Edexcel Maths S1

Mark Scheme Pack
2005-2013

GCE

Edexcel GCE Statistics S1（6683）

Summer 2005

advancing learning，changing lives

Mark Scheme（Results）

June 2005
 6683 Statistics S1
 Mark Scheme

6683 Statistics S1

June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

4(a)	$1.5\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)=1.5(28-12)=24 \quad$ may be implied	B1
		$\begin{aligned} & \text { M1, } \\ & \text { A1 } \end{aligned}$
	Q $\mathrm{Q}_{1}-24<0 \Rightarrow$ no outliers $\quad 63$ is an outlier	A1
		$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$
		(7)
(b)	Distribution is +ve skew; $\mathrm{Q}_{2}-\mathrm{Q}_{1}(5)<\mathrm{Q}_{3}-\mathrm{Q}_{2}(11)$;	B1; B1
(c)	Many delays are small so passengers should find these acceptable or sensible comment in the context of the question.	B1

6683 Statistics S1

June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 1. (a) \& Mode is 56 \& B1

\hline (b) \& $\mathrm{Q}_{1}=35, \mathrm{Q}_{2}=52, \mathrm{Q}_{3}=60$ \& $\mathrm{B} 1, \mathrm{~B} 1, \mathrm{B1}$

\hline \multirow[t]{3}{*}{(c)

(d)} \& | $\bar{x}=\frac{1335}{27}=49 . \dot{4} \text { or } 49 \frac{4}{9}$ |
| :--- |
| exact or awrt 49.4 | \& B1

\hline \& | $\begin{aligned} & \sigma^{2}=\frac{71801}{27}-\left(\frac{1335}{27}\right)^{2}=214.5432 \ldots \\ & \sigma=14.6 \text { or } 14.9 \end{aligned}$ |
| :--- |
| awrt 14.6(5) or 14.9 | \& M1A1ft

A1

\hline \& | $\underline{49.4-56}=-0.448$ |
| :--- |
| awrt range - 0.44 to -0.46 | \& M1A1

\hline \& 14.6 \& (2)

\hline \multirow[t]{5}{*}{(e)} \& | For negative skew; |
| :--- |
| Mean<median<mode |
| 2 compared correctly | \& M1

\hline \& (49.4<52<56 not required) 3 compared correctly \& A1

\hline \& $\mathrm{Q}_{3}-\mathrm{Q}_{2}<\mathrm{Q}_{2}-\mathrm{Q}_{1}$ \& M1

\hline \& | 8 and 17 |
| :--- |
| Accept other valid reason eg. 3(mean-median)/sd as alt for M1A1 | \& (4)

\hline \& \& Total 14 marks

\hline \multirow[t]{2}{*}{2. (a)} \& $p+q=0.4$ \& B1

\hline \& $2 p+4 q=1.3$ Consider with (b). \& | M1A1 |
| :--- |
| (3) |

\hline (b) \& | Attempt to solve $p=0.15, q=0.25$ |
| :--- |
| If both seen, award 3. | \& | M1 |
| :--- |
| A1A1 |
| (3) |

\hline (c) \& \[
$$
\begin{aligned}
& \mathrm{E}\left(X^{2}\right)=1^{2} \times 0.10+2^{2} \times 0.15+\ldots . .+5^{2} \times 0.30=14 \\
& \operatorname{Var}(X)=14-3.5^{2}=1.75
\end{aligned}
$$

\] \& | M1A1ft |
| :--- |
| M1A1 |
| (4) |

\hline (d) \& $\operatorname{Var}(3-2 X)=4 \operatorname{Var}(X)=7.00$ \& Total 12 marks

\hline
\end{tabular}

6. (a)	Venn Diagram $0.32,0.11$ \& A,B $0.22,0.35$ \& box	$\begin{array}{\|ll} & \text { M1 } \\ \text { A1 } & \\ \text { A1 } & \end{array}$ (3)
(b)	$\mathrm{P}(A)=0.32+0.22=0.54 ; \mathrm{P}(B)=0.33$	M1A1ft;A1ft ${ }^{\text {(3) }}$
(c)	$\mathrm{P}\left(A \mid B^{\prime}\right)=\frac{\mathrm{P}\left(\mathrm{~A} \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}=\frac{32}{67} \quad \text { awrt } 0.478$	M1A1 (2)
(d)	For independence $\mathrm{P}(\mathrm{A} \cap B)=\mathrm{P}(\mathrm{A}) \mathrm{P}(B)$ For these data $0.22 \neq 0.54 \times 0.33=0.1782$ (OR $\mathrm{P}\left(A \mid B^{\prime}\right) \neq \mathrm{P}(\mathrm{A})$ for M1A1ft OR $\frac{2}{3}=\mathrm{P}(A \mid B) \neq \mathrm{P}(\mathrm{A})=0.54$ for M1A1ft) \therefore NOT independent	Total 11 marks
7. (a)	Let H be rv height of athletes, so $H \square \mathrm{~N}\left(180,5.2^{2}\right)$ $\begin{equation*} \mathrm{P}(H>188)=\mathrm{P}\left(Z>\frac{188-180}{5.2}\right)=\mathrm{P}(Z>1.54)=0.0618 \pm \text { stand. } \sqrt{ } \text {, sq, awrt } 0.062 \tag{3} \end{equation*}$	M1A1A1
(b)	Let W be rv weight of athletes, so $W \square \mathrm{~N}\left(85,7.1^{2}\right)$ $\mathrm{P}(\mathrm{~W}<97)=\mathrm{P}(Z<1.69)=0.9545$ standardise, awrt 0.9545	M1A1 (2)
(c)	$\begin{aligned} \mathrm{P}(H>188 \& W<97) & =0.0618(1-0.9545) & \text { allow }(\mathrm{a}) \times(\mathrm{b}) \text { for } \mathrm{M} \\ & =0.00281 & \text { awrt } 0.0028 \end{aligned}$	M1A1ft A1
(d)	Evidence suggests height and weight are positively correlated / linked Assumption of independence is not sensible	

GCE
 Edexcel GCE
 Statistics S1 (6683)

June 2006

Mark Scheme
(Results)

June 2006 6683 Statistics S1 Mark Scheme

Mark Scheme (Results) January 2007

GCE Mathematics

Statistics (6683)

January 2007
6683 Statistics S1
Mark Scheme

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline 2. (a)
(b)(i)
(ii)
(c) \& \begin{tabular}{l}
\[
\mathrm{P}(A \cap D)=0.35 \times 0.03, \quad=\underline{\mathbf{0 . 0 1 0 5}} \text { or } \frac{21}{2000}
\]
\[
\begin{aligned}
\mathrm{P}(D) \& =(\mathrm{i})+0.25 \times 0.06+(0.4 \times 0.05) \\
\& =\underline{\mathbf{0 . 0 4 5 5}} \text { or } \frac{91}{2000}
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{P}(C \mid D) \& =\frac{\mathrm{P}(C \cap D)}{\mathrm{P}(D)},=\frac{0.4 \times 0.05}{(\mathrm{ii})} \\
\& =0.43956 \ldots \text { or } \frac{40}{91}
\end{aligned}
\]
\begin{tabular}{l|ll}
Correct tree shape \& M 1 \\
\(A, B\) and \(C\) and 0.35 and 0.25 \& A 1 \\
\begin{tabular}{ll}
\(D(\mathrm{x} 3)\) and \(0.03,0.06,0.05\) \\
\((\) May be implied by seeing \\
\(\mathrm{P}(A \cap D)\) etc at the ends)
\end{tabular} \& \(\mathrm{A} 1 \quad(3)\) \\
\(\mathrm{P}(C)=0.4\) (anywhere) \& B 1 \\
M 1 \\
\& \(\mathrm{M} 1, \mathrm{~A} 1\) \\
\& A 1
\end{tabular} \\
[Correct answers only score full marks in each part] \\
11 marks
\end{tabular} \\
\hline (a)
(b)

(c) \& | M1 for tree diagram, 3 branches and then two from each. At least one probability attempted. |
| :--- |
| $1^{\text {st }} \mathrm{M} 1$ for 0.35×0.03. Allow for equivalent from their tree diagram. |
| B1 for $\mathrm{P}(C)=0.4$, can be in correct place on tree diagram or implied by 0.4×0.05 in $\mathrm{P}(D)$. |
| $2^{\text {nd }} \mathrm{M} 1$ for all 3 cases attempted and some correct probabilities seen, including + . Can ft their tree. Condone poor use of notation if correct calculations seen. E.g. $\mathrm{P}(C \mid D)$ for $\mathrm{P}(C \cap D)$. |
| M1 for attempting correct ratio of probabilities. There must be an attempt to substitute some values in a correct formula. If no correct formula and ration not correct ft score M0. |
| Writing $\mathrm{P}(D \mid C)$ and attempting to find this is M0. |
| Writing $\mathrm{P}(D \mid C)$ but calculating correct ratio - ignore notation and mark ratios. |
| A1ft must have their 0.4×0.05 divided by their (ii). |
| If ratio is incorrect $\mathrm{ft}(0 / 3)$ unless correct formula seen and part of ratio is correct then M1. |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline \begin{tabular}{l}
5. (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& Time is a continuous variable or data is in a grouped frequency table
Area is proportional to frequency or \(A \propto f\) or \(A=k f\)
\[
3.6 \times 2=0.8 \times 9
\]
1 child represented by 0.8
(Total) \(=\frac{24}{0.8},=\underline{\mathbf{3 0}}\) \begin{tabular}{ll}
B 1 \& M1 \\
dM1 cso \\
A1
\end{tabular} \\
\hline (b)
(c)

(d) \& | $1^{\text {st }} \mathrm{B} 1$ for one of these correct statements. |
| :--- |
| "Area proportional to frequency density" or "Area $=$ frequency" is B0 |
| $1^{\text {st }} \mathrm{M} 1$ for a correct combination of any 2 of the 4 numbers: 3.6, 2, 0.8 and 9 |
| e.g. 3.6×2 or $\frac{3.6}{0.8}$ or $\frac{0.8}{2}$ etc BUT e.g. $\frac{3.6}{2}$ is M0 |
| $2^{\text {nd }}$ M1 dependent on $1^{\text {st }}$ M1 and for a correct combination of 3 numbers leading to $4^{\text {th }}$. |
| May be in separate stages but must see all 4 numbers |
| A1cso for fully correct solution. Both Ms scored, no false working seen and comment required. |
| M1 for $\frac{24}{0.8}$ seen or implied. |

\hline
\end{tabular}

Question number	Scheme	Marks
6. (a)	Used to simplify or represent a real world problem Cheaper or quicker or easier (than the real situation) or more easily modified To improve understanding of the real world problem Used to predict outcomes from a real world problem (idea of predictions) (3 or 4) Model used to make predictions. (Idea of predicted values based (4 or 3) (Experimental) data collected Model is refined.	(any two lines) B1 B1 B1 B1 B1 (3) 5 marks
(a) (b)	$1^{\text {st }}$ B1 For one line $2^{\text {nd }}$ B1 For a second line Be generous for $1^{\text {st }}$ B1 but stricter for B1B1 $1^{\text {st }} \& 2^{\text {nd }}$ B1 These two points can be interchanged. Idea of values from (experimental) data and predicted values based on the model. $1^{\text {st }} \mathrm{B} 1$ for predicted values from model e.g. "model used to gain suitable data" $2^{\text {nd }} \mathrm{B} 1$ for data collected. Idea of experimental data but "experiment" needn't be explicitly seen $3^{\text {rd }}$ B1 This should be stage 7. Idea of refinement or revision or adjustment	

Question number	Scheme Marks
7. (a)	
(a)	$1^{\text {st }}$ M1 for attempting standardisation. $\pm \frac{(91-\mu)}{\sigma \text { or } \sigma^{2}}$. Can use of 109 instead of 91. Use of 90.5 etc is M0 $1^{\text {st }} \mathrm{A} 1$ for $-0.6 \quad$ (or +0.6 if using 109) $2^{\text {nd }}$ M1 for $1-$ probability from tables. Probability should be >0.5) $1^{\text {st }} \mathrm{B} 1$ for 0.791 seen or implied. $1^{\text {st }}$ M1 for a correct probability statement, but must use X or Z correctly. Shown on diagram is OK $2^{\text {nd }} \mathrm{B} 1$ for awrt 0.81 seen (or implied by correct answer - see below) (Calculator gives $0.80989 \ldots$) $2^{\text {nd }}$ M1 for attempting to standardise e.g. $\frac{100+k-100}{15}$ or $\frac{k}{15}$ $\frac{x-100}{15}$ scores $2^{\text {nd }} \mathrm{M} 0$ until the $100+k$ is substituted to give k, but may imply $1^{\text {st }} \mathrm{M} 1$ if $k=112.15$ seen $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for correct equation for k (as written or better). Can be implied by $k=12.15$ (or better) $2^{\text {nd }} \mathrm{A} 1$ for $k=12$ only. Answers only $k=112$ or 112.15 or better scores $3 / 6$ (on EPEN give first 3 marks) $k=12.15$ or better (calculator gives $12.148438 \ldots$) scores $5 / 6$ (i.e loses last A1 only) $k=12$ (no incorrect working seen) scores $6 / 6$ Using 0.7910 instead of 0.81 gives 11.865 which might be rounded to 12 . This should score no more than B1M1B0M1A0A0.

Mark Scheme（Results） Summer 2007

GCE

GCE Mathematics

Statistics S1（6681）

6683 Statistics S1

Mark Scheme

Question Number	Scheme	Marks
1. (a) (b) (c)	$\begin{aligned} r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}} & =\frac{-808.917}{\sqrt{113573 \times 8.657}} \\ & =-0.81579 \ldots \end{aligned}$ Houses are cheaper further away from the station or equivalent statement -0.816	M1 A1 (2) B1 $\int_{(1)}^{(1)}$ Total 4 marks
Notes: 1(a) (b) (c)	M1 for knowing formula and clear attempt to sub in correct values from question. Root required for method. Anything that rounds to -0.82 for A1. Correct answer with no working award $2 / 2$ Context based on negative correlation only required. Accept Houses are more expensive closer to the station or equivalent statement. Require 'house prices' or 'station' and a clear correct comparison. Accept anything that rounds to -0.82 or 'the same' or 'unchanged' or equivalent. Award B1 if value quoted same as answer to (a).	

3(a)	Use overlay	B2 (2)
(b)	$S_{x y}=28750-\frac{315 \times 620}{8}=4337.5 * *$ answer given** so award for method	M1
	$S_{x x}=15225-\frac{315^{2}}{8}=2821.875$	M1A1 (3)
(c)	$b=\frac{4377.5}{S_{x x}},=1.537 \ldots=1.5$	M1,A1
	$a=\bar{y}-b \bar{x}=\frac{620}{8}-b \frac{315}{8}=16.97 \ldots=17.0$	M1,A1
(d)	Use overlay	$\begin{aligned} & \text { B1 } \int^{(4)} \\ & \text { B1 } \end{aligned}$
(e)	Brand D, since a long way above / from the line dependent upon 'Brand D ' above Using line: $y=17+35 \times 1.5=69.5$	$\begin{array}{ll} \text { B1 } & \text { B1 } \\ \text { M1A1 } \end{array}$
		Total 15 marks
Notes:		
3(a)	Points B2,within 1 small square of correct point, subtract 1 mark each error minimum 0 .	
(b)	Anything that rounds to 2820 for A1	
(c)	Anything that rounds to 1.5 and 17.0 (accept 17)	
(d)	Follow through for the intercept for first B1.. Correct slope of straight line for second B1.	
(e)	Anything that rounds to 69 p- 71 p for final A1. Reading from graph is acceptable for M1A1. If value read from graph at $x=35$ is answer given but out of range, then award M1A0.	

6(a) (b)	$\begin{aligned} & \mathrm{P}(X>25) \quad \\ & \quad \mathrm{P}\left(Z>\frac{25-20}{4}\right) \\ & \\ & =\mathrm{P}(Z>1.25) \\ & \\ & =1-0.8944 \\ & \\ & =0.1056 \end{aligned} \quad \begin{aligned} & \mathrm{P}(X<20)=0.5 \text { so } \mathrm{P}(X<d)=0.5+0.4641=0.9641 \\ & \mathrm{P}(Z<z)=0.9641, z=1.80 \\ & \frac{d-20}{4}=1.80 \\ & d=27.2 \end{aligned}$	M1 M1 A1 (3) B1 B1 M1 A1 (4) Total
Notes: (a) (b)	Standardise with 20 and 4 for M1, allow numerator 20-25 1- probability for second M1 Anything that rounds to 0.106 for A1. Correct answer with no working award $3 / 3$ 0.9641 seen or implied by 1.80 for B1 1.80 seen for B1 Standardise with 20 and 4 and equate to z value for M1 $\mathrm{Z}=0.8315$ is M 0 Anything that rounds to 27.2 for final A1. Correct answer with no working 4/4	

Mark Scheme（Results） January 2008

GCE

GCE Mathematics（6683／01）

January 2008
6683 Statistics S1 Mark Scheme

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
1. \\
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \sum x=773, \sum y=724 \\
\& r=\frac{10 \times 56076-773 \times 724}{\sqrt{\left(10 \times 60475-773^{2}\right)\left(10 \times 53122-724^{2}\right)}} \quad \text { o.e. } \\
\& r=0.155357 \ldots . .
\end{aligned}
\] \\
Both weak correlation \\
Neither score is a good indication of future performance Interview test is slightly better since correlation is positive
\end{tabular} \& \[
\begin{align*}
\& \text { B1, B1 } \\
\& \text { M1 A1ft } \\
\& \text { A1 } \\
\& \text { B1g B1h } \tag{5}
\end{align*}
\] \\
\hline NB
(a)

(b) \& | $\mathrm{S}_{x x}=60475-\frac{(773)^{2}}{10}=722.1, \mathrm{~S}_{y y}=53122-\frac{(724)^{2}}{10}=704.4, \quad \mathrm{~S}_{x y}=56076-\frac{773 \times 724}{10}=110.8$ |
| :--- |
| $1^{\text {st }}$ B1 for $\sum x$ and $2^{\text {nd }}$ B1 for $\sum y$, should be seen or implied. |
| M1 for at least one correct attempt at one of $S_{x x}, S_{y y}$ or $S_{x y}$ and then using in the correct formula |
| $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a fully correct expression. (ft their Σx and their Σy) or 3 correct expressions for $\mathrm{S}_{x x}, \mathrm{~S}_{x y}$, and $\mathrm{S}_{y y}$ but possibly incorrect values for these placed correctly in r. |
| $2^{\text {nd }}$ A1 for awrt 0.155 |
| If $\|r\|>0.5$ they can score B1g in (b) for saying that it (skills test) is not a good guide to performance but B 0 h since a second acceptable comment about both tests is not possible. |
| Give B1 for one correct line, B1B1 for any 2. |
| If the only comment is the test(s) are a good guide: scores B0B0 If the only comment is the tests are not good: scores B1B0 (second line) |
| The third line is for a comment that suggests that the interview test is OK but the skills test is not since one is positive and the other is negative. |
| Treat $1^{\text {st }} \mathrm{B} 1$ as B 1 g and $2^{\text {nd }}$ as B1h |
| An answer of "no" alone scores B0B0 | \&

\hline
\end{tabular}

Mark Scheme（Results） June 2008

GCE

GCE Mathematics（6683／01）

June 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)		$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$
(b)	$\begin{aligned} \mathrm{P}(\text { Positive Test }) & =0.02 \times 0.95+0.98 \times 0.03 \\ & =0.0484 \end{aligned}$	$\text { M1A1ft }{ }^{[3]}$
(c)	$\begin{aligned} \mathrm{P}(\text { Do not have disease } \mid \text { Postive test }) & =\frac{0.98 \times 0.03}{0.0484} \\ & =0.607438 . . \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$
(d)	Test not very useful OR High probability of not having the disease for a person with a positive test	B1 Total 9
	Notes: (a) M1:All 6 branches. Bracketed probabilities not required. (b) M1 for sum of two products, at least one correct from their diagram A1ft follows from the probabilities on their tree A1 for correct answer only or $\frac{121}{2500}$ (c) M1 for conditional probability with numerator following from their tree and denominator their answer to part (b). A1 also for $\frac{147}{242}$.	

Question Number	Scheme	Marks
Q3 (a) (b) (c)	$\begin{array}{cl} -1 \times p+1 \times 0.2+2 \times 0.15+3 \times 0.15 & =0.55 \\ p+q+0.2+0.15+0.15 & p=0.4 \\ & =1 \\ & q=0.1 \end{array}$ $\begin{aligned} \operatorname{Var}(X) & =(-1)^{2} \times p+1^{2} \times 0.2+2^{2} \times 0.15+3^{2} \times 0.15,-0.55^{2} \\ & =2.55-0.3025=2.2475 \\ \mathrm{E}(2 X-4) & =2 \mathrm{E}(X)-4 \\ & =-2.9 \end{aligned}$ awrt 2.25	M1dM1 A1 M1 A1 M1 A1, M1 [5] A1 M1 A1 Total 11
	Notes: (a) M1 for at least 2 correct terms on LHS Division by constant e.g. 5 then M0 dM1 dependent on first M1 for equate to 0.55 and attempt to solve. Award M1M1A1 for $p=0.4$ with no working M1 for adding probabilities and equating to 1 . All terms or equivalent required e.g. $p+q=0.5$ Award M1A1 for $q=0.1$ with no working (b) M1 attempting $\mathrm{E}\left(X^{2}\right)$ with at least 2 correct terms A1 for fully correct expression or 2.55 Division by constant at any point e.g. 5 then M0 M1 for subtracting their mean squared A1 for awrt 2.25 Award awrt 2.25 only with no working then 4 marks (c) M1 for $2 x$ (their mean) -4 Award 2 marks for -2.9 with no working	

Question Number	Scheme	Marks
Q5 (a)	3 closed intersecting curves with labels 100 100,30 12,10,3,25 Box	M1 A1 A1 B1 [4]
(b)	$\mathrm{P}($ Substance $C)=\frac{100+100+10+25}{300}=\frac{235}{300}=\frac{47}{60}$ or exact equivalent	M1A1ft [2]
(c)	$\mathrm{P}($ All $3 \mid A)=\frac{10}{30+3+10+100}=\frac{10}{143}$ or exact equivalent	M1A1ft [2]
(d)	$P($ Universal donor $)=\frac{20}{300}=\frac{1}{15}$ or exact equivalent	M1A1 cao [2] Total 10
	Notes: (a) 20 not required. Fractions and exact equivalent decimals or percentages. (b) M1 For adding their positive values in C and finding a probability A1ft for correct answer or answer from their working (c) M1 their 10 divided by their sum of values in A A1ft for correct answer or answer from their working (d) M1 for 'their 20' divided by 300 A1 correct answer only	

Question Number	Scheme	Marks
Q7 (a)	$\begin{aligned} z & =\frac{53-50}{2} \\ \mathrm{P}(X>53)=1 & -\mathrm{P}(Z<1.5) \\ & =1-0.9332 \\ & =0.0668 \end{aligned}$ Attempt to standardise 1-probability required can be implied	M1 B1 A1
(b)	$\begin{aligned} & \mathrm{P}\left(X \leq x_{0}\right)=0.01 \\ & \frac{x_{0}-50}{2}=-2.3263 \\ & x_{0}=45.3474 \end{aligned}$ $\text { awrt } 45.3 \text { or } 45.4$	M1 M1B1 M1A1
(c)	$\begin{aligned} \mathrm{P}(2 \text { weigh more than } 53 \mathrm{~kg} \text { and } 1 \text { less }) & =3 \times 0.0668^{2}(1-0.0668) \\ & =0.012492487 . . \end{aligned}$ awrt 0.012	B1M1A1ft A1 Total 12
	Notes: (a) M1 for using 53,50 and 2, either way around on numerator B1 1- any probability for mark A1 0.0668 cao (b) M1 can be implied or seen in a diagram or equivalent with correct use of 0.01 or 0.99 M1 for attempt to standardise with 50 and 2 numerator either way around B1 for ± 2.3263 M1 Equate expression with 50 and 2 to a z value to form an equation with consistent signs and attempt to solve A1 awrt 45.3 or 45.4 (c) B1 for 3 , M1 $p^{2}(1-p)$ for any value of p A1 ft for p is their answer to part (a) without 3 A1 awrt 0.012 or 0.0125	

Mark Scheme（Results） January 2009

GCE

GCE Mathematics（6683／01）

January 2009
6683 Statistics S1
Mark Scheme

Question Number	Scheme ${ }^{\text {a }}$ Marks
$1 \begin{array}{ll} \\ & \text { (a) } \\ & \text { (b) } \\ \\ & \text { (c) } \\ & \text { (d) } \\ & \text { (e) }\end{array}$	
(a) (b) (c) (d) (e)	```M1 for a correct expression \(1^{\text {st }}\) A1 for AWRT 11.4 for \(\mathrm{S}_{x x}\) \(2^{\text {nd }}\) A1 for AWRT 108 for \(\mathrm{S}_{x y}\) Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A1A1 \(1^{\text {st }}\) M1 for using their values in correct formula \(1^{\text {st }} \mathrm{A} 1\) for AWRT 9.5 \(2^{\text {nd }}\) M1 for correct method for \(a\) (minus sign required) \(2^{\text {nd }} \mathrm{A} 1\) for equation with \(a\) and \(b\) AWRT 3 sf (e.g. \(y=-10.68+9.48 x\) is fine) Must have a full equation with \(a\) and \(b\) correct to awrt 3 sf B1ft for comment conveying the idea of \(b\) marks per hour. Must mention value of \(b\) but can ft their value of \(b\). No need to mention "extra" but must mention "marks" and "hour(s)" e.g. " ...9.5 times per hour ..." scores B0 M1 for sub \(x=3.3\) into their regression equation from the end of part (b) A1 for awrt 21 B1 for a statement that says or implies that it may not be valid because outside the range. They do not have to mention the values concerned here namely 8 h or 0.5-4```

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
2 \\
(a) \\
(b) \\
(c)
\end{tabular} \& \\
\hline (a)
(b)

(c) \& | M1 for $\frac{9}{25} \times \frac{2}{3}$ or $\mathrm{P}(E \mid B) \times \mathrm{P}(B)$ and at least one correct value seen. A1 for 0.24 or exact equiv. |
| :--- |
| NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks. |
| $1^{\text {st }} \mathrm{M} 1$ for use of the addition rule. Must have 3 terms and some values, can ft their (a) |
| Or a full method for $\mathrm{P}\left(E^{\prime} \mid B^{\prime}\right)$ requires $1-\mathrm{P}\left(E \mid B^{\prime}\right)$ and equation for $\mathrm{P}\left(E \mid B^{\prime}\right):(\mathrm{a})+\frac{x}{3}=\frac{2}{5}$ |
| Or a full method for $\mathrm{P}\left(B^{\prime} \cap E\right)$ or $\mathrm{P}\left(B \cap E^{\prime}\right)$ [or other valid method] |
| $2^{\text {nd }} \mathrm{M} 1 \quad$ for a method leading to answer e.g. $1-\mathrm{P}(E \cup B)$ $\text { or } \mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(E^{\prime} \mid B^{\prime}\right) \text { or } \mathrm{P}\left(B^{\prime}\right)-\mathrm{P}\left(B^{\prime} \cap E\right) \text { or } \mathrm{P}\left(E^{\prime}\right)-\mathrm{P}\left(B \cap E^{\prime}\right)$ |
| Venn Diagram $1^{\text {st }} \mathrm{M} 1$ for diagram with attempt at $\frac{2}{5}-\mathrm{P}(B \cap E)$ or $\frac{2}{3}-\mathrm{P}(B \cap E)$. Can ft their (a) $1^{\text {st }} \mathrm{A} 1$ for a correct first probability as listed or 32,18 and 12 on Venn Diagram $2^{\text {nd }}$ M1 for attempting 75 - their $(18+32+12)$ |
| M1 for identifying suitable values to test for independence e.g. $\mathrm{P}(E)=0.40$ and $\mathrm{P}(E \mid B)=0.36$ Or $\mathrm{P}(E) \times \mathrm{P}(B)=\ldots$ and $\mathrm{P}(E \cap B)=$ their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere |
| A1 for correct values and a correct comment |
| Diagrams You may see these or find these useful for identifying probabilities. |
| Common Errors |
| (a) $\frac{9}{25}$ is M0A0 |
| (b) $\mathrm{P}(E \cup B)=\frac{53}{75}$ scores M1A0 |
| 1-P $(E \cup B)=\frac{22}{75}$ scores M1A0 |
| (b) $\mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(E^{\prime}\right)=\frac{1}{3} \times \frac{3}{5}$ |
| scores $0 / 4$ |

\hline
\end{tabular}

Question Number	Scheme			Marks
3 (a)	$\begin{align*} & \mathrm{E}(X)=0 \times 0.4+1 \times 0.3+\ldots+3 \times 0.1, \quad=1 \\ & \mathrm{~F}(1.5)=[\mathrm{P}(X \leq 1.5)=] \mathrm{P}(X \leq 1), \quad=0.4+0.3=0.7 \\ & \mathrm{E}\left(X^{2}\right)=0^{2} \times 0.4+1^{2} \times 0.3+\ldots+3^{2} \times 0.1 \quad,=2 \\ & \operatorname{Var}(X)=2-1^{2},=1 \quad\left(^{*}\right) \tag{*}\\ & \operatorname{Var}(5-3 X)=(-3)^{2} \operatorname{Var}(X), \quad=9 \end{align*}$			M1, A1 (2)
(b)				M1, A1 (2)
(c)				M1, A1
				M1, A1cso (4)
(d)				M1, A1 (2)
(e)	Total	Cases	Probability	
		$(X=3) \cap(X=1)$	$0.1 \times 0.3=0.03$	
	4	$(X=1) \cap(X=3)$	$0.3 \times 0.1=0.03$	
		$(X=2) \cap(X=2)$	$0.2 \times 0.2=0.04$	
		$(X=3) \cap(X=2)$	$0.1 \times 0.2=0.02$	B1B1
		$(X=2) \cap(X=3)$	$0.2 \times 0.1=0.02$	M1
	6	$(X=3) \cap(X=3)$	$0.1 \times 0.1=0.01$	A1
	Total probability $=0.03+0.03+0.04+0.02+0.02+0.01=0.15$			$\begin{array}{\|rr} \mathrm{A} 1 & (6) \\ & {[16]} \\ \hline \end{array}$
$\begin{array}{rr}\text { (a) } \\ & \text { (b) } \\ & \text { (c) }\end{array}$	M1 for at least 3 terms seen. Correct answer only scores M1A1. Dividing by $k(\neq 1)$ is M0. M1 for $\mathrm{F}(1.5)=\mathrm{P}(X \leq 1)$.[Beware: $2 \times 0.2+3 \times 0.1=0.7$ but scores M0A0]			
	$1^{\text {st }} \mathrm{M} 1$ for at least 2 non-zero terms seen. $\mathrm{E}\left(X^{2}\right)=2$ alone is M0. Condone calling $\mathrm{E}\left(X^{2}\right)=\operatorname{Var}(X)$. $1^{\text {st }} \mathrm{A} 1$ is for an answer of 2 or a fully correct expression. $2^{\text {nd }} \mathrm{M} 1$ for $-\mu^{2}$, condone $2-1$, unless clearly $2-\square$. Allow $2-\mu^{2}$, with $\square=1$ even if $\mathrm{E}(X) \neq 1$ $2^{\text {nd }} \mathrm{A} 1$ for a fully correct solution with no incorrect working seen, both Ms required. $\sum(x-\mu)^{2} \times \mathrm{P}(X=x)$			
	$1^{\text {st }} \mathrm{M} 1$ for an attempt at a full list of $(x-\mu)^{2}$ values and probabilities. $1^{\text {st }} \mathrm{A} 1$ if all correct $2^{\text {nd }} \mathrm{M} 1$ for at least 2 non-zero terms of $(x-\mu)^{2} \times \mathrm{P}(X=x)$ seen. $2^{\text {nd }} \mathrm{A} 1$ for $0.4+0.2+0.4=1$			
$\begin{array}{rr} & \text { (d) } \\ & \text { (e) } \\ \text { ALT }\end{array}$	M1 for use of the correct formula. $-3^{2} \operatorname{Var}(X)$ is M0 unless the final answer is >0. Can follow through their $\operatorname{Var}(X)$ for M1			
	$1^{\text {st }}$ B1 for all cases listed for a total of 4 or 5 or 6 . e.g. $(2,2)$ counted twice for a total of 4 is B0 $2^{\text {nd }}$ B1 for all cases listed for 2 totals			
	$3^{\text {rd }} \mathrm{B} 1$ for a complete list of all 6 cases \}These may be highlighted in a table Using Cumulative probabilities			
	$1^{\text {st }} \mathrm{B} 1$ for one or more cumulative probabilities used e.g. 2 then 2 or more or 3 then 1 or more $2^{\text {nd }} \mathrm{B} 1$ for both cumulative probabilities used. $3^{\text {rd }} \mathrm{B} 1$ for a complete list 1,$3 ; 2, \geq 2 ; 3, \geq 1$ M_{1} for one correct pair of correct probabilites multiplied $1^{\text {st }} \mathrm{A} 1$ for all 6 correct probabilities listed $(0.03,0.03,0.04,0.02,0.02,0.01)$ needn't be added. $2^{\text {nd }} \mathrm{A} 1$ for 0.15 or exact equivalent only as the final answer.			

Mark Scheme（Results） Summer 2009

GCE

GCE Mathematics（6683／01）

June 2009
6683 Statistics S1
Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	$\begin{array}{rlr} \left(\begin{array}{rlr} \left(\mathrm{S}_{p p}\right. & = & 38125-\frac{445^{2}}{10} \\ & =18322.5 & \\ \left(\begin{array}{rlr} \left(\mathrm{S}_{p t}\right. & = & 26830-\frac{445 \times 240}{10} \\ & =16150 & \\ & & \\ \mathrm{r} & =\frac{\text { awrt } 18300}{\sqrt{" 18322.5 " \times 21760}} & \\ & =0.8088 \ldots & \text { awrt } 16200 \end{array}\right. \\ & & \\ & \text { Using their values for method } \end{array}\right. \\ & & \text { awrt } 0.809 \end{array}$ As the temperature increases the pressure increases.	M1 A1 A1 (3) M1 A1 (2) B1 (1) [6]
Notes	1(a) M1 for seeing a correct expression $38125-\frac{445^{2}}{10}$ or $26830-\frac{445 \times 240}{10}$ If no working seen, at least one answer must be exact to score M1 by implication. 1(b) Square root and their values with 21760 all in the right places required for method. Anything which rounds to (awrt) 0.809 for A1. 1(c) Require a correct statement in context using temperature/heat and pressure for B1. Don't allow " as t increases p increases". Don't allow proportionality. Positive correlation only is B0 since there is no interpretation.	

Question Number	Scheme	Marks
Q2（a）	Correct tree All labels Probabilities on correct branches	B1 B1 B1 （3）
	$\frac{1}{3} \times \frac{1}{10}=\frac{1}{30}$ or equivalent $\mathrm{CNL}+\mathrm{BNL}+\mathrm{FNL}=\frac{1}{2} \times \frac{4}{5}+\frac{1}{6} \times \frac{3}{5}+\frac{1}{3} \times \frac{9}{10}$	M1 A1 （2） M1
	$=\frac{4}{5}$ or equivalent	A1 （2）
	$\mathrm{P}\left(F^{\prime} / L\right)=\frac{\mathrm{P}\left(F^{\prime} \cap L\right)}{\mathrm{P}(L)} \quad$ Attempt correct conditional probability but see notes	M1
	$=\frac{\frac{1}{6} \times \frac{2}{5}+\frac{1}{2} \times \frac{1}{5}}{1-(i i)} \quad \frac{\text { numerator }}{\text { denominator }}$	$\frac{\mathrm{A} 1}{\mathrm{~A} 1 \mathrm{ft}}$
	$=\frac{\frac{5}{30}}{\frac{1}{5}}=\frac{5}{6} \quad$ or equivalent	A1 (4) [11]
Notes	Exact decimal equivalents required throughout if fractions not used e．g．2（b）（i） $0.0 \dot{3}$ Correct path through their tree given in their probabilities award Ms 2（a）All branches required for first B1．Labels can be words rather than symbols for second B1．Probabilities from question enough for third B1 i．e．bracketed probabilities not required．Probabilities and labels swapped i．e．labels on branches and probabilities at end can be awarded the marks if correct． 2（b）（i）Correct answer only award both marks． 2（b）（ii）At least one correct path identified and attempt at adding all three multiplied pairs award M1 2（c）Require probability on numerator and division by probability for M1．Require numerator correct for their tree for M1． Correct formula seen and used，accept denominator as attempt and award M1 No formula，denominator must be correct for their tree or 1－（ii）for M1 $1 / 30$ on numerator only is $\mathrm{M} 0, \mathrm{P}\left(\mathrm{L} / \mathrm{F}^{\prime}\right)$ is M 0 ．	

Question Number	Scheme	Marks
Q3（a） （b）	1（cm） cao $10 \mathrm{~cm}^{2}$ represents 15 $10 / 15 \mathrm{~cm}^{2}$ represents $1 \quad$ or $1 \mathrm{~cm}^{2}$ represents 1.5 Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5} \quad$ Require $x \frac{2}{3}$ or $\div 1.5$ $\text { height }=6(\mathrm{~cm})$	B1 M1 A1
Notes	If 3（a）and 3（b）incorrect，but their（a）x their（b）＝6 then award B0M1A0 3（b）Alternative method： $\mathrm{f} / \mathrm{cw}=15 / 6=2.5$ represented by 5 so factor x 2 award M1 So $\mathrm{f} / \mathrm{cw}=9 / 3=3$ represented by $3 \times 2=6$ ．Award A1．	

Question Number	Scheme	Marks
Q4（a）	$\begin{align*} Q_{2} & =17+\left(\frac{60-58}{29}\right) \times 2 \\ & =17.1(17.2 \text { if use } 60.5) \tag{or17.2} \end{align*}$	M1 A1
	$\sum f x=2055.5 \quad \sum f x^{2}=36500.25 \quad$ Exact answers can be seen below or implied	B1 B1
	Evidence of attempt to use midpoints with at least one correct	M1
	Mean $=17.129 \ldots \quad$ awrt 17.1	B1
	$\sigma=\sqrt{\frac{36500.25}{120}-\left(\frac{2055.5}{120}\right)^{2}}$	M1
	$=3.28 \quad(s=3.294) \quad$ awrt 3．3	
	$\frac{3(17.129-17.1379 \ldots)}{3.28}$	
	3.28	
	No skew／slight skew	
	The skewness is very small．Possible．	B1 B1dep
		(2) [13]
Notes		
	4（a）Statement of $17+\frac{\text { freq into class }}{\text { class freq }} \times \mathrm{cw}$ and attempt to sub or $\frac{m-17}{19-17}=\frac{60(.5)-58}{87-58}$ or equivalent award M1 $\mathrm{cw}=2$ or 3 required for M1． 17.2 from $\mathrm{cw}=3$ award A0． 4（b）Correct $\sum \mathrm{f} x$ and $\sum \mathrm{f} x^{2}$ can be seen in working for both B1s Midpoints seen in table and used in calculation award M1 Require complete correct formula including use of square root and attempt to sub for M1．No formula stated then numbers as above or follow from（b）for M1 $\left(\sum f x\right)^{2}, \sum(f x)^{2}$ or $\sum f^{2} x$ used instead of $\sum f x^{2}$ in sd award M0 Correct answers only with no working award $2 / 2$ and $6 / 6$ 4（c）Sub in their values into given formula for M1 4（d）No skew／slight skew／＇Distribution is almost symmetrical＇／＇Mean approximately equal to median＇or equivalent award first B1．Don＇t award second B1 if this is not the case．Second statement should imply＇Greg＇s suggestion that a normal distribution is suitable is possible＇for second B1 dep． If B0 awarded for comment in（c）．and（d）incorrect，allow follow through from the comment in（c）．	

Question Number	Scheme	Marks
Q5 (a)	$\begin{array}{rlrl} b & =\frac{59.99}{33.381} & \\ & =1.79713 \ldots \ldots & \\ a & & \\ \mathrm{a} & =32.7-1.79713 \ldots \times 51.83 & \\ & =-60.44525 \ldots & & \\ w & =-60.445251 \ldots+1.79713 \ldots l & & \\ w & =-60.445251 \ldots+1.79713 \ldots \times 60 \\ & =47.3825 \ldots & & \\ \text { and } w \text { required and awrt } 2 \mathrm{sf} \end{array}$ It is extrapolating so (may be) unreliable.	M1 A1 M1 A1 A1ft (5) M1 A1 (2) B1, B1dep
		(2) [9]
Notes	5(a) Special case $\begin{aligned} & b=\frac{59.99}{120.1}=0.4995 \mathrm{M} 0 \mathrm{~A} 0 \\ & \mathrm{a}=32.7-0.4995 \times 51.83 \mathrm{M} 1 \mathrm{~A} 1 \\ & w=6.8+0.50 l \text { at least } 2 \text { sf required for A1 } \end{aligned}$ 5(b) Substitute into their answer for (a) for M1 5(c) 'Outside the range on the table' or equivalent award first B1	

Question Number	Scheme	Marks
Q6（a）	0 1 2 3 $3 a$ $2 a$ a b	B1 （1）
（b）	$3 a+2 a+a+b=1$ or equivalent，using Sum of probabilities $=1$ $2 a+2 a+3 b=1.6$ or equivalent，using $\mathrm{E}(X)=1.6$ $14 a=1.4$ Attempt to solve $a=0.1$ cao $b=0.4$ cao	M1 M1 M1dep B1 B1
（c）	$\begin{gathered} \mathrm{P}(0.5<x<3)=\mathrm{P}(1)+\mathrm{P}(2) \\ =0.2+0.1 \\ =0.3 \end{gathered}$ 3 a or their $2 a+$ their a Require $0<3 a<1$ to award follow through	（5） M1 A 1 ft
（d）	$\begin{aligned} \mathrm{E}(3 X-2) & =3 \mathrm{E}(X)-2 \\ = & 3 \times 1.6-2 \\ & =2.8 \end{aligned}$	（2） A1
（e）	$\begin{aligned} \mathrm{E}\left(X^{2}\right) & =1 \times 0.2+4 \times 0.1+9 \times 0.4(=4.2) \\ \operatorname{Var}(X) & =" 4.2 "-1.6^{2} \quad \\ & =1.64 \quad * * \text { given answer** } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
（f）	$\begin{gathered} \operatorname{Var}(3 X-2)=9 \operatorname{Var}(X) \\ =14.76 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		$\begin{array}{r} (2) \\ {[15]} \\ \hline \end{array}$
Notes	6（a）Condone a clearly stated in text but not put in table． 6（b）Must be attempting to solve 2 different equations so third M dependent upon first two Ms being awarded． Correct answers seen with no working B1B1 only， $2 / 5$ Correctly verified values can be awarded M1 for correctly verifying sum of probabilities $=1$ ， M 1 for using $\mathrm{E}(X)=1.6 \mathrm{M} 0$ as no attempt to solve and B 1 B 1 if answers correct． 6（d） 2.8 only award M1A1 6（e）Award first M for at least two non－zero terms correct．Allow first M for correct expression with a and b e．g． $\mathrm{E}\left(X^{2}\right)=6 a+9 b$ Given answer so award final A1 for correct solution． 6（f） 14.76 only award M1A1	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline \multirow[t]{8}{*}{Q7(a) (i)
(ii)
(b)
(c)

(d)} \& $\mathrm{P}(A \cup B)=a+b \quad$ cao \& B1

\hline \& $\mathrm{P}(A \cup B)=a+b-a b \quad$ or equivalent \& B1 (2)

\hline \& $$
\begin{aligned}
\mathrm{P}(R \cup Q) & =0.15+0.35 \\
& =0.5
\end{aligned}
$$ \& B1

\hline \& $$
\begin{gathered}
\mathrm{P}(R \cap Q)=\mathrm{P}(R \mid Q) \times \mathrm{P}(Q) \\
=0.1 \times 0.35
\end{gathered}
$$ \& M1

\hline \& $=0.035 \sim \mathbf{0 . 0 3 5}$ \& A1

\hline \& $\mathrm{P}(R \cup Q)=\mathrm{P}(R)+\mathrm{P}(Q)-\mathrm{P}(R \cap Q) \quad$ OR $\quad \mathrm{P}(R)=\mathrm{P}\left(R \cap Q^{\prime}\right)+\mathrm{P}(R \cap Q)$ \& M1

\hline \& $$
\begin{array}{ll}
0.5=\mathrm{P}(R)+0.35-0.035 & =0.15+0.035 \\
\mathrm{P}(R)=0.185 & =0.185
\end{array}
$$ \& A1

\hline \& \& (2)

\hline \multirow[t]{2}{*}{Notes} \& \&

\hline \& | 7(a) (i) Accept $a+b-0$ for B1 |
| :--- |
| Special Case |
| If answers to (i) and (ii) are |
| (i) $\mathrm{P}(A)+\mathrm{P}(B)$ and (ii) $\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B)$ |
| award B0B1 |
| 7(a)(i) and (ii) answers must be clearly labelled or in correct order for marks to be awarded. | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
Q8（a）	Let the random variable X be the lifetime in hours of bulb $\begin{aligned} \mathrm{P}(X<830) & =\mathrm{P}\left(Z<\frac{ \pm(830-850)}{50}\right) \\ & =\mathrm{P}(Z<-0.4) \\ & =1-\mathrm{P}(Z<0.4) \\ & =1-0.6554 \\ & =0.3446 \text { or } 0.344578 \text { by calculator } \end{aligned}$ Standardising with 850 and 50 $=1-\mathrm{P}(Z<0.4) \quad \text { Using 1-(probability }>0.5)$ awrt 0.345	M1 M1 A1
	0.3446×500 $=172.3$ Their（a）$\times 500$ Accept 172.3 or 172 or 173	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$
	Standardise with 860 and σ and equate to z value $\frac{ \pm(818-860)}{\sigma}=z$ value $\frac{818-860}{\sigma}=-0.84(16)$ or $\frac{860-818}{\sigma}=0.84(16)$ or $\frac{902-860}{\sigma}=0.84(16)$ or equiv．	M1 A1
	$\sigma=49.9 \quad 50 \text { or awrt } 49.9$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { A1 } \end{aligned}$
	Company Y as the mean is greater for Y ． both They have（approximately）the same standard deviation or $\underline{\boldsymbol{s} \boldsymbol{d}}$	（4） $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
		$\begin{array}{r} (2) \\ {[11]} \end{array}$
Notes		
	8（a）If 1－z used e．g．1－0．4＝0．6 then award second M0 8（c）M1 can be implied by correct line 2 A1 for completely correct statement or equivalent． Award B1 if 0．8416（2）seen Do not award final A1 if any errors in solution e．g．negative sign lost． 8（d）Must use statistical terms as underlined．	

Mark Scheme（Results） January 2010

GCE

Statistics S1（6683）

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

January 2010
Publications Code UA023026
All the material in this publication is copyright
© Edexcel Ltd 2010

6683 Statistics S1

Mark Scheme

Question Number	Scheme Marks
Q1 (a)	
Q1 (a)	M1 for shape and labels: 3 branches followed by 3,2,2 with some R, B and G seen Allow 3 branches followed by 3,3, 3 if 0 probabilities are seen implying that 3, 2, 2 intended Allow blank branches if the other probabilities imply probability on blanks is zero Ignore further sets of branches $1^{\text {st }} \mathrm{A} 1$ for correct probabilities and correct labels on $1^{\text {st }}$ set of branches. $2^{\text {nd }} \mathrm{A} 1$ for correct probabilities and correct labels on $2^{\text {nd }}$ set of branches. (accept 0.33, 0.67 etc or better here) M1 for identifying the 2 cases $B G$ and $G B$ and adding 2 products of probabilities. These cases may be identified by their probabilities e.g. $\left(\frac{1}{4} \times \frac{1}{3}\right)+\left(\frac{1}{4} \times \frac{1}{3}\right)$ NB $\frac{1}{6}$ (or exact equivalent) with no working scores $2 / 2$ With Replacement (This oversimplifies so do not apply Mis-Read: max mark 2/5) (a) B1 for 3 branches followed by 3, 3, 3 with correct labels and probabilities of $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ on each. (b) M1 for identifying 2, possibly correct cases and adding 2 products of probabilities but A0 for wrong answer $\left[\left(\frac{1}{4} \times \frac{1}{4}\right)+\left(\frac{1}{4} \times \frac{1}{4}\right)\right]$ will be sufficient for M1A0 here but $\frac{1}{4} \times \frac{1}{2}+\ldots$ would score M0

Question Number	Scheme ${ }^{\text {a }}$ Marks
Q2 (a) (b) (c) (d)	Median is 33 $Q_{1}=24, Q_{3}=40, \mathrm{IQR}=16$ $Q_{1}-\mathrm{IQR}=24-16=8$ So 7 is only outlier (accept either whisker) B1ft
Q2 (b)	$1^{\text {st }} \mathrm{B} 1$ for $Q_{1}=24$ and $2^{\text {nd }} \mathrm{B} 1$ for $Q_{3}=40$ $3^{\text {rd }} \mathrm{B} 1 \mathrm{ft}$ for their IQR based on their lower and upper quartile. Calculation of range ($40-7=33$) is B 0 B 0 B 0 Answer only of $\mathrm{IQR}=16$ scores $3 / 3$. For any other answer we must see working in (b) or on stem and leaf diagram M1 for evidence that Q_{1}-IQR has been attempted, their " 8 " (>7) seen or clearly attempted is sufficient A1 ft must have seen their " 8 " and a suitable comment that only one person scored below this. $1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for a clear box shape and ft their Q_{1}, Q_{2} and Q_{3} readable off the scale. Allow this mark for a box shape even if $Q_{3}=40, Q_{1}=7$ and $Q_{2}=33$ are used $2^{\text {nd }} \mathrm{B} 1 \quad$ for only one outlier appropriately marked at 7 $3^{\text {rd }} \mathrm{B} 1 \mathrm{ft}$ for either lower whisker. If they choose the whisker to their lower limit for outliers then follow through their " 8 ". (There should be no upper whisker unless their $Q_{3}<40$, in which case there should be a whisker to 40) A typical error in (d) is to draw the lower whisker to 7, this can only score B1B0B0

Question Number	Scheme Marks
Q3 (a) (b) (c) (d) (e)	
Q3 (b) (c) (d) (e)	M1 for a correct expression for mean. Answer only scores both. M1 for a correct expression (ft their mean) for sd or variance. Condone mis-labelling eg sd=... with no square root or no labelling $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct expression (ft their mean) including square root and no mis-labelling Allow $1^{\text {st }} \mathrm{A} 1$ for $\sigma^{2}=0.177 \ldots \rightarrow \sigma=0.42 \ldots$ $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.421 . Answer only scores $3 / 3$ M1 for a correct expression (allow 403.5 i.e. use of $n+1$) but must have 3.00, 820 and 0.5 A1 for awrt 3.25 provided M1 is scored. NB 3.25 with no working scores $0 / 2$ as some candidates think mode is 3.25 . $1^{\text {st }} \mathrm{B} 1 \mathrm{ft} \quad$ for a comparison of their mean and median (may be in a formula but if \pm (mean - median) is calculated that's OK. We are not checking the value but the sign must be consistent.) Also allow for use of quartiles provided correct values seen: $Q_{1}=3.02, Q_{3}=3.47$ [They should get $(0.22=) Q_{3}-Q_{2}<Q_{2}-Q_{1}(=0.23)$ and say (slight) negative skew or symmetric] $2^{\text {nd }} \mathrm{dB} 1 \mathrm{ft}$ for a compatible comment based on their comparison. Dependent upon a suitable, correct comparison. Mention of "correlation" rather than "skewness" loses this mark.

Question Number	Scheme Marks
Q5 $\begin{aligned} & \text { (a) } \\ &(b) \\ & \text { (c) } \\ & \text { (d) }\end{aligned}$	
Q5 (a)	M1 for clear attempt to use $\sum \mathrm{p}(x)=1$, full expression needed and the " 1 " must be clearly seen. This may be seen in a table. A1cso for no incorrect working seen. The sum and "= 1 " must be explicitly seen somewhere. A verification approach to (a) must show addition for M1 and have a suitable comment e.g. "therefore $k=\frac{1}{14}$ " for A1 cso M1 for 1- $\mathrm{P}(X \leq 1)$ or $\mathrm{P}(X=2)+\mathrm{P}(X=3)$ A1 for awrt 0.929 . Answer only scores $2 / 2$ M1 for a full expression for $\mathrm{E}(X)$ with at least two terms correct. NB If there is evidence of division (usually by 3) then score M0 A1 for any exact equivalent - answer only scores $2 / 2$ $1^{\text {st }} \mathrm{M} 1$ for clear attempt at $\mathrm{E}\left(X^{2}\right)$, need at least 2 terms correct in $1 \times k+4 \times 4 k+9 \times 9 k$ or $\mathrm{E}\left(X^{2}\right)=7$ $2^{\text {nd }} \mathrm{M} 1$ for their $\mathrm{E}\left(X^{2}\right)-(\text { their } \mu)^{2}$ $3^{\text {rd }}$ M1 for clearly stating that $\operatorname{Var}(1-X)=\operatorname{Var}(X)$, wherever seen A1 accept awrt 0.388 . All 3 M marks are required. Allow $4 / 4$ for correct answer only but must be for $\operatorname{Var}(1-X)$.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA023026 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme（Results） Summer 2010

GCE

Statistics S1（6683）

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Summer 2010
Publications Code UA024765
All the material in this publication is copyright
© Edexcel Ltd 2010

General Marking Guidance

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)

3. Abbreviations

These are some of the marking abbreviations that will appear in the mark scheme

- ft - follow through
- awrt - answers which round to
- oe - or equivalent (and appropriate)
- isw - ignore subsequent working
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- SC: special case

Statistics S1 6683
 Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b) (c)	$\begin{equation*} r=\frac{8825}{\sqrt{1022500 \times 130.9}}, \quad=\operatorname{awrt} \underline{0.763} \tag{2} \end{equation*}$ Teams with high attendance scored more goals (oe, statement in context) 0.76(3)	B1 (1) B1ft (1) Total 4
(a) (b) (c)	M1 for a correct expression, square root required Correct answer award 2/2 Context required (attendance and goals). Condone causality. B0 for 'strong positive correlation between attendance and goals' on its own oe Value required. Must be a correlation coefficient between -1 and +1 inclusive. B1 ft for 0.76 or better or same answer as their value from part (a) to at least 2 d.p.	

| Question |
| :--- | :--- | :--- |
| Number | (a)

Question Number	Scheme	Marks
Q5 (a)	23, 35.5 (may be in the table)	B1 B1 (2)
(b)	Width of 10 units is 4 cm so width of 5 units is $\underline{\mathbf{2 ~ c m}}$	B1
	$\text { Height }=2.6 \times 4=\underline{\mathbf{1 0 . 4} \mathbf{c m}}$	M1 A1 (3)
(c)	$\sum \mathrm{f} x=1316.5 \Rightarrow \bar{x}=\frac{1316.5}{56}=$ awrt $\underline{\mathbf{2 3 . 5}}$	M1 A1
	$\sum \mathrm{f} \mathrm{x}^{2}=37378.25$ can be implied	B1
		M1 A1 (5)
(d)	$Q_{2}=(20.5)+\frac{(28-21)}{11} \times 5=23.68 \ldots \quad \text { awrt } \underline{23.7 \text { or } 23.9}$	M1 A1 (2)
(e)	$Q_{3}-Q_{2}=5.6, \quad Q_{2}-Q_{1}=7.9 \quad\left(\right.$ or $\left.\bar{x}<Q_{2}\right)$	
	[7.9 >5.6 so] negative skew	A1 (2)
		Total 14
(b)	M1 for their width x their height=20.8. Without labels assume width first, height second and award marks accordingly.	
(c)	$1^{\text {st }}$ M1 for reasonable attempt at $\sum x$ and /56	
	$2^{\text {nd }} \mathrm{M} 1 \quad$ for a method for σ or $s, \sqrt{ }$ is required Typical errors $\sum(\mathrm{f} x)^{2}=354806.3$ M0, $\sum \mathrm{f}^{2} x=13922.5 \mathrm{M} 0$ and $\left(\sum \mathrm{f} x\right)^{2}=17$ Correct answers only, award full marks.	M0
(d)	Use of $\sum \mathrm{f}(x-\bar{x})^{2}=$ awrt 6428.75 for B1	
	lcb can be $20,20.5$ or 21, width can be 4 or 5 and the fraction part of the formula correct for M1 - Allow 28.5 in fraction that gives awrt 23.9 for M1A1	
(e)	M1 for attempting a test for skewness using quartiles or mean and median. Provided median greater than 22.55 and less than 29.3 award for M 1 for $Q_{3}-Q_{2}<Q_{2}-Q_{1}$ without values as a valid reason. SC Accept mean close to median and no skew oe for M1A1	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA024765 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme（Results） January 2011

GCE

GCE Statistics S1（6683）Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

January 2011
Publications Code UA026664
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\quad *$ The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

Question Number	Scheme	Marks
1. (a)	$\begin{aligned} & S_{l l}=327754.5-\frac{4027^{2}}{50}=3419.92 \\ & S_{l w}=29330.5-\frac{357.1 \times 4027}{50}=569.666 \end{aligned}$	M1 A1 A1 (3)
(b)	$r=\frac{569.666}{\sqrt{3419.92 \times 289.6}}=0.572 \quad$ awrt 0.572 or 0.573	M1 A1
(c)	As the length of the salmon increases the weight increases	
	Notes	
(a)	M1 for at least one correct expression$1^{\text {st }} \mathrm{A} 1$ for $S_{l l}=$ awrt $3420 \quad$ (Condone $S_{x x}=\ldots$ or even $S_{y y}=\ldots$)$2^{\text {nd }} \mathrm{A} 1$ for $S_{l w}=$ awrt $570 \quad$ (Condone $S_{x y}=\ldots$)	
(b)	M1 for attempt at correct formula. Must have their $S_{l l}, S_{l w}$ and given $S_{w w}$ in the correct places If $S_{l l}, S_{l w}$ are correct and an answer of awrt 0.57 is seen then award M1A0 M0 for $\frac{29330.5}{\sqrt{327754.5 \times 289.6}}$	
(c)	B1ft for a comment mentioning "length" and "weight", not just l and w, and the idea of longer salmon weighing more. e.g. "positive correlation between weight and length" is B0 since the idea of positive correlation is not explained. Allow "larger" instead of "heavier" or "longer" Ignore any spurious values mentioned such as 0.572 If their r is negative (but must be $r>-1$) ft an appropriate comment. Condone $r>1$ if comment is correct. If $\|r\|<0.4$ allow a comment of no or little relationship between weight and length but for $0<r<0.4$ the printed answer is still acceptable too. Treat mention of "skewness" as ISW if a correct interpretation is given	

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} b & =\frac{1.688}{5.753}=0.293 \\ a & =3.22-4.42 \times 0.293=1.9231 \ldots \\ p & =1.92+0.293 v \end{aligned}$	$\begin{aligned} & \text { M1A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
		(4)
(b)	$\begin{aligned} & v=\frac{85-5}{10}=8 \\ & p=1.92+0.293 \times 8=4.3 \end{aligned}$ (awrt 4.3)	M1 A1
		(2) [6]
	Notes	
(a)	Can ignore (a) and (b) labels here $1^{\text {st }} \mathrm{M} 1$ for a correct expression for b. $\frac{1.688}{1.168}$ is M0 $1^{\text {st }} \mathrm{A} 1$ for awrt 0.29 $2^{\text {nd }}$ M1 for use of $a=\bar{p}-b \bar{v}$ follow through their value of b (or even just the letter b) $2^{\text {nd }} \mathrm{A} 1$ for a complete equation with $a=$ awrt 1.92 and $b=$ awrt 0.293 y or $p=1.92+0.293 x$ is A 0 Correct answer with no working is $4 / 4$	
(b)	M1 for an attempt to find the value of v when $x=85$ (at least 2 correct terms in $\left.\pm \frac{85-5}{10}\right)$ or for an attempt to find an equation for p in terms of x and using $x=85$ Attempt at equation of p in x requires $p=1.92+0.293 \frac{(x-5)}{10}$ A1 for awrt 4.3 (award when first seen and apply ISW) N.B. $p=1.92+0.293 \times 85$ (o.e.) is M0A0	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \(5 . \quad\) (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Median }=32 / 2=16^{\text {th }} \text { term }(16.5) \\
\& \frac{x-39.5}{49.5-39.5}=\frac{16-14}{25-14} \text { or } x=39.5+\left(\frac{2}{11} \times 10\right)
\end{aligned}
\] \\
Median \(=41.3\) (use of \(n+1\) gives 41.8) \\
(awrt 41.3)
\end{tabular} \& M1
A1 \\
\hline (b) \& \begin{tabular}{l}
\[
\text { Mean }=\frac{1414}{32}=44.1875
\] \\
(awrt 44.2)
\[
\begin{aligned}
\text { Standard deviation } \& =\sqrt{\frac{69378}{32}-\left(\frac{1414}{32}\right)^{2}} \& \\
\& =14.7 \& (\text { or } s=14.9)
\end{aligned}
\]
\end{tabular} \& B1
M1
A1 \\
\hline (c) \& mean \(>\) median therefore positive skew \& \begin{tabular}{l}
B1ft B1ft \\
(2) \\
[7]
\end{tabular} \\
\hline \& \multicolumn{2}{|l|}{Notes} \\
\hline (a) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
M1 for an attempt to use interpolation to find the median. Condone use of 39 or 40 for 39.5 e.g. allow \(39+\frac{2}{11} \times 10\) (o.e.) or \(40+\frac{2}{11} \times 10\) (o.e.) to score M1A0 but must have the 10 \\
A1 for awrt 41.3 (or awrt 41.8 if using \((n+1)\))
\end{tabular}} \\
\hline (b) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
B1 for awrt 44.2 \\
M1 for a correct expression including square root. (Allow ft of their mean) \\
A1 for awrt 14.7 (If using \(s\) for awrt 14.9) \\
You may see \(\sum t=1339 \rightarrow \bar{t}=41.8\) and \(\sum t^{2}=62928 \rightarrow \sigma 14.7\) or \(s=14.9\) \\
this scores B0 for the mean but can score M1 for a correct st.dev expression and A1 for ans. \\
Correct answer only in (a) and (b) can score full marks but check (\(n+1\)) case in (a)
\end{tabular}} \\
\hline (c)

Quartiles \& \multicolumn{2}{|l|}{| $1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for a correct comparison of their mean and their median (may be in a formula) Calculating median - mean as negative is OK for this B1 but must say + ve skew for $2^{\text {nd }} \mathrm{B} 1$ |
| :--- |
| Only allow comparison to be ≈ 0 if \mid mean - median $\mid \leq 0.5$ |
| $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ for a correct description of skewness based on their values of mean and median. ft their values for mean and median not their previous calculation/comparison Must be compatible with their previous comparison (if they have one) "Positive skew" with no reason is B0B1 provided you can see their values that imply that. |
| Description should be "positive" or "negative" or "no" skew or "symmetric" "Positive correlation" is B0 |
| $1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ if $Q_{1}=$ awrt 32 and $Q_{3}=$ awrt 49 seen and a correct comparison made. $\mathrm{ft} Q_{2}$ |
| $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ if $Q_{1}=$ awrt 32 or $Q_{3}=$ awrt 49 seen and a correct description based on their quartiles and their comparison is made. (Should get "negative skew") |}

\hline
\end{tabular}

Question Number	Scheme Marks
	Notes
(a)	B1 for a clear attempt to use sum of probabilities $=1$. Must see previous line as well as $k=0.1$ A correct expression for $\mathrm{E}(X)$ or $\mathrm{E}\left(X^{2}\right)$ that is later divided by 4 scores M0
(b)	M1 for a completely correct expression. May be implied by correct answer of 3 or $30 k$ A1 for 3 only.
(c)	M1 for a completely correct expression. May be implied by correct answer of 10 or 100 k A1 for 10 only. [For $\mathrm{E}\left(X^{2}\right)=0.1+0.8+2.7+6.4-9=1$ scores M0A0 but accept this as $\operatorname{Var}(X)$ in (d)]
(d)	$1^{\text {st }} \mathrm{M} 1$ for using $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$, f.t their values from (b) and (c) Allow this mark for $\operatorname{Var}(X)=10-9$ or better. May be implied if this is seen in (c). $2^{\text {nd }} \mathrm{M} 1$ for $5^{2} \operatorname{Var}(X)$ or $25 \operatorname{Var}(X)$ can f.t. their $\operatorname{Var}(X)$. Allow -5^{2} if it later becomes +25 A1 for 25 only. Dependent upon both Ms Forming distribution for $Y=2-5 X$ gets M1 for $\mathrm{E}\left(Y^{\mathbf{2}}\right)=194$ then M1A1 for 194-169=25
(e)	M1 for correctly identifying $(1,3)$ or $(3,1)$ and $(2,2)$ as required cases ($3 k^{2}+4 k^{2}$ or better) A1 cso for 0.1 only but must see evidence for M1
(f)	$1^{\text {st }} \mathrm{B} 1$ for 0.2 correctly assigned. May be in table. $2^{\text {nd }} \mathrm{B} 1$ for 0.16 correctly assigned. May be in table
(g)	M1 for $\mathrm{P}(2)+\mathrm{P}(3)$. May be implied by correct answer of 0.05 A1 for 0.05 only. Correct answer only can score full marks in parts (b), (c), (f) and (g)

Question Number	Scheme	Marks
$7 . \quad$ (a)		B1
(b)	$\mathrm{P}(A)=\mathrm{P}(R R)+\mathrm{P}(Y Y)=\frac{1}{2} \times \frac{2}{5}+\frac{1}{2} \times " \frac{2}{5} "=\frac{2}{5} \quad \begin{aligned} & \text { B1 for } \frac{1}{2} \times \frac{2}{5}(\mathrm{oe}) \text { seen at least } \end{aligned}$	B1 M1 A1 (3)
(c)	$\begin{aligned} & \mathrm{P}(B)=\mathrm{P}(R R R)+\mathrm{P}(R Y R)+\mathrm{P}(Y R R)+\mathrm{P}(Y Y R) \quad \\ & \left(\frac{1}{2} \times \frac{2}{5} \times " \frac{2}{3} "\right)+\left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right)+\left(\frac{1}{2} \times " \frac{3}{5} " \times \frac{5}{9}\right)+\left(\frac{1}{2} \times " \frac{2}{5} " \times \frac{4}{9} \text { for at least } 1 \text { case of } 3 \text { balls }=\frac{5}{9}(*)\right. \end{aligned}$	M1 M1,A1cso
(d)	$\mathrm{P}(A \cap B)$ $=\mathrm{P}(R R R)+\mathrm{P}(Y Y R)$ M1 for identifying both cases and + probs. may be implied by correct expressions $=\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right)$ $=\frac{2}{9}(*)$	M1 A1cso (2)
(e)	$\begin{array}{rlr} \mathrm{P}(A \cup B) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(A \cap B) \quad \text { Must have some attempt to use } \\ & =" \frac{2}{5} "+\frac{5}{9}-\frac{2}{9}=\frac{11}{15} & \end{array}$	M1 A1cao (2)

Question Number	Scheme		Marks
(f)	$\frac{\mathrm{P}(R R R)}{\mathrm{P}(R R R)+\mathrm{P}(Y Y Y)}=\frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)}=\frac{6}{11}$	Probabilities must come from the product of 3 probs. from their tree diagram.	M1 A1ft A1 cao (3)
	Notes		
(b)	M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.		
(c)	$2^{\text {nd }} \mathrm{M} 1$ for all 4 correct expressions, ft their values from tree diagram. A1 is cso		
(e)	M1 for clear attempt to use the correct formula, must have some correct substitution. ft their (b)		
(f)	M1 for identifying the correct probabilities and forming appropriate fraction of probs. $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except in (c) and (d)		

Question Number	Scheme ${ }^{\text {a }}$ Marks
8. (a)	$\begin{align*} \mathrm{P}(X>168) & =\mathrm{P}\left(Z>\frac{168-160}{5}\right) \\ & =\mathrm{P}(Z>1.6) \\ & =0.0548 \tag{3} \end{align*}$awrt 0.0548M1 A1 A1
(b)	$\begin{aligned} \mathrm{P}(X<w) & =\mathrm{P}\left(Z<\frac{w-160}{5}\right) \\ \frac{w-160}{5} & =-2.3263 \\ w & =148.37 \end{aligned}$
(c)	$\frac{160-\mu}{\sigma}=2.3263$ M 1 B1 $\frac{152-\mu}{\sigma}=-1.2816$ B 1 $160-\mu=2.3263 \sigma$ $152-\mu=-1.2816 \sigma$ awrt 2.22 A1 11 $8=3.6079 \sigma$ awrt 155 A1 $\sigma=2.21 \ldots$. $\mu=154.84 \ldots$ (12]
	Notes
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm\left(\frac{168-160}{5}\right)$ or implied by 1.6 $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(Z>1.6)$ or $\mathrm{P}(Z<-1.6)$ ie $z=1.6$ and a correct inequality or 1.6 on a shaded diagram Correct answer to (a) implies all 3 marks
(b)	M1 for attempting $\pm\left(\frac{w-160}{5}\right)=$ recognizable z value $(\|z\|>1)$ B1 for $z= \pm 2.3263$ or better. Should be $z=\ldots$ or implied so: $1-2.3263=\frac{w-160}{5}$ is M0B0 A1 for awrt 148. This may be scored for other z values so M1B0A1 is possible For awrt 148 only with no working seen award M1B0A1 M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and equate to z value ($\|z\|>1$) $1^{\text {st }} \mathrm{B} 1$ for awrt ± 2.33 or ± 2.32 seen $2^{\text {nd }}$ B1 for awrt ± 1.28 seen $2^{\text {nd }}$ M1 for attempt to solve their two linear equations in μ and σ leading to equation in just one variable $1^{\text {st }} \mathrm{A} 1$ for $\sigma=$ awrt 2.22. Award when $1^{\text {st }}$ seen $2^{\text {nd }}$ A1 for $\mu=$ awrt 155 . Correct answer only for part (c) can score all 6 marks. NB $\sigma=2.21$ commonly comes from $z=2.34$ and usually scores M1B0B1M1A0A1 The A marks in (c) require both M marks to have been earned

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA026664 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)
June 2011

GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028837
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- Cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 Statistics S1 6683 Mark Scheme

Question Number	Scheme	Marks
（a）	$\begin{aligned} \mathrm{S}_{y y}=4305-\frac{181^{2}}{8} & \\ & =\underline{209.875} \\ & \mathbf{2 1 0} \end{aligned}$	M1 A1
（b）	$r=\frac{(-) 23726.25}{\sqrt{3535237.5 \times " 209.875 "}}$ $\begin{aligned} & =-0.87104 \ldots \\ & -\mathbf{0 . 8 7 1}) \quad \text { (awrt } \end{aligned}$	M1 A1
（c）	Higher towns have lower temperature or temp．decreases as height increases	B1
（d）	$\mathrm{S}_{h h}=3.5352375$ （awrt 3．54）（condone 3.53)	B1（1）
（e）	$\begin{aligned} & r=-\underline{0.87104 \ldots} \quad \quad \text { (awrt } \\ & -\mathbf{0 . 8 7 1}) \end{aligned}$	B1ft （1） （7 marks）
	Notes	
（a） （b） （c）	$\left.\begin{array}{ll}\text { M1 } & \text { for a correct expression．Allow one slip e．g．} 4350 \text { for } 4305 \\ \text { M1 } \\ \text {＂－＂} & \text { for a correct expression for } r \text { ，follow through their answer to（a）．Condone no } \\ \text { Allow M1 for } \pm 0.87 \text { with no working．（ }-0.871 \text { is M1A1）}\end{array}\right]$Must mention temperature（o．e．）and height（above sea level）and interpret the relationship between them．Must be a correct and sensible comment． e．g．＂As temperature increases the height of the sea decreases＂is B0．BUT	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline \begin{tabular}{l}
(d) \\
(e)
\end{tabular} \& \begin{tabular}{ll}
B1 \& accept awrt 3.54 and condone 3.53 (i.e truncation) \\
B1 ft \& \begin{tabular}{l}
for awrt -0.871 \\
or ft their final answer to part (b) to the same accuracy (or 3 sf) provided \(-1<r\)
\end{tabular} \\
\(<1\) \& Answer to part (e) must be a number "it's the same" is B0
\end{tabular} \\
\hline \begin{tabular}{l}
2. \\
(a)
\end{tabular} \& \[
\begin{array}{lrr|l}
\frac{23-\mu}{5}=" 1.40 " \& \text { (o.e) } \& \text { awrt } \pm 1.40 \& \mathrm{~B} 1 \\
\& \frac{\mu=16}{16.0)} \& \text { (or awrt } \& \mathrm{M} 1 \mathrm{~A} 1 \mathrm{ft} \\
\& \& \& \\
\hline
\end{array}
\] \\
\hline (b) \& \begin{tabular}{l|lr}
\(\underline{0.4192}\) \& B1 \& (1) \\
\& 5 \\
\hline
\end{tabular} \\
\hline (a)

(b) \&

\hline
\end{tabular}

Question Number	Scheme Marks
(a) (b)	
	Notes
(a) (b)	Allow slips e.g. $\mathbf{1 6 . 2}$ for $\mathbf{1 6 . 1 2}$ for $\mathbf{1}^{\text {st }}$ M1 in (a) and (b) for standardising expression with $15,16.12$ and $1.6-$ allow \pm $2^{\text {nd }}$ M1 for $1-$ a probability (>0.5) from tables or calculator based on their standardised value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of \boldsymbol{t} for standardising with t (o.e.), 16.12 and 1.6 , allow \pm, and setting equal to a z value $1^{\text {st }} \mathrm{A} 1$ for an equation with $z= \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6}= \pm 0.52$ (or 0.525) scores M1 (but A0) $2^{\text {nd }} \mathrm{M} 1$ for solving their linear equation as far as $t=a \pm b \times 1.6$. Not dependent on $1^{\text {st }}$ M1 e.g. solving $\frac{t-16.12}{1.6}=0.3$ to give $t=16.12+1.6 \times 0.3$ scores this M1 Allow $\frac{t-16.12}{1.6^{2}}=0.3$ to give $t=16.12+1.6^{2} \times 0.3$ to score M1 too $2^{\text {nd }}$ A1 dependent on both M marks. Allow awrt 15.28 or awrt 15.29 Condone awrt 15.3 if a correct expression for $t=\ldots$ is seen. Answers with no working: 15.28 is M1A1M1A1, 15.29 is M1A0M1A1, 15.3 is M1A0M1A0

Question Number	Scheme	Marks
5. (a)	10.5	B1
(b)	$\begin{aligned} \left(Q_{2}=\right)(15.5+) \frac{\frac{1}{2} \times 30-14}{8} \times 3 \text { or } \frac{\frac{1}{2} \times 31-14}{8} \times 3 & \\ & =\underline{15.875 \text { or } 16.0625} \end{aligned}$	M1 A1
(c)	$\begin{aligned} & \bar{x}=\frac{477.5}{30}=\underline{15.9} \quad(15.91 \delta) \quad\left[\text { Accept } \frac{191}{12} \text { or } 15 \frac{11}{12}\right] \\ & \sigma=\sqrt{\frac{8603.75}{30}-\bar{x}^{2}} \quad=\underline{5.78} \quad(\text { accept } s=5.88) \end{aligned}$	M1, A1 M1A1ft, A1
(d)	Since mean and median are similar (or equal or very close) a normal distribution	(5)
	may be suitable. [Allow mean or median close to mode/modal class]	B1
(e)	$Q_{3}-Q_{2}(=8)>(4.5=) Q_{2}-Q_{1}$ Therefore positive skew	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		$\begin{array}{r} (2) \\ \text { (11 marks) } \\ \hline \end{array}$
	Notes	
(a)	In parts (a) to (c) a correct answer with no working scores full marks for that value. B1 for 10.5 which may be in the table	
(b)	M1 for a correct ratio and times 3, ignore the lower boundary for this mark A1 for awrt 15.9 (if $n=30$ used) or awrt 16.1 (if $n+1=31$ is used)	
(c)	$1^{\text {st }}$ M1 for attempt at $\sum \mathrm{f} x$ (this may be seen in the table as $\mathrm{f} x: 10,73.5,70,136,82,106$ [condone 1 slip] or awrt 500) and use of $\frac{\sum \mathrm{f} x}{\sum \mathrm{f}}$ or a correct expression for mean.	
	$2^{\text {nd }}$ M1 for an attempt at σ or σ^{2}, can ft their mean, condone mis-labelling $\sigma^{2}=\sqrt{\ldots}$.. etc Allow use of their $\sum \mathrm{f} x^{2}$ (awrt 9000)	
	$2^{\text {nd }} \mathrm{A} 1 \mathrm{ft}$ for a correct expression including square root, ft their mean but not their $\sum \mathrm{f} x^{2}$. No label or correct label is OK but wrong label (e.g. $\sigma^{2}=\sqrt{\ldots}$) is A0 $3^{\text {rd }} \mathrm{A} 1$ for awrt 5.78, allow $s=\operatorname{awrt} 5.88$. SC Allow M1A1A0 for awrt 5.79 if \bar{x} correct	
(d)	B1 for a reason implying or stating symmetry. "Time is continuous" or "evenly distributed" is B0	

Question Number	Scheme	Marks
(e)	M1 for a clear reason or comparison, values not essential but comparison implying they have been found is required. A1 for stating "positive skew". Condone just "positive" but "positive correlation" is A0 Do not allow arguments based on mean and median since this part relates to a different set of data.	
6. (a)	$\mathrm{P}(J \cup K)=1-0.7$ or $0.1+0.15+0.05=\underline{0.3}$	B1 (1)
(b)	$\mathrm{P}(K)=0.05+0.15$ or " 0.3 " $-0.25+0.15$ or " 0.3 " $=0.25+\mathrm{P}(K)-0.15$	M1
	May be seen on Venn diagram $=\underline{0.2}$	A1
(c)	$[\mathrm{P}(K \mid J)]=\frac{\mathrm{P}(K \cap J)}{\mathrm{P}(J)}$	M1
		A1
		A1
(d)		(3)
	$\mathrm{P}(K \mid J)=0.6, \mathrm{P}(K)=0.2$ or may see $\mathrm{P}(J \mid K)=0.75$ and $\mathrm{P}(J)=0.25$ not equal therefore not independent	M1 Alft
		(2)
(e)	(This requires a statement about independence in (d) or in (e))	(1) (9 marks)

Question Number	Scheme	Marks
7.8	$\left(\mathrm{S}_{f h}=\right) 25291-\frac{186 \times 1085}{8}$	M1
(b)	$\begin{array}{lll} b=\frac{" 64.75 "}{39.5}, & =\underline{1.6392 \ldots} & \text { (awrt 1.6) } \tag{awrt1.6}\\ a=\frac{1085}{8}-b \times \frac{186}{8}, & =\underline{97.512 \ldots} & (\text { awrt 97.5) } \\ & \underline{h=97.5+1.64 f} & \end{array}$	$\mathrm{M} 1, \mathrm{~A} 1$ $\mathrm{M} 1, \mathrm{~A} 1$ A 1 ft (dep on M1M1)
(c)	$h=97.5+1.64 \times 25, \quad=\underline{138 \sim 139} \quad($ final answer in $[138,139])$	M1, A1
(d)	Should be reliable, since 25 cm (or f or footlength) is within the range of the data	B1, B1
(e)	Line is for children - a different equation would apply to adults or Children are still growing, height will increase more than foot length	B1
	Notes	
(a)	[NB $r=0.871$ so do not confuse this with question 1] M1 for attempting a correct expression [allow a copying slip e.g. 25921] $1^{\text {st }} \mathrm{M} 1$ for a correct expression for b, ft their part (a) but not $\mathrm{S}_{f h}=25291$ $1^{\text {st }}$ A1 for awrt 1.6 $2^{\text {nd }} \mathrm{M} 1$ for use of $a=\bar{h}-b \times \bar{f}$, ft their value for b. Must use \bar{h} and \bar{f} not values from table. $2^{\text {nd }} \mathrm{A} 1$ for awrt $97.5[\mathrm{NB} a=135-1.63 \times 23=97.51$ but M0A0 since not using \bar{h} and $\bar{f}]$ $3^{\text {rd }} \mathrm{A} 1 \mathrm{ft}$ for an equation for h and f with their coefficients to 3 sf . Dependent on both Ms Must be 3 sf not awrt. Give this mark if seen in (c). Equation must be in h and f not y and x. M1 for using their equation and $f=25$ to find h A1 for their final answer in [138, 139]. Can give if they have 137.7... but round to 138 $1^{\text {st }} \mathrm{B} 1$ for suggesting it is reliable $2^{\text {nd }} \mathrm{B} 1$ for mentioning that 25 cm is within range of data. "interpolation"or"not extrapol'B1 Use of "it" or a comment that height is in range is B0 but apply ISW B1 for some comment that states a difference between children and teachers(adults) Must mention teacher/adults and children e.g. ".teacher is not in same age group as the children", "equation is for children not adults" "children and adults are different populations" "teacher will be taller" is B 0 since no mention of children. "equation is only valid for children" is OK since "only" implies not suitable for adults Or Reference to different growth rates	
(b)		
(c)		
(d)		
(e)		

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA028837 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Mark Scheme (Results)

January 2012

GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030899
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$

3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)
2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Question Number	Scheme	Marks
1 (a) (b)	14, 5	M1 A1 (2)
	$21+45+3=69$	M1 A1
		(2)
		Total 4
NOTES		
(a)	M1 for 2 x 7 or 14 or 5×1 or 5	
	A1 for both 14 and 5	
(b)	M1 for 21+45+(0<frequency <9)	
	A1 for 69 only.	
	69 no working, award M1A1 Incorrect answer with no working M0A0	

(d) $|$| M 1 for using 1-'their $\mathrm{P}(B)$ ' or $(\mathrm{P}(A \cup B)-\mathrm{P}(A)) / \mathrm{P}(A)$ or $(\mathrm{P}(A)-\mathrm{P}(A \cap B)) / \mathrm{P}(A)$ |
| :--- |
| with a correct attempt at the numerator and denominator. If mutually exclusive is |
| assumed then the last option gives $\frac{\frac{1}{4}}{\frac{1}{4}}$ for M 1. |
| A1 for $\frac{4}{9}$ or exact equivalent. |
| For part (c) follow through their stated values; do not follow through incorrectly |
| labelled regions on a Venn Diagram. |
| Throughout the question we require probabilities between 0 and 1 for method marks. |
| Venn Diagram: |

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 3 (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\frac{5}{21}+\frac{2 k}{21}+\frac{7}{21}+\frac{k}{21} \& =1 \\
\frac{12+3 k}{21} \& =1 \\
\& k=3 * \mathrm{AG}
\end{aligned}
\] \\
required for both methods
\end{tabular} \& M1

A1

\hline (b) \& $$
\frac{11}{21}
$$ \& B1

\hline \multirow[t]{2}{*}{(c)} \& $$
\mathrm{E}(X)=2 \times \frac{5}{21}+3 \times \frac{6}{21}+4 \times \frac{7}{21}+6 \times \frac{1}{7}
$$ \& M1

\hline \& $=3 \frac{11}{21}$ or $\frac{74}{21}$ or awrt 3.52 \& | A1 |
| :--- |
| (2) |

\hline \multirow[t]{2}{*}{(d)} \& $$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =2^{2} \times \frac{5}{21}+3^{2} \times \frac{6}{21}+4^{2} \times \frac{7}{21}+6^{2} \times \frac{1}{7} \\
& =14
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\]

\hline \& \& (2)

\hline \multirow[t]{6}{*}{(e)} \& $$
\operatorname{Var}(X)=14-\left(3 \frac{11}{21}\right)^{2}
$$ \& M1

\hline \& $=1 \frac{257}{441}$ or $\frac{698}{441}$ or awrt 1.6 \& A1

\hline \& $\operatorname{Var}(7 X-5)=7^{2} \operatorname{Var}(X)$ \& M1

\hline \& $=77 \frac{5}{9}$ or $\frac{698}{9}$ or awrt 77.6 \& A1

\hline \& \& (4)

\hline \& \& Total 11

\hline \multirow[t]{2}{*}{| NOTES |
| :--- |
| (a) |} \& \multirow[b]{9}{*}{| M1 Award for verification. Sub in $\mathrm{k}=3$ and show $\sum x \mathrm{P}(X=x)=1$. Require at least three correct terms seen or line 2 of scheme. |
| :--- |
| A1 Correct solution only including verification. |
| B1 Award for exact equivalent. |
| M1 At least two correct terms required for method, follow through 'their k ' for method. Correct answer only, award M1 A1. |
| M1 At least two correct terms required for method. M0 if probability is squared. Correct answer only, award M1 A1. Accept exact equivalent of 14 for A1. |
| M1 for use of correct formula in both. 1.6 can be implied by correct final answer. Working needs to be clearly labelled to award first method mark without second stage of calculation. |
| If a new table for values of $7 \mathrm{X}-5$ is used, so $\mathrm{Y}=7 \mathrm{X}-5$ |
| $\mathrm{E}\left(Y^{2}\right)=\frac{9751}{21} ; \operatorname{Var}(Y)=77 \frac{5}{9}$ or $\frac{698}{9}$ or awrt 77.6 Award M1A1; M1A1 |
| If any attempt to divide by 4 seen as part of working award M0 for that part. |} \&

\hline \& \&

\hline (b) \& \&

\hline (c) \& \&

\hline (d) \& \&

\hline \multirow[t]{4}{*}{(e)} \& \&

\hline \& \&

\hline \& \&

\hline \& \&

\hline
\end{tabular}

Question Number	Scheme	Marks
4 (a) (b)	60 $\begin{aligned} & \mathrm{Q}_{1}=46 \\ & \mathrm{Q}_{2}=56 \\ & \mathrm{Q}_{3}=64 \end{aligned}$	B1 (1) B1 B1 B1
(c)	$\text { mean }=55.48 \ldots . \quad \text { or } \frac{2497}{45} \quad \text { awrt } 55.5$	B1
	$\begin{aligned} \operatorname{sd} & =\sqrt{\frac{143369}{45}-\left(\frac{2497}{45}\right)^{2}} \\ & =10.342 \ldots \quad(s=10.459 . .) \quad \text { anything which rounds to } 10.3(\text { or } \mathrm{s}=10.5) \end{aligned}$	M1 A1
(d)	Mean < median < mode or $Q_{2}-Q_{1}>Q_{3}-Q_{2}$ with or without their numbers or median closer to upper quartile (than lower quartile) or (mean-median)/sd <0; negative skew;	B1 B1dep
(e)	$\begin{aligned} \text { mean }= & (55-5) \times 0.9 \\ & =45 \\ \mathrm{sd}= & 10 \times 0.9 \\ = & 9 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
		Total 13
NOTES		
(a)	B1 60 only	
(b)	Award each B1 for correct answer only in this order.	
(c)	M1 for use of correct formula, including square root. Correct answers with no working B1M1A1.	
(d)	B1 any correct comparison of a pair of mean, median and mode using their values. B1 for 'negative skew' or allow (almost) symmetrical dependent upon correct reason.	
(e)	M1 for (55 or 55.5-5) $\times 0.9$ A1 for the correct answer only. M1 for (10 or 10.3 or 10.5) $) \times 0.9$ A1 for the correct answer only.	

Question Number	Scheme	Marks
5 (a)	$\begin{aligned} & S_{t t}=2688-\frac{158^{2}}{10}=191.6 \\ & S_{\mathrm{tw}}=1760.62-\frac{158 \times 111.75}{10}=-5.03 \end{aligned}$ awrt 192 awrt -5.03	M1 A1 A1 (3)
(b)	$r=\frac{-5.03}{\sqrt{191.6 \times 0.16}}=-0.908469 \ldots \quad \text { awrt }-0.908(5)$	M1A1
(c)	$b=\frac{-5.03}{191.6}=-0.0263 \quad \text { awrt }-0.026$	M1 A1
	$\begin{aligned} a & =11.175+0.0263 \times 15.8 \\ & =11.59 \\ w & =11.6-0.0263 t \end{aligned}$	M1 A1
		(4)
(d)	The explanatory variable is the age of each coin. This is because the age is set and the weight varies.	B1 B1
		(2)
(e) (i)	awrt 11.5	B1
(ii)	Decrease(in weight of coin of 0.1052 g) $=0.1$ or -0.1 or increase of -0.1 awrt(-0.1)	B1
(f)	Decrease; removing the fake will result in a better linear fit so r will be closer to -1	$\mathrm{B} 1 ; \mathrm{B} 1$
		(2) Total 15
NOTES		
(a)	M1 for correct attempt at either method, A1 awrt 192	
	A1 awrt -5.03	
(b)	M1 for correct attempt at use of formula, square root required.	
	A1 awrt -0.908(5)	
(c)	M1 require 'their -5.03 ' as numerator and /their 191.6' as denominator.	
	A1 awrt -0.026	
	M1 for use of correct formula with b or 'their b '; require -- or + and values in the correct place.	
	A1 for equation as written with values awrt 3 sf. with w and t.	
	Accept fractional answers that are accurate to 3sf when evaluated as decimals B1 for 'Age' or t or 'years'	
(d)(e)	B1 for 'you use age / t to predict w' or 'you can control $t /$ age' or 'weight depends on age' or similar	
	B1 awrt 11.5	
	B1 awrt -0.1 but 'decrease of -0.1 ' is B0.	
(f)	B1 for Decrease only but 'mod r increases' explicitly stated in words or symbols award B1.	
	B1 accept 'stronger correlation' or 'increase in correlation' or 'better linear fit' or ' r closer to -1 ' or 'points are closer to a straight line' or 'point is an outlier' or equivalent	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467

Fax 01623450481

Email publication.orders@edexcel.com
Order Code UA030899 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Mark Scheme (Results)
Summer 2012

GCE Statistics S1
(6683) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA033137
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012

6683 Statistics S1
 Mark Scheme

General Marking Guidance

-All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
-Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
-When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
-Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it^{\prime}, unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol \uparrow will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $*$ The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as $A \mathrm{ft}$, but manifestly absurd answers should never be awarded A marks.

General Principles for Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a| \text {, leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Mark Scheme

		Use overlay B1 B1 (2)
(b)	Points (appear to) lie close to a (straight) line or "strong /high correlation"	B1 (1)
(c)	$\begin{gathered} \sum p=93 \text { and } \sum t=34 \\ S_{p t}=694-\frac{" 93 " \times " 34 "}{6}=[167] \quad \text { or } S_{p p}=1967-\frac{" 93 " 2}{6}=[525.5] \\ S_{p t}=167 ; S_{p p}=\text { awrt } 526 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1; A1 (4) } \end{aligned}$
(d)	$\begin{align*} & b=\left[\frac{S_{p t}}{S_{p p}}=\right] \frac{" 167 "}{" 525.5 "}=[0.31779 \ldots] \quad \text { (check their answer if expression not seen) } \\ & a=\frac{" 34 "}{6}-" 0.31779 \ldots " . . \times \frac{" 93 "}{6}=5.666 \ldots-0.31779 \ldots \times 15.5=, 0.74088 \ldots \text { awrt } 0.74 \\ & \boldsymbol{t}=\mathbf{0 . 7 4 1}+\mathbf{0 . 3 1 8 p} \quad \text { (Accept } a=\frac{2336}{3153} \text { and } b=\frac{334}{1051} \text { in their equation) } \tag{4} \end{align*}$	$\begin{aligned} & \mathrm{B} 1 \mathrm{ft} \\ & \mathrm{M} 1, \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$
(e)	$(\bar{p}, \bar{t})=(15.5,5.7)$ plotted on the graph (not wholly outside the circle) Correct line plotted as per overlay. For $p=5 ; 2<t<3$ and for $p=30 ; 10<t<11$ Their line must stretch roughly as far as the points and go through the (\bar{p}, \bar{t}) circle	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
(f)	$t=" 0.741 "+" 0.318 " \times 16 \quad=5.825 \ldots \quad \text { awrt } 5.8$	M1 A1 (2) $[15]$
	Notes	
(a)	B2 for all 6 data points plotted correctly. B1	cles.
(c)	$1^{\text {st }}$ M1 for attempting $\sum p$ and $\sum t$. Allow $80<\sum p<100$ and $30<\sum t<40$ $2^{\text {nd }} \mathrm{M} 1$ for one correct expression for $\mathrm{S}_{p t}$ or $\mathrm{S}_{p p}$, f.t. their $\sum p$ and $\sum t .1^{\text {st }} \mathrm{A} 1$ fo	$2^{\text {nd }} \text { for } S_{p p}$
(d)	$\begin{array}{ll}\text { B1ft } & \text { for correct expression for the gradient, f.t. their } 167 \text { and } 525.5 \text { from (c) } \\ \mathrm{M} 1 & \text { for correct use of } a=\bar{t}-b \bar{p} \text { f.t. their values. Condone } 5.6 \text { for } \bar{t} \\ 1^{\text {st }} \mathrm{A} 1 & \text { for awrt } 0.74 \text { NB use of } 526 \text { gives } 0.745566 \ldots \text { and gets A0 } \\ 2^{\text {nd }} \mathrm{A} 1 & \text { for a correct equation for } t \text { in terms of } p \text { with } a \text { and } b \text { awrt 3sf An equn in }\end{array}$	or x is A0
(f)	M1 for clear use of their line (equation or on graph) and $p=16$ to estimate t. This may be an expression or lines marked on the diagram A1 for awrt 5.8, even if their line is not fully correct. Accept " $t>5.8$ "(oe). Ans	wer only $2 / 2$

5. (a) One large square $=\frac{450}{" 22.5 "}$ or one small square $=\frac{450}{" 562.5 "}$ (o.e. e.g. $\frac{" 562.5 "}{450}$)

One large square $=20$ cars or one small square $=0.8$ cars or $1 \mathrm{car}=1.25$ squares \quad A1
No. > 35 mph is: $4.5 \times " 20$ " or $112.5 \times " 0.8$ " (or equivalent e.g. using fd) $\quad \mathrm{dM} 1$
(b) $\begin{aligned} {[\bar{x}]=\frac{30 \times 12.5+240 \times 25+90 \times 32.5+30 \times 37.5+60 \times 42.5}{450} } & {\left[=\frac{12975}{450}\right] } \\ =28.83 \ldots & \underline{\text { or }} \quad \frac{173}{6} \quad \text { awrt } \underline{28.8}\end{aligned} \quad \begin{aligned} & \text { A1 }\end{aligned}$
(c) $\left[Q_{2}=\right] 20+\frac{195}{240} \times 10 \quad$ (o.e.) \quad [Allow use of $(n+1)$ giving 195.5 instead of 195]

$$
=28.125[\text { Use of }(n+1) \text { gives } 28.145 \ldots] \quad \text { awrt } \underline{\mathbf{2 8 . 1}} \quad \text { A1 }
$$

(d) $Q_{2}<\bar{x}$

So positive skew

[Condone $\left.Q_{2} \approx \bar{x}\right]$
[so (almost) symmetric]
B1ft
dB1ft (2)
(e) [If chose skew in (d)] median $\left(Q_{2}\right)$

Since the data is skewed or median not affected by extreme values

If chose symmetric in (d)] mean (\bar{x}) B1

Since it uses all the data	dB1

Notes

(a) $1^{\text {st }} \mathrm{M} 1$ for attempt to count squares (accept " 22.5 " in $[22,23]$ and " 562.5 " in $[550,575]$) and $1^{\text {st }}$ A1 use 450 to obtain a measure of scale. [If using fd must use 450 to obtain scale factor]
$1^{\text {st }} \mathrm{A} 1$ for a correct calc. for 20 or 0.8 or 1.25 etc [May be fd $=4$ to 1 large sq. or 0.8 to 1 small sq. May be on the diagram.]
$2^{\text {nd }} \mathrm{dM} 1$ dep on $1^{\text {st }} \mathrm{M} 1$ for correctly counting squares for $>35 \mathrm{mph}$ and forming suitable expr' $2^{\text {nd }} \mathrm{A} 1$ for 90 with no incorrect working seen.
e.g. $\frac{4.5}{22.5} \times 450$ scores M1A1M1 and A1 when $=90$ is seen. Answer only is $4 / 4$
(b) $\quad 1^{\text {st }} \mathrm{M} 1$ for clear, sensible use of mid-points at least 3 of $(12.5,25,32.5,37.5,42.5)$ seen $2^{\text {nd }}$ M1 for an expression for \bar{x} (at least 3 correct terms on num' and a compatible denominator)

Follow through their frequencies.
You may see these fractions: $\frac{16218.75}{562.5}$ (small squares), $\frac{12975}{450}$ (frequencies), $\frac{648.75}{22.5}$ (large squares)
A1 for awrt 28.8 (answer only is $3 / 3$)
(c) M1 for a full expression for median (using their frequencies). May see e.g. $25+\frac{75}{120} \times 5$ etc Do nor accept boundaries of 19.5 or 20.5, these are M0A0
A1 for awrt 28.1 (answer only is $2 / 2$) [For use of $(n+1)$ accept 28.15 but not 28.2]
(d)
$1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for a correct statement about their Q_{2} and \bar{x} [Condone $Q_{2} \approx \bar{x}$ only if $\left|Q_{2}-\bar{x}\right|<1$] Do not accept an argument based on the shape of the graph alone. $2^{\text {nd }} \mathrm{dB} 1 \mathrm{ft}$ dependent on $1^{\text {st }} \mathrm{B} 1$ for a compatible description of skewness. F.t. their values
Quartiles If $Q_{1}=23.4$ and $Q_{3}=33.7 \sim 33.8$ are seen allow comparison of quartiles for $1^{\text {st }} \mathrm{B} 1$ in (d)
(e) $1^{\text {st }} \mathrm{B} 1$ for a correct choice based on their skewness comment in (d). If no choice made in (d) only Q_{2} $2^{\text {nd }} \mathrm{dB} 1$ for a suitable compatible comment

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA033137 Summer 2012
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

edexcel

Mark Scheme (Results)

January 2013

GCE Maths - Statistics S1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.
You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UA034849
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Unless indicated in the mark scheme a correct answer with no working should gain full marks for that part of the question.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
$a M$		\bullet
$a A$	\bullet	
$b M 1$		\bullet
$b A 1$	\bullet	
$b B$	\bullet	
$b M 2$		\bullet
$b A 2$		\bullet

January 2013

6683 Statistics S1

Mark Scheme

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline \(1 . \begin{array}{r}\text { (a) } \\ \\ \text { (b) }\end{array}\) \& \begin{tabular}{l}
\[
\begin{align*}
\& \left(\mathrm{S}_{t t}\right)=8702-\frac{258^{2}}{10} \text { or }\left(\mathrm{S}_{g t}\right)=1550.2-\frac{258 \times 63.6}{10} \\
\& \left(\mathrm{~S}_{t t}=\right) 2045.6, \quad\left(\mathrm{~S}_{g t}=\right)-90.68 \quad \text { awrt (2046), awrt }-90.7 \\
\& r=\frac{-90.68}{\sqrt{2045.6 \times 7.864}}=-0.714956 \ldots \quad \text { awrt }-0.715 \tag{3}
\end{align*}
\] \\
Positive \\
e.g. high \(v\) corresponds to low \(t\) and low \(t\) corresponds to high \(g\) so expect high \(v\) to corresponds to high \(g\) \\
or expect more revision to result in a better grade
\end{tabular} \& \[
\begin{array}{|ll}
\text { M1 } \& \\
\text { A1, A1 } \& \\
\text { M1 A1 } \& \\
\text { B1 } \& \\
\text { B1 } \& \text { (2) } \\
\hline
\end{array}
\] \\
\hline \& Notes \& \\
\hline (a)
(b)

(c) \& \multicolumn{2}{|l|}{| M1 for attempt at correct formula. |
| :--- |
| Must have their $\mathrm{S}_{t t}, \mathrm{~S}_{\mathrm{g} t}$ and given $\mathrm{S}_{g g}$ in the correct places. Condone missing "-" |
| Award M1A0 for awrt -0.71 with no expression seen |
| M0 for $\frac{1550.2}{\sqrt{8702 \times 7.864}}$ |
| Correct answer only is $2 / 2$ |
| $1^{\text {st }} \mathrm{B} 1$ for saying "positive". Ignore mention of skew. |
| $2^{\text {nd }} \mathrm{B} 1$ for suitable reason that mentions at least v and g and supports positive correlation. |
| e.g. "the less revision done the lower the grade" is B1 |
| "should do better with more revision" is B0 since does not mention grades |
| "both coefficients are similar" or two sketches of negative correlation with labelled axes is B1 since v, t and g are implied |
| Allow use of letters v and g |
| Allow equivalent terms e.g. "study" instead of "revision" or "score" instead of "grade" |}

\hline
\end{tabular}

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA034849 January 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

Mark Scheme (Results)
Summer 2013

GCE Statistics 1 (6683/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036996
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question	Scheme	Marks
3. (a)	Width $=2 \times 1.5=\underline{\mathbf{3 (c m})}$ Area $=8 \times 1.5=12 \mathrm{~cm}^{2}$ Frequency $=24$ so $1 \mathrm{~cm}^{2}=2$ plants (o.e.) Frequency of 12 corresponds to area of 6 so height $=\underline{\mathbf{2 (c m})}$	B1 M1 A1 (3)
(b)	$\begin{array}{lll} {\left[Q_{2}=\right](5+)} & \frac{19}{24} \times 5 & \text { or } \\ & (\text { use of }(n+1)) & (5+) \frac{19.5}{24} \times 5 \\ =8.9583 \ldots & \underline{\text { awrt 8.96 }} & \text { or } \\ 9.0625 \ldots & \text { awrt } 9.06 \end{array}$	M1 A1 (2)
(c)	$\begin{aligned} & {[\bar{x}=] \frac{755}{70} \text { or awrt 10.8 }} \\ & {\left[\sigma_{x}=\right] \sqrt{\frac{12037.5}{70}-\bar{x}^{2}}=\sqrt{55.6326 \ldots}} \\ & =\underline{\underline{\text { awrt 7.46 }} \quad \text { (Accept } s=\text { awrt 7.51) }} \end{aligned}$	B1 M1A1ft A1 (4)
(d)	$\bar{x}>Q_{2}$ So positive skew	B1 ft $\begin{equation*} \mathrm{dB} 1 \tag{2} \end{equation*}$
(e)	$\begin{aligned} \bar{x}+\sigma \approx 18.3 \text { so number of plants is e.g. } \frac{(25-" 18.3 ")}{10} \times 12 & (+4)(\text { o.e. }) \\ & =12.04 \text { so } \underline{\mathbf{1 2}} \text { plants } \end{aligned}$	M1 A1 (2) [13]
	Notes	
(a)	M1 for forming a relationship between area and no. of plants or their width \times their height $=6$ A1 for height of $2(\mathrm{~cm})$. Make sure the 2 refers to height and not plants!	
(b)	M1 for a suitable fraction $\times 5$ (ignore end points)	
(c)	B1 for a correct mean. Accept exact fraction or awrt 10.8 M1 for a correct expression for σ or σ^{2}. Condone mixed up labelling- ft their mean A1ft for a correct expression - ft their mean but must have square root A1 for awrt 7.46 (use of $s=$ awrt 7.51). Condone correct working and answer called variance.	
(d)	$1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for a correct comparison of their \bar{x} and their Q_{2}	
ALT	Allow use of a formula for skewness that involves $\left(\bar{x}-Q_{2}\right)$ or use of quartiles but must have correct values NB $Q_{1}=5.31, Q_{3}=14.46$ (awrt 14.5), $Q_{3}-Q_{2} \approx 5.5, Q_{2}-Q_{1} \approx 3.7 / 6$ $2^{\text {nd }} \mathrm{dB} 1$ Dependent on a suitable reason for concluding "positive skew". "correlation" is B0	
(e)	M1 for a suitable expression involving some interpolation (condone missing 4 so accept awrt 8) Condone use of end points of 25.5 and 14.5 in their interpolation expressions. A1 for 12 (condone awrt 12). Answer only $2 / 2$	

Question	Scheme	Marks
4. (a)	$\begin{align*} & {[\mathrm{P}(M<145)=] \mathrm{P}\left(Z<\frac{145-150}{10}\right) } \\ &=\mathrm{P}(Z<-0.5) \text { or } \mathrm{P}(Z>0.5) \\ &=\text { awrt } \underline{\mathbf{0 . 3 0 9}} \tag{3} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
	$\begin{array}{lll} {[\mathrm{P}(B>115)=0.15 \Rightarrow]} & & \\ & \underline{d=\mathbf{1 4 . 5}} \quad \begin{array}{l} \text { (Calc gives 1.036433...) } \\ \text { (Calc gives 14.4727...) } \end{array} \end{array}$	M1B1A1 A1 (4)
	$[\mathrm{P}(X>\mu+15 \mid X>\mu-15)=] \frac{\mathrm{P}(X>\mu+15)}{\mathrm{P}(X>\mu-15)}$	M1
	$\frac{0.35}{1-0.35}$	A1
	$=\frac{7}{13} \text { or awrt } \mathbf{0 . 5 3 8}$	A1 (3)
		[10]
	Notes	
(a)	Condone poor use of notation if a correct line appears later. M1 for standardising with 145,150 and 10 . Allow \pm and use of symmetry so 155 instead of 145 $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(Z<-0.5)$ or $\mathrm{P}(Z>0.5)$ i.e. a z value of ± 0.5 and a correct region indicated $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.309 Answer only is $3 / 3$	
(b)	M1 for $\pm \frac{115-100}{d}=z$ where $\|z\|>1$ Condone MR of $\mu=150$ instead of 100 for M1B1only	
	B1 for a standardised expression $= \pm 1.0364$ (do not allow for use of $1-1.0364$) $1^{\text {st }} \mathrm{A} 1$ for $z=$ awrt 1.04 and compatible signs i.e. a correct equation with $z=$ awrt 1.04 $2^{\text {nd }} \mathrm{A} 1$ for awrt 14.5 (allow awrt 14.4 if $z=$ awrt 1.04 is seen) Answer only of awrt 14.473 scores M1B1A1A1 Answer only of awrt 14.48 scores M1B0A1A1	04
(c)	M1 for a correct ratio expression need $\mathrm{P}(X>\mu+15)$ on numerator. Allow use of a value for μ May be implied by next line. NB $\frac{0.35 \times 0.65}{0.65}=\frac{0.2275}{0.65}$ is M0 $1^{\text {st }} \mathrm{A} 1$ for a correct ratio of probabilities $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.538 or $\frac{7}{13}$ (o.e.). Allow 0.5385 provided $2^{\text {nd }} \mathrm{A} 1$ is scored.	

Question	Scheme	Marks
5. (a)	$\begin{aligned} & \mathrm{S}_{y y}=393-\frac{61^{2}}{10}=\underline{\mathbf{2 0 . 9}} \\ & \\ & \\ & \\ & \mathrm{S}_{x y}=382-\frac{61 \times 60}{10}=\underline{\mathbf{1 6}} \end{aligned}$	M1A1 A1 (3)
(b)	$[r=] \frac{" 16 "}{\sqrt{" 20.9 " \times 28}}=0.66140 \ldots$ awrt 0.661	M1 A1 (2)
(c)	Researcher's belief suggests negative correlation, data suggests positive correlation So data does not support researcher's belief	$\begin{align*} & \mathrm{B} 1 \tag{2}\\ & \mathrm{~dB} 1 \end{align*}$
(d)	New x equals $\bar{x}=6$ Since $\mathrm{S}_{x x}=\sum(x-\bar{x})^{2}$ the value of $\mathrm{S}_{x x}$ is the same $=28$	B1 dB1 (2)
(e)	$\mathrm{S}_{x y}=\sum(x-\bar{x})(y-\bar{y})=\sum(x-\bar{x}) y$ so the new term will be zero (since mean $=x$) and since $\mathrm{S}_{y y}$ increases So r will decrease	B1 dB1 (2) [11]
	Notes	
(a)	$\begin{array}{ll} \hline \text { M1 } & \text { for a correct expression for } \mathrm{S}_{y y} \text { or } \mathrm{S}_{x y} \\ 1^{\text {st }} \mathrm{A} 1 & \text { for } \mathrm{S}_{y y}=20.9 \\ 2^{\text {nd }} \mathrm{A} 1 & \text { for } \mathrm{S}_{x y}=16 \end{array}$	
(b)	M1 for a correct expression for $r-\mathrm{ft}$ their 20.9 (provided it is >0) and their 16 Use of 382 for 16 or 393 for 20.9 is M0 A1 for awrt 0.661	
(c)	$1^{\text {st }} \mathrm{B} 1$ for a suitable reason contrasting belief with data. They must state the sign negative) of the correlation of data or the belief and imply the other is opp $2^{\text {nd }} \mathrm{dB} 1$ Dependent on a correct reason for saying it does not support the claim e.g. State "does not support the belief because data has positive correlation" sco State "does support the belief because data has positive correlation" scores B	itive or 1B1 BUT
(d)	$1^{\text {st }} \mathrm{B} 1$ for clearly stating that new value of $x=(6=)$ mean $2^{\text {nd }} \mathrm{dB} 1$ Dep. on $1^{\text {st }} \mathrm{B} 1$ for a reason that shows $\mathrm{S}_{x x}$ is unchanged e.g. extra term is 0 so $\mathrm{S}_{x x}$ $1^{\text {st }}$ B1 for seeing $\sum x=66$ and new $\sum x^{2}=424$ (or $388+6^{2}$) and attempt at $S_{x x}$ $2^{\text {nd }}$ B1 for showing $\mathrm{S}_{x x}=28$ with $n=11$ and no incorrect working seen and a final	he same mment
(e)	$1^{\text {st }} \mathrm{B} 1$ for a clear reason that mentions $\mathrm{S}_{x y}$ is the same and the increase in $\mathrm{S}_{y y}$ Saying that r increases or stays the same is B0B0 $2^{\text {nd }} \mathrm{dB} 1$ Dependent on $1^{\text {st }} \mathrm{B} 1$ for saying r will decrease.	

Question	Scheme	Marks
7. (a)	$\mathrm{E}(S)=0+1 \times 0.2+2 \times 0.1+4 \times 0.3+5 \times 0.2=[0.2+0.2+1.2+1.0] \underline{\underline{\mathbf{2 . 6}}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\mathrm{E}\left(S^{2}\right)=0+1 \times 0.2+2^{2} \times 0.1+4^{2} \times 0.3+5^{2} \times 0.2 \quad \text { or } \quad 0.2+0.4+4.8+5$ $\underline{10.4}{ }^{(*)}$	M1 A1cso (2)
(c)	$\operatorname{Var}(S)=10.4-\left(" 2.6{ }^{\prime \prime}\right)^{2}$	$\begin{align*} & \text { M1 } \tag{2}\\ & \text { A1 } \end{align*}$
(d)(i) (ii)	$\begin{array}{lll} 5 \mathrm{E}(S)-3=5 \times " 2.6^{\prime \prime}-3, & =\underline{\mathbf{1 0}} \\ 5^{2} \operatorname{Var}(S)=25 \times 3.64, & =\underline{\mathbf{9 1}} \end{array}$	$\begin{aligned} & \text { M1, A1 } \\ & \text { M1, A1 (4) } \end{aligned}$
(e)	$5 S-3>S+3 \Rightarrow 4 S>6 \quad$ or $\quad S>1.5, \quad$ so need $\mathrm{P}(S \geq 2)$	$\begin{align*} & \text { M1, A1 } \\ & \text { A1 } \tag{3} \end{align*}$
(f) (g)	$\mathrm{P}\left(S_{1}=1\right) \times \mathrm{P}\left(S_{2} \leq 4\right),=0.2 \times 0.8=0.16 \quad(*)$	M1,A1cso(2)
	$\mathrm{P}\left(S_{1}=2\right) \times \mathrm{P}\left(S_{2} \leq 2\right)=0.1 \times 0.5$ $=0.05$ $\mathrm{P}\left(S_{1}=4\right) \times \mathrm{P}\left(S_{2} \leq 1\right)=0.3 \times 0.4$ $=0.12$ Full method - all cases listed $\mathrm{P}\left(S_{1}=5\right) \times \mathrm{P}\left(S_{2}=0\right)=0.2 \times 0.2$ $=0.04$ all correct products $\mathrm{P}\left(S_{1}=0\right) \times \mathrm{P}\left(S_{2}=\right.$ any value $)=0.2 \times 1=0.20$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$=\underline{0.57}$	$\begin{array}{cc} \mathrm{A} 1 \\ \\ \\ & {[\mathbf{1 8]}} \\ \hline \end{array}$
	Notes	
(a)	M1 for an attempt at $\sum x \mathrm{P}(X=x)$, at least 2 non-zero terms seen. Correct answer 2/2 A1 for 2.6 or any exact equivalent	
(b)	M1 for a correct attempt, at least 3 non-zero terms seen	
(c)	M1 for $10.4-\mu^{2}$, ft their μ. Must see their value of μ squared (A1 for 3.64 or any exact equiv.)	
(d)(i)	M1 for a correct expression using their 2.6 (A1 for 10)	
(ii)	M1 for $25 \times \operatorname{Var}(S)$ - ft their $\operatorname{Var}(S)$ (A1 for 91$)$	
(e)	M1 for solving the inequality as far as $p S>q$ where one of p or q are correct $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(S \geq 2)$ $2^{\text {nd }} \mathrm{A} 1$ for 0.6 (provided $S>1.5$ was obtained). Ans only of 0.6 scores $3 / 3$	
(f)	A table showing all $\mathbf{2 5}$ cases can only score $\mathbf{M 1}$ in (g) if the correct cases are indicated. M1 for using independence (so multiplying) and attempting $\mathrm{P}\left(S_{2} \leq 4\right)$ e.g. $0.2 \times(0.2+0.2+0.1+0.3)$ or $0.04+0.04+0.02+0.06$ score M1 BUT $\frac{4}{25}$ (not from 0.2×0.8) is M0A0	
(g)	M1 for all cases for S_{1} or all 15 cases for X $1^{\text {st }} \mathrm{A} 1$ for all correct probability products for S_{1} or X $2^{\text {nd }} \mathrm{A} 1$ for 0.57 Correct answer scores $3 / 3$. Probabilities out of 25 score A0A0	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036996 Summer 2013

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Rewarding Learning

Mark Scheme (Results)

Summer 2013

GCE Statistics 1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036993
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question	Scheme	Marks
1. (a)	$\begin{array}{ll} \left(\mathrm{S}_{t h}\right)=64980-\frac{7150 \times 110}{9}=-22408.9 \ldots & \underline{\mathbf{2 2 ~ 4 0 0}} \\ \left(\mathrm{~S}_{h h}\right)=7171500-\frac{7150^{2}}{9}=1491222.2 \ldots & \underline{\mathbf{4 4 0 0 0 0 0}} \end{array}$	M1 A1 A1
(b)	$r=\frac{-22408.9}{\sqrt{1491222 \times 371.56}} \quad=-0.95200068 \ldots \quad \text { awrt }-\underline{\mathbf{0 . 9 5 2}}$	(3) M1A1
(c)	Yes as r is close to -1 (if $-1<r<-0.5$) or Yes as r is close to 1 (if $1>r>0.5$) [If $-0.5 \leq r \leq 0.5$ allow "no since r is close to 0 "] [If $\|r\|>1$ award B0]	$\begin{array}{ll} & \text { (2) } \\ & \text { (1) } \end{array}$
(d)	$\begin{aligned} & b=\frac{-22408.9}{1491222.2}=-0.015027 \ldots \quad\left(\text { allow } \frac{-56}{3725}\right) \quad \text { awrt }-0.015 \\ & a=\frac{110}{9}-\text { "their } b " \times \frac{7150}{9}=(12.2--0.015 \times 794.4),=24.1604 \ldots \text { so } \boldsymbol{t}=\mathbf{2 4 . 2}-\mathbf{0 . 0 1 5} \boldsymbol{h} \end{aligned}$	M1 A1 M1, A1
(e)	0.015 is the drop in temp, (in ${ }^{0} \mathrm{C}$), for every $1(\mathrm{~m})$ increase in height above sea level.	B1
(f)	$\begin{aligned} \text { Change } & =(" 24.2-0.015 " \times 500)-(" 24.2-0.015 " \times 1000) \text { or } 500 \times " 0.015 " \\ & = \pm 7.5 \quad(\text { awrt } \pm 7.5) \quad(\text { only ft a value }<100) \end{aligned}$	M1 A1ft (2) (13 marks)
	Notes	
(a)	M1 for at least one correct expression (condone transcription error) $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{S}_{h h}=$ awrt 1490000 or $\mathrm{S}_{t h}=$ awrt -22400 (Condone $S_{x x}$ or $S_{x y}=\ldots$ or $2^{\text {nd }} \mathrm{A} 1$ for $\mathrm{S}_{t h}=-22400$ and $\mathrm{S}_{h h}=1490000$ only. [This mark is assessing co (Allow no labels but mis-labelling $\mathrm{S}_{t h}$ as $\mathrm{S}_{h h}$ etc loses the final A1)	$\text { en } S_{y y}=\ldots \text {) }$ t rounding]
(b)	M1 for attempt at correct formula. Allow minor transcription errors of 2 or 3 di Must have their $\mathrm{S}_{h h}, \mathrm{~S}_{t h}$ and given $\mathrm{S}_{t t}$ (3sf or better) in the correct places. Condon Award M1A0 for awrt -0.95 with no expression seen. M0 for $\frac{64980}{\sqrt{7171500 \times 7}}$	ssing "-"
(c)	B1 ft must comment on supporting and state: high/strong/clear (negative or positive) "points lie close to a straight line" is B0 since there is no evidence of this.	rrelation
(d)	$1^{\text {st }} \mathrm{M} 1$ for a correct expression for b. Follow through their $\mathrm{S}_{h h} \& \mathrm{~S}_{t h}$. Condone $1^{\text {st }} \mathrm{A} 1$ for awrt -0.015 or allow exact fraction from rounded values. $2^{\text {nd }} \mathrm{M} 1$ for a correct method for a. Follow through their value of b $2^{\text {nd }} \mathrm{A} 1$ for a correct equation for t and h with $a=$ awrt 24.2 and $b=$ awrt -0.01	o fractions
(e)	B1 Must mention h (or height) and t (or temperature) and their (1 sf) value of b in a co	comment
(f)	M1 for a correct expression seen based on their equation. Allow transcription error If answer is $500 \times$ their b to 2 sf and <100 (M1A1), If answer is $500 \times$ their b to 2 sf and $>$	of 1 digit. (M1A0)

Question	Scheme	Marks
4. (a)	4837.5 (allow 4838 or 4840)	B1
	$\text { Mean }=\frac{" 4837.5 "}{200}=24.1875 \quad \text { awrt } \quad \underline{\mathbf{2 4 . 2}} \text { or } \frac{387}{16}$	M1 A1
	$\sigma=\sqrt{\frac{134281.25}{200}-\left(\frac{4837.5}{200}\right)^{2}}$	M1
	$=9.293 \ldots \ldots . . \quad$ (accept $s=9.32) \quad$ awrt $\underline{\text { 9.29 }}$	A1 (5)
(b)	$\mathrm{Q}_{2}=[20.5]+\frac{(100 / 100.5-62)}{88} \times 5=22.659 \ldots \quad \text { awrt } \underline{\mathbf{2 2} .7}$	M1 A1
		(2)
(c)	$\mathrm{Q}_{1}=10.5+\frac{(50 / 50.25)}{62} \times 10[=18.56] \quad(*) \quad(n+1 \text { gives } 18.604 \ldots)$	B1 cso
		(1)
(d)	$\begin{aligned} & \mathrm{Q}_{3}=25.5 \quad \text { (Use of } n+1 \text { gives } 25.734 \ldots \text {) } \\ & \mathrm{IQR}=6.9 \quad \text { (Use of } n+1 \text { gives } 7.1) \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 ft } \end{aligned}$
		(2)
(e)	The data is skewed	B1
		(1)
(f)	Mean decreases and st. dev. remains the same. [Must mention mean and st. dev.] (from(a)) The median and quartiles would decrease. [Must refer to median and at least Q_{1}.] ((b)(c)))	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
	The IQR would remain unchanged (from (d))	$\begin{array}{lr} \text { B1 (3) } \\ \text { (14 marks) } \end{array}$
Notes		
(a)	Correct answers only score full marks in each part except (c)	
	If no $\sum \mathrm{f} t$ seen (or attempt at $\sum \mathrm{f} t$ seen), B1 can be implied by a correct mean	$\text { wrt } 24.2$
	$1^{\text {st }}$ M1 for attempt at their $\frac{\sum^{\mathrm{ft}}}{\sum^{\mathrm{f}}}$ allow 1 sf so $\sum \mathrm{f}=$ awrt 200 and $\sum \mathrm{f} t=$ awrt Or award M1 for a clear attempt at mean where at least 4 correct products of \sum $2^{\text {nd }} \mathrm{M} 1 \quad$ for correct expression including square root seen. Follow through their m Allow a transcription error in 134281.25 but not an incorrect re-calculatio	000. are seen n.
(b)	M1	
(c)	B1cso for a fully correct expression including end point. NB Answer is given. Allow use of $(n+1)$ giving $50.25 \ldots$ but use of 50.5 scores B0	
(d)	$\begin{array}{ll}1^{\text {st }} \mathrm{B} 1 & \text { for } 25.5 \\ 2^{\text {nd }} \mathrm{B} 1 \mathrm{ft} & \text { for awrt } 25.7 \text { using } n+1) \\ Q_{3}-\text { their } Q_{1}(\text { or } 18.6)(\text { provided }>0)\end{array}$	y scores $2 / 2$
(e)	B1 Must mention that the data is skewed or not symmetrical. Do not award for "outliers"	
(f)	$1^{\text {st }} \mathrm{B} 1$ for one correct comment from the above. May refer to parts (a), (b), (c) or (d) $2^{\text {nd }} B 1$ for two correct comments from the above $3^{\text {rd }}$ B1 for all 3 correct comments from the above	

Question	Scheme	Marks
	[Let X be the amount of beans in a tin. $\mathrm{P}(X<200)=0.1$] $\begin{aligned} \frac{200-\mu}{7.8} & =-1.2816 \\ \mu & =209.996 \ldots .\end{aligned}$	M1 B1
(b)	$\begin{array}{rlrl} \mathrm{P}(X>225) & =\mathrm{P}\left(Z>\frac{225-" 210 "}{7.8}\right) & \\ & =\mathrm{P}(Z>1.92) & \underline{\text { or }} 1-\mathrm{P}(Z<1.92) & \tag{allow1.93}\\ & =1-0.9726 & =0.0274 \text { (or better) } & \\ & \text { [calc gives } 0.0272037 \ldots \text {] } \\ & =0.0274 & & \\ & & \text { allow } 1.9 \end{array}$	M1 A1 A1
(c)	[Let Y be the new amount of beans in a tin] $\begin{aligned} \frac{210-205}{\sigma} & =2.3263 \quad \text { or } \quad \frac{200-205}{\sigma}=-2.3263 \quad \text { [calc gives } 2.3263478 . \\ \sigma & =\frac{5}{2.3263} \\ \sigma & =2.15 \quad(2.14933 \ldots) \end{aligned}$	M1 B1 dM1 A1 (4) (10 marks)
	Notes	
(a)	Condone poor handling of notation if answers are correct but A marks must have correct working. M1 for an attempt to standardise (allow \pm) with 200 and 7.8 and set $= \pm$ any z value $(\|z\|>1)$ B1 for $z= \pm 1.2816$ (or better used as a z) [May be implied by 209.996(102...) or better seen] A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1) The 210 must follow from correct working - sign scores A0 If answer is awrt 210 and $209.996 \ldots$ or better seen then award M1B1A1 $z=1.28$ gives 209.984 and $z=1.282$ gives 209.9996 and both score M1B0A1 If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z=1.2816$ is seen)	
(b)	M1 for attempting to standardise with 225, their mean and 7.8. Allow \pm $1^{\text {st }} \mathrm{A} 1$ for $Z>$ awrt 1.92/3. Allow a diagram but must have $1.92 / 3$ and correct area indicated. Must have the Z so $\mathrm{P}(X>225)$ with or without a diagram is not sufficient. Award for 1-0.9726 or 1-0.9732 $2^{\text {nd }} \mathrm{A} 1$ for 2.7% or better (calculator gives 2.72...) Allow awrt 0.027 . Correct ans scores $3 / 3$ $1^{\text {st }}$ M1 for an attempt to standardise with 200 or 210,205 and σ and set $= \pm$ any z value $(\|z\|>2)$ B1 for $z=2.3263$ (or better) and compatible signs. If B0 in (a) for using a value in $[1.28,1.29$) but not using 1.2816: allow awrt 2.33 here $2^{\text {nd }} \mathrm{dM1}$ Dependent on the first M1 for correctly rearranging to make $\sigma=\ldots$ May be implied e.g. $\frac{5}{\sigma}=2.32 \rightarrow \sigma=2.16$ (M1A0) BUT must have $\sigma>0$ A1 for awrt 2.15. Must follow from correct working but a range of possible z values will do. NB $2.320<z \leq 2.331$ will give an answer of awrt 2.15	
(c)		

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036993 Summer 2013

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

