 0.9$                                                                                                             |                |       |
|                    | A1 for the correct answer only.                                                                                                                                         |                |       |
|                    |                                                                                                                                                                         |                |       |

| Question<br>Number | Scheme                                                                                                                                                                                    | Mark     | S     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| 5 (a)              | $S_{tt} = 2688 - \frac{158^2}{10} = 191.6$ awrt 192                                                                                                                                       | M1<br>A1 |       |
|                    | $S_{\text{tw}} = 1760.62 - \frac{158 \times 111.75}{10} = -5.03$ awrt -5.03                                                                                                               | A1       |       |
| (b)                | $r = \frac{-5.03}{\sqrt{191.6 \times 0.16}} = -0.908469$ awrt -0.908(5)                                                                                                                   | M1A1     | (3)   |
| (c)                | $b = \frac{-5.03}{191.6} = -0.0263$ awrt -0.026                                                                                                                                           | M1 A1    | (2)   |
|                    | $a = 11.175 + 0.0263 \times 15.8$<br>= 11.59                                                                                                                                              | M1       |       |
|                    | w = 11.6 - 0.0263t                                                                                                                                                                        | A1       |       |
| (d)                | The explanatory variable is the age of each coin. This is because the age is set and the weight varies.                                                                                   | B1 B1    | (4)   |
|                    |                                                                                                                                                                                           |          | (2)   |
| (e) (i)<br>(ii)    | awrt 11.5 Decrease(in weight of coin of $0.1052 \text{ g}$ ) = 0.1 or -0.1 or increase of -0.1 awrt(-0.1)                                                                                 | B1<br>B1 | (2)   |
| ( <b>f</b> )       | Decrease; removing the fake will result in a better linear fit so $r$ will be closer to -1                                                                                                | B1;B1    | (2)   |
| NOTES              |                                                                                                                                                                                           | Tota     | al 15 |
| (a)                | M1 for correct attempt at either method,<br>A1 awrt 192                                                                                                                                   |          |       |
| (b)                | A1 awrt -5.03 M1 for correct attempt at use of formula, square root required.                                                                                                             |          |       |
| (c)                | A1 awrt -0.908(5) M1 require 'their -5.03' as numerator and /their 191.6' as denominator. A1 awrt -0.026                                                                                  |          |       |
|                    | M1 for use of correct formula with $b$ or 'their $b$ '; require $$ or $+$ and values in the correct place.                                                                                |          |       |
|                    | A1 for equation as written with values awrt 3 sf. with w and t.  Accept fractional answers that are accurate to 3sf when evaluated as decimals                                            |          |       |
| (d)                | B1 for 'Age' or t or 'years' B1 for 'you use age / t to predict w' or 'you can control t/ age' or 'weight depends on                                                                      |          |       |
| (e)                | age' or similar B1 awrt 11.5 B1 awrt -0.1 but 'decrease of -0.1' is B0.                                                                                                                   |          |       |
| (f)                | B1 for Decrease only but 'mod r increases' explicitly stated in words or symbols award B1.                                                                                                |          |       |
|                    | B1 accept 'stronger correlation' or 'increase in correlation' or 'better linear fit' or 'r closer to -1' or 'points are closer to a straight line' or 'point is an outlier' or equivalent |          |       |

| Special<br>Case 1 | Attempt to calculate $S_{tw}$                                                                                                    |    |     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|----|-----|
|                   | $\sum tw = 1669.62, \sum t = 153, \sum w = 91.75 \text{ or } S_{tw} = 1660.62 - \frac{153 \times 91.75}{9} \text{ or awrt } 101$ |    |     |
|                   | or $S_{tw} > 0$ with some calculation                                                                                            | B1 |     |
|                   | "Increase"                                                                                                                       | B1 |     |
| Special           | Attempt to calculate $S_{ww}$                                                                                                    |    | (2) |
| Case 2            |                                                                                                                                  |    |     |
|                   | $\sum w^2 = 1248.96625 - 400 = 848.96625 \text{ or awrt 849 or } S_{ww} = 848.96625 - \frac{91.75^2}{9}$                         |    |     |
|                   | or awrt -86.4 or $S_{ww} < 0$                                                                                                    | B2 |     |
| Special<br>Case 3 | Argument based on standard deviation.                                                                                            |    | (2) |
| Case 3            | e.g. $\sigma_w \approx 0.126$ and $\overline{w} = 11.175$ so fake coin is over 69 sds away from the mean                         | B1 |     |
|                   | '(very) unlikely' or 'impossible'                                                                                                | B1 |     |
|                   |                                                                                                                                  |    | (2) |

| Question<br>Number       | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| 6 (a)                    | 3 closed curves and 25 in correct place 15,10,5 15,3,20 Labels <i>R</i> , <i>S</i> , <i>C</i> and box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1<br>A1<br>A1<br>B1                              |  |
| (b)<br>(c)<br>(d)<br>(e) | All values/100 or equivalent fractions award accuracy marks.  7/100 or 0.07 M1 for ('their 7'in diagram or here)/100 $(3+5)/100 = 2/25 \text{ or } 0.08$ $(25+15+10+5)/100 = 11/20 \text{ or } 0.55$ $P(S \cap C' R) = \frac{P(S \cap C' \cap R)}{P(R)}$ Require denominator to be 'their 65' or 'their $\frac{65}{100}$ ', $= \frac{15}{65}$ require 'their 15' and correct denominator of 65 $= \frac{3}{13}$ or exact equivalents.                                                                                                                                                                                                                                                                      | (4) M1 A1 (2) M1A1 (2) M1 A1 (2) M1 A1 (2) M1 (3) |  |
| NOTES (b) (c) (d) (e)    | M1 for 'their 7'/100 seen. A1 Correct answer only In parts (c) and (d) we require "/100" for methods to be awarded. Also check their values and award correct method if they follow from their Venn Diagram.  M1 For ('their 3'+'their 5')/100. $\frac{8}{48}$ award M0.  A1 Correct answer only or equivalent.  M1 Accept sum of their 4 values from the Venn diagram /100. A1 Correct answer only or equivalent M1 Attempt to use correct formula for conditional probability.  Award for correct formula and a denominator of 'their 65' or 'their 65/100'. A1 for 'their 15'/65 only. A1 for exact equivalent answers, including 15/65. In all parts correct answers with no working award full marks. | Total 13                                          |  |

| Question<br>Number | Scheme                                                                                                                                  | Marks     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 7 (a)              | $P(W < 224) = P\left(z < \frac{224 - 232}{5}\right)$<br>= P(z < -1.6)                                                                   | M1        |
|                    | = 1 - 0.9452                                                                                                                            | M1        |
|                    | = 0.0548 awrt $0.0548$                                                                                                                  | A1        |
| (b)                | 0.5 0.2 - 0.2                                                                                                                           | (3)       |
| <b>(b)</b>         | 0.5 - 0.2 = 0.3 0.3 or 0.7 seen $w - 232$                                                                                               | M1        |
|                    | $\frac{w - 232}{5} = 0.5244 $ 0.5244 seen                                                                                               | B1; M1    |
|                    | w = 234.622 awrt 235                                                                                                                    | A1        |
| (c)                | $0.2 \times (1 - 0.2)$                                                                                                                  | (4)<br>M1 |
|                    | $2 \times 0.8 \times (1 - 0.8) = 0.32$                                                                                                  | M1 A1     |
|                    |                                                                                                                                         | (3)       |
| NOTES              |                                                                                                                                         | Total 10  |
| (a)                | M1 for standardising with 232 and 5. (i.e. not $5^2$ or $\sqrt{5}$ ). Accept $\pm \frac{w-232}{5}$ .                                    |           |
|                    |                                                                                                                                         |           |
|                    | M1 for finding (1- a probability > 0.5)<br>A1 awrt 0.0548                                                                               |           |
| (b)                | M1 Can be implied by use of $\pm 0.5244$ or $\pm (0.52 \text{ to } 0.53)$                                                               |           |
|                    | B1 for $\pm 0.5244$ only.<br>Second M1 standardise with 232 and 5 and equate to z value of (0.52 to 0.53)                               |           |
|                    | or (0.84 to 0.85)<br>1 – z used award second M0.                                                                                        |           |
|                    | Require consistent signs i.e. $\frac{232 - w}{5} = -0.5244$ or negative z value for M1.                                                 |           |
|                    | 5 A1 dependent upon second M mark for awrt 235 but see note below.                                                                      |           |
|                    | Common errors involving probabilities and not z values:                                                                                 |           |
|                    | P(Z<0.2) = 0.5793 used instead of z value gives awrt 235 but award M0B0M0A0 $P(Z<0.8) = 0.7881$ used instead of z value award M0B0M0A0. |           |
|                    | M1B0M0A0 for 0.6179, M1B0M0A0 for 0.7580                                                                                                |           |
|                    |                                                                                                                                         |           |
| (c)                | M1 for 0.16 seen M1 for '2x n(1 n)'                                                                                                     |           |
|                    | M1 for $2 \times p(1-p)$ .<br>A1 0.32 correct answer only                                                                               |           |
|                    |                                                                                                                                         |           |
|                    |                                                                                                                                         |           |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA030899 January 2012

For more information on Edexcel qualifications, please visit  $\underline{www.edexcel.com/quals}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE  $\,$ 









Mark Scheme (Results)

Summer 2012

GCE Statistics S1 (6683) Paper 1

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

#### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2012
Publications Code UA033137
All the material in this publication is copyright
© Pearson Education Ltd 2012

# Summer 2012 6683 Statistics S1 Mark Scheme

## **General Marking Guidance**

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **EDEXCEL GCE MATHEMATICS**

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

## **General Principles for Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

### Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c| \text{ , leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a| \text{ , leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$ ,  $q \neq 0$ , leading to  $x = ...$ 

## Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. ( $x^n \rightarrow x^{n-1}$ )

2. Integration

Power of at least one term increased by 1. ( $x^n \rightarrow x^{n+1}$ )

#### Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

# 6683 Statistics S1 Mark Scheme

| Question | Scheme                                                                                                                                                                                                                                                | Marks            |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| 1.       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                 | M1               |  |  |
| (a)      | P(X = x)                                                                                                                                                                                                                                              | A1               |  |  |
|          |                                                                                                                                                                                                                                                       |                  |  |  |
|          | $6k = 1  \Rightarrow  k = \frac{1}{6} \qquad (*)$                                                                                                                                                                                                     | A1cso (3)        |  |  |
| (b)      | $[E(X)] = -4k (+0+0) + 2k  \underline{\text{or}}  -2k  \underline{\text{or}}  -1 \times \frac{4}{6} + 2 \times \frac{1}{6}$                                                                                                                           | M1               |  |  |
|          | $=-\frac{1}{3}$ (or $-0.5$ )                                                                                                                                                                                                                          | A1 (2)           |  |  |
| (c)      | $[E(X^{2})] = (-1)^{2} \times 4k + (0+0) + 2^{2}k  \underline{\text{or}}  4k + 4k  \underline{\text{or}}  (-1)^{2} \times \frac{4}{6} + 2^{2} \times \frac{1}{6}  \text{(o.e.)}$                                                                      | M1               |  |  |
|          | $=\frac{4}{3} \qquad (*)$                                                                                                                                                                                                                             | A1cso (2)        |  |  |
| (d)      | $[Var(X)] = \frac{4}{3} - \left(-\frac{1}{3}\right)^2 \underline{\text{or}} \ 8k - 4k^2 = \left[\frac{11}{9}\right] \qquad \begin{vmatrix} Y = 1 - 3X : 4 & 1 & -2 & -5 \\ \text{Prob:} & 4k & k & 0 & k \\ & & \text{And } E(Y) = 12k \end{vmatrix}$ | M1               |  |  |
|          | $Var(1-3X) = (-3)^2 Var(X)$ or $9Var(X)$ $E(Y^2) = 90k$ and $Var(Y) = 90k - 144k^2$                                                                                                                                                                   | M1               |  |  |
|          | = 11                                                                                                                                                                                                                                                  | A1 cao (3) [10]  |  |  |
|          | Notes                                                                                                                                                                                                                                                 |                  |  |  |
| (a)      | M1 for attempt at $P(X = x)$ with at least 2 correct. Do not give for 4, 1, etc but $\frac{4}{6}$ , $\frac{1}{6}$ are OK                                                                                                                              |                  |  |  |
|          | $1^{\text{st}}$ A1 for at least $4k + k + k = 1$ seen. Allow $\frac{4}{6} + \frac{1}{6} + \frac{1}{6} = 1$ [Must see = 1]                                                                                                                             |                  |  |  |
|          | $2^{\text{nd}}$ A1cso provided previous 2 marks are scored and no incorrect working seen  It's not essential to see $P(X = -1) = 4k$ etc but if wrongly assigned probabilities such as                                                                |                  |  |  |
| Verify   | P(X = 2) = 4k and $P(X = -1) = k$ are seen then the final A1 is lost.<br>To score final A1cso there must be a comment such as "therefore $k = \frac{1}{6}$ "                                                                                          |                  |  |  |
| , crity  | 10 score final Areso there must be a comment such as therefore $\kappa = \frac{1}{6}$                                                                                                                                                                 |                  |  |  |
| (b)      | Division by 4 (or any other <i>n</i> ) in (b), (c) or (d) is M0. Do not apply ISW for a full correct expression for E(X), ft their probabilities. Allow in terms of k.                                                                                |                  |  |  |
|          | A1 for $-\frac{1}{3}$ or exact equivalent only. Just $-\frac{1}{3}$ scores M1A1                                                                                                                                                                       |                  |  |  |
| (c)      | M1 for evidence of both non-zero terms seen. May be simplified but 2 terms                                                                                                                                                                            |                  |  |  |
|          | A1cso for M1 seen leading to $\frac{4}{3}$ or any exact equivalent. Condone $-1^2 \times 4k$ but                                                                                                                                                      | -4k              |  |  |
| (d)      | Award if a correct formula is seen and some correct substitution made.                                                                                                                                                                                |                  |  |  |
|          | $2^{\text{nd}}$ M1 for correct use of $\text{Var}(aX+b)$ . Condone $-3^2 \text{Var}(X)$ if it eventually yields for 11 only                                                                                                                           | 9Var( <i>X</i> ) |  |  |

| Question | Scheme                                                                                                                                                                                                                                                                                                          | Marks    |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| 2. (a)   | $\left[S_{xy}=\right] 23070 - \frac{477 \times 480}{12}  [=3990]$                                                                                                                                                                                                                                               |          |  |  |
|          | $r = \frac{"3990"}{\sqrt{5606.25 \times 4244}}$                                                                                                                                                                                                                                                                 | M1       |  |  |
|          | = 0.81799 awrt 0.818                                                                                                                                                                                                                                                                                            | A1 (3)   |  |  |
| (b)      | 0.818                                                                                                                                                                                                                                                                                                           | B1ft (1) |  |  |
| (c)      | Positive correlation <u>or</u> value of $r$ is close to 1 <u>or</u> value of $r > 0$ (NOT "high/ strong correlation")                                                                                                                                                                                           | B1       |  |  |
|          | So there is support for the bank's claim or "increase in unemployment is accompanied by increase in house                                                                                                                                                                                                       |          |  |  |
|          | repossessions"                                                                                                                                                                                                                                                                                                  | [6]      |  |  |
|          | Notes                                                                                                                                                                                                                                                                                                           |          |  |  |
| (a)      | Marks for part (a) must be seen in (a), do not award if only seen in (b)                                                                                                                                                                                                                                        |          |  |  |
|          | B1 for a correct expression for $S_{xy}$                                                                                                                                                                                                                                                                        |          |  |  |
|          | M1 for correct attempt at $r$ f.t. their 3990 but $\frac{23070}{\sqrt{5606.25 \times 4244}}$ is M0                                                                                                                                                                                                              |          |  |  |
|          | A1 for awrt 0.818 If an answer of 0.82 only is seen then B1M1A0 can be given                                                                                                                                                                                                                                    |          |  |  |
| (b)      | B1ft for awrt 0.818 or f.t. their answer to part (a) for $ r  < 1$ . Allow 2sf or 1sf follow through Answer in (b) must be correct or match one of their answers in (a). Must be a number.                                                                                                                      |          |  |  |
| (c)      | $1^{st}$ B1 for a reason of positive correlation (allow even if $r > 1$ )  "positive skew" or "positive gradient" is B0 but $2^{nd}$ B1 is still possible $2^{nd}$ B1 for a comment that suggest this supports the claim.  Marks in (c) are independent but first B1 requires some idea of positive correlation |          |  |  |
| (c) SC   | If $ r  < 0.2$ allow this alternative to the mark scheme:  1 <sup>st</sup> B1 for saying there is no or little correlation  2 <sup>nd</sup> B1 for a comment that says this does <u>not</u> support the bank's claim                                                                                            |          |  |  |



| Question      | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks                                 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| <b>4.</b> (a) | $B, W \ \underline{\text{or}} \ T, W \ [ \text{accept } B \cup T, W \ \underline{\text{or}} \ B \cap T, W ] \ [ \text{Condone P}(B), P(W) \ \text{etc} ]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1                                    |
|               | Since there is no <u>overlap</u> between the events <u>or</u> cannot happen together (o.e.) (Accept comment in context e.g. "no one walks and takes the train")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1 (2)                                |
| <b>(b)</b>    | e.g. $P(B) = \frac{9}{25}$ , $P(T) = \frac{8}{25}$ , $P(B \cap T) = \frac{5}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                                    |
|               | $P(B \cap T) \neq P(B) \times P(T)$ [0.2 \neq 0.36 \times 0.32 = 0.1152 o.e.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                                    |
|               | So $B$ and $T$ are <u>not</u> independent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1cso (3)                             |
| (c)           | $[P(W) =] \frac{7}{25} \text{ or } 0.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1 (1)                                |
| (d)           | $[P(B \cap T) =] \frac{5}{25} \underline{\text{or}} \frac{1}{5} \underline{\text{or}} 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1 (1)                                |
| (e)           | $[P(T   B) = ] \frac{P(T \cap B)}{P(B)} = \frac{\text{"(d)"}}{(5+4)/25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                                    |
|               | $=\frac{5}{9}$ or 0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 (2)                                |
|               | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [9]                                   |
| (a)           | $1^{\text{st}}$ B1 for a suitable pair. Do not accept universally exclusive pairs such as $B$ and $2^{\text{nd}}$ B1 for any <u>correct</u> statement. Accept use of symbols e.g.: $B \cap W = \emptyset$ or $P(T \cap W) = 0$ is B0 (since it is not a correct statement)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| (b)           | <ul> <li>1<sup>st</sup> M1 for an attempt at all required probabilities with labels for a suitable test (allowance) Accept use of A and B as long as they can be identified as B and T by correct Must be probabilities not integers such as 5, 9, 8 etc for both these M marks</li> <li>2<sup>nd</sup> M1 for P(B)×P(T) evaluated (correct for their probabilities)</li> <li>or P(B∩T) ≠ P(B)×P(T) stated or implied in symbols or using their probabilities</li> <li>or P(B T) ≠ P(B) or P(T B) ≠ P(T) stated or implied in symbols or using their</li> <li>A1 for a conclusion of not independent. Requires all probabilities used to be contained in the probabilities and the probabilities are dependent on both Ms</li> </ul> | probabilities<br>s.<br>probabilities. |
|               | NB $P(B T) = \frac{5}{8} \& P(B) = \frac{9}{25}$ or $P(T B) = \frac{5}{9} \& P(T) = \frac{8}{25}$ seen, followed by conclusion scores 3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y a correct                           |
| (e)           | M1 for a correct ratio of probabilities e.g. $\frac{\frac{5}{25}}{\frac{(5+4)}{25}}$ or $\frac{5}{5+4}$ or A correct ratio expression and at least one correct (or correct f.t.) probability so A1 for $\frac{5}{9}$ with no incorrect working seen but $\frac{5}{9}$ following from P(B   T) is 0/2. $\frac{5}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |

| 5. (a)       | One large square = $\frac{450}{"22.5"}$ or one small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | square = $\frac{450}{}$ (o.e. e.g. $\frac{"562.5"}{}$ )                                  | M1                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|
|              | "22.5" $=$ One large square = 20 cars or one small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 302.5                                                                                    | A1                         |
|              | No. > 35 mph is: $4.5 \times "20"$ or $112.5 \times "$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '0.8" (or equivalent e.g. using fd)                                                      | dM1                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = <u><b>90</b></u> (cars)                                                                | A1 (4)                     |
| <b>(b)</b>   | $[\overline{x}] = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 30 \times 32.5}{450}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\times 37.5 + 60 \times 42.5 = \frac{12975}{450}$                                       | M1<br>M1                   |
|              | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                            |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 28.83  \underline{\text{or}}  \frac{173}{6}  \text{awrt } \underline{28.8}$           | A1 (3)                     |
| (a)          | [0 -1 20   <sup>195</sup> ×10 (0.0) [Allow us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to of (n + 1) giving 105.5 instead of 1051                                               | N/I                        |
| (6)          | $[Q_2 =] 20 + \frac{195}{240} \times 10$ (o.e.) [Allow us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          | M1                         |
|              | = 28.125 [Use of $(n +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          | A1 (2)                     |
| ( <b>d</b> ) | $Q_2 < \overline{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [Condone $Q_2 \approx \overline{x}$ ]<br>[ so (almost) <u>symmetric</u> ]                | B1ft                       |
|              | So <u>positive skew</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [ so (almost) symmetric ]                                                                | dB1ft (2)                  |
| (e)          | [If chose skew in (d)] <b>median</b> $(Q_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [If chose <u>symmetric</u> in (d)] <b>mean</b> $(\overline{x})$                          | B1                         |
|              | Since the data is skewed or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Since it uses all the data                                                               | dB1 (2)                    |
|              | median not affected by extreme values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          | [13]                       |
| (1)          | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          | 0 5751) 1                  |
| (a)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | scept "22.5" in [22, 23] and "562.5" in [55 scale. [If using fd must use 450 to obtain s | ·                          |
|              | 1 <sup>st</sup> A1 for a correct calc. for 20 or 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or 1.25 etc                                                                              |                            |
|              | [May be fd = 4 to 1 large sq. or 0.8 to 1 small sq. May be on the diagram.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |                            |
|              | 2 <sup>nd</sup> dM1 dep on 1 <sup>st</sup> M1 for correctly counting squares for > 35 mph and forming suitable expr' 2 <sup>nd</sup> A1 for 90 with no incorrect working seen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |                            |
|              | e.g. $\frac{4.5}{22.5} \times 450$ scores M1A1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 and A1 when = 90 is seen. Answer only                                                  | is 4/4                     |
| <b>(b)</b>   | 1 <sup>st</sup> M1 for clear, sensible use of mid-poi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nts at least 3 of (12.5, 25, 32.5, 37.5, 42.5)                                           | seen                       |
|              | $2^{\text{nd}}$ M1 for an expression for $\overline{x}$ (at least 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 correct terms on num' and a compatible                                                 |                            |
|              | denominator) Follow through their frequencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                            |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Il squares), $\frac{12975}{450}$ (frequencies), $\frac{648.75}{22.5}$ (large           | e squares)                 |
|              | A1 for awrt 28.8 (answer only is 3/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |                            |
|              | M1 for a full expression for median (using their frequencies). May see e.g. $25 + \frac{75}{120} \times 5$ etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |                            |
| (c)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | $\frac{120}{120}$ × 5 etc  |
|              | Do nor accept boundaries of 19.5 for awrt 28.1 (answer only is 2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          | 8.21                       |
|              | A1 for awrt 28.1 (answer only is $2/2$ ) [For use of $(n + 1)$ accept 28.15 but not 28.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |                            |
| ( <b>d</b> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | heir $Q_2$ and $\overline{x}$ [Condone $Q_2 \approx \overline{x}$ only if $ q $          | $Q_2 - \overline{x}   < 1$ |
|              | Do not accept an argument ba $2^{nd}$ dB1ft dependent on $1^{st}$ B1 for a communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sed on the shape of the graph alone. <u>patible</u> description of skewness. F.t. their  | values                     |
| Quartiles    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n allow comparison of quartiles for 1 <sup>st</sup> B1                                   |                            |
| (e)          | 1 <sup>st</sup> B1 for a correct choice based on their s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kewness comment in (d). If no choice made in                                             | a (d) only O               |
| (e)          | 2 <sup>nd</sup> dB1 for a suitable compatible comme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          | $\mathcal{L}_2$            |
| i            | The state of the s |                                                                                          |                            |

| Ques |            | Scheme                                                                                                                                                               | Marks        |
|------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 6.   | (a)        | $\left[z=\right] \pm \left(\frac{150-162}{7.5}\right)$                                                                                                               | M1           |
|      |            | [z=]-1.6                                                                                                                                                             | A1           |
|      |            | [P(F > 150) = P(Z > -1.6) =] = 0.9452(0071) awrt <u>0.945</u>                                                                                                        | A1 (3)       |
|      |            |                                                                                                                                                                      |              |
|      | <b>(b)</b> | $z = \pm 0.2533 \text{ (or better seen)}$                                                                                                                            | B1           |
|      |            | $(\pm)\frac{s-162}{7.5} = 0.2533(47)$ $s = 163.9$ <b>awrt 164</b>                                                                                                    | M1           |
|      |            | s = 163.9 awrt <u>164</u>                                                                                                                                            | A1 (3)       |
|      | (c)        | $z = \pm 1.2816$ (or better seen)                                                                                                                                    | B1           |
|      | (C)        |                                                                                                                                                                      | M1           |
|      |            | $\frac{162 - \mu}{9} = -1.2815515$                                                                                                                                   | A1           |
|      |            | $\mu = 173.533$ awrt <u>174</u>                                                                                                                                      | A1 (4)       |
|      |            |                                                                                                                                                                      | [10]         |
|      |            | Notes                                                                                                                                                                | []           |
|      | (a)        | M1 for attempting to standardise with 150, 162 and 7.5. Accept ±                                                                                                     |              |
|      |            | Allow use of symmetry and therefore 174 instead of 150 1 <sup>st</sup> A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.9              | 045(2) is A1 |
|      |            | $2^{\text{nd}}$ A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by $1 - 0.9452$ then                                                                       |              |
|      |            | Correct answer only 3/3                                                                                                                                              |              |
|      | <b>(b)</b> | B1 for $(z =) \pm 0.2533$ (or better) seen.                                                                                                                          |              |
|      | (2)        | Giving $z = \pm 0.25$ or $\pm 0.253$ scores B0 here but may get M1A1                                                                                                 |              |
|      |            | M1 for standardising with s (o.e.), 162 and 7.5, allow $\pm$ , and setting equal to a z                                                                              | value        |
|      |            | Only allow $0.24 \le z \le 0.26$ Condone e.g. 160 for 162 etc A1 for awrt 164 (Correct answer only scores B0M1A1)                                                    |              |
|      |            | Till for anit for (Confect answer only scores Bonning)                                                                                                               |              |
|      | (c)        | B1 for $(z =) \pm 1.2816$ (or better) seen. Allow awrt $\pm 1.28$ if B0 scored in (b) for $z =$                                                                      |              |
|      |            | M1 for attempting to standardise with 162, 9 and $\mu$ , and setting equal to a z value $1.26 <  z  < 1.31$ . Allow $\pm$ here so signs don't have to be compatible. | e where      |
|      |            | $1^{\text{st}}$ A1 for a correct equation with compatible signs and $1.26 <  z  < 1.31$                                                                              |              |
|      |            | 2 <sup>nd</sup> A1 for awrt 174 (Correct answer only scores B0M1A1A1). <b>Dependent on 1<sup>st</sup></b>                                                            | A1           |
|      |            | 162 – 11                                                                                                                                                             |              |
|      |            | An equation $\frac{162 - \mu}{9} = 1.2816$ leading to an answer of $\mu = 174$ is A0A0 <u>unless</u> then                                                            | re is clear  |
|      |            | correct working such as: $\frac{162 - x}{9} = 1.2816 \Rightarrow x = : \mu = 162 + (162 - x) = 174$ then                                                             | award A1A1   |
|      |            | A common error is: $\frac{162 - \mu}{9} = 1.2816$ followed by $\mu = 162 + 9 \times 1.2816 = \text{awrt } 174$                                                       | It gets      |
|      | NB         |                                                                                                                                                                      |              |
|      |            | A0A0                                                                                                                                                                 |              |

| 7. | (a)          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    | ()           | 0.7 Split (0.021) Shape                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1                   |
|    |              | Poor Stitching Labels & 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1                   |
|    |              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1                   |
|    |              | (0.3) No split (0.009) Labels & 0.7,0.02                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)                  |
|    |              | (0.97) Split (0.0194)                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3)                  |
|    |              | No Poor Stitching                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|    |              | (0.98) No split(0.9506)                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|    | <b>(b)</b>   | P(Exactly one defect) = $0.03 \times 0.3 + 0.97 \times 0.02$ or $P(PS \cup Split) - 2P(PS \cap Split)$<br>= $[0.009 + 0.0194 = ]$ 0.0284                                                                                                                                                                                                                                                                                                                      | M1A1ft<br>A1 cao (3) |
|    | (c)          | P(No defects) = $(1-0.03) \times (1-0.02) \times (1-0.05)$ (or better)                                                                                                                                                                                                                                                                                                                                                                                        | M1                   |
|    |              | = 0.90307 awrt <u>0.903</u>                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1 cao (2)           |
|    | <b>(d)</b>   | P(Exactly one defect) = $(b)\times(1-0.05) + (1-0.03)\times(1-0.02)\times0.05$                                                                                                                                                                                                                                                                                                                                                                                | M1 M1                |
|    |              | $= \text{``0.0284''} \times 0.95 + 0.97 \times 0.98 \times 0.05$                                                                                                                                                                                                                                                                                                                                                                                              | A1ft                 |
|    |              | = [0.02698 + 0.04753] = 0.07451  awrt <u>0.0745</u>                                                                                                                                                                                                                                                                                                                                                                                                           | A1 cao (4) [12]      |
|    |              | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~ -                  |
|    | (a)          | Allow MR of 0.2 for 0.02 or 0.3 for 0.03 on tree diagram to score all M and A1f 1 <sup>st</sup> B1 for 2 branch then 4 branch shape 2 <sup>nd</sup> dB1 dep. on 1 <sup>st</sup> B1 for labels showing stitching (accept letters) and 0.03 value co 3 <sup>rd</sup> dB1 dep. on 1 <sup>st</sup> B1 for labels showing splitting and 0.7 and 0.02 correctly placed [probabilities shown in brackets are <u>not</u> required and any such values given can be in | orrectly placed      |
|    | <b>(b)</b>   | M1 for $0.03 \times p + 0.02 \times q$ where p and q follow from their tree diagram. Extra                                                                                                                                                                                                                                                                                                                                                                    | a terms is M0        |
|    |              | 1 <sup>st</sup> A1ft for a fully correct expression. Accept 1–0.7 for 0.3 and 1–0.03 for 0.97 Follow through 0.2 and 0.3 MR only                                                                                                                                                                                                                                                                                                                              |                      |
|    | MR           | 0.2 for $0.02 \rightarrow 0.203$ or $0.3$ for $0.03 \rightarrow 0.104$ or both $\rightarrow 0.23$ should score M1A1.                                                                                                                                                                                                                                                                                                                                          | A0                   |
|    |              | $2^{\text{nd}}$ A1 cao for 0.0284 only (or exact equivalent such as $\frac{71}{2500}$ )                                                                                                                                                                                                                                                                                                                                                                       |                      |
|    |              | Do not allow 0.5 as MR of 0.05 so no M or A marks in (c) or (d)                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|    | (c)          | M1 for (their 0.97)×(their 0.98)×(1-0.05) (or better) f.t. values from their tr                                                                                                                                                                                                                                                                                                                                                                               | ee diagram           |
|    |              | A1 cao for awrt 0.903                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
|    | ( <b>d</b> ) | 1 <sup>st</sup> M1 for one correct triple (or correct ft from their tree) of: $[0.03 \times 0.3 \times (1-0.05)] + [0.97 \times 0.02 \times (1-0.05)] + [0.97 \times 0.98 \times 0.05]$                                                                                                                                                                                                                                                                       |                      |
|    |              | 2 <sup>nd</sup> M1 for two correct triples or correct ft from their tree and adding <u>or</u> their (b)                                                                                                                                                                                                                                                                                                                                                       | ×(1-0.05)            |
|    | MR           | 1 <sup>st</sup> A1ft for a fully correct expression or f.t. their (b) and 0.2 or 0.3 MR only 0.2 for $0.02 \rightarrow 0.23165$ or $0.3$ for $0.03 \rightarrow 0.1331$ or both $\rightarrow 0.2465$ (or awrt 3sf) score $2^{\text{nd}}$ A1 cao for awrt $0.0745$                                                                                                                                                                                              | es M1M1A1A0          |
| L  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA033137 Summer 2012

For more information on Edexcel qualifications, please visit our website  $\underline{www.edexcel.com}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE  $\,$ 









Mark Scheme (Results)

January 2013

GCE Maths – Statistics S1 (6683/01)

### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.btec.co.uk">www.btec.co.uk</a> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at <a href="https://www.edexcel.com/ask">www.edexcel.com/ask</a>. You will need an Edexcel username and password to access this service.

#### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

January 2013
Publications Code UA034849
All the material in this publication is copyright
© Pearson Education Ltd 2013

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Unless indicated in the mark scheme a correct answer with no working should gain full marks for that part of the question.

.

#### **EDEXCEL GCE MATHEMATICS**

### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method
   (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

#### 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\phantom{a}}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

| 0 | 1 |
|---|---|
|   | • |
| • |   |
|   | • |
| • |   |
| • |   |
|   | • |
|   | • |
|   | • |

# January 2013 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks               |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1. (a)             | $(S_{tt}) = 8702 - \frac{258^2}{10}$ or $(S_{gt}) = 1550.2 - \frac{258 \times 63.6}{10}$<br>$(S_{tt}) = 2045.6$ , $(S_{gt}) = 90.68$ awrt (2046), awrt – 90.7                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1<br>A1, A1        |
|                    | $r = \frac{-90.68}{\sqrt{2045.6 \times 7.864}} = -0.714956  \text{awrt } -0.715$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3)<br>M1 A1<br>(2) |
| (c)                | Positive e.g. high $v$ corresponds to low $t$ and low $t$ corresponds to high $g$ so expect high $v$ to corresponds to high $g$ or expect more revision to result in a better grade                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1<br>B1 (2)        |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| (a)                | M1 for at least one correct expression $1^{st} A1$ for $S_{tt} = awrt 2046$ (Condone $S_{xx} =$ or even $S_{yy} =$ ) $2^{nd} A1$ for $S_{gt} = awrt -90.7$ (Condone $S_{xy} =$ )                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| (b)                | M1 for attempt at correct formula. Must have their $S_{tt}$ , $S_{gt}$ and given $S_{gg}$ in the correct places. Condone miss Award M1A0 for awrt $-0.71$ with no expression seen $\frac{1550.2}{\sqrt{8702 \times 7.864}}$ Correct answer only is $2/2$                                                                                                                                                                                                                                                                                                                                                                | ing "–"             |
| (c)                | 1 <sup>st</sup> B1 for saying "positive". Ignore mention of skew. 2 <sup>nd</sup> B1 for suitable reason that mentions at least <i>v</i> and <i>g</i> and supports positive correle.g. "the less <u>revision</u> done the lower the <u>grade</u> " is B1     "should do better with more <u>revision</u> " is B0 since does not mention <u>grades</u> "both coefficients are similar" or two sketches of negative correlation with labelled <i>v</i> , <i>t</i> and <i>g</i> are implied     Allow use of letters <i>v</i> and <i>g</i> Allow equivalent terms e.g. "study" instead of "revision" or "score" instead of | axes is B1 since    |

| Question<br>Number | Scheme                                                                                                                                                                                                         | Mark      | .s  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| 2.                 | $F(3) = 1 \text{ gives } \frac{3^3 + k}{40} = 1$                                                                                                                                                               | M1        |     |
|                    | So $k = 13$                                                                                                                                                                                                    | A1cso     | (2) |
|                    | $P(X=1) = \frac{14}{40}$ or 0.35 (o.e.)                                                                                                                                                                        | B1        |     |
|                    | Use of $P(X=2) = F(2) - F(1)$ or $P(X=3) = F(3) - F(2)$<br>$P(X=2) = \frac{7}{40}$ or 0.175, $P(X=3) = \frac{19}{40}$ or 0.475                                                                                 | M1        |     |
|                    | $F(x-2) = \frac{1}{40}$ or 0.173, $F(x-3) = \frac{1}{40}$ or 0.473                                                                                                                                             | A1, A1    | (4) |
| (c)                | $Var(4X - 5) = 4^2 Var(X)$                                                                                                                                                                                     | M1        |     |
|                    | So $Var(4X - 5) = \frac{259}{20}$ or 12.95                                                                                                                                                                     | A1        | (2) |
|                    | Notes                                                                                                                                                                                                          |           | 8   |
|                    |                                                                                                                                                                                                                |           |     |
| (a)                | M1 for use of F(3) = 1 Attempt at $\frac{3^3 + k}{40}$ = 1 must be seen                                                                                                                                        |           |     |
|                    | 27+k = 40 without reference to $F(3) = 1$ is M0                                                                                                                                                                |           |     |
|                    | A1cso for no incorrect working seen and M1 scored. $3^{3} \pm 13$                                                                                                                                              |           |     |
| <u>Verify</u>      | Allow M1 for $\frac{3^3 + 13}{40} = 1$ but the A1 requires an <u>explicit</u> comment such as "se                                                                                                              | 0 k = 13" |     |
|                    | If a table such as this is seen then award B1M1A1A1. Ignore labels on 2 <sup>nd</sup> row                                                                                                                      |           |     |
| <i>a</i> .>        | 1 2 3                                                                                                                                                                                                          |           |     |
| (b)                | $\frac{7}{20}$ or 0.35 $\frac{7}{40}$ or 0.175 $\frac{19}{40}$ or 0.475                                                                                                                                        |           |     |
|                    | Otherwise apply the following:                                                                                                                                                                                 |           |     |
|                    | B1 for $\frac{14}{40}$ or 0.35 or any exact equivalent. Can be labelled F(1), P(X = 1) or p                                                                                                                    | p(x) and  |     |
|                    | associated with $x = 1$ or given in a table but must have <u>a</u> label.<br>M1 for clear method showing how to obtain $P(X =)$ from $F(x)$<br>M1 can be implied if either $P(X = 2)$ or $P(X = 3)$ is correct |           |     |
|                    | 1 <sup>st</sup> A1 for $P(X=2) = \frac{7}{40}$ or 0.175 or exact equivalent                                                                                                                                    |           |     |
|                    | $2^{\text{nd}} \text{ A1 for P}(X=3) = \frac{19}{40} \text{ or } 0.475 \text{ or exact equivalent}$                                                                                                            |           |     |
| (c)                | M1 for correct use of the variance formula $(4^2 \text{Var}(X) \text{ alone secures M1})$                                                                                                                      |           |     |
|                    | A value for $Var(X)$ is not required for this M1<br>A1 for any exact equivalent to 12.95 Correct answer only is $2/2$                                                                                          |           |     |
|                    |                                                                                                                                                                                                                |           |     |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                   | Marks            |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 3. (a)             | $\sum t = 140 \text{ (or } \overline{t} = 17.5) \text{ and } \sum m = 32 \text{ (or } \overline{m} = 4)$ $(S_{tm}) = 469.5 - \frac{"140" \times "32"}{8}$                                                                                                                                                                                                                                                | B1 B1<br>M1      |
|                    | $(S_{tm} =) - 90.5$                                                                                                                                                                                                                                                                                                                                                                                      | A1cso (4)        |
| (b)                | $b = \frac{S_{tm}}{S_{tt}} = \frac{-90.5}{354}$                                                                                                                                                                                                                                                                                                                                                          | M1               |
|                    | $b = \frac{S_{tm}}{S_{tt}} = \frac{-90.5}{354}$ $b = -0.255649 \text{ (allow } \frac{181}{708}\text{)} \qquad -0.25 \text{ or awrt } -0.26$ $a = \frac{"32"}{8} - b \times \frac{"140"}{8}$                                                                                                                                                                                                              | A1<br>M1         |
|                    | So equation of the line is $\underline{m} = 8.47 - 0.256t$ (allow $m = \frac{11999}{1416} - \frac{181}{708}t$ )                                                                                                                                                                                                                                                                                          | A1 (4)           |
| (c)                | $(8.47 - 0.256 \times 10 =) 5.9$ awrt <u>5.9</u>                                                                                                                                                                                                                                                                                                                                                         | B1 (1)           |
| (d)                | Should be reliable since 10 is in the range (of the data )                                                                                                                                                                                                                                                                                                                                               | B1 (1) <b>10</b> |
| (a)                | Notes  1 <sup>st</sup> B1 for 140 seen in correct context or correctly labelled                                                                                                                                                                                                                                                                                                                          |                  |
|                    | 2 <sup>nd</sup> B1 for 32 seen in correct context or correctly labelled.  (allow a fully correct expression – not "++") 4480 used correctly is I for attempting a correct expression. Follow through their 140 and their 32 You may see attempt at $\sum (t-\overline{t})(m-\overline{m})$ . This must have all the product requires a correct expression seen and no incorrect working leading to $-90$ | cts seen.        |
| (b)                | for a correct expression for $b$ . Follow through their $S_{tm}$ . Condone miss $1^{st}$ A1 for awrt $-0.26$ or condone $-0.25$ for a correct method for $a$ . Follow through their sums from part (a) and $2^{nd}$ A1 for a correct equation for $m$ and $t$ with $a = awrt 8.47$ and $b = awrt -0.25$ Must be an equation in $m$ and $t$ , use of $x$ or $y$ scores A0 here.                           | their value of b |
| (c)                | B1 for awrt 5.9 Accept 6 if the correct expression (awrt $8.47-10\times$ awrt $0.2$                                                                                                                                                                                                                                                                                                                      | 256) is seen     |
| (d)                | B1 for suggesting it is reliable and mentioning 10 within the range (of the data or suggesting it is reliable since interpolating or not extrapolating                                                                                                                                                                                                                                                   | .)               |
|                    | NB "it is reliable since it is in the range" is B0 since "it" is not explicit enough Condone extra non-relevant comments but penalise contradictory comments.  e.g. "near the extreme so not reliable but not extrapolated so reliable" is B0 since contradiction is B0 since contradiction in the range (of temps) and 5.9 within range of times" is B0 since contradiction.                            |                  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks                 |           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 4. (a)             | $\frac{127-100}{15}$ So $P(L > 127) = P(Z > 1.8)$ or $1-P(Z < 1.8)$ o.e. $= 1 - 0.9641 = \underline{0.0359}$ (awrt $\underline{0.0359}$ )                                                                                                                                                                                                                                                                                                                | M1<br>A1<br>A1        | (2)       |
| (b)                | $\frac{d-100}{15} = -1.2816  \text{(Calculator gives } -1.2815515\text{)}$ $d = 80.776  \text{(awrt } \underline{80.8}\text{)}$                                                                                                                                                                                                                                                                                                                          | M1, B1                | (3)       |
| (c)                | Require $P(L > 133 \mid L > 127)$ $= \left[ \frac{P(L > 133)}{P(L > 127)} \right] = \frac{P(Z > 2.2)}{P(L > 127)}$ $= \left[ \frac{1 - 0.9861}{1 - 0.9641} \right] = \frac{0.0139}{[0.0359]}$ $= 0.3871 = \text{awrt } \underline{\textbf{0.39}}$                                                                                                                                                                                                        | M1<br>dM1<br>A1<br>A1 | (3)       |
| S.C.               | An attempt at P( $L < 133   L > 127$ ) that leads to awrt 0.61 (M0M1A0A0)                                                                                                                                                                                                                                                                                                                                                                                |                       | (4)<br>10 |
| (a)                | Notes  M1 for attempting to standardise with 127, 100 and 15. Allow $\pm$ 1 <sup>st</sup> A1 for $Z > 1.8$ . Allow a diagram but must have 1.8 and correct area indicated. Must have the $Z$ so $P(L > 127)$ with or without a diagram is insufficient. May be in $2^{nd}$ A1 for awrt 0.0359 (calc. gives 0.035930266). Correct ans only 3/3. M1A0A                                                                                                     |                       | 59        |
| (b)<br>Calc        | M1 for an attempt to standardise with 100 and 15 and set = $\pm$ any z value ( z  > 1 B1 for $z = \pm 1.2816$ (or better) seen anywhere [May be implied by 80.776(72 A1 for awrt 80.8 (can be scored for using 1.28 but then they get M1B0A1)  The 80.8 must follow from correct working.  If answer is awrt 80.8 and awrt 80.777 or 80.776 or better seen then award M If answer is awrt 80.8 or 80.77 then award M1B0A1 (unless of course $z = 1.2816$ | .) or better see      | n]        |
| (c)                | $1^{\text{st}}$ M1 for clear indication of correct conditional probability or attempt at correct So clear attempt at $\frac{P(L>133)}{P(L>127)}$ is sufficient for the $1^{\text{st}}$ M1 $2^{\text{nd}}$ dM1 dependent on $1^{\text{st}}$ M1 for $P(L>133)$ leading to $P(Z>2.2)$ . $1^{\text{st}}$ A1 for 0.0139 or better seen coming from $P(Z>2.20)$ . Dependent on both Ms $2^{\text{nd}}$ A1 for awrt 0.39. Both Ms required                      | ratio                 |           |
| ALT                | If they assume Alice did not check that the phone was working you may see: $[P(L<127).0] + P(L>127).P(L>133 L>127)$ Provided the conditional probabilities as part of this calculation the 1 <sup>st</sup> M1 can be scored and their final answer will be 0.0 An answer of 0.0139 without sight of the conditional probability is 0/4.                                                                                                                  |                       |           |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                 | Marks           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <b>5.</b> (a)      | Width = 4 (cm)                                                                                                                                                                                                                                                                         | B1              |
|                    | Area of 14 cm <sup>2</sup> represents frequency 28 and area of 4h represents 18                                                                                                                                                                                                        | M1              |
|                    | Or $\frac{4h}{18} = \frac{14}{28}$ (o.e.) $h = \underline{2.25}$ (cm)                                                                                                                                                                                                                  | A1              |
|                    | 10 20                                                                                                                                                                                                                                                                                  | (3)             |
| (b)                | $m = (240) + \frac{10}{22} \times 80$ (o.e.)                                                                                                                                                                                                                                           | M1              |
|                    | $= 276.36  \left(\frac{3040}{11}\right) \qquad \qquad \left((\pounds)276 \le m < (\pounds)276.5\right)$                                                                                                                                                                                | A1 (2)          |
| (c)                | $\sum fy = 31600 \text{ leading to } \frac{1}{y} = 316$                                                                                                                                                                                                                                | (2)<br>M1A1     |
|                    | $\sigma_y = \sqrt{\frac{12452800}{100} - (\overline{y})^2} = 157.07 \text{ (awrt } \underline{157}\text{)} \text{ Allow } s = 157.86$                                                                                                                                                  | M1A1            |
| (d)                | Skewness = 0.764 (awrt $\underline{0.76}$ or $\underline{0.75}$ )  [If $n+1$ used in (b) and $m = £278$ accept awrt 0.73 or 0.72]                                                                                                                                                      | B1 (4)          |
|                    | Positive skew $\begin{bmatrix} 11 & n+1 & \text{used in (b) and } m - £2/8 & \text{accept awrt } 0.73 & \text{or } 0.72 \end{bmatrix}$                                                                                                                                                 | B1ft (2)        |
| (e)                | $z = \pm \frac{80}{150}$                                                                                                                                                                                                                                                               | M1              |
|                    | $P(240 < X < 400) = 0.40 \sim 0.41$                                                                                                                                                                                                                                                    | A1 (2)          |
| (f)                | (e) suggests a reasonable fit for this range BUT                                                                                                                                                                                                                                       | B2/1/0 (2)      |
|                    | (d) since skew it will not be a good fit overall                                                                                                                                                                                                                                       | (2)             |
|                    | Notes                                                                                                                                                                                                                                                                                  |                 |
| (a)                | B1 for width (ignore units) M1 for clear method using area and frequency or their width × their height = 9 e.g. seeing both fd of 0.7 and 0.225 (may see fd in the table) [Must use corre                                                                                              | -               |
| (b)                | M1 for $\frac{10}{22} \times 80$ or $\frac{10.5}{22} \times 80$ (o.e.). Allow use of $(n+1)$ leading to £278.18                                                                                                                                                                        | or [278, 278.5) |
|                    | A1 Do not award if incorrect end-point seen but answer only is 2/2                                                                                                                                                                                                                     |                 |
| (c)                | $1^{\text{st}}$ M1 attempt at $\sum fy$ with at least 3 correct products or ans. that rounds to 30 0                                                                                                                                                                                   |                 |
|                    | $2^{\rm nd}$ M1 for correct expression including $\sqrt{}$ . Follow through $\overline{y}$ . Need $\sum fy^2$                                                                                                                                                                          | correct but     |
|                    | condone a minor transcription error e.g. 12458200.                                                                                                                                                                                                                                     |                 |
| (d)                | 1 <sup>st</sup> B1 for awrt 0.76/0.75 for $m = £276$ or awrt 0.73/0.72 for $m = £278$ 2 <sup>nd</sup> B1ft for a correct description of their skew based on their measure <u>or</u> if no m based on their values of mean and median. (correlation is B0)                              | easure given    |
| (e)                | M1 for an attempt to standardise using the 320 and 150 and either 240 or 400 (in A1 for answer in range [0.40, 0.41] (tables gives 0.4038, calculator 0.40619) A                                                                                                                       |                 |
| (f)                | For B2 we need 2 comments that make reference to each of part (e) and part One comment should suggest it is <u>not</u> good since <u>skew</u> . The other it <u>is</u> since match 1 <sup>st</sup> B1 for one relevant comment 2 <sup>nd</sup> B1 for both comments NB Do not use B0B1 |                 |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                              | Marks                            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 6. (a)             | $ \begin{array}{ c c c c c c } \hline b & 1 & 3 & 5 \\ \hline P(B=b) & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \hline \end{array} $ Also allow $b$ values 1,1,3,3,5,5 and probabilities all $\frac{1}{6}$                                                                                        | B1<br>B1                         |
| (b)                | Discrete Uniform {distribution}                                                                                                                                                                                                                                                                     | B1 (2) (1)                       |
| (c)                | [E(B) =] 3 (by symmetry)                                                                                                                                                                                                                                                                            | B1 (1)                           |
| (d)                | $[E(R) = ] 2 \times \frac{2}{3} + 4 \times \frac{1}{6} + 6 \times \frac{1}{6} = \underline{3}$                                                                                                                                                                                                      | M1<br>A1 (2)                     |
| (e)                | $[E(R^{2}) = ] 2^{2} \times \frac{2}{3} + 4^{2} \times \frac{1}{6} + 6^{2} \times \frac{1}{6} \qquad \left[ = \frac{34}{3} \right]$ $[Var(R) = ] \frac{34}{3} - 3^{2} = \frac{7}{3} \qquad \text{(or any exact equivalent. NB 2.33 is A0)}$                                                         | M1                               |
|                    | [Var( $R$ ) =] $\frac{34}{3}$ -3 <sup>2</sup> = $\frac{7}{3}$ (or any exact equivalent. NB 2.33 is A0)                                                                                                                                                                                              | dM1, A1                          |
| <b>(f)</b>         | Coin lands on 2, choose blue die; coin lands on 5 choose red die                                                                                                                                                                                                                                    | B2/1/0 (3)                       |
|                    | $P(\text{Avisha wins}) = \frac{1}{2} \times \left(\frac{1}{3} + \frac{1}{3}\right) + \frac{1}{2} \times \frac{1}{6}$                                                                                                                                                                                | M1                               |
|                    | $=\frac{5}{12}  \text{(allow awrt 0.417)}$                                                                                                                                                                                                                                                          | A1 (4)                           |
|                    | Notes                                                                                                                                                                                                                                                                                               | 13                               |
| (a)                | 1 <sup>st</sup> B1 for correctly identifying values of b as 1, 3, 5 or 1,1,3,3,5,5                                                                                                                                                                                                                  |                                  |
|                    | $2^{\text{nd}}$ B1 for probabilities all = $\frac{1}{3}$ or exact equivalent (or of course 6 cases of $\frac{1}{6}$ )                                                                                                                                                                               |                                  |
| <b>(b)</b>         | Any correct probability distribution or probability function is 2/2. Must be in part B1 for "Discrete Uniform" . Both words required.                                                                                                                                                               | (a)                              |
| (c)                | B1 for answer of 3 o.e. Accept $E(X) = 3$                                                                                                                                                                                                                                                           |                                  |
| (d)                | M1 for an attempt at correct formula. At least 2 correct products seen. If later div A1 for an answer of 3. Correct answer only scores both marks.                                                                                                                                                  | ride by $n(\neq 1) \text{ M0}$   |
| (e)                | 1 <sup>st</sup> M1 for a correct attempt at $E(R^2)$ . At least 2 correct products seen. Condone May be implied by sight of $\frac{34}{3}$ or 11.3 or better.                                                                                                                                       | e Var(R) = etc                   |
|                    | $2^{\text{nd}}$ dM1 Dep. on $1^{\text{st}}$ M1 for clear attempt at $E(R^2) - [E(R)]^2$ Must see their value                                                                                                                                                                                        | es <u>used</u> .                 |
|                    | NB $Var(R) = E(R^2) - [E(R)]^2 = \frac{34}{3} - 3$ is M1M0A0 since do not <u>use</u> their                                                                                                                                                                                                          | $\left[ \mathbb{E}(R) \right]^2$ |
| <b>(f)</b>         | B2/1/0 Both correct B1B1, one correct B1B0. Do not use B0B1[e.g. always red NB Allow other descriptions of the die e.g. 1 <sup>st</sup> or fair for blue, 2 <sup>nd</sup> for red if they M1 for evaluating correct probabilities i.e. only $\frac{1}{3}$ , $\frac{1}{12}$ seen or if incorrect cho | are clear.                       |
|                    | M1 for an answer of : if choose RR $(\frac{1}{4})$ , if choose BB $(\frac{1}{3})$ , if choose RB $(\frac{1}{6})$                                                                                                                                                                                    |                                  |
|                    | NB $\frac{5}{12}$ as answer scores M1A1. Need to see choices of die stated for B marks                                                                                                                                                                                                              |                                  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                            | Marks                     |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| 7.<br>(a)          | $P(A \cup B) = 0.35 + 0.45 - 0.13 = \underbrace{\text{or}}_{0.67} 0.22 + 0.13 + 0.32$                                                                                                                                                                                                                                                             | M1<br>A1 (2)              |  |  |  |
| (b)                | $P(A'   B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$                                                                                                                                                                                                                                                                          | M1                        |  |  |  |
|                    | $=\frac{3}{5}$ or 0.6                                                                                                                                                                                                                                                                                                                             | A1                        |  |  |  |
| (c)                | $P(B \cap C) = 0.45 \times 0.2$ $= 0.09$                                                                                                                                                                                                                                                                                                          | (2)<br>M1<br>A1           |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                   | (2)                       |  |  |  |
| (d)                | Allow 1st B1 for 3 intersecting circles in a box with zeros in the regions for $A \cap C$ Do not accept "blank" for zero                                                                                                                                                                                                                          | B1<br>B1ft<br>B1<br>B1    |  |  |  |
| (e)                | $P(B \cup C)' = 0.22 + \underline{0.22} \text{ or } 1 - [0.56] \text{ or } 1 - [0.13 + 0.23 + 0.09 + 0.11] \text{ o.e.}$<br>= $\underline{0.44}$                                                                                                                                                                                                  | (4)<br>M1<br>A1 (2)<br>12 |  |  |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                             | 1.10                      |  |  |  |
| (a)                | NB May see Venn diagram for A and B only used for (a) and (b) but M marks are a correct expressions only. No ft from an incorrect diagram for M marks.  M1 for attempt to use the addition rule. Correct substitution i.e. correct expressions and for 0.67 only. Correct answer only scores 2/2                                                  |                           |  |  |  |
| (b)                | M1 for a correct ratio of probabilities or a correct formula and at least one correct prob<br>For a correct formula allow "1 – their (a)" instead of 0.33 but not for correct ratio case.<br>Do not award for assuming independence i.e. $\frac{P(A' \cap B')}{P(B')} = \frac{0.65 \times 0.55}{0.55}$ is M0. M0 if num>denom                     |                           |  |  |  |
| (c)                | <ul> <li>A1 for 3/5 or any exact equivalent.</li> <li>M1 for correct expression. Need correct values for P(B) and P(C) seen.</li> <li>A1 for 0.09 or any exact equivalent. Correct answer only is 2/2</li> </ul>                                                                                                                                  |                           |  |  |  |
| (d)                | No labels $A$ , $B$ , $C$ in (d) loses $1^{st}$ B1 but can score the other 3 by implication B1 for box with $B$ intersecting $A$ and $C$ but $C$ not intersecting $A$ . No box is B0 B1ft for 0.13 and their 0.09 in correct places. [ft $P(B \cap C)$ from (c)] B1 for any 2 of 0.22, $0.22$ , 0.11 and 0.23 correct B1 for all 4 values correct |                           |  |  |  |
| (e)                | M1 for a correct expression or follow through from their Venn diagram NB $P(B') \times P(C') = 0.55 \times 0.8$ is OK. Do not ft "blank" for zero and M0 for negative probs. A1 for 0.44 only. Correct answer only is $2/2$                                                                                                                       |                           |  |  |  |

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA034849 January 2013

For more information on Edexcel qualifications, please visit our website  $\underline{www.edexcel.com}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE









Mark Scheme (Results)

Summer 2013

GCE Statistics 1 (6683/01R)

# **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

# Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2013
Publications Code UA036996
All the material in this publication is copyright
© Pearson Education Ltd 2013

### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **EDEXCEL GCE MATHEMATICS**

### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

| Ques | tion       | Scheme                                                                                                                                                                                                                                                             | Marks                    |
|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1.   | (a)        | $b = \frac{18.35}{312.1} [= 0.058795]$                                                                                                                                                                                                                             | M1                       |
|      |            | $a = 5.8 - 0.058795 \times 4.8$                                                                                                                                                                                                                                    | M1                       |
|      |            | So $y = 5.52 + 0.0588x$                                                                                                                                                                                                                                            | A1<br>A1 (4)             |
|      | (b)        | $\frac{e}{10}$ = "5.52"+ "0.0588"× $\left(\frac{g-60}{4}\right)$                                                                                                                                                                                                   | M1                       |
|      |            | 4e = 220.71 + 0.588(g - 60) $e = 46 + 0.15g$                                                                                                                                                                                                                       | dM1<br>A1A1 (4)          |
|      | (c)        | $e = "46" + "0.15" \times 100$ $= \underline{61}$                                                                                                                                                                                                                  | M1<br>A1 (2)             |
|      |            | Notes                                                                                                                                                                                                                                                              | [10]                     |
|      | (a)        | 1 <sup>st</sup> M1 for a correct expression for b                                                                                                                                                                                                                  |                          |
|      | ()         | $2^{\text{nd}}$ M1 for a correct expression for $a$ – ft their value of $b$                                                                                                                                                                                        |                          |
|      |            | $1^{st}$ A1 for $a = awrt 5.52$                                                                                                                                                                                                                                    |                          |
|      |            | $2^{nd}$ A1 for a correct equation in y and x with a and b correct to awrt 3 sf                                                                                                                                                                                    |                          |
|      | (b)        | 1 <sup>st</sup> M1 for substitutions into <u>their</u> equation to get an equation in <i>e</i> and <i>g</i> .<br>Need $y = \frac{e}{10}$ and $x = \frac{g-60}{4}$                                                                                                  |                          |
|      |            | $2^{\text{nd}}$ dM1 Dep. on $1^{\text{st}}$ M1 for an attempt to simplify (at least removing fractions). At $1^{\text{st}}$ A1 for an equation $e = \text{awrt } 46 \pm \dots$ for an equation $e = \dots + \text{awrt } 0.15g$                                    | llow one slip            |
| A    | <b>ALT</b> | 1 <sup>st</sup> M1 for use of $d = \frac{10 \times " \text{their } b"}{4}$ or sight of 0.15 used as gradient                                                                                                                                                       |                          |
|      |            | $2^{\text{nd}}$ dM1 Dep. on $1^{\text{st}}$ M1 for use of $\overline{e} = 10 \times$ "their $\overline{y}$ " or sight of 58 and use of $\overline{g} = 4 \times$ "their or sight of 79.2 and use of these values to find $c$ in $c = \overline{e} - d\overline{g}$ | eir $\overline{x}$ "+ 60 |
|      |            |                                                                                                                                                                                                                                                                    |                          |
|      | (c)        | M1 for substituting $g = 100$ into their new equation (or $x = 10$ and then attempting to $\times$ a A1 for awrt 61                                                                                                                                                | ns.by 10)                |

| Questi | ion        |                                                      |                |           |        | Scheme      | 5                                        | M     | larks |
|--------|------------|------------------------------------------------------|----------------|-----------|--------|-------------|------------------------------------------|-------|-------|
| 2.     | (a)        | X                                                    | 1              |           | 2      | 3           |                                          |       |       |
|        |            | P(X=x)                                               | (x) <u>0.4</u> | (         | 0.25   | 0.35        |                                          |       |       |
|        |            | P(X=2)                                               | = F(2) - F(    | 1) (o.e.) | )      |             |                                          | M1    |       |
|        |            |                                                      |                |           |        |             | P(X=2) = 0.25                            | A1    |       |
|        |            |                                                      |                |           |        |             | P(X=3) = 0.35                            | A1    | (3)   |
|        |            |                                                      |                |           |        |             |                                          |       |       |
|        | <b>(b)</b> | $[F(1.8) = P(X \le 1.8) = P(X \le 1) = ]$ <b>0.4</b> |                |           |        | B1          | (1)                                      |       |       |
|        |            |                                                      |                |           |        |             |                                          |       | [4]   |
|        |            |                                                      |                |           |        | Notes       |                                          |       |       |
|        | (a)        | M1                                                   | for $P(X=1)$   | (1) = 0.4 | and ev | idence of a | a correct method for finding $P(X=2)$ or | P(X = | = 3). |
|        |            |                                                      | Implied by c   |           | ans.   |             |                                          |       |       |
|        |            | $1^{st}$ A1 1                                        | for $P(X=2)$   | = 0.25    |        |             |                                          |       |       |
|        |            | $2^{nd}$ A1 f                                        | for $P(X=3)$   | = 0.35    |        |             |                                          |       |       |
|        |            |                                                      |                |           |        |             |                                          |       |       |
|        | <b>(b)</b> | B1 1                                                 | for 0.4        |           |        |             |                                          |       |       |
|        |            |                                                      |                |           |        |             |                                          |       |       |

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 3. (a)   | Width = $2 \times 1.5 = 3$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1             |
|          | Area = $8 \times 1.5 = 12 \text{ cm}^2$ Frequency = 24 so $1 \text{ cm}^2 = 2 \text{ plants}$ (o.e.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1             |
|          | Frequency of 12 corresponds to area of 6 so height = $2$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1 (3)         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| (b)      | $[O_2 = ](5+) \xrightarrow{19} \times 5$ or (use of $(n+1)$ ) $(5+) \xrightarrow{19.5} \times 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1             |
|          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|          | = 8.9383 awrt 8.90 or 9.0023 awrt 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1 (2)         |
| (c)      | r= 1 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.4            |
|          | $[Q_2 =] (5+) \frac{19}{24} \times 5 \qquad \text{or (use of } (n+1))  (5+) \frac{19.5}{24} \times 5$ $= 8.9583 \qquad \underline{\text{awrt 8.96}} \qquad \text{or} \qquad 9.0625  \text{awrt 9.06}$ $[\overline{x} =] \frac{755}{70} \text{ or } \underline{\text{awrt 10.8}}$ $[\sigma_x =] \sqrt{\frac{12037.5}{70} - \overline{x}^2} = \sqrt{55.6326}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1             |
|          | $\begin{bmatrix} 1 & 1 & 12037.5 & 12 & 155.6326 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIAIG          |
|          | $[\sigma_x] \sqrt{-70} - x = \sqrt{55.6326}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1A1ft         |
|          | $= \underline{\mathbf{awrt} \ 7.46}  (\mathbf{Accept} \ s = \mathbf{awrt} \ 7.51)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 (4)         |
| (4)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D16            |
| (a)      | $\overline{x} > Q_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1ft           |
|          | So <u>positive skew</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB1 (2)        |
| (e)      | $\overline{x} + \sigma \approx 18.3$ so number of plants is e.g. $\frac{(25 - "18.3")}{10} \times 12 (+4)$ (o.e.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1             |
|          | = 12.04 so <u>12</u> plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1 (2)         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [13]           |
|          | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| (a)      | M1 for forming a relationship between area and no. of plants or their width×their he A1 for height of 2 (cm). Make sure the 2 refers to height and not plants!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eight = 6      |
| (b)      | M1 for a suitable fraction ×5 (ignore and points)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| (10)     | M1 for a suitable fraction $\times 5$ (ignore end points)<br>A1 for awrt 8.96 (or $\frac{215}{24}$ or $8\frac{23}{24}$ ) or 9.06 (or $\frac{145}{16}$ or $9\frac{1}{16}$ ) if using $(n+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|          | $\frac{1}{16} = \frac{1}{16} $ |                |
| (c)      | B1 for a correct mean. Accept exact fraction or awrt 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|          | M1 for a correct expression for $\sigma$ or $\sigma^2$ . Condone mixed up labelling- ft their me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ean            |
|          | A1ft for a correct expression – ft their mean but must have square root                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|          | A1 for awrt 7.46 (use of $s = \text{awrt } 7.51$ ). Condone correct working and answer cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | led variance.  |
| (d)      | $1^{\text{st}}$ B1ft for a correct comparison of their $\bar{x}$ and their $Q_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| ALT      | Allow use of a formula for skewness that involves $(\bar{x} - Q_2)$ or use of quartiles but must have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | correct values |
| 11111    | NB $Q_1 = 5.31$ , $Q_3 = 14.46$ (awrt 14.5), $Q_3 - Q_2 \approx 5.5$ , $Q_2 - Q_1 \approx 3.7/6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | correct varues |
|          | 1 NB $Q_1 = 5.51$ , $Q_3 = 14.40$ (awit 14.5), $Q_3 = Q_2 \approx 5.5$ , $Q_2 = Q_1 \approx 5.770$<br>2 <sup>nd</sup> dB1 Dependent on a suitable reason for concluding "positive skew". "correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on" is DO      |
|          | 2 db1 Dependent on a suitable reason for concluding positive skew . Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on is bu       |
| (e)      | M1 for a suitable expression involving some interpolation (condone missing 4 so a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ccept awrt 8)  |
|          | Condone use of end points of 25.5 and 14.5 in their interpolation expressions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|          | A1 for 12 (condone awrt 12). Answer only 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |

| Question | Scheme                                                                                                                                                                                                                                                                                                          | Marks             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 4. (a)   | $\left[ P\left( M < 145 \right) = \right] P\left( Z < \frac{145 - 150}{10} \right)$                                                                                                                                                                                                                             | M1                |
|          | = P(Z < -0.5)  or  P(Z > 0.5)                                                                                                                                                                                                                                                                                   | A1                |
|          | = awrt 0.309                                                                                                                                                                                                                                                                                                    | A1 (3)            |
| (b)      | $[P(B>115) = 0.15 \Rightarrow] \frac{115-100}{d} = 1.0364$ $\underline{d = 14.5} \qquad \text{(Calc gives 1.036433)}$ $\underline{d = 14.5}$                                                                                                                                                                    | M1B1A1<br>A1 (4)  |
| (c)      | $[P(X > \mu + 15 \mid X > \mu - 15) = ] \frac{P(X > \mu + 15)}{P(X > \mu - 15)}$                                                                                                                                                                                                                                | M1                |
|          | $=\frac{0.35}{1-0.35}$                                                                                                                                                                                                                                                                                          | A1                |
|          | $=\frac{7}{13}$ or <b>awrt 0.538</b>                                                                                                                                                                                                                                                                            | A1 (3)            |
|          |                                                                                                                                                                                                                                                                                                                 | [10]              |
|          | Notes                                                                                                                                                                                                                                                                                                           |                   |
| (a)      | Condone poor use of notation if a correct line appears later.  M1 for standardising with 145, 150 and 10. Allow $\pm$ and use of symmetry so 155 in $1^{\text{st}}$ A1 for P(Z < -0.5) or P(Z > 0.5) i.e. a z value of $\pm$ 0.5 and a correct region indi $2^{\text{nd}}$ A1 for awrt 0.309 Answer only is 3/3 |                   |
| (b)      | M1 for $\pm \frac{115-100}{d} = z$ where $ z  > 1$ Condone MR of $\mu = 150$ instead of 100 for B1 for a standardised expression = $\pm 1.0364$ (do not allow for use of $1 - 1.0364$ )                                                                                                                         |                   |
| Calc     | $1^{\text{st}}$ A1 for $z = \text{awrt } 1.04$ and compatible signs i.e. a correct equation with $z = \text{awrt } 1.02^{\text{nd}}$ A1 for awrt 14.5 (allow awrt 14.4 if $z = \text{awrt } 1.04$ is seen)  Answer only of awrt 14.473 scores M1B1A1A1                                                          |                   |
| (c)      | Answer only of awrt 14.48 scores M1B0A1A1  M1 for a correct ratio expression need P( $X > \mu + 15$ ) on numerator. Allow use of a May be implied by next line.  NB $\frac{0.35 \times 0.65}{0.65} = \frac{0.2275}{0.65}$ is M0                                                                                 | a value for $\mu$ |
|          | $0.65$ $0.65$ $1^{st}$ A1 for a correct ratio of probabilities $2^{nd}$ A1 for awrt 0.538 or $\frac{7}{13}$ (o.e.). Allow 0.5385 provided $2^{nd}$ A1 is scored.                                                                                                                                                |                   |

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mark             | KS  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|
| 5. (a)   | $S_{yy} = 393 - \frac{61^2}{10} = 20.9$                                                                                                                                                                                                                                                                                                                                                                                                                             | M1A1             |     |
|          | $S_{xy} = 382 - \frac{61 \times 60}{10} = \underline{16}$                                                                                                                                                                                                                                                                                                                                                                                                           | A1               | (3) |
| (b)      | $[r=]\frac{"16"}{\sqrt{"20.9"\times 28}}$<br>= 0.66140 awrt 0.661                                                                                                                                                                                                                                                                                                                                                                                                   | M1<br>A1         | (2) |
| (c)      | = 0.66140 <u>awrt 0.661</u> Researcher's belief suggests <u>negative</u> correlation, data suggests <u>positive</u> correlation  So data does <u>not</u> support researcher's belief                                                                                                                                                                                                                                                                                | B1<br>dB1        | (2) |
| (d)      | New x equals $\overline{x} = 6$<br>Since $S_{xx} = \sum (x - \overline{x})^2$ the value of $S_{xx}$ is the same = 28                                                                                                                                                                                                                                                                                                                                                | B1<br>dB1        | (2) |
| (e)      | $S_{xy} = \sum (x - \overline{x})(y - \overline{y}) = \sum (x - \overline{x})y$ so the new term will be zero (since mean = x) and since $S_{yy}$ increases So $r$ will decrease                                                                                                                                                                                                                                                                                     | B1<br>dB1        | (2) |
|          | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [11]             |     |
| (a)      | M1 for a correct expression for $S_{yy}$ or $S_{xy}$<br>$1^{st} A1$ for $S_{yy} = 20.9$<br>$2^{nd} A1$ for $S_{xy} = 16$                                                                                                                                                                                                                                                                                                                                            |                  |     |
| (b)      | M1 for a correct expression for $r$ – ft their 20.9 (provided it is > 0) and their 16. Use of 382 for 16 or 393 for 20.9 is M0 for awrt 0.661                                                                                                                                                                                                                                                                                                                       |                  |     |
| (c)      | 1 <sup>st</sup> B1 for a suitable reason <u>contrasting</u> belief with data. They must state the sign (p negative) of the correlation of data or the belief and imply the other is oppose 2 <sup>nd</sup> dB1 Dependent on a correct reason for saying it does <u>not</u> support the claim e.g. State "does not support the belief because data has positive correlation" scores State "does support the belief because data has positive correlation" scores B0. | site<br>s B1B1 B |     |
| (d)      | $1^{\text{st}} B1$ for clearly stating that new value of $x = (6 =)$ mean $2^{\text{nd}} dB1$ Dep. on $1^{\text{st}} B1$ for a reason that shows $S_{xx}$ is unchanged e.g. extra term is 0 so $S_{xx}$ is                                                                                                                                                                                                                                                          | the same         |     |
| ALT      | 1 <sup>st</sup> B1 for seeing $\sum x = 66$ and new $\sum x^2 = 424$ (or $388 + 6^2$ ) and attempt at $S_{xx}$ 2 <sup>nd</sup> B1 for showing $S_{xx} = 28$ with $n = 11$ and no incorrect working seen and a final c                                                                                                                                                                                                                                               | omment           |     |
| (e)      | $1^{\text{st}} B1$ for a clear reason that mentions $S_{xy}$ is the same <u>and</u> the increase in $S_{yy}$ Saying that $r$ increases or stays the same is $B0B0$ $2^{\text{nd}} dB1$ Dependent on $1^{\text{st}} B1$ for saying $r$ will decrease.                                                                                                                                                                                                                |                  |     |

| Ques | tion | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks          |  |  |  |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| 6.   | (a)  | $[P(B) = 0.4, P(A) = p + 0.1 \text{ so}]$ $0.4 \times (p + 0.1) = 0.1 \text{ or } 0.4 \times P(A) = 0.1$                                                                                                                                                                                                                                                                                                                                                                                                  | M1             |  |  |  |
|      |      | $p = \frac{1}{4} - 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1A1 (3)       |  |  |  |
|      | (b)  | $\frac{5}{11} = \left[ \frac{P(B \cap C)}{P(C)} = \right] \frac{0.2}{0.2 + q}  \text{or}  \frac{5}{11} = \frac{0.2}{P(C)}$                                                                                                                                                                                                                                                                                                                                                                                | M1             |  |  |  |
|      |      | $11\times0.2 = 5\times(0.2+q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dM1            |  |  |  |
|      |      | r = 0.6 - (p + q) i.e. $r = 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1<br>A1ft (4) |  |  |  |
|      | (c)  | $r = 0.6 - (p+q) $ i.e. $\underline{r = 0.21}$ $\left[\frac{P((A \cup C) \cap B)}{P(B)}\right] = \frac{0.3}{0.4}$                                                                                                                                                                                                                                                                                                                                                                                         | M1             |  |  |  |
|      |      | = <u>0.75</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1 (2) [9]     |  |  |  |
|      |      | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |  |  |  |
|      | (a)  | $1^{\text{st}} \text{ M1}$ for using independence in an attempt to form an equation in $p$ or $P(A)$ $2^{\text{nd}} \text{ M1}$ for a correct attempt to solve their linear equation leading to $p = \dots$                                                                                                                                                                                                                                                                                               |                |  |  |  |
|      |      | A1 for 0.15 or exact equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |  |  |  |
|      | (b)  | $1^{\text{st}} \text{ M1}$ for a clear attempt to use $P(B C)$ to form an equation for $q$ or $P(C)$ . Assuming indep M0 $2^{\text{nd}} \text{ dM1}$ Dep. on $1^{\text{st}} \text{ M1}$ for correctly simplifying to a linear equation in $q$ or $P(C)$ e.g. accept $11 \times 0.2 = 5 \times 0.2 + q$ or $5P(C) = 2.2$ $1^{\text{st}} \text{ A1}$ for $q = 0.24$ or exact equivalent $2^{\text{nd}} \text{ A1ft}$ for $0.6 - \text{their } (p + q)$ Dependent on $1^{\text{st}} \text{ M1}$ in (b) only. |                |  |  |  |
|      | (c)  | M1 for a correct ratio expression and one correct value (num < denom) or a fully correct ratio.  Allow $\frac{P(A \cup C \cap B)}{P(B)}$ with one probability correct but only if num < denom.                                                                                                                                                                                                                                                                                                            |                |  |  |  |
|      |      | A numerator of $P(A \cup C) \times P(B)$ scores M0                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |  |  |  |
|      |      | A1 for 0.75 or an exact equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |  |  |  |

| Question   | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 7. (a)     | $E(S) = 0 + 1 \times 0.2 + 2 \times 0.1 + 4 \times 0.3 + 5 \times 0.2 = [0.2 + 0.2 + 1.2 + 1.0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1             |
|            | <u>2.6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1 (2)         |
| (b)        | $E(S^2) = 0 + 1 \times 0.2 + 2^2 \times 0.1 + 4^2 \times 0.3 + 5^2 \times 0.2$ or $0.2 + 0.4 + 4.8 + 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1cso (2)      |
|            | <u>10.4</u> (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aleso (2)      |
| (c)        | $Var(S) = 10.4 - ("2.6")^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1             |
|            | $\frac{3.64}{25}$ or $\frac{91}{25}$ (o.e.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1 (2)         |
|            | <u>-</u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (=)            |
| (d)(i)     | $5E(S) - 3 = 5 \times "2.6" - 3 , = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1, A1         |
| (ii)       | $5^2 \operatorname{Var}(S) = 25 \times 3.64, = \underline{91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1, A1 (4)     |
| (e)        | $5S-3>S+3 \implies 4S>6$ or $S>1.5$ , so need $P(S \ge 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1, A1         |
|            | P(S > 2) = 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 (3)         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| <b>(f)</b> | $P(S_1 = 1) \times P(S_2 \le 4), = 0.2 \times 0.8 = 0.16$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1,A1cso(2)    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| (g)        | $P(S_1 = 2) \times P(S_2 \le 2) = 0.1 \times 0.5$ = 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1             |
|            | $P(S_1 = 4) \times P(S_2 \le 1) = 0.3 \times 0.4$ = 0.12 Full method – all cases listed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IVII           |
|            | $P(S_1 = 5) \times P(S_2 = 0) = 0.2 \times 0.2$ = 0.04 all correct products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1             |
|            | $P(S_1 = 0) \times P(S_2 = \text{any value}) = 0.2 \times 1 = 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|            | = 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1 (3)         |
|            | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [18]           |
| (a)        | M1 for an attempt at $\sum xP(X=x)$ , at least 2 non-zero terms seen. Correct answ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jer 2/2        |
|            | A1 for 2.6 or any exact equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VCI Z/Z        |
|            | A1 101 2.0 01 any exact equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| (b)        | M1 for a correct attempt, at least 3 non-zero terms seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|            | A1cso for 10.4 provided M1 is scored and no incorrect working seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| (c)        | M1 for $10.4 - \mu^2$ , ft their $\mu$ . Must see their value of $\mu$ squared (A1 for 3.64 or any exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t equiv.)      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 /            |
| (d)(i)     | M1 for a correct expression using their 2.6 (A1 for 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| (ii)       | M1 for $25 \times Var(S)$ - ft their $Var(S)$ (A1 for 91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| (e)        | M1 for solving the inequality as far as $pS > q$ where one of $p$ or $q$ are correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|            | $1^{\text{st}} A1$ for $P(S \ge 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|            | $2^{\text{nd}}$ A1 for 0.6 (provided $S > 1.5$ was obtained). Ans only of 0.6 scores $3/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|            | A table showing all 25 cases can only score M1 in (g) if the correct cases are indi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cated.         |
| <b>(f)</b> | M1 for using independence (so multiplying) and attempting $P(S_2 \le 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|            | e.g. $0.2 \times (0.2 + 0.2 + 0.1 + 0.3)$ or $0.04 + 0.04 + 0.02 + 0.06$ score M1 BUT $\frac{4}{25}$ (not from $0.2 \times 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04 + 0.04$ |                |
|            | A1cso for a fully correct explanation leading to 0.16. Must come from $0.2 \times 0.8$ not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{4}{25}$ |
| (g)        | M1 for all cases for $S_1$ or all 15 cases for $X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| (5)        | $1^{\text{st}}$ A1 for all correct probability products for $S_1$ or $X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|            | 2 <sup>nd</sup> A1 for 0.57 Correct answer scores 3/3. Probabilities out of 25 score A0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|            | 2 AT 101 0.37 Correct answer scores 3/3. Probabilities out 01 23 score A0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA036996 Summer 2013

For more information on Edexcel qualifications, please visit our website  $\underline{www.edexcel.com}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE









Mark Scheme (Results)

Summer 2013

GCE Statistics 1 (6683/01)

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

#### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036993
All the material in this publication is copyright
© Pearson Education Ltd 2013

### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **EDEXCEL GCE MATHEMATICS**

### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

| Que | stion      | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks                        |  |  |  |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| 1.  | (a)        | $(S_{th}) = 64980 - \frac{7150 \times 110}{9} = -22408.9$ $-22400$ $(S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2$ 1490 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1 A1                        |  |  |  |
|     |            | $(S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2$ <u>1 490 000</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                           |  |  |  |
|     | (b)        | $r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068$ awrt $-$ <b>0.952</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3)<br>M1A1                  |  |  |  |
|     |            | Yes as $r$ is close to $-1$ (if $-1 < r < -0.5$ ) or Yes as $r$ is close to 1 (if $1 > r > 0.5$ )<br>[ If $-0.5 \le r \le 0.5$ allow "no since $r$ is close to 0"] [ If $ r  > 1$ award B0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1ft (2)                     |  |  |  |
|     | (d)        | $b = \frac{-22408.9}{1491222.2} = -0.015027 \qquad \text{(allow } \frac{-56}{3725}\text{)}$ awrt - 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1 A1                        |  |  |  |
|     |            | $a = \frac{110}{9}$ - "their $b$ " × $\frac{7150}{9}$ = (12.20.015 × 794.4), = 24.1604 so $t = 24.2 - 0.015h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1, A1                       |  |  |  |
|     | (e)        | $0.015$ is the <u>drop</u> in temp, (in ${}^{0}$ C), for every 1(m) <u>increase</u> in height above sea level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1 (4) (1)                   |  |  |  |
|     | <b>(f)</b> | Change = $("24.2 - 0.015" \times 500) - ("24.2 - 0.015" \times 1000)$ or $500 \times "0.015"$<br>= $\pm 7.5$ (awrt $\pm 7.5$ ) (only ft a value < 100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1<br>A1ft (2)<br>(13 marks) |  |  |  |
|     |            | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                            |  |  |  |
|     | (a)        | M1 for at least one correct expression (condone transcription error)<br>$1^{st}$ A1 for $S_{hh}$ = awrt 1 490 000 or $S_{th}$ = awrt -22 400 (Condone $S_{xx}$ or $S_{xy}$ = or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | even $S_{yy} =$              |  |  |  |
|     | (b)        | $2^{\text{nd}}$ A1 for $S_{th} = -22400$ and $S_{hh} = 1490000$ only. [This mark is assessing correct (Allow no labels but mis-labelling $S_{th}$ as $S_{hh}$ etc loses the final A1)  M1 for attempt at correct formula. Allow minor transcription errors of 2 or 3 digit Must have their $S_{hh}$ , $S_{th}$ and given $S_{tt}$ (3sf or better) in the correct places. Condone of Award M1A0 for awrt $-0.95$ with no expression seen. M0 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es.<br>missing "–"           |  |  |  |
|     |            | Award MTA0 for awrt $-0.93$ with no expression seen. We for $\frac{1}{\sqrt{7171500\times7}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .864                         |  |  |  |
|     | (c)        | B1ft must comment on supporting <b>and</b> state: <u>high/strong/clear</u> (negative or positive) "points lie close to a straight line" is B0 since there is no evidence of this.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | correlation                  |  |  |  |
|     | (d)        | for a correct expression for $b$ . Follow through their $S_{hh}$ & $S_{th}$ . Condone in $1^{st}$ A1 for awrt $-0.015$ or allow exact fraction from rounded values. for a correct method for $a$ . Follow through their value of $b$ for a correct equation for $t$ and $t$ with $t$ = awrt 24.2 and $t$ = awrt $t$ = | -                            |  |  |  |
|     | (e)        | B1 Must mention $h$ (or height) and $t$ (or temperature) and their (1 sf) value of $b$ in a correct comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |  |  |  |
|     | <b>(f)</b> | M1 for a correct expression seen based on their equation. Allow transcription error If answer is $500 \times$ their b to 2sf and $< 100$ (M1A1), If answer is $500 \times$ their b to 2sf and $\ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |  |  |  |

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks           |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| 2. (a)   | 25 (allow any x where $24 < x < 26$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1              |  |  |  |
| (b)      | $Q_2 \text{ (or median or } m \text{)} = 51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1              |  |  |  |
|          | $IQR = 63 - 46$ ,= 17 (or $Q_3 - Q_1 = 17$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1, A1          |  |  |  |
| (c)      | Outliers given by $46 - 1.5 \times 17 = 20.5$ or $63 + 1.5 \times 17 = 88.5$ Outliers limits are <b>20.5</b> and <b>88.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3)<br>M1<br>A1 |  |  |  |
|          | Females  Allow lower whisker to 20.5 and upper whisker to 88.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1              |  |  |  |
|          | Males  Males  Do not allow a mix of whiskers e.g 20.5 and 85  Do not allow both sets of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1ft            |  |  |  |
|          | 10 20 30 40 50 60 70 80 90 100 whiskers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1              |  |  |  |
|          | Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (5)             |  |  |  |
| (d)      | Medians: Median for females lower than males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
| ()       | IQR: IQR for females smaller than males. Allow "lower/higher" but not "wider"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1ft            |  |  |  |
|          | Range: Range of females is less than males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1ft            |  |  |  |
|          | <b>Skewness:</b> Male and female marks are both positively skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2)             |  |  |  |
|          | Ignore other statements about average, spread, mean, st. Dev, variation, outliers etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (11 marks)      |  |  |  |
|          | Notes Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110D 17         |  |  |  |
|          | Mark (b) and (c) together BUT must see clear statement that median (or $m$ or $Q_2$ ) = 51 and $Q_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |
| (b)      | M1 for 2 quartiles (at least one correct) and attempt to find the difference. Must see their for 17 only. [Answer only of IQR= 17 scores M1A1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63 – their 46   |  |  |  |
| (c)      | A fully correct box-plot (either version) with no supporting work scores 5/5. Otherwise:  1st M1 for correct attempt to calc' at least one limit for outliers, ft their quartiles or IQR or award for sight of 20.5 or 88.5  1st A1 for identifying both limits of 20.5 and 88.5  2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct values (or correct ft) (condone no median marked) (condone 2 upper or 2 lower whiskers)  2nd A1ft for their 20.5 or 26,46,51,63 and 85 or their 88.5 in appropriate places and readable off their scale. Follow through their 20.5 and their 88.5 only, other values need to be correct If there are 2 upper or 2 lower whiskers A0  B1 for only 2 outliers appropriately marked at 14 and 90 Do not award if whiskers go beyond these values.  Apply ± 0.5 square accuracy for diagram A box plot not on the graph paper can only score the 1st M1A1 |                 |  |  |  |
| (d)      | In (d) ft from their diagrams (if no diagram then use their values)  1 <sup>st</sup> B1ft for one correct comment comparing median, IQR, range or skewness  2 <sup>nd</sup> B1ft for a second correct comment comparing median, IQR, range or skewness  Do not allow contradictory statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S               |  |  |  |

| Question | Scheme                                                                                                                                                                         | Marks                           |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| 3. (a)   | $\frac{35+75}{200} = 0.55$                                                                                                                                                     | M1 A1                           |  |  |
|          | 200                                                                                                                                                                            |                                 |  |  |
| (b)      | 200 2                                                                                                                                                                          | (2)                             |  |  |
| (D)      | $\frac{200-2}{200} = 0.99$                                                                                                                                                     | M1 A1                           |  |  |
|          | 200                                                                                                                                                                            | (2)                             |  |  |
| (c)      | $P(W \cap C) = 30/200$ 30                                                                                                                                                      |                                 |  |  |
|          | $\left[P(W \mid C)\right] = \frac{P(W \cap C)}{P(C)} = \frac{\frac{30}{200}}{\frac{80}{200}} = \frac{30}{80} = 0.375$                                                          | M1 A1                           |  |  |
|          | 200                                                                                                                                                                            |                                 |  |  |
| (4)      | C Allow diagrams with                                                                                                                                                          | $\rceil \qquad \qquad (2) \mid$ |  |  |
| (d)      | 9 intersections between $F$ ,                                                                                                                                                  | M1                              |  |  |
|          | C and H provided these                                                                                                                                                         | B1 for 9, 1                     |  |  |
|          | are marked with 0.                                                                                                                                                             | B1 for 77,33                    |  |  |
|          | $\begin{array}{c c} \hline & 33 \\ \hline & B \\ \hline & (0) \\ \hline & If their diagram indicates \end{array}$                                                              | B1 for 64,16                    |  |  |
|          | extra empty regions do not                                                                                                                                                     |                                 |  |  |
|          | H treat a blank as 0.                                                                                                                                                          | (4)                             |  |  |
|          | 1+16+33                                                                                                                                                                        |                                 |  |  |
| (e)      | $\frac{1+16+33}{200} = 0.25$                                                                                                                                                   | M1 A1 (2)                       |  |  |
|          | 200                                                                                                                                                                            | (12 marks)                      |  |  |
|          | Notes                                                                                                                                                                          |                                 |  |  |
|          | Correct answers only score full marks for each part                                                                                                                            |                                 |  |  |
| (a)      | If a probability is not in [0, 1] award M0 M1 for denominator of 200 and attempt to add 2 + 8 or 35 + 75 or 30 + 50                                                            |                                 |  |  |
| (a)      | A1 for 0.55 or exact equivalent fraction e.g. $\frac{11}{20}$                                                                                                                  |                                 |  |  |
|          |                                                                                                                                                                                |                                 |  |  |
| (b)      | M1 for a fully correct expression (e.g. 1-0.01)                                                                                                                                |                                 |  |  |
|          | A1 for 0.99 or an exact equivalent fraction                                                                                                                                    |                                 |  |  |
| (c)      | M1 for a correct ratio or a correct formula and at least one correct prob (i.e. a corr                                                                                         | ect num or                      |  |  |
|          | denom). BUT award M0 if num is $P(W) \times P(C) = \frac{67}{200} \times \frac{80}{200}$ or if num>denom                                                                       |                                 |  |  |
|          | A1 for 0.375 or 3/8 or any exact equivalent.                                                                                                                                   |                                 |  |  |
| ( P)     | M                                                                                                                                                                              |                                 |  |  |
| (d)      | M1 for a box and the 3 regions F, C and H labelled or <u>implied</u> and single set B labelled. be no intersections between F, C and H unless marked by zeros. They may have 3 | There should                    |  |  |
|          | circles for $F$ , $C$ and $B$ with $H = F' \cap C'$ etc. Condone lack of zero in the given diag                                                                                | ram.                            |  |  |
| F        | 1 <sup>st</sup> B1 for the 9 and 1 or 0.045 and 0.005 (o.e.) in the correct regions May                                                                                        | have <i>B</i> in 3              |  |  |
| H        | _ ( )                                                                                                                                                                          | that are                        |  |  |
| C        | $3^{rd}$ B1 for the 64 and 16 or 0.32 and 0.08 (o.e.) in the correct regions.                                                                                                  | onnected.                       |  |  |
| (e)      | M1 for a numerator made up of their 1 + their 16 + their 33 and a denom of 200 ar                                                                                              | nd num < 200                    |  |  |
|          | Also allow sum of their probabilities (provided sum < 1)                                                                                                                       |                                 |  |  |
|          | A1 for 0.25 or any exact equivalent                                                                                                                                            |                                 |  |  |

| Question | Scheme                                                                                                                                                                                                                           | Marks                     |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| 4. (a)   | $\sum ft = 4837.5$ (allow 4838 or 4840)                                                                                                                                                                                          | B1                        |  |  |
|          | Mean = $\frac{"4837.5"}{200}$ = 24.1875 awrt $\frac{24.2}{16}$ or $\frac{387}{16}$                                                                                                                                               | M1 A1                     |  |  |
|          | $\sigma = \sqrt{\frac{134281.25}{200} - \left(\frac{4837.5}{200}\right)^2}$                                                                                                                                                      | M1                        |  |  |
|          | $= 9.293 \dots$ (accept $s = 9.32$ ) awrt <u>9.29</u>                                                                                                                                                                            | A1 (5)                    |  |  |
| (b)      | $Q_2 = [20.5] + \frac{(100/100.5 - 62)}{88} \times 5 = 22.659$ awrt <u>22.7</u>                                                                                                                                                  | M1 A1                     |  |  |
| (c)      | $Q_1 = 10.5 + \frac{(50/50.25)}{62} \times 10[=18.56]$ (*) $(n + 1 \text{ gives } 18.604)$                                                                                                                                       | (2)<br>B1 cso             |  |  |
| (d)      | $Q_3 = 25.5$ (Use of $n + 1$ gives $25.734$ )<br>IQR = 6.9 (Use of $n + 1$ gives $7.1$ )                                                                                                                                         | B1<br>B1 ft               |  |  |
| (e)      | The data is skewed (condone "negative skew")                                                                                                                                                                                     | B1 (2)                    |  |  |
| (f)      | Mean decreases and st. dev. remains the same. [Must mention mean and st. dev.] (from(a)) The median and quartiles would decrease. [Must refer to median and at least $Q_1$ .] ((b)(c)) The IQR would remain unchanged (from (d)) | (1)<br>B1<br>B1<br>B1 (3) |  |  |
|          | Notes                                                                                                                                                                                                                            | (14 marks)                |  |  |
|          | Correct answers only score full marks in each part except (c)                                                                                                                                                                    |                           |  |  |
| (a)      | B1 for 4837.5 or 4838 or 4840 seen.<br>If no $\sum ft$ seen (or attempt at $\sum ft$ seen), B1 can be implied by a correct mean of                                                                                               | awrt 24.2                 |  |  |
|          | 1 <sup>st</sup> M1 for attempt at their $\frac{\sum_{f}}{\sum_{f}}$ allow 1sf so $\sum_{f}$ f = awrt 200 and $\sum_{f}$ ft = awrt 5                                                                                              | 000.                      |  |  |
|          | $\underline{\text{Or}}$ award M1 for a clear attempt at mean where at least 4 correct products of $\sum ft$                                                                                                                      | are seen                  |  |  |
|          | 2 <sup>nd</sup> M1 for correct expression including square root seen. Follow through their mean Allow a transcription error in 134281.25 but not an incorrect re-calculation.                                                    |                           |  |  |
| (b)      | M1 for a correct fraction $\times 5$ . Ignore end point but must be +. Allow use of $(n + 1)$ giving 100.5                                                                                                                       |                           |  |  |
| (c)      | B1cso for a fully correct expression including end point. NB Answer is given. Allow use of $(n + 1)$ giving 50.25but use of 50.5 scores B0                                                                                       |                           |  |  |
| (d)      | $1^{\text{st}} B1$ for 25.5 (or awrt 25.7 using $n+1$ )<br>$2^{\text{nd}} B1 \text{ft}$ for their $Q_3$ – their $Q_1$ (or 18.6) (provided > 0) Accept awrt 2sf. Correct ans. on                                                  | ly scores 2/2             |  |  |
| (e)      | B1 Must mention that the data is skewed or not symmetrical. Do not award for "outliers"                                                                                                                                          |                           |  |  |
| (f)      | 1 <sup>st</sup> B1 for one correct comment from the above. May refer to parts (a), (b), (c) or (a 2 <sup>nd</sup> B1 for two correct comments from the above for all 3 correct comments from the above                           | d)                        |  |  |

| Questio | n Scheme                                                                                                                                                                                                                            | Marks          |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| 5. (    |                                                                                                                                                                                                                                     | M1             |  |  |  |  |  |
| `       | a + 2a + 3a + 4b + 5b + 1.8 = 4.2 or $6a + 9b = 2.4$                                                                                                                                                                                | M1             |  |  |  |  |  |
|         | 5b = 1 Attempt to solve                                                                                                                                                                                                             | M1             |  |  |  |  |  |
|         | b = 0.2                                                                                                                                                                                                                             | B1             |  |  |  |  |  |
|         | $a = \overline{0.1}$                                                                                                                                                                                                                | B1             |  |  |  |  |  |
|         |                                                                                                                                                                                                                                     | (5)            |  |  |  |  |  |
| (       | $E(X^2) = 1 \times 0.1 + 2^2 \times 0.1 + 3^2 \times 0.1 + 4^2 \times 0.2 + 5^2 \times 0.2 + 6^2 \times 0.3 \ (= 20.4) $ (*)                                                                                                        | Blcso          |  |  |  |  |  |
|         |                                                                                                                                                                                                                                     | (1)            |  |  |  |  |  |
| (       | [Var $(X) = $ ] $20.4 - 4.2^2$ [= 2.76]                                                                                                                                                                                             |                |  |  |  |  |  |
|         | Var(5-3X) = 9 Var(X)                                                                                                                                                                                                                | M1<br>M1       |  |  |  |  |  |
|         | $=$ <b>24.84</b> or <b>24.8</b> (allow $\frac{621}{25}$ ) cao                                                                                                                                                                       | A1             |  |  |  |  |  |
|         |                                                                                                                                                                                                                                     | (3)            |  |  |  |  |  |
| (       | $   [5k = 1  \text{so}]    k = \underline{0.2} $                                                                                                                                                                                    | B1 (3)         |  |  |  |  |  |
| ,       | 1) [SN 1 SO] N <u>0.2</u>                                                                                                                                                                                                           | (1)            |  |  |  |  |  |
| (       | P(Y=1) = 0.1                                                                                                                                                                                                                        | B1             |  |  |  |  |  |
| '       |                                                                                                                                                                                                                                     | M1             |  |  |  |  |  |
|         | e.g. $P(Y=2) = F(2) - F(1) = 0.1$ $y$ 1 2 3 4 5                                                                                                                                                                                     | 1411           |  |  |  |  |  |
|         | Condone use of $X(x)$ instead of $Y(y)$                                                                                                                                                                                             | A1             |  |  |  |  |  |
|         | P(Y = y)   0.1   0.1   0.4   0.2   0.2   Ignore incorrect or no label if table fully correct                                                                                                                                        | 711            |  |  |  |  |  |
|         |                                                                                                                                                                                                                                     | (3)            |  |  |  |  |  |
| (       | f) $P(X=1) \times P(Y=1) = 0.01$                                                                                                                                                                                                    | M1, A1 (2)     |  |  |  |  |  |
| `       |                                                                                                                                                                                                                                     | (15 marks)     |  |  |  |  |  |
|         | Notes                                                                                                                                                                                                                               | (22 2202 220)  |  |  |  |  |  |
|         | Probabilities outside [0, 1] should be awarded M0                                                                                                                                                                                   |                |  |  |  |  |  |
| (       | = =                                                                                                                                                                                                                                 |                |  |  |  |  |  |
|         | $2^{\text{nd}}$ M1 for an attempt at a second linear equation in a and b based on E(X) = 4.2 Allow                                                                                                                                  | ow one slip.   |  |  |  |  |  |
|         | $3^{rd}$ M1 for an attempt to solve their 2 linear equations based on sum of probs and E(X). M                                                                                                                                      |                |  |  |  |  |  |
|         | a linear equation in one variable. $1^{st}$ B1 for b and $2^{nd}$ B1 for a. Answers only score B1E                                                                                                                                  |                |  |  |  |  |  |
|         | The 3 <sup>rd</sup> M1 may be implied if M2 is scored and both correct answers are given                                                                                                                                            | en.            |  |  |  |  |  |
| AL      | B1B1 for stating $b$ and $a$ .                                                                                                                                                                                                      |                |  |  |  |  |  |
|         | $1^{\text{st}}_{\text{ad}}$ M1 for showing that sum of probs. = 1                                                                                                                                                                   |                |  |  |  |  |  |
|         | $2^{\text{nd}} \text{ M1}$ for showing that $E(X) = 4.2$                                                                                                                                                                            |                |  |  |  |  |  |
|         | $3^{rd}$ M1 for an overall comment "(therefore) $a =$ and $b =$ " No comment loses the                                                                                                                                              | nis mark.      |  |  |  |  |  |
|         | Diago for a fully compat average on (no insert average on) E = 11-11 14.00 1 + 41.00                                                                                                                                                | 2 - 26 - 0 2   |  |  |  |  |  |
|         | B1cso for a fully correct expression (no incorrect work seen). E.g. allow $14 \times 0.1 + 41 \times 0.0$ Or $0.1 + 0.4 + 0.9 + 3.2 + 5 + 10.8$ . Allow in a table (with 20.4) but without "+" expression (no incorrect work seen). |                |  |  |  |  |  |
|         | 01 0.1+0.4+0.9+3.2+3+10.0. Allow III a table (with 20.4) but without + ex                                                                                                                                                           | phony seen.    |  |  |  |  |  |
| (       | 2) $1^{\text{st}}$ M1 for a correct expression for Var(X). Must see $-4.2^2$                                                                                                                                                        |                |  |  |  |  |  |
| \       | 1                                                                                                                                                                                                                                   | 1 +0 1-4       |  |  |  |  |  |
|         | $2^{\text{nd}}$ M1 for $(-3)^2$ Var(X) or better, no need for a value. Accept $-3^2$ if it clearly is used                                                                                                                          | 1 as +9 later. |  |  |  |  |  |
|         | (e) B1 for $P(Y=1) = 0.1$                                                                                                                                                                                                           |                |  |  |  |  |  |
|         | M1 for correct use of $F(y)$ to find one other prob. Can ft their k if finding $P(Y = y)$                                                                                                                                           | for $v > 2$    |  |  |  |  |  |
|         |                                                                                                                                                                                                                                     |                |  |  |  |  |  |
|         | Can be implied by one other prob. correct or correct ft Look out for $P(3) = 3k - 0.2$ or $P(4) = P(5) = k$ .<br>A1 for a fully correct probability distribution. Correct table only is $3/3$                                       |                |  |  |  |  |  |
|         | 111 for a rang correct probability distribution. Correct table only is 3/3                                                                                                                                                          |                |  |  |  |  |  |
|         | M1 for a correct expression or answer ft their $P(Y = 1)$ and their $P(X = 1)$                                                                                                                                                      |                |  |  |  |  |  |
|         | A1 for 0.01 or exact equivalent only                                                                                                                                                                                                |                |  |  |  |  |  |
|         | Don't ISW here e.g. $0.1 \times 0.1 + 0.1 \times 0.1$ or $2 \times 0.1 \times 0.1$ are M0A0                                                                                                                                         |                |  |  |  |  |  |
|         |                                                                                                                                                                                                                                     |                |  |  |  |  |  |

| Ques | tion | Scheme                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |  |  |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
| 6.   | (a)  | [Let X be the amount of beans in a tin. $P(X < 200) = 0.1$ ]                                                                                                                                                                                                                                                                                                                                                   |                   |  |  |  |  |  |
|      |      | $\frac{200 - \mu}{7.8} = -1.2816$ [ calc gives 1.28155156]                                                                                                                                                                                                                                                                                                                                                     | M1 B1             |  |  |  |  |  |
|      |      | $\mu = 209.996$ awrt 210                                                                                                                                                                                                                                                                                                                                                                                       | A1                |  |  |  |  |  |
|      | (b)  | $P(X > 225) = P\left(Z > \frac{225 - "210"}{7.8}\right)$                                                                                                                                                                                                                                                                                                                                                       | (3)<br>M1         |  |  |  |  |  |
|      |      | = $P(Z > 1.92)$ or $1 - P(Z < 1.92)$ (allow 1.93)<br>= $1 - 0.9726$ = $0.0274$ (or better) [calc gives $0.0272037$ ]<br>= $0.0274$                                                                                                                                                                                                                                                                             | A1                |  |  |  |  |  |
|      |      | $= \text{ awrt } \underline{2.7\%} \text{ allow } \underline{0.027}$                                                                                                                                                                                                                                                                                                                                           | A1 (3)            |  |  |  |  |  |
|      | (c)  | [Let Y be the new amount of beans in a tin] $ \frac{210-205}{\sigma} = 2.3263  \text{or}  \frac{200-205}{\sigma} = -2.3263  \text{[ calc gives 2.3263478]} $ $ \sigma = \frac{5}{2.3263} $                                                                                                                                                                                                                     | M1 B1             |  |  |  |  |  |
|      |      | $\sigma = \frac{5}{23263}$                                                                                                                                                                                                                                                                                                                                                                                     | dM1               |  |  |  |  |  |
|      |      | $\sigma = 2.15$ (2.14933)                                                                                                                                                                                                                                                                                                                                                                                      | A1                |  |  |  |  |  |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                | (4)<br>(10 marks) |  |  |  |  |  |
|      |      | Notes                                                                                                                                                                                                                                                                                                                                                                                                          |                   |  |  |  |  |  |
|      |      | Condone poor handling of notation if answers are correct but A marks must have corre                                                                                                                                                                                                                                                                                                                           | ct working.       |  |  |  |  |  |
|      | (a)  | M1 for an attempt to standardise (allow $\pm$ ) with 200 and 7.8 and set $= \pm$ any z value ( $ z  > 1$ ) B1 for $z = \pm 1.2816$ (or better used as a z)[May be implied by 209.996(102) or better seen] A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1) The 210 must follow from correct working – sign scores A0 If answer is awrt 210 and 209.996 or better seen then award M1B1A1 |                   |  |  |  |  |  |
|      |      | z = 1.28 gives 209.984 and $z = 1.282$ gives 209.9996 and both score M1B0A1<br>If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z = 1.2816$ is seen)                                                                                                                                                                                                                                 |                   |  |  |  |  |  |
|      | (b)  | M1 for attempting to standardise with 225, their mean and 7.8. Allow $\pm$ 1 <sup>st</sup> A1 for $Z > \text{awrt } 1.92/3$ . Allow a diagram but must have 1.92/3 and correct area indicated. Must have the $Z$ so $P(X > 225)$ with or without a diagram is not sufficient. Award for $1 - 0.9726$ or $1 - 0.9732$                                                                                           |                   |  |  |  |  |  |
|      |      | 2 <sup>nd</sup> A1 for 2.7 % or better (calculator gives 2.72) Allow awrt 0.027. Correct ans s                                                                                                                                                                                                                                                                                                                 | cores 3/3         |  |  |  |  |  |
|      | (c)  | $1^{\text{st}}$ M1 for an attempt to standardise with 200 or 210, 205 and $\sigma$ and set = $\pm$ any z value ( $ z  > 2$ ) B1 for $z = 2.3263$ (or better) <b>and</b> compatible signs.  If B0 in (a) for using a value in [1.28, 1.29) but not using 1.2816: allow awrt 2.33 here                                                                                                                           |                   |  |  |  |  |  |
|      |      | $2^{nd}$ dM1 <b>Dependent on the first M1</b> for correctly rearranging to make $\sigma =$ May be implied                                                                                                                                                                                                                                                                                                      |                   |  |  |  |  |  |
|      |      | e.g. $\frac{5}{\sigma} = 2.32 \rightarrow \sigma = 2.16 \text{ (M1A0)}$ BUT must have $\sigma > 0$                                                                                                                                                                                                                                                                                                             |                   |  |  |  |  |  |
|      |      | A1 for awrt 2.15. Must follow from correct working but a range of possible z va<br>NB $2.320 < z \le 2.331$ will give an answer of awrt 2.15                                                                                                                                                                                                                                                                   | lues will do.     |  |  |  |  |  |

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA036993 Summer 2013

For more information on Edexcel qualifications, please visit our website  $\underline{www.edexcel.com}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





