OCR Maths S1

Mark Scheme Pack

2005-2014

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

rounding			
1 (i) Σd^2	M1	Ī	Subtr & squ 5 pairs & add
= 14	A1		
$6 \times their 14$			_
$1 - \frac{6 \times their 14}{5 \times (25 - 1)}$	M1		dep 1 st M1
= 0.3	A1	4	
- 0.3			$S_{xy} = 48 - \underline{15x15}$ { = 3 }
			5 } { }
			$S_{xx} = 55 - \underline{15^2}$ } { = 10 }
			5 } MI { } AI
			$S_{yy} = 55 - \frac{15}{5}$ $\{ = 10 \}$
			$S_{xy} = 48 - \frac{15x15}{5}$ { = 3 } $S_{xx} = 55 - \frac{15^2}{5}$ } { = 10 } $S_{yy} = 55 - \frac{15^2}{5}$ } { = 10 } $S_{yy} = 55 - \frac{15^2}{5}$ } { = 10 }
			their S_{xy} M1dep = 0.3 A1 $\sqrt{(S_{xx}S_{yy})}$
(ii) Reverse rankings attempted	M1		3 correct
2 5 3 4 1	A1	2	T & I to make $\Sigma d^2 = 40$: 2 mks or 0 mks
	6	_	1 cc 1 to make 2tr = 10. 2 mks of 0 mks
2 (i) (a) Geo(0.14) stated in (a) or (b)	B1		or $0.86^n \times 0.14$ or $0.14^n \times 0.86$ in (a) or $\ge M1$ in (b)
(,, (,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,			or Geo(0.86) stated in (a) or (b)
$(0.86)^4 \times 0.14$	M1		
= 0.0766 (3 sfs)	A1	3	No wking: 0.077: B1M1A0
(b) $1 - 0.86^7$	M2	-]	$1 - 0.86^8$: M1
or $0.14 + 0.86 \times 0.14 \dots + 0.86^6 \times 0.14$			$+8^{\text{th}}$ term ($r = 7 \text{ or } 0$) or 1 missing term: M1
= 0.652 (3 sfs)	A1	3	
(ii) 1/0.14	M1		
$= \frac{50}{7}$ or 7.14 (3 sfs)	A1	2	
2 (2) (1) P(45, 0.25)	8		
3 (i) (a) B(16, 0.35) stated	B1		Or implied by use of tables or
1 0.8404	M1		$0.35^a \times 0.65^b$ (a+b = 16) in (a) or (b)
1 - 0.8406	IVII		Allow 1 – 0.9329 or 0.0671 Or complete method using formula,
			P(r = 8-16 or 9-16) or 1-P(r = 0-7 or 0-8)
= 0.159 (3 sfs)	A1	3	1 (7 = 0-10 01 7-10) 01 1-1 (7 = 0-7 01 0-0)
(b) 0.9771 – 0.1339	M1		Allow 0.9771 – 0.2892
(6) 6.5771 6.1555	1,11		Or complete method using formula $(r = 4-9)$
= 0.843 (3 sfs)	A1	2	
(ii) ${}^{16}C_6(0.38)^6(0.62)^{10}$	M2		Absent or incorr coeff: M1
			or ${}^{16}C_6(0.38)^{10}(0.62)^6$: M1
= 0.202 (3 sfs)	A1	3	
	8		
4 (i) Correct subst in \geq two S formulae	M1		Any correct version
$14464.1 - \frac{265 \times 274.6}{5}$			or
5	3.61		$14464.1 - 5 \times 53 \times 54.92$
(265^2) (274.6^2)	M1		$\sqrt{(14176.54 - 5 \times 53^2)(15162.22 - 5 \times 54.92^2)}$
$\sqrt{14176.54 - \frac{265^2}{5} \left(15162.22 - \frac{274.6^2}{5}\right)}$			•
	A1		or fully correct method with $(x - \overline{x})^2$ etc
0.969 (2 -fv)	AI	3	
= -0.868 (3 sfs)	D 1	ر 1	On all shalls diff on many and become form I'
(ii) No difference oe	B1	1	Or slightly diff or more acc because of rounding
			errors when mult by 2.54 oe
			Not just "more accurate"
(iii)Choose y on x stated	B1ind		or implied, eg by S_{xy}/S_{xx} or $y = ax + b$
(111) CHOOSC y OH λ Stated	חווות	l	or implied, e.g. by D_{xy}/D_{xx} or $y - ux + v$

[Γ	1	If state x on y, but wking is y on x: B1
14464 1 _ 265 × 274.6			
$\frac{5}{0.682}$ or -0.682	M1		or their $\frac{-89.7}{131.54}$ seen or $\frac{14464.1 - 5 \times 53 \times 54.92}{14176.54 - 5 \times 53^2}$
$\frac{14464.1 - \frac{265 \times 274.6}{5}}{14176.54 - \frac{265^{2}}{5}} \text{or} -0.682$	IVII		or correct subst into a correct formula \underline{S}_{xy}
5			S_{xx}
	M1ind		or $a = {}^{274.6}/_5$ - (their – 0.682) $\times {}^{265}/_5$
$y - \frac{274.6}{5} = (\text{their} - 0.682)(x - \frac{265}{5})$	A1		Simplif to 3 terms. Coeffs to ≥ 2 sfs
y = 91(.1) - 0.68(2) x		5	cao
49.9 (3sfs) or 50	A1		
	9		Use of x on y: equiv M mks as above
5 (i) Read at 300 or 300.25 and 900 or 900.75	M1		or 44-46 and 68-70 incl.
44.5 to 45.5 and 69 to 69.9	A1		
IQR 23.5 to 25.4	A1	3	dep A1 Must look back, see method. No wking, ans in range: M1A1A1
(ii) 0.6 or 60%	M1		Seen or implied
CF 720	M1		Seen or implied
63 to 64	A1	3	55 5 42 5C. CC D1
(iii) 1200 – 860	M1		55.5 to 56: SC B1 Allow 1200 – (850 to 890)
= 340	A1	2	310 to 350
(iv) 340/1200	M1		their (iii)/1200
$0.283^{5} = 0.00183$	M1dep A1	3	[their (iii)/1200] ⁵ exactly Allow 0.00114 to 0.00212 \geq 2 sfs
- 0.00183	AI	3	
			$^{340}\text{C}_5/^{1200}\text{C}_5$ M1
(v) Incorrect reason or ambiguity: B0B0. Otherwise:			eg $IQR = 55-35 = 20$ or $IQR = value > 27$
Too low,			or new info' implies straight line: B1
or should be 26 or 27 or 2 or 3 higher	B2	2	or originally, majority in range 35 – 55 are at
			top of this range: B1
	13		uns range. Di
6 (i) $a = {}^{4}/_{5}$, $b = {}^{1}/_{5}$	B1		Or: B1 { ie: a, b : B1
$c = \frac{1}{4}, d = \frac{3}{4}$	B1B1 B1		B1 { another pair : B1B1 B1B1 { third pair : B1
$e = \frac{3}{4}, f = \frac{1}{4}$	ы	4	B1B1 { third pair : B1
$(ii)^{1}/_{2}x^{-4}/_{5}x^{1}/_{2} + {}^{1}/_{2}x^{1}/_{5}x^{-1}/_{4} + {}^{1}/_{2}x^{-3}/_{5}x^{-3}/_{4}$	M2		M1: one correct product (M2 needs +)
9 (1.5)	A1	3	ft their values for M mks only
$=\frac{9}{20}$ (AG) with no errors seen	ļ		
(iii) $1/10 + 9/20 + k + 1/5 = 1$ oe or $\frac{1}{2}x^{1}/_{5}x^{3}/_{4} + \frac{1}{2}x^{3}/_{5}x^{1}/_{4} + \frac{1}{2}x^{2}/_{5}x^{1}/_{2}$	M1		ft their values for M mk only
$k = \frac{1}{4} \text{ oe}$	A1	2	it then values for M link Offry
(iv) $\sum xp(x)$	M1		Allow omit 1st term only. Not ISW, eg ÷ 4
$=1\frac{3}{4}$ oe	A1		cao
72	M1		Allow omit 1st term only. Not ISW, eg ÷ 4
$\sum x^2 p(x) \qquad \left[= 3 \frac{17}{20} \right]$	M1ind		Subtract (their μ) ² , if result +ve
$\Sigma x^2 p(x) - (\text{their } \mu)^2$ 63/80 or 0.788 (3 sfs)	A1	5	Follow their <i>k</i> for M mks only
03/00 01 0.700 (3 818)			$\Sigma(x - \mu)^2 p(x)$: Single consistent pair: M1
			Rest correct : M1
	14		
	14		

7 (i) ${}^{18}C_7$ or ${}^{18!}/_{(11! \times 7!)}$	M1		
= 31824	A1	2	cao
(ii) ${}^5C_2 \times {}^6C_2 \times {}^7C_3$ or 5250	M2		M1: 1 correct ${}^{n}C_{r}$ or mult any three ${}^{n}C_{r}$ s
÷ 31824	M1		Divide by their (i). Indep
= 875/5304 or 5250/31824 oe			If cancelled, must be clear have ÷ 31824
or 0.165 (3 sfs)	A1	4	
			<u>5 x 4 x 6 x 5 x 7 x 6 x 5 x 7!</u>
			$18x17x 16 x 15 x 14 x 13 x 12 x 2!^2x3!$
			Correct 7 fractions mult: M1
			x7!: M1}
(:::\	N/1		÷ (2! ² x3!): M1}both dep any 7 fracts mult
(iii) 5 from W & 2 from (G + H)	M1 M1		Seen or implied, eg by combs or list
$^{7}C_{5} \times ^{11}C_{2}$ or 1155	M1		Divide by their (i). Indep
÷ 31824 = 385/10608 or 1155/31824 oe	1711	4	Divide by then (1). Indep
	A1		
or 0.0363 (3 sfs)	111		_7 x 6 x 5 x 4 x 3 x 11 x 10 x 7!
			18x17x16 x 15 x14 x 13 x 12 x 5! x 2!
			Correct 7 fractions mult: M1
			x 7!: M1}
			÷ (5! x 2!): M1} both dep any 7 fracts mult
(iv) (2, 2, 3) or (2, 3, 2) or (3, 2, 2)	M1		Any one. Seen or implied eg by combs
5 - 6 - 7 - 5 - 6 - 7 -			
${}^{5}C_{2} \times {}^{6}C_{2} \times {}^{7}C_{3} + {}^{5}C_{2} \times {}^{6}C_{3} \times {}^{7}C_{2}$	3.40		M1: one correct product.
$+^{5}C_{3}\times^{6}C_{2}\times^{7}C_{2}$	M2		NOT ${}^5C_2 \times {}^6C_2 \times {}^7C_2$
(÷ 31824)			(No mk for ÷ 31824)
= 175/442 or 12600/31824 oe			(110 1111 101 1 0102 1)
or 0.396 (3 sfs)	A1	4	
			Equiv method; ((ii) + etc) can imply M mks
			5 x 4 x 6 x 5 x 7 x 6 x 7!
			18x17x16 x 15 x14 x 13 x 2! ² x3!
			Correct 6 fractions mult: M1
			$\begin{bmatrix} x \ 7! : M1 \\ \div (2!^2 \ x \ 3!) : M1 \end{bmatrix}$ both dep any 6 fracts mult
			= (2: x 5:). Wif jooni dep any o fracts mult
			Complement method:
			Triple with total 7, incl at least one 0 or 1
			or $(0, 7)$ or $(1, 6)$ seen or implied: M1
			•
			One correct prod seen, eg ${}^5C_0x^6C_2x^7C_5$ M1
			Full correct method, incl "1 – " M1
			Fun Correct method, mer 1 – WH
	14	4	

1(i)	$^{2}/_{3}$ +prod of 2 P's or 1– prod of 2 P's $^{2}/_{3}$ + $^{1}/_{3}$ x $^{3}/_{4}$ or 1 – $^{1}/_{3}$ x $^{1}/_{4}$	M1 M1		or $^{1}/_{3}$ x $^{3}/_{4}$ or $^{1}/_{3}$ x $^{1}/_{4}$
	$\begin{vmatrix} 7_3 + 7_3 x / 4 & \text{or } 1 - 7_3 x / 4 \\ = \frac{11}{12} \text{ or } 0.917 (3 \text{ sfs}) \end{vmatrix}$	A1	3	
	- 7 ₁₂ of 0.517 (5 sis)			
(ii)	1/o v n	M1		or $^{1}/_{3}(1-p)$
(11)	$\int_{2/3}^{1/3} x p$ $\frac{2}{3} + \frac{1}{3} x p = \frac{5}{6}$ oe	M1		or $\frac{1}{3}(1-p)$ or $\frac{1}{3}(1-p) = 1 - \frac{5}{6}$
	$p = \frac{1}{2}$	A1	3	1,
				SW: $\frac{1}{2}$ x $\frac{1}{3} = \frac{1}{6}$ M2A0, unless clear this is a check
Total		6		is a circer
2(i)	124.5, 4.8	B1B1	2	for 4.8 allow "same"
(ii)	mean smaller or generally smaller			Assume 2 nd referred to unless clear 1 st
(11)	or means similar or hts similar oe	B1f		Assume 2 Teleffed to unless clear 1
	More widely spread or varied oe	B1f	2	or less consistent or gter dispersion
				or further from mean, gter variance
				Not "range" greater
				Allow opposite if ft (i)
(iii)	("124.5" + 2 x 123)/3	M1		or (50 x "124.5" + 100 x 123)/150
. ,	= 123.5	A1	2	cao
Total		6		
3(i)	$\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \text{ or } \frac{2}{5} \times \frac{3}{4} \times \frac{1}{3}$	M1		or $^{1}/_{10}$ from tree
3(1)	x 2 or +	M1		add 2 equal products of 3 probs
	$^{3}/_{5} \times ^{2}/_{4} \times ^{1}/_{3} + ^{2}/_{5} \times ^{3}/_{4} \times ^{1}/_{3}$	M1		all correct
	$= \frac{1}{5} AG$	A1	4	Must see correct working
.				NB incorrect methods eg $^{3}/_{5}x^{2}/_{4}x^{2}/_{3}$
(ii)	Σχρ	M1		≥ 3 terms added. Allow arith errors.
(/	= 4	A1		
	$\sum x^2 p \ (= 17)$	M1		\geq 3 terms added. Allow arith errors
	$-\mu^2$	M1		Indep if +ve result
	_ 1	A1	5	$\Sigma (x-\mu)^2 p$ M2; 3 terms: M1 dep +ve result
	= 1	А	3	$\Sigma xp \& \Sigma x^2p$, if \div eg 4: M0A0 (- μ^2 poss M1)
Total		9		1 17 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4(i)(a)	Total area = 60 sqs Recog that total area reps 300 8 x 300/60 = 40	M1 M1 M1 A1	4	Attempt total area, eg 15000 or 15 cm ² eg 1 squ = 5 or 15000 ÷ (300 or 50) or 2000/50 cao
(b)	Splitting classes 1.2x4x5 or 0.8x6x5 oe	M1 M1		or 0.3x16x5 <u>or</u> 0.4x12x5 or 24
				NB other correct eg $2x4x5 + \frac{4}{5}x2x5$
	48	A1	3	Alt method: estimate: 46-50 SC B1
(ii)(a) (b)	Box & whisker Cum freq diag	B1 B1	1 1	
Total 5(i)(a)	$(^{3}/_{5})^{4} \times ^{2}/_{5}$	9 M1		Allow index 3 or 5
(b)	$= 0.0518 (3sfs) or \frac{162}{3125} oe$	<u>A1</u>	2	$\frac{2}{5} + \frac{3}{5} \times \frac{2}{5} + (\frac{3}{5})^2 \times \frac{2}{5} + (\frac{3}{5})^3 \times \frac{2}{5} : M2$
(0)	$\binom{3}{5}^4$ 1 - $\binom{3}{5}^4$ = 0.870 (3 sfs) or $\frac{544}{625}$ oe	M1 M1 A1	3	(1extra or omit or wrong: M1) Allow $1 - {3/5}^3$ or $1 - {3/5}^5$
(ii)(a)	B(5, $^{2}/_{5}$) stated 5 x $^{2}/_{5}$ x ($^{3}/_{5}$) ⁴ or 0.3370 – 0.0778 = 0.259 (3 sfs) or $^{162}/_{625}$ oe	M1 M1 A1	3	or $({}^{5}C_{a} \text{ or } {}^{5}C_{b})x({}^{2}/{}_{5})^{a}x({}^{3}/{}_{5})^{b} \& a + b = 5$
(b)	"0.259" $x^2/_5$ = 0.104 (3 sfs) or $^{324}/_{3125}$ oe	M1 A1f	2	eg ft: (a) $0.0518 \rightarrow 0.0207$ (a) $0.922 \rightarrow 0.369$
Total		10		
6(i)	${}^{4}C_{3} \times {}^{7}C_{4}$ = 140	M1M1 A1	3	M1 either comb. 140/330: M1M1
(ii)	${}^{3}C_{2} \times {}^{6}C_{4}$ or ${}^{3}C_{2} \times {}^{6}C_{4} \times {}^{6}C_{4} \times {}^{6}C_{4} \times {}^{6}C_{4}$	M1		or ${}^{3}C_{2}(x)$ /"140" or $(x){}^{6}C_{4}$ /"140" or $({}^{3}C_{2}+{}^{6}C_{4})$ /"140" or $(3+15)$ /"140" or ${}^{3}V_{4}$ or $1-{}^{4}V_{7}$ seen
	$\frac{{}^{3}C_{2} \times {}^{6}C_{4}}{"140"}$ or ${}^{3}/_{4} \times (1 - {}^{4}/_{7})$	M1		all correct
	$=\frac{9}{28}$ oe or 0.321 (3 sfs)	<u>A1</u>	3_	
(iii)	$^{3}C_{2}x$ $^{6}C_{4}$ (or i x ii) or $(^{3}C_{3}x)^{7}C_{4}$ or 45 or 35 or $^{1}/_{4}x^{4}C_{3}x^{7}C_{4}$ or $^{3}/_{4}x$ $^{4}C_{3}x^{6}C_{4}$	M1		1 correct prod or "140" – any prod
	${}^{3}C_{2}x^{6}C_{4} + ({}^{3}C_{3}x)^{7}C_{4} \text{ or "}140" - {}^{3}C_{2}x^{6}C_{3}$ = 80	M1 A1ft	3	or ${}^{1}/_{4}x^{4}C_{3}x^{7}C_{4} + {}^{3}/_{4}x {}^{4}C_{3}x^{6}C_{4}$ ft only "140"
Total		9		

7(i)	Binomial $n = 10, p = 0.9$	B1 B1	Both requ'd. Ignore $q = 0.1$
	Each seed equally likely germ or P(germ) same for all seeds oe Seeds independent oe	B1 B1	or seeds grown in same conditions Context nec'y for each B1
(ii)	0.0702 (3 sfs)	B2 2	0.07 or 0.2639: B1 Σ or 1-Σ: 1 term extra or omit or wrong:
(iii)	$1 - \text{``}0.0702\text{'`}$ $0.9298^{20} + {}^{20}C_1 \text{ x}0.0702 \text{ x } 0.9298^{19}$ $= 0.585 \text{ (3 sfs)}$	M1 M1M1 A1 4	Or 0.9298 or 0.93(0) seen M1 each term cao eg ft (ii) $0.2639 \rightarrow$ (iii) 0.0178 from correct wking: M3A0 $0.0702^{20} + {}^{20}C_1x0.9298x0.0702^{19}$ (=2.25x10 ⁻²¹): SC M1M1 NB ft (ii) for all M mks. But if 0.1, 0.9 used, must be clear using (ii) rounded
Total		10	asea, must be creat using (ii) founded

8(i)(a)	Ranks 123456789 987654321 321547869 789563241 Σc^2 (= 16)	M1 A1 M1dep		Attempt ranks, same dir'n Correct ranks Dep ranks attempted
	$r_{\rm s} = 1 - \frac{6 \text{ x their } 16}{9 \text{ x } (9^2 - 1)}$ = 0.867 (3 sfs) or $^{13}/_{15}$ oe	M1dep A1	5	Correct formula with $n = 9$, dep M1M1
(b)	Countries with larger pops tend to have larger capital pops. oe	B1ft	1	or ft (a) Must interp & refer to context. Not "Gd corr'n country & cap pops" Not "Gd agree't country & cap pops" Not "Gd rel'nship country & cap pops" Not "proportional"
(ii)	$\frac{1533.76 - (337.5 \times 28.3)/9}{\sqrt{((18959.11 - 337.5^2/9)(161.65 - 28.3^2/9))}}$	M1	- : -	(= 472.51/\/(6302.86x72.66)) Or correct subst in 2 "S" formulae, any version
-·(iii)-·-·-	= 0.698 (3 sfs) Hncrease	A1 -B1	2	No wking: 0.7 M0A0; 0.70: M1A0
		1		or nearer to 1
	Est country pop from cap or x from y oe	B1ind B1ind	2	y indep or known or given or x unknown or x dep on y oe
-·-·-(b)-·	-any indication-different-context, eg "Africa", "remote areas" unreliable		2	or reliable because r (or r_s) high: B1 or unreliable because r (or r_s) not hi: B1 "accurate": B0
Total		13		

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise 2 sfs only once in paper.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 sfs only once in paper.	ı		
negative B1 1	1(i)	Negative, because (grad or coeff of x in 1^{st}			Neg because x incr & y decr
negative B1 1		equn or x-value or reg coeff or B or -0.6) is			
(ii) $x = -1.6 \times 7.0 + 21$ $x = 9.8$		negative	B1	1	
	(ii)	$r = -1.6 \times 7.0 \pm 21$	M1		Sub v=70 in 2 nd ean Allow 1 sign error
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(11)		1011		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\lambda = 9.0$	A 1	•	If sub iii both must choose zhd
Total Allow 1 num'l error Allow without bars Total 6 In qus 2 & 3 "prod" means "product of two probabilities" 2(i) $\frac{4}{7}$ or 0.571 (3 sfs) B1 1 (ii) $\frac{5}{8}$ x $\frac{4}{7}$ + $\frac{3}{8}$ x $\frac{5}{8}$ M1M1 M1: one correct prod or add any two prods M1: all correct Total 7 3(i) $\frac{7!}{3!$ x 2(!)} = 420 M1M1 M1: 7!/(a factorial); or ÷ (3! x 2(!)) M1: all correct 3(ii) $\frac{7!}{3!}$ x 2(!) = 60 M1 M1: 5! seen (not part of a C) or 5 x 4! or 120 seen or ÷ 2(!) alone (iii) $\frac{5!}{2}$ cor $\frac{3}{7}$ x $\frac{3}{6}$ or $1 - \frac{4}{7}$ C $\frac{7}{2}$ or $1 - \frac{4}{7}$ x $\frac{3}{6}$ oe or $\frac{3}{7}$ x $\frac{2}{6}$ + $\frac{3}{7}$ x $\frac{4}{6}$ + $\frac{4}{7}$ x $\frac{3}{6}$ oe or $\frac{3}{7}$ C $\frac{7}{2}$ or $\frac{3}{7}$ c $\frac{3}{2}$ c $\frac{7}{7}$ C $\frac{3}{2}$ c $\frac{3}{7}$ c $\frac{3}{2}$ c $\frac{3}{2}$ c $\frac{3}{7}$ c $\frac{3}{2}$			Al	2	
Total Allow 1 num'l error Allow without bars Total 6 In qus 2 & 3 "prod" means "product of two probabilities" 2(i) $^4/_7$ or 0.571 (3 sfs) B1 1 (ii) $^5/_8$ x $^4/_7$ + $^3/_8$ x $^5/_8$ MIMI M1: one correct prod or add any two prods M1: all correct (iii) $^3/_8$ x $^5/_8$ + $^3/_8$ x $^3/_7$ MIMI M1: one correct prod or add any two prods M1: all correct Total 3(i) $\frac{7!}{3!$ x 2(!)} M1M1 M1: 7!/(a factorial); or ÷ (3! x 2(!)) M1: all correct 3(ii) $\frac{7!}{3!$ x 2(!)} M1 M1: 7!/(a factorial); or ÷ (3! x 2(!)) M1: all correct 3(iii) $\frac{5!}{2!}$ M1 M1: 5! seen (not part of a C) or 5 x 4! or 120 seen or ÷ 2(!) alone 4(iii) $\frac{5!}{2!}$ M1 M1: 1- prod or 1/C ₂ or 1-4C ₂ / (or P or add 3 prods or add 2 correct prods or $^3C_2/^3C_2$ or $^3C_1/^3C_2/^3C_3/^3C_1/^3C_2$ or $^3C_1/^3C_2/^3C_3/^3C_1/^3C_2$ or $^3C_1/^3C_2/^3C_3/^3C_1/^3C_2$ or $^3C_1/^3C_2/^3C_3/^3C_1/^3C_2$ or $^3C_1/^3C_2/^3C_3/^3C_1/^3C_2/^3C_3/^$			 		
Total A1A1 3 Allow without bars Total In qus 2 & 3 "prod" means "product of two probabilities" 2(i) $\frac{4}{7}$ 7 or 0.571 (3 sfs) B1 1 (ii) $\frac{5}{8}$ x $\frac{4}{7}$ + $\frac{3}{8}$ x $\frac{5}{8}$ M1M1 M1: one correct prod or add any two prods M1: all correct (iii) $\frac{3}{8}$ x $\frac{5}{8}$ + $\frac{5}{8}$ x $\frac{3}{7}$ M1M1 M1: one correct prod or add any two prods M1: all correct 7 7 7 7 7 3(i) $\frac{7!}{3!$ x $2(!)}$ M1M1 M1: 7!/(a factorial); or ÷ (3! x $2(!)$) M1: all correct (ii) $\frac{5!}{2(!)}$ M1 M1: 5! seen (not part of a C) or $\frac{5}{8}$ x $\frac{4!}{8}$ or $\frac{120}{12}$ or $\frac{120}{12}$ seen or ÷ $\frac{120}{12}$ seen or ÷ $\frac{120}{12}$ seen or ÷ $\frac{120}{12}$ seen or add $\frac{120}{12}$ seen or $$	(iii)	y = -0.6(-1.6y + 21) + 13 or similar	M1		_
Total 6 2(i) $\frac{4}{7}$ or 0.571 (3 sfs) B1 1 (ii) $\frac{3}{8}$ x $\frac{4}{7}$ + $\frac{3}{8}$ x $\frac{5}{8}$ MIM1 M1: one correct prod or add any two prods M1: all correct (iii) $\frac{3}{8}$ x $\frac{5}{8}$ + $\frac{5}{8}$ x $\frac{3}{7}$ MIM1 M1: one correct prod or add any two prods M1: all correct Total 7 3(i) $\frac{7!}{3!$ x 2(!)} A1 3 4(ii) $\frac{7!}{3!$ x 2(!)} M1: all correct 420 A1 3 (iii) $\frac{5!}{2!}$ M1: all correct (iii) $\frac{5!}{2!}$ M1: all correct (iii) $\frac{5!}{2!}$ M1 M1: 5! seen (not part of a C) or 5 x 4! or 120 seen or ÷ 2(!) alone (iii) $\frac{5!}{2!}$ Or $\frac{3}{7}$ x $\frac{3}{6}$ or $\frac{4}{7}$ c $\frac{4}{7}$ c $\frac{4}{7}$ x $\frac{3}{6}$ oe or $\frac{3}{7}$ x $\frac{3}{6}$ x $\frac{4}{7}$ c $\frac{4}{7}$ x $\frac{3}{6}$ or or $\frac{3}{7}$ x $\frac{3}{6}$ x $\frac{4}{7}$ x $\frac{4}{7}$ x $\frac{4}{7}$ x $\frac{4}{7}$ or 0.714 (3 sfs) M1 M1 M1: all correct					Allow 1 num'l error
In qus 2 & 3 "prod" means "product of two probabilities" 2(i) $\frac{4}{7}$ or 0.571 (3 sfs) B1 1 (ii) $\frac{5}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{8}$ B1 1 (iii) $\frac{5}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{8}$ M1M1 M1: one correct prod or add any two prods M1: all correct A1 3 (iii) $\frac{3}{8} \times \frac{5}{8} + \frac{5}{8} \times \frac{3}{7}$ M1M1 M1: one correct prod or add any two prods M1: all correct Total 7 Total 7 3(i) $\frac{7!}{3! \times 2!!}$ = 420 M1M1 M1: 7!/(a factorial); or ÷ (3! x 2!!) M1: all correct A1 3 (iii) $\frac{5!!}{2!!}$ = 60 A1 3 (iii) $\frac{5!!}{2!!}$ = 60 A1 2 (iii) $\frac{1 - \frac{4}{7} \times \frac{3}{6} \text{ or } 1 - \frac{4}{5} \times \frac{7}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} \times \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} \times \frac{3}{7} \times \frac{4}{6} \times \frac{1}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{6} \times \frac{3}{7} \times \frac{4}{6} \times \frac{1}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{7} \times \frac{1}{7} \times \frac{4}{7} \times \frac{1}{7} \times \frac{3}{6} \text{ oe or } \frac{3}{7} \times \frac{2}{7} \times \frac{1}{7} \times \frac{1}$		$\bar{x}=5, \ \bar{y}=10$	A1A1	3	Allow without bars
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total		6		
2(i) $\frac{4}{7}$ or 0.571 (3 sfs) B1 1	1 otal	In oue 2 fr 2 "nrod" moone	Ŭ	t of tr	L vo probabilities"
(ii) $\frac{5}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{8}$ M1M1 M1: one correct prod or add any two prods M1: all correct (iii) $\frac{3}{8} \times \frac{5}{8} + \frac{5}{8} \times \frac{3}{7}$ M1M1 M1: one correct prod or add any two prods M1: all correct Total $\frac{7!}{3! \times 2(!)} = 420$ M1M1 M1: $\frac{7!}{3! \times 2(!)} = 60$ M1: $\frac{5!}{2(!)} = 60$ M1 M1 M1: $\frac{5!}{2(!)} = 60$ M1 M1 M1: $\frac{5!}{2(!)} = 60$ M1M1 M1: $\frac{5!}{2(!)} = \frac{5!}{2(!)} = \frac{5!}{7} = \frac{7!}{2(!)} \times \frac{7!}{2($	2(;)				vo probabilities
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2(1)	/7 OF 0.5 / 1 (5 SIS)	B1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5. 4. 3. 5.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii)	$3/_{8} \times 4/_{7} + 3/_{8} \times 3/_{8}$	M1M1		
(iii) $\frac{3}{8} \times \frac{5}{8} + \frac{5}{8} \times \frac{3}{7}$ M1M1 M1: one correct prod or add any two prods M1: all correct Total 7 3(i) $\frac{7!}{3! \times 2(!)}$ M1M1 M1: $7!/(a \text{ factorial})$; or ÷ (3! x 2(!)) M1: all correct (ii) $\frac{5!}{2(!)}$ M1 M1 M1: $5!$ seen (not part of a C) or $5 \times 4!$ or 120 seen or ÷ 2(!) alone (iii) $1 - \frac{4}{7} \times \frac{3}{6}$ or $1 - \frac{4}{5} \cdot \frac{2}{7} \cdot \frac{7}{5} \cdot$					M1: all correct
Total		$= \frac{265}{448}$ or 0.592 (3 sfs)	A1	3	
Total					
Total	(iii)	$^{3}/_{8} \times ^{5}/_{8} + ^{5}/_{8} \times ^{3}/_{7}$	M1M1		M1: one correct prod or add any two prods
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(111)	78-2-78 - 78-2-77			
Total 7 3(i) $\frac{7!}{3! \times 2(!)}$ M1M1 M1: 7!/(a factorial); or ÷ (3! x 2(!)) (ii) $\frac{5!}{2(!)}$ M1: all correct = 60 M1 M1: 5! seen (not part of a C) or 5 x 4! or 120 seen or ÷ 2(!) alone (iii) $\frac{1 - \frac{4}{7} \times \frac{3}{6}}{3! \times 2!}$ or $\frac{4}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6}$ oe or $\frac{3}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6}$ oe or $\frac{3}{7} \times \frac{2}{7} \times \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6}$ oe or $\frac{3}{7} \times \frac{2}{7} \times \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6}$ oe or $\frac{3}{7} \times \frac{2}{7} \times \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6}$ oe or $\frac{3}{7} \times \frac{2}{7} \times \frac{3}{7} \times \frac{4}{6} \times \frac{4}{7} \times \frac{3}{7} \times \frac{3}{6}$ or add 3 prods or add 2 correct prods or $\frac{3}{7} \times \frac{2}{7} \times \frac{3}{7} \times \frac{4}{7} \times \frac{4}{7} \times \frac{4}{7} \times \frac{4}{7} \times \frac{4}{7} \times \frac{3}{7} \times \frac{3}{6}$ or add ≥ 5 out of 7 correct prods M1: all correct = $\frac{5}{7}$ or 0.714 (3 sfs) A1 3		$=\frac{225}{448}$ or 0.502 (3.sfs)	A 1	3	
3(i) $\frac{7!}{3! \times 2(!)}$	Total	7448 01 0.002 (5 515)			
(ii) $\frac{5!}{2(!)} = 60$ M1: all correct M1: seen (not part of a C) or 5 x 4! or 120 seen or ÷ 2(!) alone (iii) $\frac{5!}{2(!)} = 60$ M1 $\frac{5!}{2(!)} = 60$ M1: $\frac{5!}{2(!)} = 60$ M1: $\frac{5!}{2(!)} = \frac{5!}{2(!)} = \frac{5!}{2$	Total		·		
(ii) $\frac{5!}{2(!)} = 60$ M1: all correct M1: seen (not part of a C) or 5 x 4! or 120 seen or ÷ 2(!) alone (iii) $\frac{5!}{2(!)} = 60$ M1 $\frac{5!}{2(!)} = 60$ M1: $\frac{5!}{2(!)} = 60$ M1: $\frac{5!}{2(!)} = \frac{5!}{2(!)} = \frac{5!}{2$	2(i)	71	М1М1		$M1.71/(a \text{ featorial})$, or $(21 \times 2(1))$
= 420	3(1)	·	IVITIVIT		
(ii) $\frac{5!}{2(!)}$ $= 60$ M1 M1: 5! seen (not part of a C) or 5 x 4! or 120 seen or ÷ 2(!) alone $\frac{1 - \frac{4}{7} x^3}{6}$ or $1 - \frac{4}{2} \frac{2}{7} \frac{7}{2} \frac{7}{2}$ or $\frac{3}{7} \frac{2}{6} \frac{3}{7} \frac{3}{7} \frac{4}{6} \frac{4}{7} \frac{4}{7} \frac{3}{6} \frac{3}{6}$ oe or $\frac{3}{7} \frac{2}{7} \frac{2}{7} \frac{3}{7} \frac{3}{7} \frac{4}{7} \frac{4}{7} \frac{4}{7} \frac{4}{7} \frac{3}{7} \frac{3}{6} \frac{3}{7} \frac{3}{7} \frac{4}{7} \frac{4}{7} \frac{4}{7} \frac{4}{7} \frac{3}{7} \frac{3}{6} \frac{3}{7} \frac{3}{7} \frac{3}{7} \frac{3}{7} \frac{3}{7} \frac{4}{7} \frac{4}{7} \frac{3}{7} 3$. 1	•	M1: all correct
		= 420	Al	3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ii)		M1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2(!)			or 120 seen or $\dots \div 2(!)$ alone
(iii) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			A1	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(iii)	$1 - \frac{4}{7} \times \frac{3}{6}$ or $1 - \frac{4}{7} \cdot \frac{7}{7} \cdot \frac{7}{7} \cdot \frac{7}{7} \cdot \frac{1}{7} \cdot \frac{4}{7} \cdot \frac{7}{7} \cdot \frac{1}{7} \cdot 1$	M1M1		M1:1– prod or 1/ 7 C ₂ or 1– 4 C ₂ / (or Ps)
or ${}^{3}C_{2}/{}^{7}C_{2} + {}^{3}C_{1}x^{4}C_{1}/{}^{7}C_{2}$ or add ≥ 5 out of 7 correct prods M1: all correct $= {}^{5}/_{7}$ or 0.714 (3 sfs)		or $\frac{3}{7}$ x $\frac{2}{6}$ + $\frac{3}{7}$ x $\frac{4}{6}$ + $\frac{4}{7}$ x $\frac{3}{6}$ oe			
or add ≥ 5 out of 7 correct prods M1: all correct $= \frac{5}{7} \text{or } 0.714 \text{ (3 sfs)}$ A1 3		or ${}^{3}C_{2}/{}^{7}C_{2} + {}^{3}C_{1}x^{4}C_{1}/{}^{7}C_{2}$			
$= \frac{5}{7}$ or 0.714 (3 sfs) A1 3		$\bigcup_{i=1}^{n} C_{i} \cap C_{i} \cap C_{i} \cap C_{i} \cap C_{i}$			
$= \frac{5}{7}$ or 0.714 (3 sfs) A1 3					
					WII. all correct
		5/ 0.714/2.63		_	
		= ⁻ / ₇ or 0./14 (3 sfs)		3	
Total 8	Total		8		

4(i)	0.4207 or 0.42	21 (3 sfs)	B1		or 1 – 0.6167 or 0.3833 (3 sfs)
	or $0.8^{25} + 25x0.8^{24}x0.2 +^{25}C_4x0.4^{21}x0.2^4$				or 1- (6 correct terms, 0 to 5)
	0.579(3)		B1	2	
(ii)	$^{10}\text{C}_3 \text{ x } (1-0.27)^7 \text{ x}$	0.27^3	M1		
	= 0.261 (3 sfs)		A1	2	
(iii)		Allow "=" thro'out			or $1 - {}^{n}C_{0} \times 0.27^{0} \times 0.73^{n} > 0.95$ oe
, ,		$1 - 0.73^n > 0.95$			allow incorrect sign M1
	$0.73^9 = 0.059$	or $0.73^n < 0.05$	M1		must be correct
	$0.73^{10} = 0.043$	$n\log 0.73 < \log 0.05$ oe	M1		ft (1 – 0.27) from (ii) for M1M1
					10 with incorrect sign in wking: SCB2
	10			•	10 with just $0.73^9 = 0.059$: M1M1A1
Total	n =	10	A1 7	3	
	$\frac{1}{3} + \frac{1}{4} + p + q =$	1 00	B1		
5(i)		1 oe $2p + 3q = 1^{1}/_{4}$ oe	В1		
	O X /3 + 1 X /4 +	2p + 3q = 174 OC	Di		
	equalize coeffs, e	g mult eqn (i) by 2 or 3	M1		allow one error. ft their equns
	Or make p or q subject of (i) or (ii)				subst or subtr not nec'y
	$p = \frac{1}{4}, q = \frac{1}{6}$ oe		A1A1	5	•
	<u>-</u>	-	<u> </u>		
(ii)	$\sum x^2 p \pmod{/4}$ or	$(=2^{3}/_{4})$	M1		\geq 2 non-zero terms correct. dep +ve result
	$-(1^{1}/_{4})^{2}$		M1		indep if +ve result
					or $[x-1^{1}/4]^{2}p$
					(\geq 2 (non-0) terms correct): M2 ft (i) (0< p, q<1) or letters p, q both M1s
	$= 1.1875$ or $1^3/_1$	ic OP	A1		cao
	$sd = \sqrt{(their 1.187)}$		B1f	4	dep 1st M1 & $\sqrt{\text{(+ve no.)}}$ eg $\sqrt{2.75} = 1.66$
Total	y (2120)	-, ()	9		100

6(:)(a)	Doubles 2 4 7 5 2 1 6 6 4 1 2 5 7 2	N/1		5 months against in again agt
6(i)(a)	Ranks: 2 4 7 5 3 1 6 6 4 1 3 5 7 2 7 1 6 3 2 5 4 1 7 2 5 6 3 4	M1		≥ 5 ranks correct in each set
	$\sum d^2$	A1		all correct
		M1		dep ranks attempted even if opp orders,
	(=60)			allow arith errors
	$r_{\rm s} = 1 - \frac{6 \times 60}{7 \times 48}$	M1		Correct formula with $n = 7$, dep 2^{nd} M1
	7×48			
				calc r for ranks:
				$S_{xx} = S_{yy} = 140 - 28^2 / 7.$ $S_{xy} = 110 - 28^2 / 7$
				(=28) $(=-2)$
				corr subst in one corr S (any version):M1
	1			corr subst in $r = S_{xy} / \sqrt{(S_{xx}S_{yy})}$:M1
	$= -\frac{1}{14}$ or -0.071 (3 dps)	A1	5	
				-0.07 without wking: M1A1M2A0
				_
				No mks unless $ r_s \le 1$
(b)	Little (or no) connection (agreement,			ft their r_s
	rel'nship) between dist and commission			Must refer to context.
	Allow disagreement			Not "little corr'n between dist and
		B1ft	1	com"
				not "strong disagreement"
(c)	Unchanged. No change in rank	B1B1	2	Ignore other comment
		DIDI	_	
(ii)(a)	= –1	B1	1	indep
(11)(4)	•		•	Моср
(b)	Close to -1 or, eg ≈ -0.9	B1		cao
(0)	0.5	ועו		
				not referring to "corr'n" rather than <i>r</i>
				allow "neg", not neg corr'n or neg skew
				anow neg , not neg con it of neg skew
Total		10		
Total		10		
<u> </u>		1		

7(i)				Correct (149.5)	With 150	<u>Tot =</u>	
	Midpoints attempted ≥ 2 classes	M1				2000	
	$\sum xf/100 \text{ or } \sum xf/\sum f \text{ attempted } \ge 2 \text{ terms}$ x within class, not class width	M1					
	Mean = 27.2 (to 3 sfs) (not 27.25)			2720.5/100	2725/100	Allow Ms	
	art 27.2 from fully correct wking	A1				IVIS	
	$\begin{cases} \sum x^2 f & \text{or } \sum x - \overline{x})^2 f \ge 2 \text{ terms} \\ \sqrt{(\sum x^2 f / 100 - \overline{x}^2)} & \text{or } \sqrt{((\sum x - \overline{x})^2 f / 100)} & \text{or} \end{cases}$	M1				& poss	
	$\sqrt{(\sum x^2 f/100 - \overline{x}^2)}$ or $\sqrt{((\sum x - \overline{x})^2 f/100)}$ or	3.54				As	
	f fully corr method, not $\sqrt{\text{neg}}$	M1		27.2	27.25		
	10.5 11.1 (0.0)	A1	6	240702.25	242050		
	= 40.5 to 41.1 (3 sfs)			40.82 allow class widths	40.96 for 2nd M1 or	 nlv	
(ii)	Recog LQ in 1 st class & UQ in 3 rd class	B1		anow class widths	101 2110 1411 01	y	
	Graph: Interp:						
	Graph: Interp: Attempt $25(.25)^{th}$ value $LQ = 3.0$ to 4.3						
	Attempt $75(.75)^{th}$ value UQ =27 to 29	M1		both nec'y			
	Subtract	M1		dep B1or M1			
	IQR = 23 or 24 or 25	A1	4	integer. dep M2			
(iii)(a)	Increase	B1	1	T 44	1 11 9		
(b) (c)	Increase No change	B1 B1	1 1	Ignore "probably" etc			
Total			13				
8(i)	Geometric.	B1					
	Each attempt (or result or try) indep	B1	2	In context. Not "event extra	ts,. trials, outcome	es" . Ignore	
				CAU			
(ii)(a)	$\frac{1}{(^2/_3)^3} \times \frac{1}{/_3}$	M2		$(^{2}/_{3})^{2}x^{1}/_{3}$ or $(^{2}/_{3})^{4}x^{2}$	1/ ₃ :		
			2	allow other nur	merical "p" (0<	<p<1):m1< td=""></p<1):m1<>	
	$= {}^{8}/_{81}$ or 0.0988 (3 sfs)	A1	3				
(b)	$\begin{pmatrix} (^{2}/_{3})^{3} \\ 1 - (^{2}/_{3})^{3} \end{pmatrix}$	M1		$not (^2/_3)^3 \times$	2 . 1 .		
	$1 - (\frac{2}{3})^3$	M1		or $\frac{1}{3} + \frac{2}{3}x^{1}/_{3} + \frac{2}{3}x^{1$	$(3)^2 X^1 / 3$	M2 M1	
				or 3 terms, with 2		M1	
				or 3 correct terms	+ 1 extra	M1	
				or "p" + "qp" + "q or 1 – sum of 3 co	• •	M1 M1	
	$= {}^{19}/_{27}$ or 0.704 (3sfs)	A1	3		neans num val		
(iii)	3	B1f	1	or ¹ / _{"p"}			
(111)		חום	1	O1 /"p"			
(iv)	$ \begin{array}{c c} 1 - {}^{19}/_{27} & (1 - 0.7037) \text{ or } 0.2963 \\ ({}^{8}/_{27})^2 \text{ x } {}^{19}/_{27} & 0.2963^2 \text{ x } 0.7037 \\ \end{array} $	M1		ft (b) for M1M1 n			
	(/ ₂₇) X / ₂₇ 0.2963 X 0./03/	M1		Allow figs rounde	a to 2 sts for N	/11 IVI 1	
	$= \frac{1216}{19683} = 0.0618 (3 \text{ sfs})$	A1	3	cao. allow art 0.06	518 or 0.0617		
Total		-	12				

Total 72 marks

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8(ii).

r M1 only
1, or allow 1 extra)
ed by wking)
*
steps for Ms
S
s as +ve skew
ıll
,
Commula for h
Formula for b \bar{x}) etc)
ft b for M1
1

6i	$Geo(^2/_3)$ stated	M1		or implied by $\binom{1}{3}^n x^2/_3$
	$(^{1}/_{3})^{3} \times ^{2}/_{3}$	M1		
	$= \frac{2}{81}$ or 0.0247 (3 sfs)	A 1	3	

ii	$(1/3)^3$	M1		or $\frac{2}{3} + \frac{1}{3} x^2 + (\frac{1}{3})^2 x^2 + \frac{1}{3} x^2$
11	$(1 - (1/3)^3)$	M1		one term omitted or extra or wrong: M1
	2 (73)	1,11		$1 - {\binom{1}{3}}^4$ or $1 - {\binom{2}{3}}^{+1}/{3}x^2/{3} + {\binom{1}{3}}^2x^2/{3}$):M1
	²⁶ / ₂₇ or 0.963 (3 sfs)	A1	3	- (+3) (+3++3+3+(+3)+3)
iii	1 / 2/3	M1		
	= 3/2 oe	A1	2	
Total		8		
7i	$^{2}/_{9}$ or $^{7}/_{9}$ oe seen	B1		
	$\frac{3}{9}$ or $\frac{6}{9}$ oe seen	B1		
	$^{1}/_{8}$ or $^{7}/_{8}$ oe seen	B1		
	Correct structure	B1		ie 8 correct branches only,
	A 31	D.1	_	ignore probs & values
	All correct	B1	5	including probs and values,
	3, 7, 7, 3, 7, 6,	7.60		but headings not req'd
ii	$^{3}/_{10} \times ^{7}/_{9} + ^{7}/_{10} \times ^{3}/_{9} + ^{7}/_{10} \times ^{6}/_{9}$	M2		or $^{3}/_{10}x^{7}/_{9} + ^{7}/_{10}$ or $1 - ^{3}/_{10}x^{2}/_{9}$
	14/ 00 0 0 22 00	A 1	3	M1: one correct prod or any prod $+ \frac{1}{10}$
iii	$^{14}/_{15}$ or 0.933 oe $^{3}/_{10}$ x $^{2}/_{9}$ x $^{7}/_{8}$ + $^{7}/_{10}$ x $^{6}/_{9}$	A1 M2	3	$\int \int $
111	/ ₁₀ X / ₉ X / ₈ + / ₁₀ X / ₉	IVIZ		M1: one correct prod
	$^{21}/_{40}$ or 0.525 oe	A1	3	cao
	No ft from diag except: with replacement:			re: B1 (ii) $^{91}/_{100}$: B2 (iii) 0.553: B2
Total	Two it from diag except. With replacement.	11		(II) / ₁₀₀ . B 2 (III) 0.333. B 2
8i	Med = 2	B1		cao
01	LQ = 1 or $UQ = 4$	M1		or if treat as cont data:
				read cf curve or interp at 25 & 75
	IQR = 3	A1	3	cao
ii	Assume last value = 7 (or eg 7.5 or 8 or 8.5)	B1		stated, & not contradicted in wking
				eg 7-9 or 7,8, 9 Not just in wking
	xf attempted ≥ 5 terms	M1		allow "midpts" in xf or x^2f
	2.6 or 3 sf ans that rounds to 2.6	A1		
	$x^2 f$ or $(x-m)^2 f \ge 5$ terms	M1		
	$\sqrt{(x^2f/100-m^2)}$ or			
	$\sqrt{(x-m)^2f}/100$ fully correct but ft m	M1		1 M2
	1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7	A1		dep M3
		 	6	penalize > 3 sfs only once
iii	Median less affected by extremes or	B1	1	or median is an integer or mean not int.
	outliers etc (NOT anomalies)			or not affected by open-ended interval
	Small change in var'n leads to lge change in IQR			general comment acceptable
iv	UQ for W only just 4, hence IQR exaggerated			for Old Moat LQ only just 1 & UQ only just 3
	orig data shows variations are similar	B1	1	
v				
*			2.	
Total				
v Total	OM % (or y) decr (as x incr) oe Old Moat	B1 B1 B1	2	oe specific comment essential ranks reversed in OM or not rev in W NIS

9i	$^{11}C_5 \times (^{1}/_4)^6 \times (^{3}/_4)^5$	M1		or $462 \times (\frac{1}{4})^6 \times (\frac{3}{4})^5$
	0.0268 (3 sfs)	A1	2	
ii	$q^{11} = 0.05$ or $(1-p)^{11} = 0.05$	M1		(any letter except p) ¹¹ = 0.05 oe
	$\sqrt[11]{0.05}$	M1		oe or inv $\log(\frac{\log 0.05}{11})$
	q = 0.762 or 0.7616	A1		11
	p = 0.238 (3 sfs)	A1f	4	ft dep M2
iii	$11 \times p \times (1-p) = 1.76$ oe	M1		not $11pq = 1.76$
	$11p - 11p^2 = 1.76$ or $p - p^2 = 0.16$	A1		any correct equn after mult out
	$11p^2 - 11p + 1.76 = 0$ or $p^2 - p + 0.16 = 0$	A1		or equiv with $= 0$
	$(25p^2 - 25p + 4 = 0)$			
	(5p-1)(5p-4)=0			or correct fact'n or subst'n for their quad
	or $p = \underline{11 - \sqrt{(11^2 - 4x11x1.76)}}$	M1		equ'n eg $p = \frac{1 \pm \sqrt{(1-4x0.16)}}{1-4x0.16}$
	2 x 11			2
	p = 0.2 or 0.8	A1	5	
Total		11		
	Total 72 marks			

Note: "3 sfs"	means an answer which is equal to, or rounds to, the given a	nswer. If such	an answer is seen and then later rounded, apply ISW.
1	$(0 \times 0.1) + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4$	M1	\geq 2 non-zero terms correct eg \div 4: M0
	= 2(.0)	A1	
	$(0^2 \times 0.1) + 1 \times 0.2 + 2^2 \times 0.3 + 3^2 \times 0.4 = 5$	M1	\geq 2 non-zero terms correct \div 4: M0
	-2^2	M1	Indep, ft their μ . Dep +ve result
	= 1	A1	,
		5	$(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4 : M2$
			$\geq 2 \text{ non-0 correct: M1} \div 4: \text{ M0}$
Total		5	
2	UK Fr Ru Po Ca		
2	1 2 3 4 5 or 5 4 3 2 1	M1	attempt rank RCFUP
	4 3 1 5 2 2 3 5 1 4	A1	attempt rank 35214 31452
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		other judge 12345 54321
		M1	
	(=24)	3.41	A11 7 12
	$r_s = 1 - 6 \times 24$ $5 \times (5^2 - 1)$	M1	All 5 d^2 attempted & added. Dep ranks
			att'd
	$=-\frac{1}{5}$ or -0.2	A1	Dep 2^{nd} M1 $\frac{43 - 15^2/5}{\sqrt{((55-15^2/5)(55-15^2/5))}}$
		5	Dep 2^{nd} M1 $\sqrt{((55-15^2/5)(55-15^2/5))}$
			Corr sub in ≥ 2 S's M1 All correct: M1
			All correct.
Total		5	
3i	$^{15}\text{C}_7 \text{ or }^{15!}/_{7!8!}$	M1	
	6435	A1	
		2	
ii	${}^{6}C_{3} \times {}^{9}C_{4} \text{ or } {}^{6!}/_{3!3!} \times {}^{9!}/_{4!5!}$	M1	Alone except allow \div $^{15}C_7$
			$Or^{6}P_{3} \times {}^{9}P_{4} \text{ or } {}^{6!}/_{3!} \times {}^{9!}/_{5!} Allow \div {}^{15}P_{7}$
			NB not ${}^{6!}/_{3!} \times {}^{9!}/_{4!}$
	2520	A1	362880
		2	
Total		4	
4ia	$^{1}/_{3}$ oe	B1 1	B↔W MR: max (a)B0(b)M1M1(c)B1M1
			B↔W WR. Hax (a)BU(b)WHWH(c)BHWH
b	P(BB) + P(WB) attempted	M1	$Or^{4}/_{10} \times ^{3}/_{9} OR^{-6}/_{10} \times ^{4}/_{9} correct$
	$= \frac{4}{10} \times \frac{3}{9} + \frac{6}{10} \times \frac{4}{9}$ or $\frac{2}{15} + \frac{4}{15}$	M1	
	$= {}^{2}/_{5}$ oe	A1	NB $^{4}/_{10} \times ^{4}/_{10} + ^{6}/_{10} \times ^{4}/_{10} = ^{2}/_{5}$: M1M0A0
		3	
С	Denoms 9 & 8 seen or implied	B1	Or ² / ₁₅ as numerator
	$\frac{3}{9} \times \frac{2}{8} + \frac{6}{9} \times \frac{3}{8}$	M1	
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
			10 10 10 10 10 10 10 10 10 10 10 10 10 1
	$=\frac{1}{3}$ oe	A1	May not see wking
	,,	3	Ling not see whing
ii	P(Blue) not constant or discs not indep,		Prob changes as discs removed
11	so no	B1 1	Limit to no. of discs. Fixed no. of discs
	50 110	ו וע	Discs will run out
			Context essential: "disc" or "blue"
			NOT fixed no. of trials
TD 4 3			NOT because without repl Ignore extra
Total		8	

5i	1991	B1 ind	Or fewer in 2001
	100 000 to 110 000	B1 ind	Allow digits 100 to 110
		2	
iia	Median = 29 to 29.9	B1	
	Quartiles 33 to 34, 24.5 to 26	M1	Or one correct quartile and subtr
	= 7.5 to 9.5	A1	NOT from incorrect wking
	140 to 155	M1	×1000, but allow without
	23 to 26.3%	A1	Rnded to 1 dp or integer 73.7 to 77%: SC1
		5	
b	Older	B1	Or 1991 younger
	Median (or ave) greater }		Any two
	% older mothers greater oe}	B1	Or 1991 steeper so more younger: B2
	% younger mothers less oe}	B1 3	NOT mean gter
			Ignore extra
Total		10	

6ia	Correct subst in \geq two S formulae	M1		Any version
	$\frac{767 - \frac{60 \times 72}{8} \text{or} \frac{227}{\sqrt{698\sqrt{162}}}}{\sqrt{(1148 - \frac{60^2}{8})(810 - \frac{72^2}{8})}}$	M1		All correct. Or $\underline{767-8x7.5x9}$ $\sqrt{((1148-8x7.5^2)(810-8x9^2))}$ or correct substn in any correct formula for r
	= 0.675 (3 sfs)	A1	3	
b	1 y always increases with x or ranks same oe	B1 B1	2	+ve grad thro'out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1, or increases because nearer to st line	B1 B1	2	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because <i>y</i> still increasing with <i>x</i> oe	B1 B1	2	Σd^2 still 0. Still same order. Ignore extra NOT differences still the same. NOT ft (i)(b)
iii	13.8 to 14.0	B1	1	
iv	(iii) or graph or diag or my est Takes account of curve	B1 B1	2	Must be clear which est. Can be implied. "This est" probably ⇒ using equn of line Straight line is not good fit. Not linear. Corr'n not strong.
Total		12	2	
7i	P(contains voucher) constant oe Packets indep oe	B1 B1	2	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	В2	2	B1 for 0.9456 or 0.946 or 0.997(2) or for 7 terms correct, allow one omit or extra NOT 1 – 0.9857 = 0.0143 (see (iii))
iii	(1 – 0.9857) = 0.014(3) (2 sfs)	B1ft		Allow 1- their (ii) correctly calc'd
iv	B(11, 0.25) or 6 in 11 wks stated or impl $^{11}C_6 \times 075^5 \times 0.25^6$ (= 0.0267663) P(6 from 11) × 0.25 = 0.00669 or 6.69 x 10 ⁻³ (3 sfs)	B1 M1 M1 A1	4	or $0.75^a \times 0.25^b$ ($a + b = 11$) or ${}^{11}C_6$ dep B1
Total		9)	

0:	(0.04 (.0.2)	N/1	
8i	$\sqrt{0.04} (= 0.2)$	M1	
	$(1 - \text{their} \sqrt{0.04})^2$	M1	
	= 0.64	A1 3	
ii	1-p seen M1 for either	B1	
	2p(1-p) = 0.42 or $p(1-p) = 0.21$ oe	M1	2pq = 0.42 or pq = 0.21 Allow pq = 0.42
	$2p^2 - 2p + 0.42 = 0$ or $p^2 - p + 0.21 = 0$	M1	or opp signs, correct terms any order (= 0)
	$2\pm\sqrt{((-2)^2-4\times0.42)}$ or $1\pm\sqrt{((-1)^2-4\times0.21)}$		
	2×2 2×1		oe Correct
	or $(p-0.7)(p-0.3)=0$ or $(10p-7)(10p-3)=0$	M1	Dep B1M1M1 Any corr subst'n or fact'n
	p = 0.7 or 0.3	A1 5	
	•		Omit 2 in 2 nd line: max B1M1M0M0A0
			One corr ans with no or inadeq wking: SC1
			eg $0.6 \times 0.7 = 0.42 \Rightarrow p = 0.7$ or 0.6
			eg old with old and old
			$p^2 + 2pq + q^2 = 1$ B1
			$p^2 + 2pq + q = 1$ $p^2 + q^2 = 0.58$ }
			$p + q = 0.38$ } $p = 0.21/q$ }
			corr subst'n or fact'n M1
			1
			1-p seen B1
			2p(1-p) = 0.42 or $p(1-p) = 0.21 M1$
			$p^2 - p = -0.21$
			$p^2 - p + 0.25 = -0.21 + 0.25$ oe } M1
			OR $(p-0.5)^2 - 0.25 = -0.21$ oe }
			$(p - 0.5)^2 = 0.04$ M1
			$(p-0.5) = \pm 0.02$
			p = 0.3 or 0.7 A1
Total		8	
9ia	$1/^{1}/_{5}$	M1	
	= 5	A1 2	
b	$(^4/_5)^3 \times ^1/_5$	M1	
	$= \frac{64}{625}$ or 0.102 (3 sfs)	A1 2	
С	(⁴ / ₅) ⁴	M1	or 1- $(^{1}/_{5} + ^{4}/_{5} \times ^{1}/_{5} + (^{4}/_{5})^{2} \times ^{1}/_{5} + (^{4}/_{5})^{3} \times ^{1}/_{5})$
		1,11	NOT 1 - $({}^4/_5)^4$
	$=\frac{256}{625}$ or a.r.t 0.410 (3 sfs) or 0.41	A1 2	11011 (73)
iia	$P(Y=1) = p, P(Y=3) = q^2p, P(Y=5) = q^4p$		$P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$
114	1 (1 1) - p, 1 (1 - 3) - q p, 1 (1 - 3) - q p		$\int_{0}^{1} \frac{1}{n} \frac{1}{n(1-n)^2} \frac{1}{n(1-n)^4} \frac$
			$\begin{array}{c} p, p(1-p)^{2}, p(1-p)^{4} \\ q^{1-1}, q^{3-1}, q^{5-1} \end{array}$
		1	19,9,9
1			
			or any of these with $1 - p$ instead of q
			or any of these with $1 - p$ instead of q "Always q to even power $\times p$ "
		R1 1	or any of these with $1 - p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob
		B1 1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived
h	Pacog that $c = a^2 \operatorname{or} (1 - n)^2$		or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b	Recog that c.r. = q^2 or $(1-p)^2$	B1 1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived
b		M1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b	Recog that c.r. = q^2 or $(1-p)^2$ $S_{\infty} = \frac{p}{1-q^2}$ or $\frac{p}{1-(1-p)^2}$		or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$	M1 M1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$
b	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$	M1 M1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$
ь b	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$ $P(\text{odd}) = \frac{1 - q}{1 - q^2}$	M1 M1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$
b	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$ $P(\text{odd}) = \frac{1 - q}{1 - q^2}$	M1 M1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$
b	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$ $P(\text{odd}) = \frac{1 - q}{1 - q^2}$	M1 M1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$
b	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$ $P(\text{odd}) = \frac{1 - q}{1 - q^2}$ $= \frac{1 - q}{(1 - q)(1 + q)} \text{Must see this step for A1}$	M1 M1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms
b	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$ $P(\text{odd}) = \frac{1 - q}{1 - q^2}$	M1 M1	or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived \geq two terms or eg $r = q^2 p/p$

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

Penalise over-rounding only once in paper.

	ver-rounding only once in <u>paper</u> .	1	1
1ia	$5! \text{ or } {}^{5}P_{5}$	M1	
	= 120	A1 2	
ь	4! or ⁴ P ₄ seen	M1	or $2 \times 3!$ or $2! \times 3!$ or $2! \times {}^{3}P_{3}$
3	4! × 2	M1dep	$\begin{array}{c} 0.12 \times 3. & 0.12. \times 3. \\ 2 \times 3! \times 4 \end{array}$
	48		2 × 3: × 4
		A1 3	1
ii	$^{1/5}C_2 \text{ or } ^{1}/_5 \times \frac{1}{4} \times 2 \text{ or } 0.4 \times 0.25 \text{ or } ^{2}/_{5P2}$	M1	Allow M1 for ${}^{5}C_{2}$ or ${}^{1}/_{5}$ x ${}^{1}/_{4}$ or ${}^{1}/_{20}$
			or $^{1}/_{5} \times ^{1}/_{5} \times 2$ or $^{2}/_{25}$ oe
	$= \frac{1}{10}$	A1 2	
Total		7	
2i	$(^4/_5)^3 \times (^1/_5)$ oe	M1	Allow M1 for $(^{4}/_{5})^{4}$ x $(^{1}/_{5})$
21	$= \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)}$	A1 2	7 HIOW 1VII 101 (73) X (73)
		- A1 2	A11 (4/)3 (4/)5 41 (4/)4
ii	$\binom{4}{5}^4$ alone		Allow $(^4/_5)^3$ or $(^4/_5)^5$; not $1 - (^4/_5)^4$
	or $1 - (\frac{1}{5} + \frac{4}{5}x^{1}/_{5} + (\frac{4}{5})^{2}x^{1}/_{5} + (\frac{4}{5})^{3}x^{1}/_{5})$	M1	Allow one term omitted or wrong
			or "correct" extra
	$=\frac{256}{625}$ or 0.410 (3 sfs)	A1 2	Allow 0.41
iii	5	B1 1	
Total		5	
3i	2420	+ 3	24.9 24.9 24.9 24.9
31	$r = \frac{212 - \frac{24 \times 39}{5}}{\sqrt{(130 - \frac{24^2}{5})(361 - \frac{39^2}{5})}}$		$\frac{24.8}{\sqrt{14.8\times56.8}}$ or $\frac{24.8}{\sqrt{840.64}}$ or $\frac{24.8}{3.85\times7.54}$ or $\frac{24.8}{29}$
	5		V14.0×30.0 V040.04
	$I = \frac{1}{\sqrt{24^2 + 20^2}}$	B2 2	
	$\sqrt{(130-\frac{24}{3})(361-\frac{39}{3})}$		B2 for correct subst in r
	5 / 5		B1 for correct subst in any S
ii	R = 0.7 or (B)	B1	(A) and (B) true: B0B0
	Definition of r_s is PMCC for ranks	B1 2	dep 1 st B1
iii	r = 0.855	B1	dep 1 D1
111			" 1 1" D1D1
	$r_s = 0.7$	B1 2	or "unchanged": B1B1
			Interchanged: B1
Total		6	
4i	$0.4 \text{ x } p = 0.12 \text{ or } {0.12}/{0.4} \text{ or } {12}/{40} \text{ oe}$	M1	
	p = 0.3 oe	A1 2	
ii	$0.4 \text{ x } (1 - \text{their } 0.3) \text{ oe eg}^{40}/_{100} \times ^{28}/_{40}$	M1	or 0.4 – 0.12 or 0.28 or 28 seen
11	0.1 X (1 then 0.3) be eg /100 × /40	1,11	Not 0.4×0.88 unless ans to (i) is 0.12
	0.39 an 399/	A 164 2	140t 0.4×0.88 diffess alls to (1) is 0.12
7D 4 1	0.28 or 28% oe	A1ft 2	
Total		4	
5ia	Binomial stated or implied	B1	by use of tables or $0.2^{a} \times 0.8^{b}$, $a+b = 12$
	0.9806	B1 2	
b	0.5583 seen	M1	add 10 corr terms or 1-(add 3 corr terms):
	1 - 0.5583	M1	M2
			or 1– 0.7946 or 0.205 or 1-0.6774 or 0.323
	-0.442(2.0fo)	A1 2	
	= 0.442 (3 sfs)	A1 3	or 1-0.3907 or 0.609
			or add 9 terms or 1-(add 2 or 4
			terms): M1
ii	$^{15}C_4 \times 0.3^4 \times 0.7^{11}$	M2	$^{15}\text{C}_4 \times 0.3^{11} \times 0.7^4 : \text{M1}$
	= 0.219 (3 sfs)	A1 3	
Total	- 0.217 (3 bib)	8	
	•	1 7	1

6i	Σγρ	M1	\geq 2 terms added \div 3 or \div 6 etc: M0
01	=2.3	A1	≥ 2 terms added + 5 or + 0 etc. tvio
	$\sum_{y=0}^{-2.3} y^2 p \qquad (=5.9)$	M1	\geq 2 terms added \div 3 or \div 6 etc: M0
		M1	
	$\begin{vmatrix} -(\Sigma yp)^2 \\ = 0.61 \text{ oe} \end{vmatrix}$	A1 5	dep +ve result
	= 0.61 0e	AI 3	(12) ² ·02·(02) ² ·02·07 ² ·05·M2
			$(-1.3)^2 \times 0.2 + (-0.3)^2 \times 0.3 + 0.7^2 \times 0.5$: M2
			one term correct: M1
			Use of Z: MR, lose last A1 (2.55, 0.4475)
ii	$0.2 \times 0.25 + 0.3 \times 0.1$ or $0.05 + 0.03$ alone	M2	M1 for one product eg correct×2: M1
11	0.270.25 0.570.1 01 0.05 0.05 arone	1112	or clearly ident (1,2), (2,1): M1
	= 0.08 oe	A1 3	or creatly ident (1,2), (2,1). Wif
iii	$0.3 \times 0.1 + 0.3 \times 0.25 + 0.3 \times 0.65$	111 3	
""	$+0.25\times0.2 + 0.25\times0.5$ alone		M1: any 3, 4 of these prods alone
	or $0.03 + 0.075 + 0.195 + 0.05 + 0.125$	M2	or these 5 prods plus 1 extra or repeat
	01 0.03 ± 0.073 ± 0.173 ± 0.03 ± 0.123	1412	or (ii) + prod
			or $0.3 + \text{prod}$ or $0.25 + \text{prod}$
			• •
			or clearly identify
	0.475 an 19/	A1 3	(1,2) (3,2) (2,2) (2,1) (2,3)
	$= 0.475$ or $^{19}/_{40}$ oe	A1 3	M2 f 0 2 + (0 2 + 0 5) + 0 25
			M2 for $0.3 + (0.2 + 0.5) \times 0.25$
			or $0.25 + (0.1 + 0.65) \times 0.3$
			or $0.3 + 0.25 - 0.3 \times 0.25$
			or 1 – (0.2+ 0.5)(0.1+0.65)
			N/1 5 (0.2 0.5)(0.1 0.65)
		44	M1 for (0.2+ 0.5)(0.1+0.65)
Total		11	
7ia	Results or matches are indep	B1	allow "wins" indep; not "trials" indep
:	Prob of winning is constant	B1 2	not "success"
ib	No of wins (or losses)	B1 1	
ii	21 10 11 21 0 12		or $(1-p)$ for q & allow omit bracket
		M1	or $352716p^{10}q^{11} = 293930p^9q^{12}$
	$12 p = q$ or $12 p(1-p)^{-1} = 1$ or similar	M1M1	M1 for $^{12}/_{10}$ or $^{6}/_{5}$ or 1.2 or $^{5}/_{6}$ or 0.833
	10 10		M1 for <i>p</i> & <i>q</i> cancelled correctly
	1.2p = 1 - p oe eg $p = 0.833(1-p)$	M1	or equiv equn in p or q (cancelled)
	or $352716p = 293930(1-p)$	1,11	nos not nec'y cancelled; not alg denom
	01 332/10p - 273730(1-p)		nos not nee y cancened, not arg denom
	$p = \frac{5}{11}$ or 0.455 (3 sfs) oe	A1 5	
Total		8	
1			

0.	2.7			
8i	m = 26.5		B1	
	LQ = 22 or 21.5 or 21.7	75 l		
	UQ = 39 40 39.5		M1	M1 for either LQ or UQ
	IQR = 17 18.5 17.7		A1 3	A1 must be consistent LQ, UQ & IQR
		, ,		
ii	Ave or overall or med or "it" similar		B1f	or F med (or ave) higher or F mean less
				or M & F both have most in 20s
	Male spread greater or M more varied on	a	B1f 2	or male range greater
	inaic spicau gicatei oi wi more varied of	-	בווע ב	
	l- <u>-</u>			or more younger F or more older M
iii	Med less (or not) affected by extreme(s)	or	B1 1	oe; not "anomalies"
	Mean (more) affected by extreme(s)			ignore eg "less accurate"
iv				must consistently decode last or first
	Decode last			doode fast of first
			N/ 1	
	245/49		M1	
	= 5		A1	
	mean = 205		B1f	200 + "5"
	$\sqrt{(9849/49 - (^{245}/_{49})^2)}$		M1	dep √+ve
	$= 13.3 \text{ (3sfs) or } 4\sqrt{11}$		A1	•
	$ = 13.3 \text{ (3818) of } 4\sqrt{11}$ $ \text{sd} = 13.3 \text{ or } 4\sqrt{11}$			den M1 or one 176, award if and 1900
	su = 13.3 OF 4711		B1f 6	dep M1 or ans 176; award if not +200
	Decode first			
	$245 + 200 \times 49 \text{ or } 10045$ B1	1		
	10045/ ₄₉ M			allow 445/49 or 9.08 seen
	$\begin{vmatrix} 749 \\ = 205 \end{vmatrix}$ A1			749 01 7.00 30011
		ι		
	$\Sigma x^2 = 9849 + 400 \times 10045 - 49 \times 40000$			
	or 2067849 B1	!		
	$ \nabla x^2 = 2$,		
	$\sqrt{\frac{"\Sigma x^2"}{49}} - "\overline{x}^2"$	1		dep √+ve
				Σx^2 must be: attempt at Σx^2
				>9849
				not involve 9849^2
				not $(\Sigma x)^2$ eg10045 ² , 445 ²
				\bar{x} must be decoded attempt, eg 9.08
	$= 13.3 \text{ or } 4\sqrt{11}$ A1			
То4-1	- 13.3 01 + v11 A1		10	
Total	<u> </u>		12	Y
9i	Because growth may depend on pH oe	ļ	B1 1	In context. Not <i>x</i> is controlled or indep
	or expt is investigating if y depends on x			
ii	$S_{xy} = 17082.5 - 66.5 \times 1935/8 (= 997.81)$			
	$S_{xx} = 558.75 - 66.5^2/8$ (= 5.96875)			
			M1	Correct sub into any correct h formals
	$b = S_{xy}/S_{xx}$			Correct sub into any correct b formula
	= 167 (3 sfs)		A1	
		ļ		
	y - 1935/8 = ``167''(x - 66.5/8)		M1	or <i>a</i> =1935/8 – "167" x 66.5/8
	y = -1150 + 167x		A1 4	cao NB 3 sfs
iii	$y = -1150 + 167 \times 7$		M1	ft their eqn for M1 only
111	$y = -1130 + 167 \times 7$ = 19 to 23	ļ		To their equitor ivil only
				1
iv	No (or little) relationship or correlation	ļ	B1 1	or weak or small corr'n.
	***************************************			Not "agreement"
va	Reliable as <i>r</i> high oe		B1 1	Allow without "interpolation" oe,
		ļ	-	but must include r high
L	Unraliable as extrangletic.		D1 1	
<u>b</u>	Unreliable as extrapolation oe		B1 1	or unreliable as gives a neg value
vi	Unreliable (or No) because <i>r</i> near 0	ļ	B1 1	or No because Q values vary widely
	or because little (or no or small) corr'n	ļ		for $pH = 8.5$
	(or rel'n)			
	(01 101 117			<u>, </u>
Total	(1 11)		11	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

Penalise over-rounding only once in paper.

Penalise o	ver-rounding only once in <u>paper</u> .		
1(i)	(a) -1	B1	allow \approx -1 or close to -1
			not "strong corr'n", not -0.99
	(b) 0	B1 2	allow ≈ 0 or close to 0
			not "no corr'n"
(ii)	4 3 2 1 or 1 2 3 4	M1	Ranks attempted, even if opp
(11)	1 3 4 2 4 2 1 3	A1	Ranks attempted, even if opp
		M1	Dep M1 or $S_{xy} = 23^{-100}/_4$ or $S_{xx} = S_{yy} = 30^{-100}/_4$
		M1	
	$1 - \frac{6\Sigma d^2}{4(4^2-1)}$	IVII	Dep 2^{nu} M1 $S_{xy}//(S_{xx}S_{yy})$
	= -0.4 oe	A1 5	
Total		7	7
2 (i)	$\frac{{}^{2}\underline{C}_{2}\underline{x}}{{}^{15}\underline{C}_{5}}$	M1	$^{7}\text{C}_{2} \times ^{8}\text{C}_{3}$ or 1176 : M1
	$^{15}C_5$	M1	$(\text{Any C or P})^{15}\text{C}_5$: M1 $(\text{dep} < 1)$
			or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ or 0.0392: M1
			13 11 13 12 11
			\times^5 C ₂ or \times 10 : M1 (dep \geq 4 probs mult)
	$= \frac{56}{143}$ or $\frac{1176}{3003}$ or 0.392 (3sfs)	A1 3	
	7143 01 73003 01 0.552 (5515)		if 2↔3, treat as MR max M1M1
(ii)	$3! \times 2!$ or ${}^{3}P_{3} \times {}^{2}P_{2}$ not in denom	M1	BABAB seen: M1
	= 12	A1 2	120-12: M1A0
			$NB^{4!}/_{2!} = 12: M0A0$
Total		5	7 2: 521 3333
3(i)(a)	0.9368 or 0.937	B1 1	
(b)	$0.7799 - 0.5230$ or ${}^{8}C_{5} \times 0.45^{3} \times 0.55^{5}$	M1	Allow 0.9368 – 0.7799
(6)	= 0.2569 or 0.2568 or 0.257	A1 2	71110W 0.9300 0.7799
(c)	0.7799 seen		$^{8}C_{5}x0.45^{3}x0.55^{5} + ^{8}C_{4}x0.45^{4}x0.55^{4} + ^{8}C_{3}x0.45^{5}x0.55^{3}$: M2
(C)		M1	1 term omitted or wrong or extra: M1
	-0.0885 (not $1-0.0885$) = 0.691 (3 sfs)	A1 3	
(!!)(a)	$^{10}C_2 \times (^{7}/_{12})^8 \times (^{5}/_{12})^2$ seen		
(ii)(a)		M1	or 0.105 seen, but not ISW for A1
·	= 0.105 (3 sfs)	A1 2	ND 12/ 2.4 DO
(b)	$2^{31}/_{72}$ or $^{175}/_{72}$ or 2.43 (3 sfs)	B1 1	$NB^{12}/_{5} = 2.4$: B0
Total		9	
4 (i)	$^{1}/_{20} \times ^{1}/_{10} \text{ or } ^{1}/_{200} \text{ or } 0.005$	M1	
	x 2	M1dep	
	$= \frac{1}{100}$ or 0.01	A1 3	
(ii)	$E(X) = 0 + 50x^{1}/_{10} + 500x^{1}/_{20}$ or	M1	or eg 20 goes: $2 \times £0.50 + £5.00$
	$0+0.5x^{1}/_{10}+5x^{1}/_{20}$	A1	= £6.00
	$= 30p$ $= £0.30 \text{ or }^{3}/_{10}$	M1	$(\text{``£6.00''} + 20 \times \text{£0.20}) \div 20$
	Charge " $30p$ " + $20p$ or $0.3 + 0.2$		condone muddled units eg 0.3 + 20
		A1 4	_
	= 50p or 0.50 or 0.5		x = 20, 70, 520 : M1A1
			$20 \times^{17}/_{20} + 70 \times^{1}/_{10} + 520 \times^{1}/_{20}$: M1
			=50 A1
			x, (x-50), (x-500) : M1A1
			$x \times {}^{17}/_{20} + (x-50) \times {}^{1}/_{10} + (x-500) \times {}^{1}/_{20} = 20$:
			M1
			$\begin{vmatrix} \mathbf{M} \mathbf{I} \\ x = 50 \end{vmatrix} : A1$
			\(\lambda - 50 \)
		1	
			Ignore "f" or "p"
Total		7	Ignore "£" or "p"

5(i)	$^{12}/_{22} \times ^{11}/_{21}$	M1	or ${}^{12}C_2 / {}^{22}C_2$
	$=\frac{2}{7}$ oe or 0.286 (3 sfs)	A1 2	
(ii)	$7/_{15} \times 6/_{14} \times 8/_{13}$ or $8/_{65}$ oe $\times 3$ oe $= 2^{4}/_{65}$ or 0.369 (3 sfs)	M1 M1 A1 3	Numerators any order $(C_2 \times {}^8C_1 : M1)$ 3 x prod any 3 probs $(any C \text{ or } P)^{15}C_3 : M1$ (dep < 1)
			$\begin{array}{c} 1\text{-}(^8/_{15}x^7/_{14}x^6/_{13} + 3 \times ^8/_{15}x^7/_{14}x^7/_{13} + ^7/_{15}x^6/_{14}x^5/_{13}) & : \\ M2 & \text{one prod omitted or wrong: } M1 \end{array}$
(iii)	$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe	M1	not $\frac{x}{45} \times \frac{x}{44} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x}{45} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x-1}{45} = \frac{1}{15}$
	$x^2 - x - 132 = 0$ or $x(x - 1) = 132$	A1	oe
	(x-12)(x+11) = 0 or $x = \frac{1 \pm \sqrt{(1^2 - 4 \times (-132))}}{2}$	M1	ft 3-term QE for M1 condone signs interchanged allow one sign error
	No. of $Ys = 12$	A1 4	Not $x = 12$ or -11 ans 12 from less wking, eg $12 \times 11 = 132$ or T & I: full mks
			Some incorrect methods:
			$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe M1 $x^2 + x = 132$ A0 x = 11 M1A0
			$12 \times 11 = 132$ M1A1M1 x = 12 and (or "or") 11 A0
			NB 12 from eg 12.3 rounded, check method
Total		9	

6(i)(a)	256	B1	1	
				(i)(b) & (ii)(abc): ISW
				ie if correct seen, ignore extras
(b)	Total unknown or totals poss diff	B1	1	pie chart shows only proportions oe
	or Y13 may be smaller or similar			or no. of students per degree may differ
	or size of pie chart may differ			not "no. of F may be less"
	DOM	D 1		not "Y13 may be larger"
(ii)(a)	B&W does not show frequencies oe	B1	1	or B&W shows spread or shows mks or M lger range
(b)				1 mk about overall standard, based on median or on F's IQR being "higher"
				1 mk about spread (or range or IQR) or about skewness.
				must be overall, not indiv mks
				must be comparison, not just figures
				Examples:
	F generally higher or median higher F higher on average or F better mks			not F higher mean
	F IQR is above M IQR	B1		
	F more compact M wide(r) range or gter IQR or gter variation or gter variance			not M have hiest and lowest mks
	or more spread or less consistent M evenly spread or F skewed	B1	2	condone F +ve skew
	We evenly spread of 1 skewed	Di	2	condone i i ve skew
(c)	Advantage:			not B&W shows skewness
	B&W shows med or Qs or IQR or range			not B&W shows info at a glance
	or hiest & lowest or key values	B1		not B&W easier to compare data sets
				not B&W shows mean
				not B&W shows spread
				not B&W easier to calculate or easier to read
	<u>Disadvantage</u> :			
	B&W loses info'			not B&W does not give indiv (or raw) data
	B&W shows less info'			not B&W does not show mean
	B&W not show freqs			
	B&W not show mode			
	B&W: outlier can give false impression			
	hist shows more info			not hist shows freq for each mark
	hist shows freqs or fds			not hist shows all the results
	hist shows modal class (allow mode) hist			not hist shows total
	shows distribution better	_	_	
	can calc mean from hist	B1	2	allow adv of hist as disadv of B&W
(iii)	$102 \times 51 + 26 \times 59$	M1		or 5202 + 1534 or 6736
	÷ 128	M1de	-	
	= 52.6 (3 sfs)	A1		
Total		10		

= /*			1	1 11 11 0 m² 0 0 0 0° 0 =
7(i)	Geo stated	M1		or implied by $0.7^{r}x0.3$ or $0.3^{r}x0.7$
	$0.7^3 \times 0.3$	M1		Allow $0.7^4 \times 0.3$
	$\frac{1029}{10000}$ oe or 0.103 (3 sfs)	A1	3	
(ii)	0.7 ⁶ alone	M1		$1-(0.3+0.3\times0.7++0.3\times0.7^5)$ not $1-0.7^6$
()	= 0.118 (3 sfs)	A1	2	(1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1
(iii)	0.79	M1		not $0.3 \times 0.7^{\frac{5}{9}}$
(111)	$\begin{bmatrix} 0.7 \\ 1-0.7^9 \end{bmatrix}$			
		M1	2	allow $1 - 0.7^{10}$ or 0.972 for M1
	0.960 (3 sfs)	A1	3	allow 0.96, if no incorrect wking seen
				$0.3 + 0.7 \times 0.3 + \dots + 0.7^8 \times 0.3$: M2
				1 term omitted or wrong or "correct" extra: M1
(iv)	Bin stated	M1		or implied by table or ${}^{n}C_{r}$ or $0.7^{3} \times 0.3^{2}$
, ,				or 0.0309
	$^{5}C_{2} \times 0.7^{3} \times 0.3^{2} \text{ or } 0.8369 - 0.5282$	M1		01 01000
	= 0.3087 or 0.309 (3 sfs)		3	
TD 4.1	= 0.3087 Of 0.309 (3 SIS)			
Total		11	l .	
8 (i)	$\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}}$			$(=\frac{-11.8}{\sqrt{168\times0.9}})$
	8			$(=\frac{1}{\sqrt{168\times0.0}})$
	<u> </u>	M2		
	$\frac{1}{1126}$ 88^{2} 16.4^{2}			M1: correct subst in any correct S formula
	$\sqrt{\frac{(1130 - \frac{1}{8})(34.32 - \frac{1}{8})}{8}}$			M2: correct substn in any correct <i>r</i> formula
	•	A1	3	
	= -0.960 (3 sfs)			allow -0.96, if no incorrect wking seen
(ii)	must refer to, or imply,			not x is not random
	external constraint on x			not x affects y
	e.g x is controlled			not x not affected by y
	or values of x fixed or chosen			not x goes up same amount each time
	allow x is fixed	B1	1	not charge affects no. of vehicles
			-	not x not being measured
(iii)	QQ V 16 A		:	note not come measured
(111)	$\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$			
	8_	3.11		feethering and C
	882	M1		ft their S_{xy} and S_{xx} incl $^{168.6}/_{1136}$ if used in (i)
	$1136 - \frac{33}{2}$			$\frac{1}{1136}$ 1f used in (1)
	8			
	$= -0.0702 (3 \text{ sfs}) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$	A1		or -0.07 if no incorrect wking
	7 108			164, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$y - \frac{16.4}{8} = \text{``-0.0702''}(x - \frac{88}{8})$	M1		or $a = {}^{16.4}/{}_8 - (\text{``-0.0702''}) \times {}^{88}/{}_8 \text{ or } {}^{2371}/{}_{840}$ oe eg $y = {}^{-59}/{}_{840}x + {}^{2371}/{}_{840}$
	1 *	A1	4	oe eg $y = -\frac{39}{840}x + \frac{2371}{840}$
(2.)()	y = -0.07x + 2.8 or better	3.71		
(iv)(a)	"-0.07" x 20 + "2.8"	M1		
	= 1.4(2) million (2 sfs)		2	no ft
(b)	r close to -1 or corr'n is high	B1		or good corr'n or pts close to line
				but not if "close to -1, hence unreliable"
				if r low in (i), ft: "r low" or "poor corr'n" etc
				1
	just outside given data, so reliable	В1	2	or outside given data so unreliable
	Jase outside given data, so ionable	וע	-	or oamide given data so unicitable
				not "reliable as follows trend"
				not "reliable as follows average"
				no ft from (iv)(a)
		ļ		
(v)	y on x	B1		
	x is indep	B1	2	or x controlled or y depends on x
	_			or y not indep
				dep on not "x on y"
				· · · · · · · · · · · · · · · · · · ·
				r close to -1 so makes little difference: B2
Total		1 /	1	7 Close to -1 so makes mule unividite. D2
Total		14	•	

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in <u>paper</u>.

	2	1	
1 (i)	$0.2^2 + 0.7 \times 0.1 \times 2$	M2	$0.2^2 \text{ or } 0.7 \times 0.1$: M1
	= 0.18 AG	A1 3	no errors seen NB $2 \times 0.9 \times 0.1 = 0.18$ M0A0
(ii)	$0.28 + 2 \times 0.18 + 3 \times 0.04 + 4 \times 0.01$	M1	≥ 2 terms correct (excl 0×0.49)
			÷ 5 (or 4 or 10 etc): M0
	= 0.8 oe $0.28 + 2^2 \times 0.18 + 3^2 \times 0.04 + 4^2 \times 0.01$	A1 M1	$2 \text{ terms correct (aval.} 0^2 \times 0.40)$
	0.28 + 2 ×0.18 + 3 ×0.04 + 4 ×0.01 - "0.8" ²	M1 M1	≥ 2 terms correct (excl $0^2 \times 0.49$) dep +ve result
	= 0.88 oe	A1 5	cao
			$\Sigma(x-\mu)^2$: 2 terms: M1; 5 terms M2
			$0.8^2 \times 0.49 + 0.2^2 \times 0.28 + 1.2^2 \times 0.18 + 2.2^2 \times 0.04 + 3.2^2 \times 0.01$
			SC Use original table, 0.4:B1 0.44: B1
Total		8	
2(i)(a)	$8736.9 - \frac{202 \times 245.3}{7}$ 1658 24	N/1	correct sub in any correct formula for b
	/ 1030.21	M1	$ \text{eg} \ \frac{236.8921}{210.1249} $
	$\phantom{00000000000000000000000000000000000$		210.1249
	= 1.127 (= 1.13 AG)	A1 2	1127 1 24141
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$	M1 2	must see 1.127; 1.127 alone: M1A1 or $a = \frac{245.3}{7} - 1.13 \times \frac{202}{7}$
(0)	$y - \frac{7}{7} = 1.13(x - \frac{7}{7})$ y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	A1 2	of $a = \frac{7}{7} - 1.13 \times \frac{7}{7}$ 2 sfs suff.
	y 1.1% 2.5 (01 2.1) 01 y = 1.15% 2.43		(exact: $y = 1.127399x + 2.50934$)
(ii)(a)	$(1.1() \times 30 + 2.5()) = 35.5 \text{ to } 36.5$	B1f 1	
(b)	$(1.1() \times 100 + 2.5()) = 112.4 \text{ to } 115.6$	B1f 1	
(iii)	(a) Reliable	B1	Both reliable: B1 (a) more reliable than (b) B1
	(b) Upraliable because extremeleted	B1 2	because (a) within data
	(b) Unreliable because extrapolated	B1 2	or (b) outside data B1 Ignore extras
Total		8	
3(i)(a)	Geo stated	M1	or impl. by $(^{7}/_{8})^{n}(^{1}/_{8})$ or $(^{1}/_{8})^{n}(^{7}/_{8})$ alone
	$(^{7}/_{8})^{2}(^{1}/_{8})$	M1	
(1)	$\frac{^{49}}{_{512}}$ or 0.0957 (3 sfs)	A1 3	1.77.17.77.17.77.32.17.5
(b)	$(^{7}/_{8})^{3}$ alone	M2	or $1-(\frac{1}{8}+\frac{7}{8},\frac{1}{8}+(\frac{7}{8})^2\times\frac{1}{8})$: M2 one term incorrect, omit or extra: M1
			one term incorrect, omit or extra: M1 $1 - (\frac{7}{8})^3 \text{ or } (\frac{7}{8})^2 \text{ alone:} \qquad M1$
	$^{343}/_{512}$ or 0.670 (3 sfs) allow 0.67	A1 3	1 (78) 01 (78) 410110. 1711
(ii)	8	B1 1	
(iii)	Binomial stated or implied	M1	eg by $({}^{7}/_{8})^{a}({}^{1}/_{8})^{b}$ $(a+b=15, a,b \neq 1)$, not just ${}^{n}C_{r}$
	$^{15}\text{C}_2(^{7}/_8)^{13}(^{1}/_8)^2$	M1	
Total	= 0.289 (3 sfs)	A1 3	
Total 4 (i)	1 2 3 4 5 or 5 4 3 2 1	10 M1	attempt ranks
(1)	3 5 4 1 2 3 1 2 5 3	A1	correct ranks
	$\Sigma d^2 \ \ (=32)$	M1dep	S_{xx} or $S_{yy} = 55 - 15^2 /_5 (=10)$ or $S_{yy} = 39 - 15^2 /_5 (=-6)$
	$1 - \frac{6 \times 32}{5(25-1)}$	M1dep	$-6/\sqrt{(10\times10)}$
	= - 0.6	A1 5]

(ii)	1 & 3	B1ind	ft if -1 < (i) < -0.9, ans 1 & 2
	Largest neg r_s or large neg r_s or strong neg corr'n or close(st) to -1 or lowest r_s	B1dep	NOT: furthest from 0 or closest to ±1 little corr'n most disagreement
Total		7	

5	(i)	68	B1		
		75 – 59	M1		attempt 6 th & 18 th or 58-60, 74-76 & subtr
		= 16	A1	3	must be from 75 – 59
	(ii)	Unaffected by outliers or extremes	B1	1	NOT: by anomalies or freaks
		(allow less affected by outliers)			easier to calculate
		sd can be skewed by one value			
	(iii)	Shows each data item, retains orig data			NOT: shows freqs
	(111)	can see how many data items			shows results more clearly
		can find (or easier to read) mode or modal			B&W does not show freqs
		class			D&W does not show neds
		can find (or easier to read) frequs	B1		
		can find mean	וטו		
		can find mean			NOT: B&W easier to compare
		Harder to read med (or Qs or IQR)			B&W shows spread or variance or skew
		Doesn't show med (or Qs or IQR)			B&W shows highest & lowest
		B&W shows med (or Qs or IQR)	B1	2	Dat World Manager & Towest
		B&W easier to compare meds		_	Assume in order: Adv, Disadv, unless told
					Allow disady of B&W for ady of S&L
					& vice versa
					Ignore extras
	(iv)	m = 68.1 NOT by restart	B1		
		sd = 9.7 (or same) NOT by restart	B1	2	Restart mean or mean & sd:
					68.1 or 68.087 & 9.7 or 9.73 B1 only
T	otal		8		

6 (i) (a)	8!	M1			Allow ⁴ P ₄ & ³ P ₃ instead of
	= 40320	A1	2		3! & 4! thro'out Q6
(b)	$\frac{4}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$	M1		$4! \times 4! \div 8!$	$4! \times 4! + 4! \times 4!$
	$\times 2$	M1d	lep	$\times 2$	÷ 8!
			•	allow 1 – above for	or M1 only
	$= \frac{1}{35}$ or 0.0286 (3 sfs)	A1	3	oe, eg $^{1152}/_{40320}$	· J
	33 (40320	
(ii)(a)	4! × 4!	M1		allow $4! \times 4! \times 2$: M1	
(11)(11)	= 576		2		
(b)	$\frac{1}{1}$ ₁₆ or 0.0625	B1			
(c)	Separated by 5 or 6 qus stated or illus	M1		allow 5 only or 6 only o	r (1 5 or 6)
(C)	Separated by 5 of 6 qus stated of finds	1011			of (4, 5 of 6) of by next M2 or M1
	$^{1}/_{4} \times ^{1}/_{4} \times 3 \text{ or } ^{1}/_{16} \times 3$	M2		$3! \times 3! \times 3$	of by flext W12 of W11
	$(\frac{1}{4} \times \frac{1}{4} \times 3)$ or $\frac{1}{16} \times 3$ (1/4 × 1/4 or 1/16 alone or ×(2 or 6):	IVIZ			$2 \circ (21 + 21) \times 2 \cdot M1$
				$(3! \times 3! \text{ alone of } \times ($	2 or 6); or $(3! + 3!) \times 3$: M1)
	M1)	A 1	4		(÷ 576)
	3/ 0.1077 0.100	A1	4		0 1 1 4 1/01/04 0
	$^{3}/_{16}$ or 0.1875 or 0.188			correct ans, but clearly	B, J sep by 4: M0M2A0
				1 D/ 1 0 1 2 2 //	
				1- P(sep by 0, 1, 2, 3, (4	
				$1 - (\frac{1}{4} + \frac{1}{4} + \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{4} \times$	$\binom{2}{3}$
					$\frac{3}{4} \times \frac{1}{4} + 1 \times \frac{1}{4} + \frac{3}{4} \times \frac{1}{4}$ M2
				(one omit: M1)	
Total		12	Ż į		
- 4	T				
7 (i)	Binomial	B1			
	n = 12, p = 0.1	B1		B(12, 0.1) : B2	
	Plates (or seconds) independent oe	B1			
				NOT: batches indep	
	Prob of fault same for each plate oe	B1	4	Comments must be in c	
			4		
	Prob of fault same for each plate oe	B1	4	Comments must be in c	
(ii)(a)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$		4	Comments must be in c	
(ii)(a)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } {}^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ = 0.0852 or 0.0853 (3 sfs)	B1		Comments must be in c Ignore incorrect or irrel	evant
(ii)(a) (b)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$	B1 M1		Comments must be in c	evant
	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } {}^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ = 0.0852 or 0.0853 (3 sfs)	B1 M1 A1		Comments must be in c Ignore incorrect or irrel	evant
	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } {}^{12}\text{C}_3 \times 0.9^9 \times 0.1^3 \\ = 0.0852 \text{ or } 0.0853 \text{ (3 sfs)} \\ 1 - 0.2824 \text{ or } 1 - 0.9^{12}$	M1 A1 M1	2	Comments must be in c Ignore incorrect or irrelable allow 1 – 0.6590 or 1 –	evant
(b)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ $= 0.0852 \text{ or } 0.0853 \text{ (3 sfs)}$ $1 - 0.2824 \text{ or } 1 - 0.9^{12}$ $= 0.718 \text{ (3 sfs)}$ "0.718" and $1 - \text{``0.718''}$ used	M1 A1 M1 A1	2	Comments must be in c Ignore incorrect or irrel	evant
(b)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ = $0.0852 \text{ or } 0.0853 \text{ (3 sfs)}$ $1 - 0.2824 \text{ or } 1 - 0.9^{12}$ = 0.718 (3 sfs) $0.718 \text{ and } 1 - 0.718 \text{ used}$ $(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$	M1 A1 M1 A1	2	Comments must be in c Ignore incorrect or irrelation allow 1 – 0.6590 or 1 – ft (b) for B1M1M1	0.9 ¹¹
(b)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ $= 0.0852 \text{ or } 0.0853 \text{ (3 sfs)}$ $1 - 0.2824 \text{ or } 1 - 0.9^{12}$ $= 0.718 \text{ (3 sfs)}$ "0.718" and $1 - \text{``0.718''}$ used	M1 A1 M1 A1 B1	2	Comments must be in c Ignore incorrect or irrelable allow 1 – 0.6590 or 1 – ft (b) for B1M1M1 M1 for any one term co	0.9 ¹¹
(b)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ = $0.0852 \text{ or } 0.0853 \text{ (3 sfs)}$ $1 - 0.2824 \text{ or } 1 - 0.9^{12}$ = 0.718 (3 sfs) $0.718 \text{ and } 1 - 0.718 \text{ used}$ $(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$	M1 A1 M1 A1 B1	2	Comments must be in c Ignore incorrect or irrelable allow 1 – 0.6590 or 1 – ft (b) for B1M1M1 M1 for any one term co	0.9 ¹¹
(b)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ = $0.0852 \text{ or } 0.0853 \text{ (3 sfs)}$ $1 - 0.2824 \text{ or } 1 - 0.9^{12}$ = 0.718 (3 sfs) $0.718 \text{ and } 1 - 0.718 \text{ used}$ $(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$	M1 A1 M1 A1 B1	2	Comments must be in c Ignore incorrect or irrelable allow 1 – 0.6590 or 1 – ft (b) for B1M1M1 M1 for any one term co	o.9 ¹¹ rrect opp tail or no coeffs)
(b)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ = $0.0852 \text{ or } 0.0853 \text{ (3 sfs)}$ $1 - 0.2824 \text{ or } 1 - 0.9^{12}$ = 0.718 (3 sfs) $0.718 \text{ and } 1 - 0.718 \text{ used}$ $(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$	M1 A1 M1 A1 B1	2	allow 1 – 0.6590 or 1 – ft (b) for B1M1M1 M1 for any one term co (eg of	rrect opp tail or no coeffs) illar scheme M2 or M1
(b)	Prob of fault same for each plate oe $0.9744 - 0.8891 \text{ or } ^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$ = $0.0852 \text{ or } 0.0853 \text{ (3 sfs)}$ $1 - 0.2824 \text{ or } 1 - 0.9^{12}$ = 0.718 (3 sfs) $0.718 \text{ and } 1 - 0.718 \text{ used}$ $(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$	M1 A1 M1 A1 B1	2	Comments must be in c Ignore incorrect or irrelable allow 1 – 0.6590 or 1 – ft (b) for B1M1M1 M1 for any one term co	rrect opp tail or no coeffs) illar scheme M2 or M1

Total

8 (i)	$^{1}/_{6} + 3 \times (^{1}/_{6})^{2}$	M2		or $3 \times (\frac{1}{6})^2$ or $\frac{1}{6} + (\frac{1}{6})^2$ or $\frac{1}{6} + 2(\frac{1}{6})^2$	
				or $\frac{1}{6} + 4(\frac{1}{6})^2$	M1
	$= {}^{1}/{}_{4}$	A1	3		
(ii)	1/3	B1	1		
(iii)	3 routes clearly implied	M1			
	out of 18 possible (equiprobable) routes	M1		$1 \text{ or } ^{1}/_{3} \times ^{1}/_{6} \times 3$	M2
				or $\frac{1}{3} \times \frac{1}{6}$ or $\frac{1}{6} \times \frac{1}{6} \times 3$ or $\frac{1}{3} \times \frac{1}{3} \times 3$ or $\frac{1}{4}$	$^{1}/_{6}$ M1
				but $^{1}/_{6} \times ^{1}/_{6} \times 2$	M0
				$\frac{\left(\frac{1}{6}\right)^2 \times 3}{\frac{1}{2}}$ or $\frac{\frac{1}{4} - \frac{1}{6}}{\frac{1}{2}}$ or $\frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}}$ oe	M2
				or $\frac{P(4\&twice)}{P(twice)}$ stated or $\frac{prob}{\frac{1}{2}}$	M1
				Whatever 1 st , only one possibility on 2 nd	M2
				$^{1}/_{6}$, no wking M1M	[1A1
	1/6			¹ / ₁₂ , no wking	M0
	/6	A1	3	-	
Total		7			

Total 72 marks

1			Q1: if consistent "0.8" incorrect or $^{1}/_{8}$, $^{7}/_{8}$ or 0.02 allow M marks in ii , iii & 1 st M1 in i
i	Binomial stated	M1	or implied by use of tables or ${}^{8}\mathrm{C}_{3}$
	$0.9437 - 0.7969$ or ${}^{8}C_{3} \times 0.2^{3} \times 0.8^{5}$ = 0.147 (3 sfs)	M1 A1 3	or $0.2^a \times 0.8^b$ $(a+b=8)$
ii	1– 0.7969	M1	allow 1– 0.9437 or 0.056(3) or equiv using formula
	= 0.203 (3 sf)	A1 2	of equity using formula
iii	8 × 0.2 oe 1.6	M1 A1 2	$8 \times 0.2 = 2 \text{ M1A0} 1.6 \div 8 \text{ or } ^{1}/_{1.6} \text{ M0A0}$
Total		7	
2	first two d 's = ±1 Σd^2 attempted (= 2) $1 - \underline{6 \times "2"}$ $7(7^2 - 1)$	B1 M1 M1dep	S_{xx} or $S_{yy} = 28$ B1 $S_{xy} = 27$ B1 $S_{xy} / \sqrt{(S_{xx}S_{yy})}$ M1 dep B1
	$= \frac{7(7-1)}{28} = \frac{27}{28} \text{ or } 0.964 \text{ (3 sfs)}$	A1	1234567 & 1276543 (ans $^2/_7$): MR, lose A1
Total		4	
3 i	x independent or controlled or changed Value of y was measured for each x x not dependent	B1 1	Allow Water affects yield, or yield is dependent or yield not control water supply Not just <i>y</i> is dependent Not <i>x</i> goes up in equal intervals Not <i>x</i> is fixed
ii	(line given by) minimum sum of squs	B1 B1 2	B1 for "minimum" or "least squares" with inadequate or no explanation
iii	$S_{xx} = 17.5$ or 2.92 $S_{yy} = 41.3$ or 6.89 $S_{xy} = 25$ or 4.17 $r = \frac{S_{xy}}{\sqrt{(S_x S_y)}}$	B1 M1	or $91 - 21^2/_6$ or $394 - 46^2/_6$ or $186 - \frac{21 \times 46}{_6}$ dep B1
	= 0.930 (3 sf)	A1 3	0.929 or 0.93 with or without wking B1M1A0 SC incorrect <i>n</i> : max B1M1A0
iv	Near 1 or lg, high, strong, good corr'n or relnship oe	B1ft	r small: allow little (or no) corr'n oe
	Close to st line or line good fit	B1 2	Not line accurate. Not fits trend
Total		8	

4			Q4: if consistent "0.7" incorrect or $\frac{1}{3}$, $\frac{2}{3}$ or 0.03 allow M marks in ii, iii & 1 st M1 in i
i	Geo stated $0.7^3 \times 0.3$ alone $^{1029}/_{10000}$ or 0.103 (3 sf)	M1 M1 A1 3	or implied by $q^n \times p$ alone $(n > 1)$ $0.7^3 - 0.7^4$
ii	0.7^4 alone = ${}^{2401}/_{10000}$ or 0.240 (3 sf)	M1 A1 2	$ \frac{1 - (0.3 + 0.7 \times 0.3 + 0.7^{2} \times 0.3 + 0.7^{3} \times 0.3)}{\text{NB } 1 - 0.7^{4} : \text{M0}} $
iii	$1 - 0.7^{5}$	M2	or $0.3 + 0.7 \times 0.3 + + \dots + 0.7^4 \times 0.3$ M2 M1 for one term extra or omitted or wrong or for $1-$ (above) M1 for $1-0.7^6$ or 0.7^5
	= 0.832 (3 sfs)	A1 3	NB Beware: $1 - 0.7^6 = 0.882$
		8	
5i	$\begin{vmatrix} 25/10 \\ = 2.5 \end{vmatrix}$	M1 A1 2	Allow ²⁵ / _(9to10) or 2.78: M1
ii	(19.5, 25) (9.5, 0)	B1 B1 2	Allow (24.5, 47) Both reversed: SC B1 If three given, ignore (24.5, 47)
iii	Don't know exact or specific values of <i>x</i> (or min or max or quartiles or median or whiskers). oe Can only estimate (min or max or quartiles or median or whiskers) oe Can't work out () oe Data is grouped oe	B1 1	Exact data not known Allow because data is rounded
Total		5	

6i	$\Sigma x \div 11$		M1			
OI	$\begin{bmatrix} 2x & 11 \\ 70 \end{bmatrix}$		A1			
	Σx^2 attempted		M1	S F towns on $\Sigma(u)$	- ,2	
	l		1,11	\geq 5 terms, or $\sum (x-1)^{n}$	<i>x</i>)	
	$\sqrt{\frac{\sum x^2}{11}} - \overline{x}^2 = \sqrt{(54210)}/1$	$_1 - 70^2$) or $\sqrt{28.18}$ or		or $\sqrt{\frac{\sum(x-\overline{x})^2}{11}} = \sqrt{3}$	10, ,/20,10	
	V 11	- ,	A1	or $\sqrt{\frac{11}{11}} = \sqrt{\frac{1}{11}}$	$^{-3}/_{11}$ or $\sqrt{28.18}$	
	5.309			ie correct substn or re	esult	
	(= 5.31) AG		4	$ \text{If} \times {}^{11}/_{10} : \text{M1A1M1A}$	\(0	
ii	Luc ut concerns the		N / 1			
11	Attempt arrange in ord med = 67	er	M1 A1			
	74 and 66		M1	or (72.5 – 76.5) – (65	55 - 66 5) incl	
	74 and 00		IVII	01 (72.3 - 70.3) - (03	5.5 – 66.5) mei	
	IQR = 8		A1 4	must be from 74 – 66	5	
				iii, iv & v: ignore ext	ras	
iii	no (or fewer) extremes	this year oe	B1 1	fewer high &/or low	,	
	sd takes account of all			highest score(s) less		
	sd affected by extreme	S			·	
	less spread tho' middle			Not less spread or more consistent		
	less spread tho' 3 rd & 9	o th same or same gap		Not range less		
iv	sd measures spread or	variation or	B1 1	sd less means spread		
14	consistency oe	variation of	D1 1	or marks are closer to		
				or marks are croser to	sgemer se	
V	more consistent, more		B1 1	allow less variance		
	closer together, nearer	to mean				
	less spread			Not range less		
				Not highest & lowest	t closer	
Total			11			
7i	⁸ C ₃		M1			
, -	= 56		A1 2			
ii	$^{7}\text{C}_{2} \text{ or or } ^{7}\text{P}_{2} / {}^{8}\text{P}_{3}$	¹ / ₈ not from incorrect	M1	${}^{8}C_{1} + {}^{7}C_{1} + {}^{6}C_{1} \text{ or } 21$	$^{7}/_{8} \times ^{6}/_{7} \times ^{5}/_{6}$	
		2 1		or 8×7×6		
	. (80 "50")1-	× 3 only	M1	or"/ ₈ ×"/ ₇ ×"/ ₆	1	
	$\div (^{8}C_{3} \text{ or "56"}) \text{ only}$ = $^{3}/_{8}$	Of 1, 7, 1, 7, 6, 1,	M1	indon don one < 1	1 – prod 3 probs	
		or ${}^{1}/_{8}+{}^{7}/_{8}^{1}/_{7}+{}^{7}/_{8}^{6}/_{7}^{1}/$	A1 3	indep, dep ans < 1		
iii	⁸ P ₃ or 8×7×6 or ⁸ C	$_{1}^{5} \times ^{7} C_{1} \times ^{6} C_{1} \text{ or } 336$	M1	$1/_8 \times 1/_7 \times 1/_6$ only M	12 If \times or \div : M1 $\binom{1}{8}^3$ M1	
	$1 \div {}^8P_3$ only		M1		(, 0 / 1 1 1 1	
	$= \frac{1}{336}$ or 0.00298 (3 s	sf)	A1 3			
Total		,	8			
	1			i .		

8ia	18/ ₁₉ or 1/ ₁₉ seen 17/ ₁₈ or 1/ ₁₈ seen structure correct ie 6 branches all correct incl. probs and W & R	B1 B1 B1	regardless of probs & labels (or 14 branches with correct 0s & 1s)
b	$ \frac{1}{20} + \frac{19}{20} \times \frac{1}{19} + \frac{19}{20} \times \frac{18}{19} \times \frac{1}{18} $ $ = \frac{3}{20} $	M2 A1 3	M1 any 2 correct terms added
iia	$ \begin{array}{l} \begin{array}{l} $	M1 A1 2	$^{19}/_{20} \times ^{18}/_{19} \times ^{1}/_{18} + ^{19}/_{20} \times ^{18}/_{19} \times ^{17}/_{18} \text{ or } ^{1}/_{20} + ^{17}/_{20}$
ь	$(P(X=1) = \frac{1}{20})$ $\frac{19}{20} \times \frac{1}{19}$ $= \frac{1}{20}$ $\sum xp$ $= \frac{57}{20} \text{ or } 2.85$	M1 A1 M1 A1 4	or $1 - (^{1}/_{20} + ^{9}/_{10})$ or 2 probs of $^{1}/_{20}$ M1A1 ≥ 2 terms, ft their p 's if $\Sigma p = 1$ NB: $^{19}/_{20} \times 3 = 2.85$ no mks
ia			With replacement: Original scheme
ib			
iia			$(^{19}/_{20})^2$ or $(^{19}/_{20})^2 \times ^1/_{20} + (^{19}/_{20})^2 \times ^{19}/_{20}$ M1
b			Original scheme But NB ans 2.85(25) M1A0M1A0
Total		13	

Total			8	
	× 0.12 = 0.0155		M1 A1 5	or ${}^6\mathrm{C}_2 \times 0.88^4 \times 0.12^2 + \mathrm{extra}$ M2 or 2 successes in 6 trials implied or ${}^6\mathrm{C}_2$ M1 $\mathrm{dep} \geq \mathrm{M1}$ $0.88^4 \times 0.12^2 \times 0.12: \mathrm{M2M1}$ $0.88^4 \times 0.12^3 \mathrm{M0M0A0}$ unless clear P(2 success in 6 trials) \times 0.12 in which case M2M1A0
ii	$^{6}\text{C}_{2} \times 0.88^{4} \times 0.12^{2}$	(= 0.1295)	M3	or $0.88^4 \times 0.12^2$ M2
	n=24		A1 3	Ignore incorrect inequ or equals signs
	log 0.05	or $0.88^{24} = 0.046$	M1	or log _{0.88} 0.05 or 23.4()
9i	$(1-0.12)^n$ $\log 0.05$	or $0.88^{23} = 0.052$	M1	Can be implied by 2^{nd} M1 allow $n-1$

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

Penalise over-rounding only once in paper.

1 (i)	attempts at threading indep	B1	in context
1 (1)	prob of succeeding in threading const	B1 2	in context
(;;) (a)	$0.7^4 \times 0.3$	+	III Context
(ii) (a)		M1	G 1 0.072
	= 0.0720 (3sf)	A1 2	Condone 0.072
(b)	0.7^{5}	M2	or 1- $(0.3+0.7\times0.3+0.7^2\times0.3+0.7^3\times0.3$
			$+0.7^4 \times 0.3$)
			M1 for one term omitted or extra or
			wrong or 1-0.7 ⁵ or(0.3++0.7 ⁴ ×0.3) or
	= 0.168 (3 sfs)	A1 3	$0.3, 0.7$ muddle or 0.7^4 or 0.7^6 alone.
			0.6 not 0.7 M0 in (a) M1 in (b)
			1/3,2/3 used M1in (a) M1 in (b)
(iii)	likely to improve with practice	B1	or thread strands gradually separate
(111)	interj to improve with process		1 st B1 must be in context.
	hence independence unlikely		hence independence unlikely
	or prob will increase each time	B1 2	or prob will decrease each time
	or prob will increase each time	DI Z	or similar
			Allow 'change'
TD 4.1		F0.1	Anow change
Total	The of course wide to	[9]	11 14 19 25 5
2 (i) (a)	Use of correct midpts	B1	11,14,18,25.5
	$\Sigma lf \div \Sigma f \qquad (= 706 \div 40)$	M1	l within class, \geq three lf seen
	= 17.65	A1	[17.575,17.7]
	-2.		
	$\Sigma l^2 f \qquad (= 13050.5)$	M1	\geq three $l^2 f$ seen
	$\sqrt{\frac{"13050.5"}{40} - "17.65"^2} \qquad (= \sqrt{14.74})$		
	$\sqrt{\frac{13030.3}{40}}$ -"17.65" ² (= $\sqrt{14.74}$)	M1	$\div 40$,-mean ² , $\sqrt{.}$ Dep>0.
	= 3.84 (3 sfs)		$\sum (1-17.65)^2 f$, at least 3 M1,÷40, $$
	- 3.64 (3 sis)	A1 6	M1,3.84 A1.
			$\div 4 \Rightarrow \max B1M0A0M1M0A0$
(b)	mid pts used or data grouped		not "orig values were guesses"
	or exact values unknown oe	B1 1	
(ii)	20 ÷ 5	M1	condone 20 ÷ [4,5] or ans 5
. ,	= 4	A1 2	
(iii)	20.5 th value requ'd <u>and</u>		condone 20 th
()	1 st two classes contain 14 values	M1	oe
	16 – 20	B1 2	or third class oe
(iv) (a)	increase	B1 1	of third class oc
(b)	decrease	B1 1	
Total	decrease	[13]	
3 (i)	$S_{hm} = 0.2412$	[13]	Allow x or ÷ 5
3 (1)	$S_{hm} = 0.2412$ $S_{hh} = 0.10992$		Allow X OI + 3
	$S_{hh} = 0.10992$ $S_{mm} = 27.212$	B1	any one Comment
		M1	any one <i>S</i> correct ft their <i>S</i> s
	$r = \underbrace{S_{\underline{l}\underline{m}}}_{\underline{s} \underline{s}}$	IVII	it then 58
	$\sqrt{(S_{hh}S_{mm})}$	A 1 2	
····	= 0.139 (3 sfs)	A1 3	1st D1 -1
(ii)	Small, low or not close to 1 or close	B1 ft	1^{st} B1 about value of r
	to 0 oe		2 nd B1 about diag
	pts not close to line oe	B1	
(iii)	none or unchanged or "0.139" oe	B1 1	
(iv)	Larger oe	B1 1	
Total		[7]	

4	(i)	$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8}$	M1		≥ 2 non-zero terms seen
		$=\frac{7}{8}$ or 0.875 oe	A1		If ÷3 or 4 M0M0M1(poss)
		$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2^2 \times \frac{1}{8} + 3^2 \times \frac{1}{8} $ (=	M1		≥ 2 non-zero terms seen
		$1\frac{7}{8}$)			
		- (" 7 ") ²	M1		dep +ve result M1 all4 (x-0.875)² terms seen.
		$=\frac{71}{64}$ or 1.11 (3 sfs) oe	A1	5	M1 mult p,∑ A1 1.11
	(ii)	Bin stated or implied	M1		Eg table or $\frac{1}{4}^n \times \frac{3}{4}^m$ $(n+m=10,n,m\neq 1)$
		0.922 (3 sfs)	A1	2	or10C4
	····		3.61		or 5(or 4 or 6) terms correct
	(iii)	$n = 10 & p = \frac{1}{8}$ stated or implied	M1		
		$^{10}\text{C}_4 \times \frac{7}{8}^6 \times \frac{1}{8}^4$	M1		
		= 0.0230 (3 sfs)	A1	3	condone 0.023
	Total		[10		
5	(i)	$\frac{6}{14} \times \frac{5}{13} \times \frac{3}{12}$	M1		$^{6}\text{C}_{1} \times ^{5}\text{C}_{1} \times ^{3}\text{C}_{1}$
		× 3! oe	M1		$$ \div $^{14}\mathrm{C}_3$
		$=\frac{45}{182}$ or 0.247 (3 sfs)oe	A1	2	With repl M0M1A0
	(ii)	$\frac{\frac{6}{14} \times \frac{5}{13} \times \frac{4}{12} + \frac{5}{14} \times \frac{4}{13} \times \frac{3}{12} + \frac{3}{14} \times \frac{2}{13} \times \frac{1}{12}}{14}$	M2		${}^{6}C_{3} + {}^{5}C_{3} + {}^{3}C_{3}$ M1 for any one
		11 19 12 11 19 12 11 19 12			(÷ ¹⁴ C ₃)M1 all 9 numerators correct.
	m . 1	$=\frac{31}{364}$ or 0.0852 (3 sf)	A1	3	With repl M1 $(6/14)^3+(5/14)^3+(3/14)^3$
-	Total	At diag or explanation showing ats	[6 B1	<u> </u>	
6	(a)	A: diag or explanation showing pts close to st line,	DI		
		always increasing			
		B:Diag or expl based on	B1		Diag or expl based on
		r=1=>pts on st line	D1	2	$r(s) \neq 1 = \text{pts not on st line}$
		=>r(s)=1	B1	3	$=>r \neq 1$
					r=1=>pts on st line&r(s) \neq 1=>pts not on st line B1B1
					r=1=>r(s)=1 B2
	(b)	$\overline{y} = 2.4 \times 4.5 + 3.7$	M1		Attempt to sub expression for y
		= 14.5	A1 M1		x=0.96x+1.48-c oe sub x=4.5 and solve
		$ \begin{array}{l} 4.5 = 0.4 \times \text{``}14.5\text{''}-c \\ c = 1.3 \end{array} $	A1	4	c=1.3
		C = 1.3		•	
		a'=x-b'y:-14.5 M1A1;			14.5 M1A1.(y-3.7)/2.4=0.4y-c and
	m 4 1	then a'=4.5-0.4x14.5=-1.3 M1A1	r-	7	sub14.5 M1 c=1.3 A1
7	Total (i)	²⁵ / ₃₇	[7 B2	<u>]</u>	B1 num, B1 denom 25/37xp B1
	(ii)	$\frac{737}{\frac{15}{23}}$ seen or implied	M1		51 nam, 51 denom 25/3/Ap 51
		23			
		$\times \frac{39}{59}$ seen or implied	M2		M1 num, M1 denom
		$=\frac{585}{1357}$ or 0.431 (3 sfs) oe	A1	4	Allow M1 for 39/59x or + wrong p
	Total		[6		

8 (i)	5!/2	M1	Allow 5P3
	= 60	A1 2	
(ii)	4!	M1	Allow 2×4!
	= 24	A1 2	
(iii)	$^{2}/_{5} \times ^{3}/_{4} \text{ or } 3/5 \times 2/4$	M1	allow M1 for $^{2}/_{5} \times ^{3}/_{5} \times 2$ or $^{12}/_{25}$
	$\times 2$	M1	or $(6\times3!)\div(i)$ M2 or
	$= \frac{3}{5}$ oe	A1 3	$3! \div (i), 6 \div (i), (6+6) \div (i), 6k \div (i) \text{ or } 6 \times 6 \text{ or}$
			36 or 1-correct answer M1
			$(k, integer \leq 5)$
Total		[7]	
9 (i)	p^2	B1 1	
(ii)	$(q^2p)^2$ oe =AG	B1 1	
(iii)	r=q²	B1	May be implied
	a/(1-r) used	M1	With a=p ² and r=q ² or q ⁴
	p^2		
	$(S_{\infty} =) \frac{p^2}{1-a^2}$	A1	
	1-q		
		M1	Attempt to simplify using p+q=1
			correctly. Dep on $r = q^2$ or q^4
	$- p^2$		$(1-q)^2$
	$=\frac{p^2}{1-(1-p)^2}$		$\frac{(1-q)^2}{(1-q)(1+q)} \text{or } p^2/p(1+q)$
	p/(2-p) AG	A1 5	Correctly obtain given answer showing
		AI 3	at least one intermediate step.
P2Total		[7]	at least one intermediate step.
P210tal		[/]	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

	er-rounding only once in paper.		
1i	590	B1 1	Allow approximately 590
ii	Graph horiz (for \geq 55 mks) oe	B1 1	or levels off, or $grad = 0$, $grad$ not increase
			Allow line not rise, goes flat, plateaus, stops
			increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27	M1	eg 26 mks \rightarrow 150 th 27 mks \rightarrow 180 th
1 4	Double & attempt read x	M1	eg read at $cf = 300$ or 360 Indep of first M1
	Bouole & attempt read x	1411	May be implied by ans
	Max $C = 29$ to 31.5	A1 3	Answer within range, no working, M1M1A1
	V(a) = 29 to 31.3	AI 3	
	1.0. 25.5.26.5. 110. 24.25.5		32 without working, sc B1
V	LQ = 25.5-26.5 or UQ = 34-35.5	M1	M1 for one correct quartile
	IQR = 8-10	A1	$dep \ge 1$ correct quartile or no working
	(German) more spread	B1ft 3	or less consistent, less uniform, less similar,
			more varied, more variable, greater variance,
			more spaced apart, further apart
			ft their IQR; must be consistent with IQR
			-
			Correct comment with no working: M0A0B1
Total		9	
2i	Opposite orders or ranks or scores		or reversed, or backwards, or inverse
	or results or marks		or as one increases the other decreases
	$r_s = -1$	B1 1	Needs reason AND value
	<u> </u>		
ii	Attempt Σd^2 (= 6)	M1	
	$1 - \frac{6 \times \Sigma d^2}{3(3^2 - 1)}$	M1	dep 1 st M1
	$=-\frac{1}{2}$ oe		Allow use wrong table for M1M1
	$=-\frac{1}{2}$ Ge	A1 3	C
iii	3! or ${}^{3}P_{3}$ or 6	M1	r attempt list possible orders of 1,2,3 (≥3 orders)
111	1 ÷ their '6'	M1	2 nd M1 for fully correct method only
	1 . then 0	1411	
	$\frac{1}{6}$ oe eg $\frac{6}{36}$	A1 3	or $\frac{1}{3} \times \frac{1}{2} (\times 1) : M1M1$
	6 00 05 36	AI 3	
Total		7	
3i	If x is contr (or indep) or y depend't,		Allow <i>x</i> increases constantly, is predetermined,
	use y on x	B1	you choose x , you set x , x is fixed, x is chosen
	If neither variable contr'd (or indep)		Allow <i>y</i> not controlled AND want est <i>y</i> from <i>x</i>
	AND want est y from x: use y on x	B1 2	•
	-		Ignore incorrect comments
iia	g 510000 1800 ² (150000)		or $\frac{510000}{9} - 200^2$ (= 16666.7)
	$S_{xx} = 510000 - \frac{1800^2}{9} \qquad (= 150000)$		
	$S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200)	M1	or $\frac{4080}{9}$ - 200×1.6 (= 133.33)
	9 (= 1200)		M1 for either S
			111 101 Cition b
	$b = \frac{1200'}{150000'} \tag{= 0.008}$	M1	$b = \frac{133.33'}{16666.7'}$ dep correct expressions both S's
	'150000' (= 0.003)	1711	'16666.7' dep correct expressions both b's
			14.4
	$y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$	M1	or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} \ \ (=0)$
	$y - \frac{1}{9} = 0.000(x - \frac{1}{9})$		Must be all correct for M1
	y = 0.008x (+ 0)		CAO
	y = 0.0000 (+0)	A1 4	0110
	010.5		C1 ' ' ' '
iib iic	312.5 or 313 -0.4	B1ft 1 B1ft 1	ft their equn in (iia) ft their equn in (iia)

4732		Mari	k S	cheme June :
iid	Contraction oe	B1(f	t)	or length decreased, shorter, pushed in, shrunk, smaller
	Unreliable because extrapolated oe	B1	2	or not in the range of <i>x</i> or not in range of previous results
Total		10		
4ia	0.299 (3 sf)	B1	1	
ib	$\begin{array}{l} 0.2991 - 0.1040 \\ = 0.195 (3 \text{ sf}) \text{ or } \frac{1280}{6561} \text{ oe} \end{array}$	M1 A1	2	Must subtract correct pair from table
iia	$^{15}\text{C}_4 \times (1-0.22)^{11} \times 0.22^4$ = 0.208 (3 sf)	M1 A1	2	Allow M1 for ${}^{15}C_4 \times 0.88^{11} \times 0.22^4$
iib	$(15 \times 0.22 =) 3.3$ $15 \times 0.22 \times (1-0.22)$ or '3.3'×(1-0.22) = 2.57 (3 sf)	B1 M1 A1	3	Allow M1 for $15 \times 0.22 \times 0.88$
Total		8		
5i	$\frac{1}{2} \times \frac{1}{3} \text{ or } \frac{2}{4} \times \frac{1}{3} \text{ or } \frac{1}{{}^{4}C_{2}} \text{ or } \frac{2}{12}$ $(=\frac{1}{6} \text{ AG})$	B1		or 1 out of 6 or 2 out of 12 or $\frac{2!}{4!} \times 2$
	$\frac{1}{4} \times \frac{2}{3} \text{ or } 2 \times \frac{1}{4} \times \frac{1}{3} \text{ or } \frac{1}{2} \times \frac{1}{3} \text{ or } \frac{2}{4} \times \frac{1}{3}$	B1		or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{{}^{4}C_{2}}$ or $\frac{2!}{4!} \times 2$
	Add two of these or double one $(=\frac{1}{3} \mathbf{AG})$	B1	3	or $\frac{2}{{}^{4}C_{2}}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1
				or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	X = 3, 4, 5, 6 only, stated or used	B1		Allow other values with zero probabilities.
	P(X=5) wking as for P(X=4) above or $1 - (\frac{1}{6}^{n} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{3}$	M1		
	P(X = 3) wking as for P(X = 6) above or $1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{6}$	M1		or M1 for total of their probs = 1, dep B1
	3 4 5 6			or $P(X=3)=\frac{1}{6}$, $P(X=4)=\frac{1}{3}$, $P(X=5)=\frac{1}{3}$, $P(X=6)=\frac{1}{6}$
	$\frac{1}{6} \frac{1}{3} \frac{1}{3} \frac{1}{6}$ oe	A1	4	Complete list of values linked to probs
iii	$\begin{bmatrix} \sum xp \\ = 4\frac{1}{2} \end{bmatrix}$	M1 A1		≥ 2 terms correct ft
	$\sum x^2 p \qquad (= 21 \frac{1}{6})$ $- 4 \frac{1}{2}$	M1 M1		≥ 2 terms correct ft Independent except dependent on +ve result
	$=\frac{11}{12}$ or 0.917 (3 sf)	A1	5	
Total		12		

4732		Walk 5	Cheme
6	$m = (9 \times 6 + 3) \div 10$	M1	or ((Sum of any 9 nos totalling 54) $+$ 3) \div 10
	= 5.7	A1	
	$2 = \frac{\Sigma x^2}{9} - 6^2$	M1	or $\frac{\Sigma(x-6)^2}{9} = 2$ M1
	$\Sigma x^2 = 2 \times 9 + 6^2 \times 9 \text{ or } 342$	A1	or $\Sigma x^2 = 18 + 12 \times 54 - 36 \times 9$ or 342 A1
	$v = \frac{('342' + 3^2)}{10} - '5.7'^2$	M1	dep Σx^2 attempted, eg $(\Sigma x)^2 (= 3249)$ or just state ' Σx^2 '; allow $$
	= 2.61 oe	A1 6	CAO
Total		6	
7i	$^{4}\text{C}_{2} \times ^{6}\text{C}_{3} \times ^{5}\text{C}_{4} \text{ or } 6 \times 20 \times 5$	M1M1	M1 for any 2 correct combs seen, even if added
	= 600	A1 3	
ii	$\frac{2}{4}$ or $\frac{{}^{3}C_{1}}{{}^{4}C_{2}}$ or $\frac{{}^{3}C_{1}{}^{6}C_{3}{}^{5}C_{4}}{{}^{4}C_{2}{}^{6}C_{3}{}^{5}C_{4}}$ or	M1	or $\frac{1}{4} \times 1 + \frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4} + \frac{1}{4}$
	$\frac{{}^{3}C_{1}^{6}C_{3}^{5}C_{4}}{{}^{6}00'}$		
	$=\frac{1}{2}$ oe	A1 2	
iii	${}^{3}C_{1} \times {}^{6}C_{3} \times {}^{4}C_{4} + {}^{3}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}$	M1M1	M1 either product seen, even if × or ÷ by something
	360	A1 3	
Total		8	

8			
8ia	Geo(0.3) stated or implied	M1	by $0.7^{n} \times 0.3$
	$0.7^3 \times 0.3$	M1	·
	= 0.103 (3 sf)	A1 3	
b	0.7^3 or 0.343	M1	0.7^3 must be alone, ie not $0.7^3 \times 0.3$ or similar
	$1 - 0.7^3$	M1	allow $1 - 0.7^4$ or 0.7599 or 0.76 for M1 only
			_
			or $0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3$: M1M1
			1 term wrong or omitted or extra M1
			or $1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3)$ or 0.343 : M1
	= 0.657	A1 3	
iia	State or imply one viewer in 1 st four	M1	or B(4, 0.3) stated, or ⁴ C ₁ used, or YNNNY
	$^{4}C_{1} \times 0.7^{3} \times 0.3$ (= 0.412)	M1	
	$\times 0.3$	M1	dep 1st M1
	= 0.123 (3 sf)	A1 4	
b	$0.7^5 + {}^5C_1 \times 0.7^4 \times 0.3$	M1	or $1 - (0.3^2 + 2 \times 0.3^2 \times 0.7 + 3 \times 0.3^2 \times 0.7^2 + 4 \times 0.3^2 \times 0.7)$
	= 0.528 (3 sf)	A1 2	
			Not ISW, eg 1 – 0.528: M1A0
Total		12	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in <u>paper</u>.

1i	38	B1	Reversed: B1B0	
	61	B1 2		
ii	Paper 2	B1	Indep of reason	Ans "Paper 1", ignore reason: B0B0 unless reversed in (i)
	Higher median or curve is to right	B1dep	or similar	More scored higher mks
		2	Higher average or mean or midpoint	Highest & lowest mks are higher
			Paper 2: half \leq 61, cf paper 1: half \leq 38	For each cf, the corresponding mark is higher in p2.
				None get 0-10
			Paper 1: more students scored lower	Some get 100
			marks (or lower than eg 40)	Eg 25 scored > 69 in p1, cf 65 scored > 69 in p2
				NOT Marks are higher NOT marks seem higher
				NOT everyone gets higher mks
				NOT Curve steeper
				Ignore irrelevant or incorrect
				SC: If reversed in (i): (ii) p1 because median higher B1B1ft
iii	55, 25	M1	M1 one pair of quartiles	Allow 55±1, 25±1 Not necessarily subtracted
	73, 46			$73\pm1,46\pm1$
	Paper 1 IQR = 30	A1		30±1
	Paper 2 IQR = 27	A1		27±1
	Suggestion correct or p2 less varied	B1f	p2 more consistent or less spread out	p1 more varied or more spread out or less consistent
		indep	Allow "p2 has smaller range (or smaller variance") if IQRs found	Little difference or similarly varied
			smarrer variance) if TQTG found	NOT p2 IQR smaller than p1 unless also says less varied oe
		4	"It" is less varied: assume p2: B1	The second secon
				If quartiles found but not IQRs: max M1A0A0B1
				If no quartiles calculated can still score B1
				Steeper curve alone M0A0A0B0
				If IQRs wrong, with p1 < p2, ft "suggestion wrong": B1f
				Ignore irrelevant or incorrect

iv	37 (± 3)	B2 2	B1 for 163 (± 3)	Not necessarily integer. B1 for 78-80 mks for min grade A on p2
v	37.5	B1	cao	SC: ans 105 – 110: B1 (from p1 10 mks hier instead of lower) NOT eg 37.51
	28.2	B1 2	or sd the same	Ignore all working
Total		12		
2				SC:Consistent use of incorrect (1 – 0.2) score M-marks only SC:Consistent 0.8 insted of 0.2, no A-marks: max M0M2M2M2 "Consistent" means in every part attempted
2i	$0.8^2 \times 0.2$	M1		
	$=\frac{16}{125}$ or 0.128	A1 2		
ii	$0.8^{2} \times 0.2 + 0.8^{3} \times 0.2 + 0.8^{4} \times 0.2$	M2	1 term omitted or wrong or extra: M1	Using $P(X \le 5)$ & $P(X \le 2)$; three methods:
	$= \frac{976}{3125} \text{ or } 0.312 \text{ (3 sfs)}$	A1 3		$1 - 0.8^{5} - (1 - 0.8^{2}) \text{ or } 0.672 - 0.36 \text{: } M2$ Allow M1 for $1 - 0.8^{5} - (1 - 0.8^{3}) \text{ or } 0.672 - 0.488}$ or $1 - 0.8^{4} - (1 - 0.8^{2}) \text{ or } 0.5904 - 0.36}$ $0.8^{2} - 0.8^{5} \text{: } M2 \text{ Allow M1 for } 0.8^{3} - 0.8^{5} \text{ or } 0.8^{2} - 0.8^{4}$ $0.2 + 0.8 \times 0.2 + 0.8^{2} \times 0.2 + 0.8^{3} \times 0.2 + 0.8^{4} \times 0.2 - (0.2 + 0.8 \times 0.2) \text{: } M2$ One term omitted or wrong or extra: M1 But NB If include $0.8^{-1} \times 0.2$ in both $P(X \le 5)$ & $P(X \le 2)$, get correct ans but M1M0A0 M0 for eg $1 - 0.8^{5} - 0.8^{2}$ or $0.672 - 0.64$
iii	0.8^4 = $\frac{256}{625}$ or 0.4096 or 0.410 (3 sfs)	M2	1- $(0.2 + 0.8 \times 0.2 + 0.8^2 \times 0.2 + 0.8^3 \times 0.2)$ 1 term omitted or wrong or extra: M1 1 - 0.8^4 or 0.590 M1 or 0.8^3 or 0.512 or 0.8^5 or 0.328: M1	$1 - (0.2 + 0.8 \times 0.2 + 0.8^{2} \times 0.2 + 0.8^{3} \times 0.2) \text{ M2}$ $0.2 \times 0.8^{4} \text{ M0} \qquad 1 - 0.8^{n} (n \neq 4) \text{ M0}$
	625	A1 3	Allow 0.41	

iv	$\begin{bmatrix} 0.2 \times 0.8 \times 0.2 \\ \times 2 \end{bmatrix}$	M1 M1	or $0.2 \times 0.8^{0} \times 0.8 \times 0.2$ or $0.2 \times 0.8 \times 0.2 + 0.8 \times 0.2 \times 0.2$	or 0.032 NOT $n \times 0.2^2 \times 0.8$ except $n = 2$ Fully correct method except allow M0M1 for $(0.2+0.8\times0.2)\times2$, must see method
	$= 0.064 \text{ or }^{8}/_{125}$	A1 3		Attempt 0,3 and/or 3,0, as well as 2,1and/or 1,2; max M1M0A0 Careful: $0.2 \times 0.8 \times 0.2 + 0.2 \times 0.8^{-1} \times 0.128 = 0.064$ M1M0A0 Careful: $0.8 \times 0.8 \times 0.2 \div 2 = 0.064$: (ie P(X = 3) \div 2) M0M0A0
Total		11		Calciul. $0.8 \times 0.8 \times 0.2 \div 2 = 0.004$. (le $F(X = 3) \div 2$) WidwigA0
3i	$\frac{7351.12 - \frac{86.6 \times 943.8}{12}}{\sqrt{(658.76 - \frac{86.6^2}{12})(83663 - \frac{943.8^2}{12})}} \text{ or } \frac{540.03}{\sqrt{33.80 \times 9433}}$	M1 M1 A1 3	Must see at least 2 sfs	1 st M1 for correct subst in any correct <i>S</i> formula 2 nd M1 for all correct subst'n in any correct <i>r</i> formula
	= 0.9564 or 0.956 or 0.96	AI 3	Wust see at least 2 sis	0.96 or correct better, no working: M1M1A1 eg 0.958 → 0.96 with correct working M1M1A0 without working: M0M0A0
ii	Strong (or high or good or close etc) relationship (or corr'n or link) between amount spent on advert & profit	B1 1	Allow Almost complete relationship or Very positive corr'n or Very reliable relationship or Near perfect relationship between spend on advert & profit oe, in context	Must state or imply "strong" or "good" or equiv & in context but NOT Strong <i>agreement</i> between etc NOT High spend on ads produces high profits NOT The more spent on adverts, the higher the profit NOT Positive corr'n between spend on ads & profits NOT There is a relationship between spend on ads & profit NOT There is a great relationship between etc NOT ans involving "proportion(al)"
				Ignore irrelevant or incorrect If incorrect $r < 0.9$ in (i), no ft for ans "weak rel'nship" here; but correct ans here scores B1 even if inconsistent with their r

iii				Allow without context
	Relationship may not continue Corr'n not imply causation	B1 2	Can't extrapolate Any indication that pattern may not continue Must state or imply referring to future Increase in profit may not be due to increase in spend on advertising. Variables may be increasing separately	Examples: Can't predict future; Things can change May be recession ahead; Economic situation may change Cost of advertising may increase If spend too much on ads, profit may be reduced as a result Advertising may not be as successful in the future Item may go out of fashion NOT Spending on adverts may not bring high profits NOT Spending more on adverts may not bring higher profits (Since these just restate the question) NOT More money spent on ads will not affect profit Both variables may be affected by a third Other factors may affect profits Advertising not the sole factor affecting profits Two different categories of reason needed, as given above. Two reasons which both fall under the same category: only B1 NOT Because corr'n not equal to 1
iv	$b = \frac{7351.12 - \frac{86.6 \times 943.8}{12}}{658.76 - \frac{86.6^2}{12}}$	M1	or $\frac{S_{xy}}{Sxx}$	ft values of S_{xy} & S_{xx} if clearly shown in (i)
		A1 M1	or $a = \frac{943.8}{12} - 16.0 \times \frac{86.6}{12}$	
	y = 16x - 37 or better	A1 4	(y = 15.9788x - 36.664)	Coeffs not nec'y rounded, but would round to 16 & 37 These marks can be earned in (v) if not contradicted in (iv)
		N/1		If x on y line found: M-marks only $(x = 2.71 + 0.0572y)$
V	"16" × 7.4 – "37" 81400 to 81750	M1	81.4 thousand to 81.7 thousand: M1A1	"16" × 7400 – "37": M0A0
	0110010011750	A1f 2		ft their (iv)
Total		12		

4i	$ \begin{array}{c} 0.4 \times 0.7 \\ 0.6 + 0.4 \times 0.7 \end{array} $	M1 M1	or $0.6 + \text{prod of 2 probs}$ Condone $0.6 \times 0.7 + 0.6 \times 0.3 + 0.4 \times 0.7$ or $0.6 \times 0.6 + 0.6 \times 0.4 + 0.4 \times 0.7$	1- prod of 2 P's or 0.4×0.3 1 - 0.4×0.3
ii		A1 3 M1	$\frac{1}{\text{ or } p^2 + p \times (1-p) + (1-p) \times p}$	Condone $p + p \times 1-p$ M1, but $p + qp = 0.51$ M0
	$p^{2} - 2p + 0.51 = 0$ $(p-0.3)(p-1.7) = 0 \text{ or } p = \frac{2\pm\sqrt{4-4\times0.51}}{2} \text{ oe}$	A1 M1	Correct QE = 0 Condone omission of "= 0" Correct method for their 3-term QE	
	p = 0.3	A1 4	Not $p = 0.3$ or 1.7	Correct ans from correct but reduced wking or T & I or verification or no wking: 4 mks Ans $p = 0.3$ or 1.7 from correct but reduced wking or T & I or no wking: M1M1M1A0 Ans $p = 0.3$ following correct wking except other solution incorrect: BOD 4 mks (eg $p = \frac{2\pm\sqrt{4-4\times0.51}}{2}$ so $p = 0.3$ or -1.3 so $p = 0.3$: 4 mks)) $p = 0.3$ from wrong wking but correct verification: BOD 4 mks $p = 0.3$ from wrong wking alone: M0A0M0A0
Total		7		

5			Consistent use of $\frac{1}{3}$ or MR of 30% (eg	0.2): ("Consistent" as in Qu 2)		
			(i) B1B0B1B1 (iia) B0			
			(iib) 0.7901–0.460	9 or ${}^{5}C_{2}(\frac{2}{3})^{3}(\frac{1}{3})^{2}$ M1; = 0.329 (3 sf) A1		
				M1; ${}^{7}C_{3}(1 - \text{``}0.3292\text{''})^{4}(\text{``}0.3292\text{''})^{3} \text{ M1}; = 0.253 \text{ (3 sf)}$		
			A1			
			ie max 8/10			
5i	Binomial or B	B1 B1		Allow mis-spellings but NOT "Biometric"		
	(5, 0.3)	ы		Condone B~ $(5, 0.3)$ or B $(0.3, 5)$: B1B1 but B $(X = 0.3, n = 5)$: B1B0		
	Prob of gift same for all pkts	B1	Prob of gift is constant or fixed or consistent or same oe	NOT: prob of success const; NOT prob stays same each go		
	Whether pkt contains gift is indep of		Obtaining a gift is indep	One box doesn't affect another. Pkts indep. Gifts indep		
	other pkts	B1 4	Each time receive a gift is indep	She buys packets separately Prob of a gift is indep		
			Context needed for 3 rd & 4 th B-mks	1 100 of a gift is indep		
				Prob of gift indep of one another & const: B1B1		
				NOT: Each week is indep		
				NOT: Number of gifts received is indep		
				NOT: Events indep		
				If Geo(0.3) stated, can score max B0B0B1B1		
,				If Geo(5, 0.3) stated, can score max B0B1B1B1		
iia	0.8369		or 0.837			
b	$0.8369 - 0.5282$ or ${}^{5}C_{2}(0.7)^{3}(0.3)^{2}$	M1				
iii	= 0.3087 or 0.309 (3 sf)	A1 2	(::h) and in a calc?	a. D/7 %0.2007?) atatad		
111	p = "0.3087"	M1	(iib) used in a calc'n eg "0.3087" × 3	or B(7, "0.3087") stated or 1 – "0.3087" used instead of "0.3087"		
	$^{7}\text{C}_{3}(1 - \text{``}0.3087\text{''})^{4}(\text{``}0.3087\text{''})^{3}$	M1		of 1 – 0.5007 used instead of 0.5007		
	= 0.235 (3 sf)	A1 3				
	. ,			$n = 35 \text{ or } 15: \max M1M0A0$		
Total		10				

Total		10		Careful: 336 or 756 can be obtained by incorrect methods.
	"2100" – (${}^{4}C_{3} \times {}^{9}C_{4}$ or ${}^{4}C_{2} \times {}^{9}C_{3}$) or "2100" – (504 or 504) M1 "2100" – (${}^{4}C_{3} \times {}^{9}C_{4} + {}^{4}C_{2} \times {}^{9}C_{3}$) M1 ÷ "2100" or (iia) dep \geq M1 M1		$\frac{3}{5} \text{ or } \frac{4}{10} \text{ oe} \qquad M1$ $\frac{3}{5} + \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} \qquad M1$ $\frac{3}{5} + \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} \qquad M1$ $= \frac{13}{25} \qquad A1$	Not from incorrect wking ie P(WA or GA or both) Must be correct figures ie P(WA or GA but not both) Must be correct figures SC: ⁴ P ₂ × ⁹ P ₄ + ⁴ P ₃ × ⁹ P ₃ : M1 ÷ (iia) M1dep Correctul: 336 or 756 can be obtained by incorrect methods
b	$^{4}C_{2} \times ^{9}C_{4} \text{ or } ^{4}C_{3} \times ^{9}C_{3}$ or 756 or 336 $^{4}C_{2} \times ^{9}C_{4} + ^{4}C_{3} \times ^{9}C_{3}$ or 1092 $\div 2100 \text{ or } \div \text{ (iia) dep } \ge \text{ one M1 scored}$ $= \frac{13}{25} \text{ or } 0.52$	M1 M1 M1dep A1 4		Not from incorrect wking SC $\frac{1}{5} \times \frac{9}{10}$ or $\frac{4}{5} \times \frac{1}{10}$ M1 $\frac{1}{5} \times \frac{9}{10} + \frac{4}{5} \times \frac{1}{10}$ M1 $(= \frac{13}{50} \text{ A0})$
iia	$= 420$ ${}^{5}C_{3} \text{ or } {}^{10}C_{4} \text{ seen}$ ${}^{5}C_{3} \times {}^{10}C_{4}$ $= 2100$	A1 3 M1 M1 A1 3	or 10 or 210	$\frac{7!}{3! \times n!}$ any n : M1M0 $\frac{5_{\text{C}_3} \times {}^{10}\text{C}_4}{\text{anything}} \text{M1M1A0}$ ${}^{5}\text{P}_3 \times {}^{10}\text{P}_4 \text{ or } 60 \times 5040 \text{ or } 302400 \text{: SC B1}$
6i	$7! \div 3!$ $7! \div 2!$ $\div 3!$	M1 M1dep	But NOT ${}^{7}P_{4}$ or $7!/(7-4)!$ if seen	$\frac{7!}{3!+2!}$: M1M0

4732 Mark Scheme January 2011

7i	$(0 \times a) + 2 \times (1 - a)$	M1	or $2(1-a)$	Condone $2 \times 1 - a$ NB $2 \times (1 - a) \div 2 : M0A0$
	= 2 - 2a or $2(1 - a)$ oe	A1 2		Eg E(X) = 2 – 2 a ; 2 – 2 a = 1; a = 0.5: M1A0
ii	$(0\times a) + 2^2 \times (1-a)$	M1	or $4-4a$ oe	Condone $2^2 \times 1 - a$
	$-"(2-2a)"^{2}$ $= 4 - 4a - 4 + 8a - 4a^{2}$ $= 4a - 4a^{2}$ $= 4a(1-a)) AG$ $\frac{-2+2a}{a} \frac{2a}{1-a} M1$ $Var(X) = a(-2+2a)^{2} + 4a^{2}(1-a) M1$ $4a^{3} - 8a^{2} + 4a + 4a^{2} - 4a^{3}$	M1 A1 3	- $(i)^2$ dep contains a ; ISW; Indep mk or $4(1-a)-4(1-a)^2$ 4(1-a)(1-(1-a)) Correct table oe	$4-4a-4\pm 8a\pm 4a^2$ or $4-4a-4\pm 4a^2$ or equiv M1M1A0 $4-4a-2(1-a)^2$ M1M1A0 Must see this line, correctly obtained Careful: $4-4a-(2-2a)^2=4-4a-(4-4a^2)=-4a+4a^2=4a(1-a)$ M1M1A0 only
	$4a - 4a^2 $ A1			
Total		5		
8i	EDCBA	B1 1	A 5 B 4 C 3 D 2 E 1	NOT just 5, 4, 3, 2, 1
iia	$1 - \frac{6\Sigma d^2}{5(5^2 - 1)} = 0.9$	M1		$1 - \frac{6 \times 2}{5(5^2 - 1)}$
	$1 - \frac{6 \times \Sigma d^2}{5 \times 24} = 0.9$ or $0.1 = \frac{6 \times \Sigma d^2}{5 \times 24}$	A1 2	One correct step or better & nothing incorrect for A1	= $1 - \frac{6 \times 2}{5 \times 24}$ or $1 - \frac{12}{5 \times (5^2 - 1)}$ One correct step or better & nothing incorrect for A1
		1	1	
1	$(\Sigma d^2 = 2 \mathbf{AG})$			
	$(\Sigma d^2 = 2 \text{ AG})$			(=0.9 AG)
b	d^2 : 0, 0, 0, 1, 1 any order	M1	or d: 0, 0, 0, 1, -1 any order	(= 0.9 AG) May not be seen
b	,	M1 A1 2	or d: 0, 0, 0, 1, -1 any order Any two adjacent dogs interchanged	May not be seen
b	d^2 : 0, 0, 0, 1, 1 any order			,

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

	over-rounding only once in paper.	1	Table 2	
1ia	$3247 - \frac{251 \times 65}{5}$	M2	M1 for correct subst in any correct S formula	
	$\frac{\frac{3247 - \frac{11}{5}}{\sqrt{(14323 - \frac{251^2}{5})(855 - \frac{65^2}{5})}}}{\sqrt{(14323 - \frac{251^2}{5})(855 - \frac{65^2}{5})}} \text{or } \frac{-16}{\sqrt{1722.8 \times 10}}$		M2 for correct subst'n in any correct <i>r</i> formula	or $\frac{-80}{\sqrt{8614 \times 50}}$
	= -0.1219	A1 3	Must see at least 4 sfs	Allow –0.1218
b	Poor/no/little/weak/not strong corr'n or rel'nship or link between income & distance oe	B1 1	or slight neg/weak corr'n (oe) between income & distance In context, ie any comment on income & distance, even if incorrect	eg, Poor neg corr'n, so higher distance, lower income No rel'nship. Low income doesn't cause low distance NOT "Not proportional" NOT "negative corr'n" No recovery of this mark in (ii)
С	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other NOT "Little effect" NOT "Not much effect"
ii	r close to 0, or small, or poor corr'n oe or $r = -0.122$	B1	or Weak/no corr'n or poor rel'nship oe or No evidence to link sales & distance	or because small sample Ignore other
	Unreliable	B1dep 2	Condone "innacurate" or "incorrect" or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason	Allow: "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because <i>r</i> not close to -1" "Unreliable because <i>r</i> smaller than (–)0.7"
				NOT "Unreliable because extrapolated": B0B0 but "Unreliable because extrapolated and poor corr'n": B1B1
Total		7		

2	Attempt ranks	M1	Ignore labels of rows or columns	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	No ranks seen, $d = (0), \pm 1, \pm 1, \pm 2$, or $d^2 = (0), 1, 1, 4$ any order: M1A1 NOT $(\Sigma d)^2$	No wking, $\Sigma d^2 = 6$: M1A1M1 No wking, $\Sigma d^2 = \text{eg } 14$: M0A0M0, but can gain 3^{rd} M1
	* '	M1	NO1 (2a)	110 wking, 2a = 6g 14. Mortonio, but can gain 3 111
	$1 - \frac{6\Sigma d^2}{4(4^2 - 1)}$	M1		No wking, ans $\frac{2}{5}$: Full mks
	$=\frac{2}{5}$ oe	A1 5		Allow both sets of ranks reversed
				NB incorrect method: 2 3 4 1 2 1 3 4 OR $d = (0), \pm 2, \pm 1, \pm 3$ any order OR $d^2 = (0), 4, 1, 9$ any order (leading to $\Sigma d^2 = 14$ and $r_s = -\frac{2}{5}$): M0A0M1M1A0
Total		5		MOADMIMIAU
3ia	$(1 - 0.5565)$ or $12 \times 0.85^{11} \times (1 - 0.85) + 0.85^{12}$	M1	or $1 - ((1-0.85)^{12}^{12}C_{10} \times 0.85^{10}(1-0.85)^2)$ ie $1 - (all 11 correct binomial terms)$	or 1 – 0.557
	= 0.4435 or 0.443 or 0.444 (3 sf)	A1 2		NB 1 – 0.4435 (oe): M0A0
b	$0.5565 - 0.2642 \text{ or } {}^{12}\text{C}_{10}(1 - 0.85)^{2}(0.85)^{10}$ = 0.2923 or 0.2924 or 0.292 (3 sf)	M1 A1 2		or 0.557 – 0.264
С	$12 \times 0.85 \times (1-0.85)$ = 1.53 oe	M1 A1 2		
ii	$(\frac{3}{4})^2$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly \times 2)	M1	eg $(\frac{3}{4})^2 + \frac{3}{4} \times \frac{1}{4}$ or $2 \times (\frac{3}{4})^2 + 2 \times \frac{3}{4} \times \frac{1}{4}$ or $0.5625 + 0.1875$ or $0.5625 + 0.375$	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{8}$ eg in table or list
	$\left(\frac{3}{4}\right)^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe or $\frac{27}{128}$ or 0.211	M1	or eg 0.5625 × 0.375	Allow even if further incorrect wking
	$2 \times \left(\frac{3}{4}\right)^2 \times 2 \times \frac{3}{4} \times \frac{1}{4} \text{oe}$	M1	Fully correct method	
	$=\frac{27}{64}$ or 0.422 (3 sfs)	A1 4		Ans 0.211: check wking but probably gets M1M1M0A0
				Use of 0.85 instead of $\frac{1}{4}$: MR max M1M1M1A0
Total		10		

4i	Method is either: Just $4 \div 3$ or $\frac{4}{3}$							
	or: Use of ratio of correct frequ	iencies AN	ND ratio of widths (correct or 4 and 2)					
4i	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$ or $(5.6 \div \frac{28}{5}) \times \frac{4}{3}$ or $\frac{4}{3}$ or $4 \div 3$ oe	M2	M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$ or $(5.6 \div \frac{28}{4}) \times \frac{4}{2}$ or 0.8×2 oe (= 1.6)	Correct calc'n using 5.6, 28, 4, 5, 3 oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1				
	of $(3.0 \div \frac{4}{5}) \times \frac{3}{3}$ of $\frac{3}{3}$ of $\frac{4}{3}$ of $\frac{4}{3}$ or $\frac{4}{3}$	A1 3	No wking, ans 1.3: M2A0 Ans 1.6: Check wking but probably M1M0A0	ie fully correct method: M2 or: incorrect class widths, otherwise correct method: M1 $\frac{4}{3} \text{ correctly obtained (or no wking) then further incorrect:}$ M1M0A0				
				Use of ratio of widths OR freqs but not both: M0 eg $5.6 \times \frac{4}{28}$ (= 0.8) or $5.6 \times \frac{3}{5}$ (= 3.36): M0 $\frac{4}{2} = 2$: M0M0A0				
ii	25 or 26 or 25.5	B1	or 25 & 26	May be implied, eg by 21 or 22 or 21.5				
	Med is 21^{st} (or 22^{nd} or 21.5^{th}) in 31-35 class or "25 – 4" Can be implied by calc'n	B1	or med in last ≈ 7 in class or $33 \approx 14^{th}$ in class or $33 \approx 18^{th}$ in whole set Can be implied by diagram	Calc'ns need not be correct but need to contain relevant figures for gaining B1B1				
	Med > 33 or "more than"	B1 3	indep	The "≈" sign means ± 2				
				$\frac{Alternative\ Method:}{33\approx18^{th}\ value} \qquad \qquad B1$ More values above 33 than below on B1 Med > 33 B1 Ignore comment on skew $NB\ Use\ EITHER\ the\ main\ method\ OR\ the$ $\frac{Alternative\ Method}{Alternative\ Method}\ (above),\ not\ a\ mixture\ of\ the$ two. Choose the method that gives most marks.				

iii	≥ 3 mid-pts attempted	M1	seen or implied	Not nec'y correct values (29, 33, 40.5, 53)	
	$\Sigma fx \div 50 \text{ attempted} \qquad (= \frac{1819}{50})$ = 36.38 or 36.4 (3 sf)	M1 A1	≥ 3 terms. or 36 with correct working	Allow on boundaries. Not class widths	
	Σfx^2 attempted (= 68055.5)	M1	\geq 3 terms.	Allow on boundaries. Not class widths (3364, 30492, 22963.5, 11236)	
	$\sqrt{\frac{68055.5}{50} - (\frac{1819}{50})^2} \text{or } \sqrt{1361.11 - 36.38^2}$ $(= \sqrt{37.6056})$	M1	completely correct method except midpts & ft their mean, dep not $\sqrt{(\text{neg})}$	Allow class widths for this mark only NB mark is not just for "– mean ² ", unlike q5(iii)	
	= 6.13 (3 sfs)	A1 6		$\Sigma(fx)^2$: M0M0A0 If no wking for Σfx^2 , check using their x and f	
	Alt for variance: $\Sigma f(x - \bar{x})^2 (= 1880.28)$ M1 $\sqrt{\frac{1880.28}{50}}$ M1 = 6.13 (3 sf) A1			If no wking or unclear wking: full mks for each correct ans for incorrect ans: $35.8 \le \mu \le 36.9$ M0M1A0 $6.0 \le \text{sd} \le 6.25$ M1M0A0	
iv	(a) Decrease (b) Increase (c) Same (d) Same	B1B1 B1B1 4	Ignore other, eg "slightly" or "probably"	Ignore any comments or reasons, even if incorrect	
Total		16			
5	If done with replacement, no marks in any pa	rt of this q	uestion.		
5i	All correct probs correctly placed, matching labels, if any	B2 2	B1 for 4 correct probs anywhere	Allow B2 with missing labels but only if probs consistently placed, ie R above B throughout	
ii	$\frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8} + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}$ or $\frac{4}{15} + \frac{1}{6} + \frac{1}{6}$		B1: two of these products (or their results) added (not multiplied)		
	$(=\frac{3}{5} \mathbf{AG})$	B2 2	or $1 - (\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{4}{9} \times \frac{3}{8} + \frac{4}{10} \times \frac{3}{9})$ or $1 - (\frac{1}{6} + \frac{1}{10} + \frac{2}{15})$	B1: 1 – two of these products (or results) added (not multiplied) NB incorrect methods can lead to correct ans AG so no wking no mks	
		<u> </u>		No ft from tree in (i)	

iii	$\sum xp \text{ attempted}$ = $\frac{16}{15}$ oe or 1.07 (3 sfs)	M1 A1	Both non-zero terms	\div 3 etc or $\frac{1}{\sum xp}$: M0	
	$\Sigma x^2 p$ attempted $(=\frac{23}{15} \text{ or } 1.53)$	M1	Both non-zero terms	\div 3 etc: or $\frac{1}{\sum x^2 n}$: M0	Not $\sum xp^2$
	- " <u>16</u> "2	M1	indep but dep +ve result	· r	NB easier to gain than equiv mark in qu 4(iii)
	$=\frac{89}{225}$ oe or 0.395 or 0.396 (3 sfs)	A1 5	Ans 0.388: check wking from $\mu = 1.07$; prematur		not 0.395, but check for dot over 5 for recurring
	Alt for $Var(X)$: $\Sigma(x-\bar{x})^2p$ M2		$\frac{1}{6} \times \frac{16}{15}^{2} + \frac{3}{5} \times \frac{1}{15}^{2} + \frac{3}{15}$ all correct M2, 2 terms of	30 13	
Total		9			
6ia	5040	B1 1		1767-757	
b	6! or 5!×6 or 720	M1		$^{1}/_{7}\times^{1}/_{6}$ M1*	NOT 6! in denom
	÷ 7! or ÷ "5040" or 1440 or (5! or 6!) × 2	M1	Any \div 7! or "5040" but NOT any \times 2	\times 6 or \times 2 M1 dep*	eg $^{6!}/_{5040}$ or $^{1}/_{7}$ or 0.143 or $^{1}/_{21}$ (3 sfs): M1M1A0
	$= \frac{2}{7}$ oe or 0.286 (3 sf)	A1 3			
iia	3! × 4! alone or 144	M1	$\frac{1}{4} \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$ oe	or 7 <i>C</i> 3or7 <i>C</i> 4	Not $3! \times 4! \times$ (eg not $3! \times 4! \times 5$) not $\frac{1}{3! \times 4!}$, not $\frac{1}{144}$
	(÷ 7! or "5040")				31×4! , not 144
	$= \frac{1}{35}$ oe or 0.0286 (3sf)	A1 2			NB no mark for ÷ 7! or "5040" in this part
b	5 seen or 5! seen	M1			or GGGBBBB, BGGGBBB, BBBGGGB, BBBBGGG
	$3! \times 4! \times 5$ or $5! \times 3!$ or 720 or 5×144	M1	or $5 \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} (\times^{4} /_{4} \times^{3} /_{5})$	$_{3}\times^{2}/_{2}$) oe: M2	
			or $5 \times \frac{1}{7C3 \text{ or } 7C4}$:	M2	NB no mark for ÷ 7! or "5040" in this part
			or 5 × "(iia)":	M2	
	$(\div 7! \text{ or "5040"})$ = $^{1}/_{7} \text{ oe or 0.143 (3 sf)}$	A1 3			
Total		9			

7i	x	B1 1	Ignore explanations. "Neither" or "Both": B0	
ii	Diag showing vertical differences only	B1	Allow description instead of diag: "Distances from pts to line // to y-axis" oe	Allow \geq one line, from a point to the line
	State that sum of squares of these is min oe	B1 2	dep vert or horiz lines (not both) drawn or described	Must have Min, Squares, Distances & Sum
iii	– 1	B1	Not approx –1	Allow eg:
	Ranks opposite or reversed	B1dep 2	As x increases, y decreases	-1 because neg corr'n so ranks must be reversed
	or <u>perfect</u> neg corr'n between <u>ranks</u> oe	2		Ignore other NOT neg corr'n or strong neg rel'nship oe NOT comment about "disagreement" or "agreement"
iv	"Negative"		eg "Strong neg"	Any implication of Negative, except
	on "NI of 1"	D1 1	or any negative value > -1 or "Close to -1 "	NOT "Negative gradient" and
Total	or "Not –1"	B1 1	or Close to –1	NOT "-1" given as the value of r
8	Incorrect p (eg "cubical die means 18 sides h	ence $p = \frac{1}{2}$		
8i	$\frac{25}{216}$ oe or 0.116 (3 sfs)	B1 1	8	
ii	$(\frac{5}{6})^7 \times \frac{1}{6}$ alone	M2	M1 for $({}^{5}/{}_{6})^{8} \times {}^{1}/{}_{6}$ alone	
11	(76) × 76 dione	1112	1411 101 (76) × 76 dione	
	$= 0.0465 (3 \text{ sfs}) \text{ or } \frac{78125}{1679616}$	A1 3		
iii	$(^{5}/_{6})^{8}$ oe alone	M1	$1 - P(X \le 8)$, with exactly 8 correct terms	NOT $1 - (\frac{5}{6})^8$, NOT $(\frac{5}{6})^8 \times$
	$= 0.233 $ (3 sfs) or $\frac{390625}{1679616}$	A1 2		
iv	NB If more than 5 products are added (eg P($1 \le X \le 12$: no marks	·
	$(\frac{5}{6})^{9} \times \frac{1}{6} + (\frac{5}{6})^{10} \times \frac{1}{6} + (\frac{5}{6})^{11} \times \frac{1}{6} + (\frac{5}{6})^{12} \times \frac{1}{6}$ $(= 0.0323 + 0.0268 + 0.0224 + 0.0187)$	M3	M3 for all correct	$(\frac{5}{6})^9 - (\frac{5}{6})^{13}$ or $1 - (\frac{5}{6})^{13} - [1 - (\frac{5}{6})^9]$ M3
			or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116	or $\binom{5}{6}^{8,9 \text{ or } 10} - \binom{5}{6}^{12, 13 \text{ or } 14}$ or $1 - \binom{5}{6}^{12, 13 \text{ or } 14} - \left[(1 - \binom{5}{6})^{8, 9 \text{ or } 10} \right]$ M2
	0.100 (2.5)		or M1 for ≥ 1 of these terms or values seen; ignore incorrect	or $\pm [(\frac{5}{6})^9 - (1 - (\frac{5}{6})^{13})]$ or $\pm [1 - (\frac{5}{6})^9 - (\frac{5}{6})^{13}]$ M1
TD 4 3	= 0.100 (3 sfs)	A1 4	Allow 0.1 with wking	
Total		10		

Total 72 marks

Note: "(3 sf)" means "answer which rounds to ... to 3 sf". If correct ans seen to \geq 3sf, ISW for later rounding Penalise over-rounding only once in paper. NB If marking by question and over-rounding is seen, must mark whole paper.

C	uestic	on	Answer	Marks	Guidance	
1	(i)		0.1 + 0.3 + 2p + p = 1 oe $p = 0.2$	M1 A1 [2]		
1	(ii)		$\sum xp = 2.7 \text{ oe}$	M1 A1f [2]	\geq 2 terms correct, FT p	eg ÷ 4: M0A0
2	(i)		because values (or depths) are fixed (controlled or chosen or predetermined manipulated or given oe) because they can be changed or it is cor because it is not measured ie not "noff" oe or because we change the values ours	or I or hanged read	Allow "because it goes up in intervals" or "because it is taken at set intervals" Ignore all else NB "x is changed" B1, but "x changes" B0	NOT: x, as values are constant x, as y depends on x x as % sand depends on depth Depth, as not affected by % sand content x, as it is not dependent x, because y is measured x, because it changes y, which is the depth and this is controlled
2	(ii)		$S_{xx} = 7344 - \frac{216^2}{9} $ (= 2160) $S_{yy} = 30595 - \frac{512.4^2}{9} $ (= 1422) $S_{xy} = 10674 - \frac{216 \times 512.4}{9} $ (= -162) $r = \frac{\text{"-1623.6"}}{\sqrt{\text{"2160"}\times\text{"1422.36"}}} $ = -0.926 (3 sfs)	36)	correct subst in any S formula correct subst in all S s & in r	

C	uesti	on	Answer	Marks	Gui	dance
2	(iii)	(a)	$b = \frac{\text{"-1623.6"}}{\text{"2160"}}$ or -0.75 or $-\frac{451}{600}$	M1	ft S_{xy} & S_{xx} from (ii)	If ans to (i) is y, & x on y found here:
			$y - \frac{512.4}{9} = \text{``-0.75''}(x - \frac{216}{9})$	M1	or $a = \frac{512.4}{9} - 0.75 \times (-\frac{216}{9})$ or $\frac{5623}{75}$	$b' = \frac{\text{"-}1623.6\text{"}}{\text{"}1422.36\text{"}}$ (= -1.14) M1 $x - \frac{216}{9} = \text{"-}1.14\text{"}(y - \frac{512.4}{9})$ M1
			$y = -0.75x + 75(.0) (2 sf)$ or $y = -\frac{451}{600}x + \frac{5623}{75}$	A1	2 sf is enough Allow $y = -0.75x + (-75)$	$x = \frac{1}{9} = -1.14 \text{ (y} = \frac{1}{9})$ M11 x = -1.14y + 89(.0) A1
				[3]		If ans to (i) is x , but x on y found here: B1 only for $x = -1.14y + 89(.0)$
2	(iii)	(b)	r close to -1 (or high or strong), $ r $ close to 1	B1	Allow strong or good or high corr'n or rel'nship etc	or strong neg corr'n. Award this mark even if comment linked to 100 instead of linked to 25. BUT: "r close to -1, so unreliable": B0 Can still score next marks if mention "within" and "outside range"
			25 within range of data oe, so reliable 100 outside range of data oe, so unreliable	B1 B1	or so more reliable or so less reliable	or 100 gives neg %age
			Must give reasons Allow "accurate" instead of "reliable"	[3]	$\begin{array}{ccc} \text{If (ii) } r < 0.7: \\ \text{poor corr'n oe} & \text{B1f} \\ 25 \text{ unreliable} & \text{B1f} \\ 100 \text{ unreliable} & \text{B1f} \end{array}$	"Reliable because r near -1 " B1B0B0 "Small sample so unreliable" B0B0B0 Ignore all else
3	(i)		$(1 - 0.12)^{13}$ or $13 \times (1 - 0.12)^{12} \times 0.12$ $(1 - 0.12)^{13} + 13 \times (1 - 0.12)^{12} \times 0.12$ = 0.526 (3 sf)	M1 M1 A1[3]	Either seen Fully correct method	1 – correct terms: M1M0A0
3	(ii)		$^{13}C_2 \times 0.12^2 \times (1 - 0.12)^{11}$ 2 \times "0.275275" \times (1 - "0.275275") = 0.399 (3 sf)	M1 M1 A1 [3]	or 0.275() Correct method except allow omit "2 ×"	Allow if \times or $+$ something NB unlike 2^{nd} M1 in (i) which is for fully correct method NB $2 \times 0.12 \times 0.88$: M0M0A0

C	uesti	on	Answer	Marks	Gui	dance
4	(a)		3 5 1 4 2 3 1 5 2 4 1 4 3 5 2 5 2 3 1 4	M1 A1	Attempt ranks for both variables Correct ranks May be implied by $\Sigma d^2 = 10$	If use alphabetical order for one or both sets of ranks, M0A0. eg if 1, 2, 3, 4, 5, seen or $\Sigma d^2 = 14$ or 16, check carefully. But can score 2^{nd} & 3^{rd} M1s. Also see example below
			Σd^2 attempted (= 10)	M1	S_{xx} or $S_{yy} = 55 - \frac{15^2}{5}$ (=10) or $S_{xy} = 50 - \frac{15^2}{5}$ (=5)	
			$r_s = 1 - \frac{6\Sigma d^2}{5(5^2 - 1)}$ dep \geq M1 gained = 0.5	M1 A1 [5]	$\frac{5}{\sqrt{10\times10}}$	A = 1, B = 2 etc eg 2 4 1 5 3 4 2 3 5 1 Max M0A0M1M1A0
4	(b)		$n(n^2 - 1)$ greater or increases or becomes $(n+1)((n+1)^2 - 1)$	Blind	or "denom increases" or "÷ by larger number"or "fraction decreases" or "value taken from 1 decreases" oe	Allow increases to 6×35 NOT just " <i>n</i> increases"
			Σd^2 unchanged (or not increase) Allow d^2 unchanged	Blind	or $d = 0$ or $d^2 = 0$ or the difference is 0	NOT $n(n^2 - 1)$ changes NOT "difference is unchanged"
			r_s greater	B1 [3]	dep \geq B1 or no explanation "Little diff between rankings so r_s same" or "rankings unchanged" B0B0B0	Use of incorrect formula can score max B1B1B0 (B0 for r_s greater) "Increases because more agreement" B1 only
5	(i)	(a)	$(\frac{6}{3} =) 2$	B1 [1]	$(\frac{6}{9} \times 3 =) 2$	
5	(i)	(b)	2 / ₆ × 2	M1	Allow $^2/_5 \times 2$ or ans 0.8 for M1	Can be implied, eg $\frac{1}{3} = 0.3$, ans 0.6: M1A0
			$= \frac{2}{3}$ oe or 0.667 or 0.67 or 0.7	A1[2]		Allow 0.66 or 0.666

(Questi	on	Answer	Marks	Guid	lance
5	(ii)		(3.5, 6) (0.5, 0) or (6.5, 15)	B1 B1 [2]	Ignore incorrect	(6, 3.5) AND (15, 6.5): B1
5	(iii)	(a)	$\frac{\Sigma xf}{21}$ = 5.43 (3 sf) or $\frac{114}{21}$ or $\frac{38}{7}$ oe	M1 A1	Allow x within classes, incl end pts then $\div 5$: M0A0	\geq 2 non-zero terms correct ft their x
			$\frac{\Sigma x^2 f}{21}$ or $\frac{817.5}{21}$ or 38.9	M1	Allow x within class, incl end pt $\div 5$: M0	\geq 2 non-zero terms correct ft their x
			-"5.43" ² or = 9.46 or 9.4592 $(\sqrt{9.4592})$	M1	dep +ve result; done before $$; not $-(\bar{x}^2 \div)$	Calc 4 values of $(x - \bar{x})^2$ or $(x - \bar{x})^2 f$ or (11.8, 0.184, 6.61, 50) or (70.5, 1.65, 26.4, 100) or 199 M1 $\frac{\sum (x - \bar{x})^2 f}{21}$ fully correct method M1
			= 3.08 (3 sfs)	A1 [5]		
5	(iii)	(b)	Actual values or exact hours unknown oe Don't have raw data. oe or measured to nearest hour oe	B1 [1]	or Data given in classes or grouped oe or Data evenly distributed in classes oe	Mid-points or medians or averages of class boundaries used oe

Question	Answer	Marks	Guid	lance
(i)	because [probs or values or geometric or etc] decreasing or halving or Highest prob is 1st Allow if word "decreasing" or "halving" or "sloping downwards" or any equivalent	B1 B1	 X because mode = 1 oe or Highest prob is P(1) oe B2 Z because P(0) = 0 or variable can't be 0 oe Allow "Geo distr'n cannot be zero" oe B2 	For answer V the first B1 is indep, but not for other answers, ie: V with no reason or incorrect reason scores B1B0, but Z or X or any other letter with no reason or incorrect reason scores B0B0.
	NOT "Positive skew"	[2]	"None of them": Ignore any reason given. B2	In all cases, once mark(s) have been scored, ignore all other comments.
(ii)	Y. Peaks at 2 Y. Like normal, peak at 2 Y. Highest prob is middle one (or is at 2) Y. $P(X = 2)$ is max Y. Increase to 2 then decr Y. 1 4 6 4 1 alone or with $0.5^4 \times 10.0625$, 0.25, 0.375, 0.25, 0.0625 Y. $P(1) = P(3)$ and $P(2)$ is greater/different or equiv of any of the above	B1B1B1	Ignore all else	If values of some probs listed: 2 to 4 values: B1 Y: B1 For 3 rd B1 must link list with Y diag, eg "symmetrical" or "peak in middle" or "peak at 2" or "1 st = last" or "2 nd = 4 th " "same shape as Y diag". etc etc
	If none of the above applies: Any implication that values not all equal eg: Not uniform or values increase (then decrease) or there is a peak Symmetrical or mirror image oe or ${}^{4}C_{0} = {}^{4}C_{4}$ or 2nd = 4th or similar or mean = 2, or $E(X) = 2$, or 2 is hi'est prob, or peak at 2, or peak is middle value	B1 B1 B1	${}^{4}C_{0}, {}^{4}C_{1}, {}^{4}C_{2}$, etc indep indep	
		because [probs or values or geometric or etc] decreasing or halving or Highest prob is 1st Allow if word "decreasing" or "halving" or "sloping downwards" or any equivalent seen NOT "Positive skew" (ii) Y. Peaks at 2 Y. Like normal, peak at 2 Y. Highest prob is middle one (or is at 2) Y. P(X = 2) is max Y. Increase to 2 then decr Y. 1 4 6 4 1 alone or with 0.5 ⁴ × Y. 0.0625, 0.25, 0.375, 0.25, 0.0625 Y. P(1) = P(3) and P(2) is greater/different or equiv of any of the above If none of the above applies: Any implication that values not all equal eg: Not uniform or values increase (then decrease) or there is a peak Symmetrical or mirror image oe or ⁴ C ₀ = ⁴ C ₄ or 2nd = 4th or similar or mean = 2, or E(X) = 2, or 2 is hi'est prob, or peak at 2,	(i) V because [probs or values or geometric or etc] decreasing or halving or Highest prob is 1st Allow if word "decreasing" or "halving" or "sloping downwards" or any equivalent seen NOT "Positive skew" [2] (ii) Y. Peaks at 2 Y. Like normal, peak at 2 Y. Highest prob is middle one (or is at 2) Y. $P(X = 2)$ is max Y. Increase to 2 then decr Y. 1 4 6 4 1 alone or with $0.5^4 \times Y$ Y. 0.0625 , 0.25 , 0.375 , 0.25 , 0.0625 Y. $P(1) = P(3)$ and $P(2)$ is greater/different or equiv of any of the above If none of the above applies: Any implication that values not all equal eg: Not uniform or values increase (then decrease) or there is a peak Symmetrical or mirror image oe or ${}^4C_0 = {}^4C_4$ or 2 nd = 4th or similar or mean = 2, or $E(X) = 2$, or 2 is hi'est prob, or peak at 2, or peak is middle value B1	Continue of the above B1 A because mode 1 Oe or Highest prob is P(1) Oe B2

	Question	n Answer	Marks	Guid	dance
7	(i)	Geo(0.6) or G(0.6) or Geo with $p = 0.6$	B1B1	Allow Geo(60%) B1B1	Bin(, 0.6) B0B1. Can still score comment marks
		P(woman) const or chance of woman const Each voter has same prob	B1	or %age of women is constant	In context
		Whether one voter is a woman is indep of whether any other is a woman	B1	Allow: "voter(s) independent", "Men & women are independent"	Allow "vote indep"
			[4]	"P(woman) is indep" "Each woman is indep"	In context (EACH comment must be in context)
			ן נדין		Ignore all else
7	(ii)	$0.4^{3} \times 0.6$ $= {}^{24}/_{625} \text{ or } 0.0384$	M1 A1f [2]	ft their Geo(p) from (i) ft their Geo(p) from (i)	Allow $0.3^3 \times 0.6$ (but no other $q^3 \times 0.6$) eg if $p = 0.4$, ans 0.0864 M1A1f
7	(iii)	0.4 ³ alone, or $(0.4^4 + 0.4^3 \times 0.6)$ or $(0.4^4 + (ii))$	M1	1– $(0.6 + 0.4 \times 0.6 + 0.4^2 \times 0.6)$ (allow extra term $0.4^3 \times 0.6$) ft their Geo(p) from (i)	Allow M1 for 0.4^4 alone (= 0.0256) M0 for $0.4^r \times 0.6$ and for $1 - 0.4^3$
		$=$ $^{8}/_{125}$ or 0.064	A1f [2]	ft their $Geo(p)$ from (i)	eg if $p = 0.4$, ans 0.216 M1A1f
8	(i)	Binomial stated	M1	or implied by $C \times 0.5^r$ or use of table	or $0.5^7 \times 0.5 + 0.5^8$ or $0.5^8 + 0.5^8$
		1 – 0.9648	M1	or ${}^{8}C_{7} \times 0.5^{7} \times 0.5 + 0.5^{8}$ fully correct method	$1 - (0.5^8 + 8 \times 0.5^8 + {}^8C_2 0.5^8)$ all correct
		$= 0.0352 (3 \text{ sfs}) \text{ or } ^{9}/_{256}$	A1 [3]		
8	(ii)	(a) ${}^{22}C_{11} \times 0.5^{11} \times 0.5^{11}$ = 0.168 (3 sfs)	M1 A1 [2]	Fully correct method. Not ISW	eg 0.168^2 or 2×0.168 or 1–0.168: M0A0

Q	uestic	on	Answer	Marks	Guida	nce
8	(ii)	(b)	1 – "0.168"	M1	or $0.5^{22}(^{22}C_{12} + ^{22}C_{13} + ^{22}C_{14} + + 22 + 1)$ All 11 correct terms seen, or correct ans: M2	or $1 - (^{22}C_{12} + ^{22}C_{13} + ^{22}C_{14} + + 22 + 1)$ 1 – all 12 correct terms M2
					or $P(X = 12, 13, 21, 22)$ stated or implied with ≥ 2 terms shown or one extra term M1	or similar marks for $P(X = 10, 9, 80)$
			¹ / ₂ (1 – "0.168")	M1		
			= 0.416 (3 sfs)	A1		
				[3]		
9	(i)	(a)	${}^{9}P_{4}$ or ${}^{9!}/_{5!}$ or ${}^{9}C_{4} \times 4!$	M1	alone	oe eg ${}^{9}C_{1} \times {}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1}$ or $9 \times 8 \times 7 \times 6$
			= 3024	A1 [2]		
9	(i)	(b)	$^{8}P_{3}$ or $8 \times 7 \times 6$ oe or $^{8}C_{3} \times 3!$	M1	Allow × or ÷	95 ((202 th) 5) 3 (2)
			\times 5 (or 5C_1)	M1	Correct \times 5 or ${}^{8}C_{3} \times 5$ (or ${}^{5}C_{1}$)	or (${}^{9}P_{4}$ or "3024") \times ${}^{5}/_{9}$ M2
			= 1680	A1	Not ISW, eg $^{1680}/_{3024}$: M1M1A0	
				[3]		
					SC: consistent use of with replacement in (i)	
					(or if only (a) or (b) attempted)	
					(ia) M0A0 (ib) 999 × 5 or 4995 M1	
					(ib) 999 × 5 or 4995 M1 M0A0	

Q	uestic	on	Answer	Marks	Guida	nce
9	(ii)	(a)	$^5C_3 \times ^4C_1$ or 5C_4 oe $^5C_3 \times ^4C_1 + ^5C_4$ oe correct method so far (= 45)	M1 M1	$^{5}C_{3} \times ^{4}C_{1} \times 4!$ (or $^{5}P_{3} \times 4 \times 4$) or 5! (or $^{5}P_{4}$) 960 + 120 oe correct method so far	$5/9 \times 4/8 \times 3/7 \times 4/6$ Allow × or + × 4 correct method so far
			\div ${}^{9}C_{4}$ Allow anything \div ${}^{9}C_{4}$	M1	$$ $$ $^{9}P_{4}$ [must involve any P or any !] $$ $^{9}P_{4}$	$\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$ Allow × or +
			$= \frac{5}{14}$ or 0.357 (3 sfs) oe, eg $\frac{35}{98}$ or $\frac{45}{126}$	A1		or: ${}^{5}/_{9} \times {}^{4}/_{8} \times {}^{3}/_{7} \times {}^{4}/_{6} \text{ or } {}^{5}/_{9} \times {}^{4}/_{8} \times {}^{3}/_{7} \qquad M1$ ${}^{5}/_{9} \times {}^{4}/_{8} \times {}^{3}/_{7} \times {}^{4}/_{6} \times 3 + {}^{5}/_{9} \times {}^{4}/_{8} \times {}^{3}/_{7} M1$
				[4]	Marks must come from one method, not mixture of two methods	NB ${}^{5}/_{9} \times {}^{4}/_{8} \times {}^{3}/_{7} \times 3 = {}^{5}/_{14} \text{ M0M0M0A0}$
9	(ii)	(b)	9, 8, 7, 4 or 9, 8, 6, 5 No mark yet			
			2 $\div {}^{9}C_{4}$ oe Must be (1 or 2 or 4) $\div {}^{9}C_{4}$	M1 M1	$\begin{vmatrix} 1/_9 \times 1/_8 \times 1/_7 \times 1/_6 \end{vmatrix} + 4/_9 \times 3/_8 \times 2/_7 \times 1/_6 \text{Allow} \times \text{or} + \dots \\ \times 4! \times 2 \qquad \times 2 \qquad \text{fully correct method}$	$4! + 4!$ or $2 \times 4!$ oe $\div {}^{9}P_{4}$ or \div (i)(a) oe Must be (96 or 48 or 24) $\div {}^{9}P_{4}$
			$= \frac{1}{63}$ oe or 0.0159 (3 sfs)	A1 [3]	NB Marks from one method only, not mixed methods	$2/9 \times 2/8 \times 1/7 \times 1/6$ allow \times or $+ \dots$ M1 $\times 4!/4 \times 2$ fully correct method M1
					SC: consistent use of with replacement in (ii), (or if only (a) or (b) attempted) (iia) $\binom{5}{9}$ $\binom{4}{9}$ $\binom{5}{9}$ $\binom{4}{9}$ (= 0.400) $\binom{5}{9}$ $\binom{4}{9}$ (= 0.400) $\binom{1}{9}$ $\binom{1}{9}$ $\binom{4}{9}$ (=0.000152) $\binom{1}{9}$ attempt find no of gps M1A0	$1-((^{4}/_{9})^{4}+4(^{4}/_{9})^{3}(^{5}/_{9})+^{4}C_{2}(^{4}/_{9})^{2}(^{5}/_{9})^{2}) \qquad M2$ One term missing or extra or wrong M1

C	Question	Answer	Marks		Guidance	
1	(i)	$\Sigma x = 1366$ $\Sigma y = 17.6$ $\Sigma x^2 = 374460$ $\Sigma y^2 = 62.82$ $\Sigma xy = 4784.8$ or 1268.8	B1	any three correct; may be implied by 2 S's	$\bar{x} = \frac{1366}{5}$ or 2	$_{\text{cx}} = \Sigma (x - \bar{x})^2 \text{ etc:}$ $273.2, \bar{y} = \frac{17.6}{5} \text{ or } 3.52, \text{ either:B1}$ $(-3.2)^2 + (-9.2)^2 + 16.8^2 + 18.8^2$
		$S_{xx} = 374460 - \frac{1565}{5}$ or 1268.8 $S_{yy} = 62.82 - \frac{17.6^2}{5}$ or 0.868 $S_{xy} = 4784.8 - \frac{1366 \times 17.6}{5}$ or -23.52	M1	correct sub in any correct S formula, ft Σs , \overline{x} , \overline{y}	$0.68^2 + 0.18^2 + 0.18^2 + 0.000$	$+ (-0.32)^{2} + (-0.02)^{2} + (-0.52)^{2}$ $+ (-0.32)^{2} + (-0.02)^{2} + (-0.52)^{2}$ $+ (-0.32) + (-0.32) + (-0.32) + (-0.02) + (-0.52)$ $+ (-0.52) + (-0.02)^{2} + (-0.02)^{2}$
		$r = \frac{-23.52}{\sqrt{1268.8 \times 0.868}} \text{or } \frac{-23.52}{33.186} \text{oe}$ $= -0.709 \text{ (3 sfs)}$	M1 A1 [4]	corr sub into 3 Ss and r , ft Σ s, \overline{x} , \overline{y}	If no workin –0.71: SC 3;	•
1	(ii)	$b = \frac{\text{"-23.52"}}{\text{"1268.8"}} \text{or } -\frac{147}{7930} \text{or } -0.0185 \text{ (3 sfs)}$ $y - \frac{\text{"17.6"}}{5} = \text{"-0.0185"}(x - \frac{\text{"1366"}}{5})$ $\Rightarrow y = -0.019x + 8.6 \text{or better, ie 2 sfs enough}$ $(y = -0.019 \times 280 + 8.6 (= 3.39 \text{ to } 3.41))$ Est sales = £3390 to £3410 or 3.39 thousand to 3.41 thousand	M1 M1 A1	ft their S_{xy} & S_{xx} & Σ s from (i) or $a = \frac{"17.6"}{5} - "(-0.0185)" \times \frac{1}{5}$ if a incorrect, must see cao; must be " $y = \dots$ " coeffs that round to -0.019 & ft their $y \times 1000$, dep M1M1, dep sub 28 Allow "k" for thousand No working, ans in range: M1	"1366" 5 method for M1 2 8.6 to 2 sfs 10 (not 280000)	use of x on y line: $b' = \frac{\text{"-}23.52\text{"}}{\text{"0.868"}} \text{ (or -27.1)} \text{M0}$ $x - \frac{\text{"1366"}}{5} = \text{"-}27.1\text{"}(y - \frac{\text{"17.6"}}{5}) \text{ or } a' = \frac{\text{"1366"}}{5} - \text{"(-27.1)"} \times \frac{\text{"17.6"}}{5} \text{) M1}$ (if a' incorrect, must see method for M1) $x = -27.1y + 369 \text{cao} \qquad \text{A1}$ $3277 \text{ or } 3278 \qquad \text{A0}$
1	(iii)	There may be other factors oe Correlation does not imply causation oe	B1	or any suggestion of another to could be involved, eg Depend the economy oe Must state or clearly imply: EITHER corr'n does not impl OR there could be another fac	ls on state of	NOT: Tourists & sales not nec'y linked Sales are not entirely dep on tourists Could be a coincidence Might be different other years More tourists wd incr sales –0.8 is not strong corr'n Only shows good neg corr'n Sample is small Could be affected by extremes Neg corr'n not nec'y imply neg relnship

C	uestion	Answer	Marks	Guidance	
2		$ \frac{\frac{1.4}{50}}{1.5 + \frac{1.4}{50}} \tag{= 0.028} $	M1 M1 dep M1	$ \begin{array}{r} 1.4 + 50 \times 1.5 \\ \frac{76.4'}{50} \end{array} (= 76.4) $	eg 1.4+1.5 M0M0A0
		= 1.528 or $\frac{191}{125}$ or 1.53 (3 sf)	A1	$(\Sigma x^2 - 2 \times 1.5 \times 76.4' + 50 \times 1.5^2 = 0.05)$ $(\Rightarrow \Sigma x^2 = 116.75; \text{ no marks yet})$	
		$\frac{0.05}{50} - (\frac{1.4}{50})^2$ or 0.000216 seen	M1	$\frac{0.05 + 2 \times 1.5 \times '76.4' - 50 \times 1.5^{2}}{50} - `1.528'^{2} \text{ all correct}$	not $\frac{0.05}{50}$ - '1.528' ²
		$\sqrt{0.000216}$	M1	fully correct method, ie nothing added etc	
		= 0.0147 (3 sf)	A1	cao not isw	
			[6]		
3	(i)	23	B1	Allow 22.5	NOT 22 (ie 3.5 th no)
			[1]		Correct ans is the 4 th or 3.75 th no.
3	(ii)	0	B1	B1 for 30, 30	
		0	B1		
			[2]		
3	(iii)	38 or 40 39 40.75	B2	B1 for 38 or 39 seen B2 for 38 & 39 seen alone, not in a range	eg 38, 38.5, 39 B1B0 (ie $UQ = \frac{3}{4} \times 14 = 10.5^{th}$ no.)
			[2]	Mixture, eg 38, 40.75 B1B0 3/8 and 3/9 (both): B1B0 B1B0 B1B0 B1B0 B1B0	'Between 39 & 46' B1B0 $38 \le \text{any letter} < 40 \text{ B1B0}$ SC 42, 42.5 only B1B0 (ie UQ = 11.5^{th} no.) Correct ans are the poss 11^{th} or 11.25^{th} nos

(Question	Answer	Marks	Guidance	
3	(iv)	Shows all the data or you can see all the values oe		any implication of <u>all</u> the data or the	NOT
	(- ')	You can see the actual/exact/indiv		actual numbers/values/results or similar	Shows the spread/skew/trend
		numbers/values/results		eg Can compare each indiv result	Any comment on skew
		No data is lost oe		Easier to see the numbers	You can <u>see</u> the actual frequ's Easier to compare sets of data Shows more info or more data
		Shows the shape of the distribution oe			Easier to read off the data
		The state of the s		eg can <u>find</u> frequencies	Laster to read our the data
		Can perform calculations of your choice (eg mean)		eg can <u>ima</u> requences	Ignore all other
		Shows which group (or class, NOT value) has the	B1	No mks for ans to (v) given in (iv) unless	
		highest frequency (or is the mode) oe	[1]	labelled as (v)	
3	(v)	Shows the median or it's easier to see the median	[±]	eg Shows mean and quartiles B1	NOT
3		(or quartiles or IQR)	B1	Shows range and median B1	Shows the spread/skew/trend
		It can measure the middle 50% easily	[1]	Shows range and median B1	Can see data in diag form
		it can incustic the initiale 50% cashy	[*]	No mks for ans to (v) given in (iv) unless	Shows max or min or range
				labelled as (v)	Easier to compare sets of data
				Tuberied us (V)	Not affected by outliers
				Ignore all other	Easy to see outliers
				ignore un outer	Shows s.d. or shows mean Can see important data items/measures
4	(i)	Top: 2 branches $\frac{4}{5}$, $\frac{1}{5}$ & R, B shown	B1	consistent	
		Bottom:			
				4	
		1^{st} branch: prob = 1 or $\frac{5}{5}$, & R shown	B1	allow eg $\frac{4}{4}$	Any missing label(s) on first
					Any missing label(s) on first three branches, subtr B1 once
		no 2^{nd} branch OR branch with prob = 0 or $\frac{0}{5}$	[2]		unce oranches, such B1 office
				ignore any 3 rd layer branches	No label needed on zero branch, if drawn.

C	Questic	n	Answer	Marks	Guidance	
4	(ii)		$\frac{5}{6} \times \frac{1}{5}$ or $\frac{1}{6} (\times 1)$ or $\frac{1}{6}$ seen	M1		or $1 - \frac{5}{6} \times \frac{4}{5}$ or $1 - \frac{2}{3}$ M2
			$\frac{5}{6} \times \frac{1}{5} + \frac{1}{6} (\times 1)$	M1	all correct	ft incorrect tree dep probs ≤ 1
			$=\frac{1}{3}$ oe	A1 [3]	cao	if 3^{rd} tree prob = 1, (ii)M1M1A0 if 3^{rd} tree prob \neq 1, (ii)M1M0A0
						NB!! $2 \times \frac{5}{6} \times \frac{1}{5} = \frac{1}{3}$ M1M0A0
4	(iii)		$\frac{4}{5} \times \frac{3}{4} + \frac{1}{5} (\times 1)$ or $1 - \frac{4}{5} \times \frac{1}{4}$ or $1 - 0.2$ all correct	M1	or $(\frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{5}) \div \frac{5}{6}$ all correct	but $\frac{5}{6} \times (\frac{4}{5} \times \frac{3}{4} + \frac{1}{5})$ M0
			$=\frac{4}{5}$ or 0.8 oe	A1 [2]	May be seen without working M1A1 cao	ft incorrect tree: (iii) M1A0
5	(i)	(a)	1	B1 [1]		NOT close to 1
5	(i)	(b)	-1	B1 [1]		NOT close to -1
5	(ii)		$\Sigma d^{2} \text{ attempted} \qquad (=10)$ $1 - \frac{6 \times \Sigma d^{2}}{4(4^{2} - 1)}$ $= 0$	M1 M1 A1 [3]	if $\Sigma d^2 = 10$, may be implied by next line if $\Sigma d^2 \neq 10$, must see working dep M1 Use of $(\Sigma d)^2$ M0M0A0	S_{xx} or $S_{yy} = 30 - \frac{100}{4}$ (= 5) or $S_{xy} = 25 - \frac{100}{4}$ (= 0) M1 $\frac{0}{\sqrt{5\times5}}$ M1

C	Question	Answer	Marks	Guidance	
5	(iii)	No ft from (i)(a), (i)(b) & (ii) ia: Total (or perfect or max or complete)agreement They have the same opinions/ranks/numbers etc	B1	Identical opinions/views/marks/ranks/decisions/results/numbers oe	NOT: They agree or Strongly agree They agree most ranks
		They were identical		Agree on all the ranks	Similar rankings As A's ranks increase so do B's Perfect relnship
		ib: Opposite/reverse opinions/views/marks/ranks/decisions/results oe	B1	Total (or max or complete or perfect) disagreement A's highest is B's lowest oe "Opposite" seen is sufficient	NOT: Don't agree any ranks Disagree or Strongly disagree Disagree on all ranks Perfect neg relnship
		ii: For $r = 0$ must state or imply:			NOT:
		either NO relationship or similar		No relationship/pattern/link/similarity between opinions/views/marks/ranks/ decisions/results oe opinions/etc not related scoring appears random	Different views Don't agree but some rel'nshp Ranks all different No corr'n betw judges' views Don't agree nothing in common at all
		or indicate <u>BOTH</u> agreement & disagreement or <u>NEITHER</u> agree nor disagree		Neither agree nor disagree oe Both agree & disagree oe Agree for some, disagree for others oe mixed/varied opinions on the ranks	not much in common completely different orders opinions completely different half way between (a) and (b)
		or <u>DIFFERENT</u> but <u>NOT OPPOSITE</u>	B1	All three parts: Must refer to (or imply) opinions/views/marks/ranks/scores or (dis)agreement, or relationship or pattern	Ignore all other
			[3]	oe, NOT just corr'n	ignore un outer

C	uestio	n	Answer	Marks	Guidance	
6			$(1-0.1) \div 5 \qquad (= 0.18)$ 3×0.18 or 2×0.18 or 7×0.1 (or result of these)(poss × 100) (3 × 0.18 only scores if using £3, not score of 3. Similarly for 2 × 0.18) .	M1 M1	can be implied, eg by 18 5×0.18 or 10×0.1 (or result of these)(poss \times 100)	or, using exp no. of 5's & 6's 18 × 5 or 10 × 10
			$4 \times 3 \times 0.18$ AND $2 \times 0.18 + 7 \times 0.1$ (poss × 100) (or 2.16 AND 1.06 or 216 AND 106)	M1	3 AND 5 × 0.18+10 × 0.1 (poss × 100) (or 3 AND 1.9 or 300 AND 190)	$\begin{array}{c} 300 \text{ AND } 18 \times 5 + 10 \times 10 \\ \text{(NB 300+ } 100 \times 0.18 + 100 \times 0.1 \text{ is insuff)} \end{array}$
			'2.16' - '1.06' or '216' - '106' <u>must</u> be attempt gain on 1,2,3,4 - loss on 5,6	M1 dep any M1	3 – '1.9' or 300 – '190' must be attempt receipt – payout on 5,6	Eg: 300–100×(5×0.18+ 6 ×0.1)=150 M1M1M0M1A0
			E(profit for 100 rolls) = $(£)110$	A1 [5]	E(profit for 100 rolls) = (£)110 NB 300–(0.1×300+0.18×300) = 300–84 =216 M1M1M0M0A0	Mark one method only Must be matched pair eg 300–106 or 216–190: M1M1M0M0A0
7	(i)	(a)	$^{7}P_{5} \text{ or } \frac{7!}{2!} \text{ or } 7 \times 6 \times 5 \times 4 \times 3 \text{ or } ^{7}C_{5} \times 5!$ alone = 2520	M1 A1 [2]	$^{7}P_{2} \text{ or } \frac{7!}{2!} M0A0$	$^{7}C_{5} = 21 \text{ or } 5! = 120 \text{ MOA0}$ but see (i)(b)
7	(i)	(b)	$^{6}\text{P}_{4} \text{ or } \frac{6!}{2!} \text{ or } 6 \times 5 \times 4 \times 3 \text{ or } ^{6}\text{C}_{4} \times 4! \text{ or } 360$	M1	alone or ×2 only	or '2520' $-5 \times {}^{6}P_{4}$ M2
			× 2 (see middle column)	M1	$^6P_4 \times 2 \text{ or } 6!$ alone M2 $^6C_4 \times 2 \text{ or } 6! \times 2 \text{ alone}$ M0M1 only any other \times 2 M0M0	SC ONLY on ft from (i)(a): if (i)(a) 5! = 120, then (i)(b)4!×2=48 alone M1M0A0
					or '2520'× $\frac{2}{7}$ M2A0 (eg (ia)21 (ib) $21 \times \frac{2}{7} = 6$ M2A0	Other SC ${}^5P_3 \times 2$ M2 (from a vowel at each end, ie treat as MR)
					but if ans is 6, must see wking)	NOT isw eg $\frac{720}{'2520'} = \frac{2}{7}$ M1M1A0
			= 720	A1 [3]	cao	2320 1
7	(ii)	(a)	21	B1 [1]		

	Questic	n	Answer	Marks	Guidance	
7	(ii)	(b)	5C_3 or $\frac{5!}{3!2!}$ or 5C_5 seen or 10 seen in num	M1	$\frac{5}{7} \times \frac{4}{6}$ oe seen	Allow ⁵ C ₂ seen BOD
			$\frac{{}^{5}C_{3}}{{}^{5}C_{3} + {}^{5}C_{5}} \text{oe}$	M1	$\frac{5}{7} \times \frac{4}{6} \div (\frac{5}{7} \times \frac{4}{6} + \frac{2}{7} \times \frac{1}{6})$	
			$\frac{10}{11}$ or 0.909 (3 sf)	A1		
			11	[3]		
8	(i)		1 - 0.1754 alone	M1	Allow 1– 0.2855 or 0.7145 or 0.715 alone	
			= 0.825 (3 sfs)	A1		
			4 2 2	[2]		
8	(ii)	(a)	$^{4}\mathrm{C}_{2}\times0.7^{2}\times0.3^{2}$	M1	All correct	
			$=\frac{1323}{5000}$ or 0.265 (3 sf)	A1		
			3000	[2]		
8	(ii)	(b)	4,4,2 & 4,3,3 only, seen or implied	B1	Both needed	
			$P(Y=4) = 0.7^4$ (or $\frac{2401}{10000}$ or 0.2401)	M1		
			$P(Y=3) = 4 \times 0.3 \times 0.7^3$ (or $\frac{1029}{2500}$ or 0.4116)	M1		
			2300		i. 2	if "3×" omitted twice or "3!×"
			$P(4,3,3) = 3 \times "0.2401" \times "0.4116"^2$ (or 0.122)	M1	ie $3 \times$ their P(4) \times (their P(3)) ² ie $3 \times$ (their P(4)) ² \times their P(2) ft (ii)(a)	used twice allow M1M0
			$P(4,4,2) = 3 \times 0.2401^{2} \times 0.265^{2}$ (or 0.0458)	M1	For M mks ignore extra combs eg P(4,4,3)	robably B1M1M1M1M0A0 but must see method
			P(Tot = 10) = 0.168 (3 sfs)	A1	If B(30, 0.6) <u>clearly</u> being used:	
					Any 5 combs adding to 10 seen B1	
					$P(8) = {}^{30}C_8 \times 0.4^{22} \times 0.6^8 \text{ or } 0.0002$ $P(9) = {}^{30}C_9 \times 0.4^{21} \times 0.6^9 \text{ or } 0.0007$	
					$P(9) = {}^{3}C_{9} \times 0.4^{2} \times 0.6^{3} \text{ or } 0.0007$ $P(10) = {}^{30}C_{10} \times 0.4^{20} \times 0.6^{10} \text{ or } 0.0020$	
					$P(10) = C_{10} \times 0.4 \times 0.6 \text{ or } 0.0020$ all three correct M2	
					or two correct M1	
				[6]	No more marks	
	1				TWO IIIOTO IIIAI KS	

C	Questic	n	Answer	Marks	Guidance	
9	(i)	(a)	Geo stated or implied $0.9^5 \times 0.1$ alone = $0.059(0)$ (2 sfs)	M1 M1 A1 [3]	eg by $0.9^p \times 0.1$ or $0.1^p \times 0.9$ alone, $p>1$ all correct	
9	(i)	(b)	0.9^5 or 0.59 (NB cf ans to (i)(a)!!) $1 - 0.9^5$ = 0.4095 or 0.410 (3 sfs)	M1 M1	$0.1 + 0.9 \times 0.1 + \dots 0.9^4 \times 0.1$: M2 1 term wrong or omit or extra or 1 – (all terms correct): M1 or 1 – 0.9^6 : M1	M0M0A0 for $0.9^p \times 0.1$
9	(ii)	(a)	$0.05 + 0.95^{2} \times 0.05$ $= \frac{761}{8000} \text{ or } 0.0951 \text{ (3 sfs)}$	M1 A1 [2]	All correct	$NB!! \ 2 \times 0.95 \times 0.05 = 0.095$ $M0A0$
9	(ii)	(b)	$0.05, 0.95^2 \times 0.05, \dots$ or $\frac{1}{20}, \frac{361}{8000}, \dots$ oe $\frac{0.05}{1-0.95^2} \text{ or } \frac{0.05}{1-0.9025} \text{ oe}$ $= \frac{20}{39} \text{ or } 0.513 \text{ (3 sfs)}$	M1 M1 A1 [3]	\geq 2 terms. Not nec'y added May be implied by next line or $\frac{0.05}{1-(1-0.5)^2}$ or $\frac{0.05}{2\times0.05-0.05^2}$ or $\frac{1}{1.95}$ oe	or $r = 0.95^2$ stated or implied NB $\frac{0.05}{1 - 0.5 \times 0.05} = 0.0513$ M0A0

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in paper.

"3 sf" means "answer which rounds to ... to 3 sf". Penalise over–rounding if no better answer is seen and penalise only once in the paper.

	Questic	on	Answer	Marks	Guidan	ce
1	(i)		2k + 4k + 6k + 8k = 1	M1	or $2 + 4 + 6 + 8 = 20$ M1	Must see correct wk'g for $k = \frac{1}{20}$,
			$k = \frac{1}{20}$ AND $6 \times \frac{1}{20} = \frac{3}{10}$ AG	A1	Must see both for A1	otherwise M0A0
				AI	Wust see both for A1	NB $k \times 6 = \frac{3}{10} \implies k = \frac{1}{20} \text{ M0A0}$
					or $2k + 4k + 6k + 8k = 20k$ M1	10 20
					$P(X=6) = \frac{6k}{20k} = \frac{3}{10}$ A1	(even if tested by showing that $k = \frac{1}{20}$
						gives $\Sigma p=1$)
						Just showing $\frac{1}{10} + \frac{2}{10} + \frac{3}{10} + \frac{4}{10} = 1$
				[2]		M0A0
1	(ii)		$2 \times \frac{1}{10} + 4 \times \frac{2}{10} + 6 \times \frac{3}{10} + 8 \times \frac{4}{10}$ oe	M1	\geq 3 terms correct ft their values of p , dep $\sum p = 1$	Allow i.t.o. k for M1 $\div 4$ M0
			= 6	A1	cao	
			2^{2} , 1 , 4^{2} , 2 , 6^{2} , 3 , 8^{2} , 4 , 92 , (-10)			
			$2^{2} \times \frac{1}{10} + 4^{2} \times \frac{2}{10} + 6^{2} \times \frac{3}{10} + 8^{2} \times \frac{4}{10} \text{ oe } (=10)$	M1	\geq 3 terms correct; ft their values of p ; dep $\Sigma p = 1$	Allow ito k for M1M1 $\div 4$ M0 NOT – m ² $\div 4$
			- '6' ²	M1	ft their values of p; dep +ve result & $\Sigma p = 1$	$\sqrt{4} = 2$ lose final A1, not ISW, unless
					cao	labelled sd
			=4	A1		
	(1)			[5]	1 5 12	
2	(i)		$\frac{3}{4} + \frac{1}{4} \times \frac{3}{8}$	M1	$\frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$ (= $\frac{65}{512}$ or 0.127)	
			$+\frac{1}{4} \times \frac{5}{8} \times \frac{3}{16}$	M1	$1 - \frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$	
			$=\frac{447}{512}$ or 0.873 (3 sf)			
			512 51 5.075 (5.31)	A1 [3]		
2	(ii)		0.6 <i>p</i> or equiv seen	B1	Tree diag alone insufficient for mark.	NB $0.6 \times 0.3 = 0.18$ seen at the end is
	(11)		0.6p of equiv seen $0.4 + 0.6p = 0.58$	M1	Or $0.6p = 0.18$. "0.18" alone insufficient	probably a check, not an answer.
			p = 0.3	A1		But if 0.3 seen and 0.18 is very clearly
			1	[3]		indicated as the ans then B1M1A0

	Question	Answer	Marks	Guidan	ce
3	(i)	$S_{xx} = 8700000 - \frac{7000^2}{6} \qquad (= 533333)$			
		$S_{xy} = 509900 - \frac{7000 \times 456}{6} \qquad (= -22100)$	M1	Correct subst'n in any correct S formula	
		$b = -\frac{"22100"}{"533333"}$ or $-\frac{663}{16000}$ (= -0.0414)	M1	Correct subst'n in any correct b formula from two correct S formulae	
		$y - \frac{456}{6} = \text{``-0.0414''}(x - \frac{7000}{6})$	M1	ft their b except if using r	or $a = \frac{456}{6} - ("-0.0414") \times \frac{7000}{6}$ oe ft "b"
		y = -0.0414x + 124 (3 sf)	A1 [4]	or $y = -\frac{663}{16000} x + \frac{3979}{32}$ or $y = -0.041x + 124$	Allow $y=-0.04x+124$ if -0.041 seen above
3	(ii)	70 to 72	B1 [1]	or 71 per thousand, NOT 71000	No ft from (i) Ignore method
3	(iii)	Extrapolation oe	B1	Allow "2400 is beyond graph" } "Not shown on the graph" or \$\) \{ \text{1}^{st} B1 \text{ only} \\ "Line drops low, or below 0" } "Outlier" }	"Line only allows for countries poorer than Nigeria" 1st B1 Allow "Value for Nigeria is -ve 1st B1
		Corr'n not high or small sample	B1	Poor corr'n oe, or pts not close to line oe 2 nd B1	NOT "Other factors may apply" oe
			[2]		Ignore all else
3	(iv)	$S_{xx} = 8700000 + 1300^2 - \frac{(7000 + 1300)^2}{7}$		or $10390000 - \frac{(8300)^2}{7} = \frac{3840000}{7}$ or 548571	
		$S_{yy} = 36262 + 96^{2} - \frac{(456+96)^{2}}{7}$ $S_{xy} = 509900 + 1300 \times 96 - \frac{8300 \times 552}{7}$	M1 A1	or $45478 - \frac{552^2}{7} = \frac{13642}{7}$ or 1948.86 or $634700 - \frac{8300 \times 552}{7} = -\frac{138700}{7}$ or -19814.3	Correct sub in any correct <i>S</i> formula M1 Correct value of any <i>S</i> seen or implied by <i>r</i> A1
		$r = \frac{\text{"-}19814.3\text{"}}{\sqrt{\text{"548571"}\times\text{"1948.86"}}}$	M1	Correct subst'n in any correct <i>r</i> formula from 3 correct subs in 3 correct <i>S</i> formulae, ie all correct method	SC If $n = 6$, but otherwise correct allow M1A0M1A0 (ans $r = -0.574$, must see wking)
		=-0.606 (3 sf)	A1 [4]		

	Questi	on	Answer	Marks	Guidar	nce
3	(v)		No effect oe	B1 [1]	Stay the same oe Allow just "No"	Ignore all else
4	(i)	(a)	6	B1 [1]		
4	(i)	(b)	3×3×3 = 27	M1 A1 [2]	3! + 7×3 3 + 3×6 + 6 3! × 4 + 3 Complete correct method. Allow methods equiv to these. Only allow other methods if they appear correct	(Explanation for 3! × 4 + 3: 123: 3!, 112 & 122: 3!, 223 & 233: 3!, 331 & 311: 3! 111, 222, 333: 3 Candidates need not include this)
4	(i)	(c)	(i)(b) – 3 If answer is not 24, this method must be explicitly stated in order to give M1A1ft = 24 ft their (i)(b) eg 1123: $\frac{4!}{2!} \times 3$ alone allow M1 for $\frac{4!}{2!} \times 3!$ alone eg 1122: $\frac{4!}{2!2!} \times 3$ alone	M1 A1ft [2] M2	or $3! + 6 \times 3$ or $3! + 3! \times 3$ or $6 + 3! \times 3! \div 2!$ or $3! \times 4$ Complete correct method. Allow methods equiv to these. Only allow other methods if they appear correct $3! \times {}^{4}C_{1} \times 3 \text{ or } 3! \times 12 \text{ M1}$ $\div 2 \text{ M1dep } (= 36)$ $3! \times {}^{4}C_{2} \text{ M1}$	or 8×3 (Explanation: there are 8 possible orders starting with 1. Candidates need not include this) This method only scores if $3 \times 3 \times 3 \times 3 - \dots$ is used: No. with 4 rep'ns = 3 M1 No. with 3 rep'ns = $\frac{4!}{3!}$ M1
			allow M1 for $\frac{4!}{2!2!} \times 3!$ alone Total = 54	A1 [5]	÷ 2 M1dep (= 18) Allow methods equiv to these, eg correctly listing cases Only allow other methods if they appear correct. NB 3×3×2×2 = 36 & 3×3×2 × 1 = 18 are incorrect methods unless clear justification given	×6 (= 24) M1 or 8 × 3 M2 81–('3'+'24') or 81–27 M1 (allow 81–3 or 81–24) 18, 36 only score if a correct method seen,, or eg: 18 orders listed starting with "1" or 18 orders listed with two repetitions

4732 Mark Scheme January 2013

Q	Questic	on .	Answer	Marks	Guidan	ce
5			If incorrect <i>p</i> used consistently in all parts of q	u 5, no ml	ks in (i)(a) & (b) but can score M-marks in (ii) a	and (iii).
5	(i)	(a)	1.25 oe	B1 [1]		
5	(i)	(b)	0.8965 – 0.6328	M1	${}^{5}C_{2}(\frac{3}{4})^{3}(\frac{1}{4})^{2}$	
			= 0.264 (3 sf)	A1 [2]	$=\frac{135}{512}$ or 0.264 (3 sf)	Answer which rounds to 0.264
5	(ii)			M1	$\left(\left(\frac{3}{4} \right)^5 \right)^2$ or $\left(\frac{243}{1024} \right)^2$ or $\left(\frac{3}{4} \right)^{10}$ oe $\left(= \frac{59049}{1048576} \right)$	B(10. 0.25) seen or implied M1
			Answer which rounds to 0.244	M1	$\left(\frac{3}{4}\right)^5 \times 5\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) \text{ or } \frac{243}{1024} \times \frac{405}{1024} \text{ or } 5\left(\frac{3}{4}\right)^9 \left(\frac{1}{4}\right)$	Table or formula with $n = 10$ used M1
					$(=\frac{98415}{1048576})$	$P(X \le 1)$ from table
				M1	2×(attempt P(1, 0) alone),	or $(\frac{3}{4})^{10} + 10(\frac{3}{4})^9 \times (\frac{1}{4})$ M1
					(NOT $2 \times (P(1,0) + P(0,0))$	0.244 (3 sf) A1
					If $P(\text{sum} \le 2)$, all three M-mks are available, but for 3rd M1, must be $2 \times (P(1,0) + P(2,0))$ only	$P(X \le 2) = 0.526$ from table $n = 10$ M1M1M1A0
				A1	Ans 0.150 probably M1M1M0A0 but check working Ans 0.188 probably M0M1M1A0 but check working	SC $P(X = 2)$ answer 0.282: B1
				[4]		
5	(iii)		Use of 0.2637 or 0.264 ${}^{10}\text{C}_3 \times (1 - {}^{\circ}0.2637^{\circ})^7 \times {}^{\circ}0.2637^{\circ}$	M1 M1	or their (i)(b) ft (i)(b) allow ft their (ii) for this M1 only	SC allow ${}^{10}\text{C}_3 \times (1-\text{`}0.282\text{'})^7 \times \text{`}0.282\text{'}^3$ M0M1
			$C_3 \wedge (1 - 0.2037) \wedge 0.2037$	101 1	anow it then (ii) for this wif only	(0.282 comes from P(3 totals = 2))
			= 0.258 (3 sf)	A1 [3]	Correct ans, no working: M1M1A1	(0.202 comes from 1 (3 <u>totals</u> – 2))

Q	uestion	Answer	Marks	Guid	ance
6	(i)	Attempt find total area, (even if includes a^2) eg $20 \times 1.4a + 10 \times 3.4a + 6 \times 4.6a + 4 \times 2.6a + 10 \times 3a + 30a$		eg tot $\frac{\text{area}}{800/16} = 16\text{cm}^2 \text{ or } 16a$ M1 800/16 (= 50) M1	Trial methods, eg:
		or 28a+34a+27.6a+10.4a+30a+30a or 20×1.4+10×3.4+6×4.6+4×2.6+10×3+30		$a \times 10 = 50 \ a = 5$ A1	$a = 5$ gives $7 \times 20 + 17 \times 10 + 23 \times 6 + \dots$ = 800 M1
		or 28+34+27.6+10.4+30+30		eg tot area = 400 (sqs) M1	But no of apples $= 800$ M1
		or 7×20+17×10+23×6 +		800/400 (= 2) M1	Hence $a = 5$ A1
		or 160a or 160 or 16 or 16a (if area, not ht)	M1	$1.4a \times 20 = 70 \times 2$ $a = 5$ A1	
					$a = 10$ gives $14 \times 20 + 34 \times 10 + 46 \times 6 + . =$
		800 ÷ their total (must involve area, not ht)	M1dep		1600 M1
		eg $160a = 800, 800 \div$ a = 5	A1	Correct ans with nothing incorrect seen: M1M1A1	But no of apples = 800 M1 Hence $a = 5$ A1
		u = 5	AI	WIIWITAT	Thence $u = 3$
		"Box" \Rightarrow area. "Square" possibly \Rightarrow area		But where the correct answer clearly results	NOT "1cm = 5" (because may just
				from incorrect working, eg $a = 800/167 = 4$	·
				rounded to $a = 5$, then max M1M1A0	\overline{NB} total ht = 16cm so if 16 seen, must
			[2]		clearly be area eg 800/16 may score 0
6	(ii)	1	[3] B1f		or 2 Examples of correct methods:
U	(11)	$\frac{1}{2}$ total area or $\frac{1}{2}$ total no. apples ft their 6(i)	DII		
		Median is in 50 – 56 class stated or implied	M1		$400 - (7 \times 20 + 17 \times 10)$ (= 90)
		Wedian is in 50 – 50 class stated of implied	1,11		$50 + \frac{"90"}{23 \times 6} \times 6 = 54$
					200 (70 07) (17)
					200 – (70+85) (= 45)
		Calculate (approx) $\frac{2}{3}$ of way along class			$50 + \frac{\text{"45"}}{69} \times 6 = 54$
		or $\frac{1}{3}$ of way from top of class	M1		$400.5 - (7 \times 20 + 17 \times 10)$ (= 90.5)
		3			$50 + \frac{"90.5"}{23\times6} \times 6 = 54$
		Median = 53.9 to 54 Not eg 54.2	A1	Correct ans with nothing incorrect seen:	$30 + \frac{23 \times 6}{23 \times 6} \times 0 = 34$
				M1M1A1	Use of LB = 49.5:
					eg median = $49.5 + appr \frac{2}{3} \times 6 = 53.4$
			[4]	But where the correct answer clearly results	
			[4]	from incorrect working, eg $a = 800/167 = 4$	8 B1M1A1A0
				rounded to $a = 5$, then max M1M1A0	

Q	uestic	n	Answer	Marks	Guidan	ce
7	(i)		$\Sigma d^2 = n \text{ seen or implied}$ $1 - \frac{6 \times \text{anything}}{n(n^2 - 1)} = \frac{63}{65} \text{or } \frac{6 \times \text{anything}}{n(n^2 - 1)} = \frac{2}{65}$	M1 M1	eg $1 - \frac{6 \times \Sigma d^2}{n(n^2 - 1)}$ or $1 - \frac{6 \times n^2}{n(n^2 - 1)}$ or $1 - \frac{6 \times 1^n}{n(n^2 - 1)}$ or $1 - \frac{6 \times 6^2}{n(n^2 - 1)} = \frac{63}{65}$	Trial method: $\Sigma d^2 = 14$ M1 $1 - \frac{6 \times 14}{14(14^2 - 1)}$ oe M1 $= \frac{63}{65}$ A1 (0.969 : A0)
			$\frac{6}{(n^2-1)} = \frac{2}{65}$ or eg 390 = 2(n ² - 1)	A1 depM2	Any <u>correct</u> eqn after cancelling n or take out factor of n ; can be implied by $n = 14$	$\Rightarrow n = 14$ A1 Conclusion needed
			$n = 14$ NOT $n = \pm 14$	A1	But A0 if $n = 14$ clearly follows from incorrect working	
				[4]	If no working or unclear working, but n = 14, M1M1A1A1	
7	(ii)	(a)	$r = 1 \implies$ st line, hence true (or $r_s = 1$) oe Explanation essential Must state or imply "true"	B1	$r=1 \Rightarrow y$ incr as x incr, so $r_s=1$ oe Allow "True because perfect corr'n" or "True because $r=1$ means pts ranked in order so $r_s=1$ " " $r=1$ means the ranks will agree" " $r=1$ means all d 's are 0, hence $r_s=1-0=1$ "	NOT " $r_s = r$ for ranks so true" NOT "True because strong corr'n"
7	(ii)	(b)	Diag, ≥ 3 pts, not on st line but with $x_{n+1} > x_n$ & $y_{n+1} > y_n$, Zig zag line or curve, moving up & right	B1	Ignore explan if correct diag given Ignore any st line drawn Allow numerical example for which $r \neq 1$ but $r_s = 1$. If expl'n contradicts diag, mark diag	
			so r_s can still be 1	B1dep [2]	For 2 nd B1 must state or imply "false"	
			eg "expon'l curve gives $r \neq 1$ but $r_s = 1$ " B1B1			

Ç	uestio	n	Answer	Mark	Guidan	ce	
8	(i)	(a)	$0.9^4 \times 0.1$	M1			
			$=\frac{6561}{100000}$ or 0.0656 (3sf)	A1			
	(8)	<i>(</i> 1)	10000	[2]	1 1 2 2 4 1 2 2 5 3 7 1	1 (01 00 01 002 01	
8	(i)	(b)	0.9^{5}	M1	Allow 0.9 ⁴ or 1–0.9 ⁵ :M1	$1 - (0.1 + 0.9 \times 0.1 + 0.9^2 \times 0.1 + 0.9^4 \times 0.1)$	
			50040	A 1	but $1-0.9^n$ $(n \neq 5)$ or 0.1×0.9^n : M0	0.9 ⁴ ×0.1)	
			$=\frac{59049}{100000}$ or 0.59 (2 sf)	A1		Allow without "1 –" OR omit last term	
				[2]		NB $0.9^5 \times 0.1 = 0.0590 \text{ M0A0}$	
8	(i)	(c)	0.1×0.1 or $[0.1 \times 0.1 \times 0.9 + 0.1 \times 0.1 \times 0.1]$	oe M1		$3\times0.1^2\times0.9+0.1^3$ no incorrect multiples	
	(-)	(0)	+ 0.1×0.9×0.1	oe M1	M1M1 two correct terms, no incorrect multiples	M2 for 1st term; M1 for 2nd	
					, , ,	, , , , , , , , , , , , , , , , , , , ,	
			$+0.9\times0.1\times0.1$	oe M1	M1 all correct		
						This method only scores using "1 – ":	
			= 0.028	A1	Ans 0.027 probably M0M1M1A0 but check	0.9^3 ; $3\times0.9^2\times0.1$ no incorrect multiples	
					working	M1; M1	
					CC:C M 1	1 – one or both terms with no further	
					SC if no M-mks scored:	wking: $M1(\text{dep M1})$ eg $1 - 0.9^3$ alone $M1M0M1$	
				[4]	SSF, SSS, FSS, SFS or SS, FSS, SFS seen or implied: B1	eg 1 – 0.9 alone MTMOMT	
8	(ii)	(a)	$0.9 \times 0.8 \times 0.1$	M1	alone or allow \times 0.8 (ie girls in wrong order)	NOT 0.9×0.8×0.1×0.2= 0.0144: M0A0	
	(11)	(a)		A1	(=0.0576)	NOT 0.9×0.8×0.2= 0.144: M0A0	
			$=\frac{9}{125}$ or 0.072	[2]		110110	
8	(ii)	(b)	$0.9^{9 \text{ or } 10} \times 0.8^{9 \text{ or } 10} \times 0.1 \text{ (or } \times 0.2, \text{ not }$	M1	allow $0.9^{9 \text{ or } 10} \times 0.8^{9 \text{ or } 10} \times 0.1 \times {}^{18,19,20}\text{C}_1$	If ans = 0.00360 or 0.0150 see SC	
			×0.1×0.2)			below	
			$(0.9 \times 0.8)^9 \times 0.1$ oe	M1	fully correct		
			$= 5.2 \times 10^{-3} \text{ or } 0.0052 \text{ (2 sf)}$	A1			
					SC Consistent use of 0.9 for both side: (*)(a)	0.128 (#)(h) 0.00260	
					SC Consistent use of 0.8 for both girls: (ii)(a) 0.128 (ii)(b) 0.00360 or 0.9 for both girls: (ii)(a) 0.081 (ii)(b) 0.0150 If both these ans		
				[3]	seen, allow (a) 0 (b) B1	0.001 (h)(b) 0.0130 II botti tilese alis	
				[7]	been, anow (a) o (b) D1		

	Duestion	means "answer which rounds to to 3 sts". If correct ans seen Answer	Marks	V for later rounding. Penalise over-rounding	Guidance
1	(i)	2 0 4 7		B1 for stem correct AND	Ignore "0" and/or "1" in stem, without leaves
		3 2 3	B1	(3 branches correct OR 5 branches	Allow incorrect alignment.
		4 0 5 7 9		correct nos but incorrectly ordered)	Allow space instead of line. Allow left–facing diag
		3 2 3 4 0 5 7 9 5 3 5 5 6 8 6 2 5 7 9	-	7.0	
		6 2 5 7 9	B1	B1 for all correct	If all digits are in correct rows and orders, award
					this mark <u>unless</u> :
					4 th row is not the longest OR eg a 3 rd digit in one row is clearly aligned with a 4 th
		2 4 means 24 or similar	B1		digit in another
		2 4 means 24 or similar	[3]		digit in another
1	(ii)	47.6 (2 of) or 857 or 47.11 (cm) oc	B1	cao	eg $857 \div 18 = 41.6$ B0 but $\frac{857}{18} = 41.6$ ISW B1
	()	47.6 (3 sf) or $\frac{857}{18}$ or $47\frac{11}{18}$ (cm) oe			$eg 837 \div 18 - 41.0 B0 but \frac{18}{18} - 41.0 BW B1$
		51 (cm)	B1ft	ft wrong diag	
	(444)	th at the state of	[2]		
1	(iii)	49 (or 9 th no.) becomes 51	B1	No marks for identifying 49 & 53	NB NO ft from wrong diag
		or 53 (or 10 th no.) becomes 55	B1	alone or 51 & 55 alone	NOT eg '51 or higher' Allow embedded answer
		of 33 (of 10 lio.) becomes 33	DI		eg 53 identified as incorrect and state(55+49)÷2=52
			[2]		scores 2nd B1
2	(i)	5 2 4 1 3 or A B C D E (grades)	M1	Attempt ranks	Scores Zild D1
		3 4 5 2 1 3 1 5 2 4	A1	Correct ranks; allow both sets reversed	One set reversed: A0
				Can be implied by eg $\Sigma d^2 = 14$	
					Use PMCC on ranks:
					1 st M1A1 as main scheme then:
		$\frac{d^2}{d^2}$ 4 4 1 1 4			$\Sigma x = \Sigma y = 15 \Sigma x^2 = \Sigma y^2 = 55 \Sigma xy = 48$
		$\Sigma d^2 \qquad (=14)$	M1	Attempt Σd^2 dep 1st M1	$S_{xx} = S_{yy} = 10$ $S_{xy} = 3$ allow one arith error M1
		$1 - \frac{6 \times "14"}{5 \times (5^2 - 1)}$	M1	ft Σd^2 dep 1 st M1	2//(10-10)
		$5 \times (5^2 - 1)$		Î	$r = 3/\sqrt{10 \times 10}$ allow one arith error M1
				If one set reversed, $r_s = -0.3$	
		= 0.3 oe	A1	M1A0M1M1A0	=0.3 A1
	(20)		[5]		
2	(ii)	$\Sigma d^2 = 8$ or '2 the same and 2 differ by 2'	M1	May be implied	Allow $d^2 = 8$ or similar
		1 4 3 2	A1		
			[2]		

	Questic		Answer	Marks	v for later rounding. Penanse over-rounding o	Guidance
3	(i)	$1 \times 0.4 + 3 \times 0$	$0.3 + 5 \times 0.2 + 7 \times 0.1$	M1	\geq 3 terms correct \div eg 4 M0	
		= 3		A1	_	Use of $\Sigma(x-\bar{x})^2 \times p$:
		$1^2 \times 0.4 + 3^2 \times$	$(0.3 + 5^2 \times 0.2 + 7^2 \times 0.1)$	M1		$2^2 \times 0.4 + 0 + 2^2 \times 0.2 + 4^2 \times 0.1$ M2
		- "3"2		M1	Dep +ve result	or 2 correct non–zero terms M1
		= 4		A1		
	(**)	775 757 5	200	[5]	36 . 1	111 11 11 11 11 11 11 11 11 11 11 11 11
3	(ii)	775, 757, 5	777	B1	Must show all three	Allow repeats, eg list of 6 orders Alt method X_1 : 5 or 7, X_2 : 5 or 7; X_3 : 5 or 7
		$\frac{2}{3}$ or 0.667	(3 sf)	B1		or X_1, X_2, X_3 can be 5 or 7 B1
				[2]		
3	(iii)		ated, or seen or implied with	B1	eg by $0.8^r \times 0.2^s (r,s>1)$ not just by nC_r	NB 0.0388 scores B1M0A0 as it is ${}^{11}\text{C}_5{\times}0.8^6{\times}0.8^5$
		any $n \& p$ $^{11}\text{C}_4 \times 0.8^7 \times 0.$. 0. 24	М1	Compat mathed	
		= 0.111 (3 s)		M1 A1	Correct method Correct answer, no working M1M1A1	
		- 0.111 (3 8)	1)	[3]	Correct answer, no working with that	
4	(i)	5.74		B1		
		0.13 or 'the	same'	B1	NB 0.13 seen within working; B0	$2 \times \frac{\Sigma x^2}{(4 + \sin m \cos n)^2} = 0.13^2 \cos m \cos D0 \cos 0.12$
				[2]		$eg \frac{\Sigma x^2}{10}$ – (their mean) ² = 0.13 ² scores B0 for 0.13
4	(ii)	(10ב5.74' +	$+15\times5.6$) \div 250e all correct	M1	$eg 5.74 \times \frac{2}{5} + 5.6 \times \frac{3}{5}$	NB $(5.74 + 5.6) \div 2 = 5.67 \text{ M0A0}$
		= 5.656 = 5.	66 (3 sf)	A1ft	ft their 5.74	NB 5.7 with no wking: M0A0 even if already
						penalised elsewhere for over-rounding
				[2]	-4	
4	(iii)	1 st gp (or on	e gp) is more consistent	B1ft	2 nd gp (or one gp) more accurate or etc	1 st gp (or one gp) more consistent or etc
		1,(1,	(or less spread oe)	D16	but less consistent or etc	2 nd gp (or the other gp) more accurate or etc
			s accurate n further from true mean oe)	B1ft	If neither B1 scored, but state	Impere all other agriculars 'Claim false' or 'Claim
		(or mea	ii further from true mean 6e)		'consistency does not imply accuracy'	Ignore all other, eg ignore 'Claim false' or 'Claim true' etc even if it contradicts other statements
					or similar: SC B1	Reference to mean of all 25 does not score
					or similar. BC D1	Reference to mean of an 23 does not score
					Equiv answers accepted, but no others	Follow through their values for 1 st gp:
					• •	eg if 1^{st} gp sd = 5.13:
						1 st gp less accurate and less consistent oe B1B1
				[2]		Similar for other ft.

	Ouesti		ans "answer which rounds to to 3 sts". If correct ans seen Answer	Marks	V for later rounding. Penalise over-rounding of	Guidance
5	(i)		2			
			$S_{xx} = 503.45 - \frac{70.3^2}{10} \qquad (=9.241)$			
			$S_{yy} = 103.94 - \frac{30.8^2}{10} \qquad (= 9.076)$			
			$S_{xy} = 211.9 - \frac{70.3 \times 30.8}{10}$ (= -4.624)	M1	Correct sub in any correct S formula	
			$r = \frac{\text{"-4.624"}}{\sqrt{\text{"9.241"}\times\text{"9.076"}}}$	M1	Correct sub in any correct r formula	Must be correct sub in all <i>S</i> 's & <i>r</i> but not nec'y accurate
			= -0.5049 or -0.505 (3 sfs)	A1 [3]	Correct ans with no wking: M1M1A1	
5	(ii)		Correlation (of UR & CPI) does not		Both (UR & CPI) may depend on	Allow One may depend on another factor
			imply causation oe	B1	another factor	Allow without context
			or r not close to -1		or r small or poor corr'n oe	NOT eg UR is independent
					Ignore all else	NOT eg Only for the given years
				[1]		NOT eg Only for certain months
5	(iii)	(a)	$b' = \frac{S_{xy}}{S_{yy}} = \frac{\text{"-4.624"}}{\text{"9.076"}} \ (= -\frac{1156}{2269} \text{ or } -0.50948)$	M1	ft their S's	If y on x: $b = \frac{S_{xy}}{S_{xx}} = \frac{"-4.624"}{"9.241"}$ (= -0.500) M1
			$x - \frac{70.3}{10} = " - \frac{1156}{2269}" (y - \frac{30.8}{10})$	M1	or $a' = "-\frac{1156}{2269}" \times (-\frac{30.8}{10}) + \frac{70.3}{10}$	$y-3.08=$ " -0.500 " $\times (x-7.03)$ or $a = 3.08+0.5\times7.03$ M1
			x = -0.51y + 8.6 (2 sfs)	A1	NB use $b' (= -0.509)$, not $r (= -0.5049)$	y = -0.50x + 6.6 A0
			or $x = -\frac{1156}{2269}y + 8.6$			
				[3]		
5	(iii)	(b)	$x = -0.509 \times 4.0 + 8.60$	M1	Allow sub $y = 0.04$ for M1 only	If y on x found in (a)
			= 6.56 (3 sf) or 6.6 (2 sf)	A1ft	ft their equn; ans to 2 sf	4.0 = -0.500x + 6.60 M1 $x = 5.2 (2 sf)$ A1ft
				[2]	* '	, ,
6			In all three parts of q 6, where the right an	swer is se	en following a method which is unclear,	award full marks. If the right answer follows from a
			method that is very clearly incorrect, awar	d M0A0	in (i) & (iii), and in (ii) award M0M0A0 u	unless there is a partly correct method worth M1.
6	(i)				$^{2}C_{2}$ 1 $^{2}P_{2}$	Allow M1 for $\frac{1}{5} \times \frac{1}{4}$, but NOT other methods
			$\frac{1}{5} \times \frac{1}{4} \times 2$ or $\frac{2}{5} \times \frac{1}{4}$ alone oe	M1	or $\frac{{}^{2}C_{2}}{{}^{5}C_{2}}$ or $\frac{1}{{}^{5}C_{2}}$ or $\frac{{}^{2}P_{2}}{{}^{5}P_{2}}$	leading to $\frac{1}{20}$ and NOT $\frac{1}{20}$ with no wking
			$=\frac{1}{10}$ or 0.1 oe	A1	Allow ⁵ C ₃ instead of ⁵ C ₂	M1 for totally correct method except $\frac{1}{5} \times \frac{1}{4}$ seen: M1
				[2]		NB $\frac{2}{5} \times \frac{1}{4} \times 2$ M0A0; $\frac{2}{5}_{C_2}$ M0A0; $\frac{2}{5} \times \frac{1}{5}$ M0A0
	1			[2]		

	Questic		Answer Answer	$\frac{10 \ge 3818, 13 \text{ V}}{\text{Marks}}$	V for later rounding. Penalise over-rounding o	Guidance
6	(ii)		$\frac{2}{5} \times \frac{3}{4} \times \frac{2}{3} \text{ or } \frac{1}{5} \times \frac{3}{4} \times \frac{2}{3} \times 2 \text{ oe}$ or $\frac{1}{5}$ or 0.2 (not from incorrect method) or correct list of 6 comb's with 1 vowel or $\frac{2}{\dots} \times \frac{3}{\dots} \times \frac{2}{\dots} \times 3 \text{ or } \frac{1}{\dots} \times \frac{3}{\dots} \times \frac{2}{\dots} \times 6$	M1	$\frac{2 \times {}^{3}C_{2}}{\dots} \text{ or } \frac{\dots}{5}C_{3} \text{ or } \frac{6}{\dots} \text{ or } \frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}$	Only if using complement (ie 1–P(0V or 2V)): $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \text{OR} \frac{2}{5} \times \frac{3}{4} \times \frac{1}{3} \times 3 \qquad \qquad \text{M1}$
			$\frac{1}{5} \times \frac{3}{4} \times \frac{2}{3} \times 2 \times 3$ oe fully correct method	M1	$\frac{2 \times {}^{3}C_{2}}{{}^{5}C_{3}} \text{oe or } 6 \div 10$	$1 - (\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \frac{2}{5} \times \frac{3}{4} \times \frac{1}{3} \times 3)$ M1
			$=\frac{3}{5}$ or 0.6 oe	A1 [3]	Allow ⁵ C ₂ instead of ⁵ C ₃ . Not P's	5! or 120 alone is probably an incorrect method in this part See comment before 6(i)
6	(iii)		$1 - \frac{1}{5} \frac{1}{C_4}$ or $1 - \frac{1}{5}$ or $\frac{5! - 4!}{5!}$ or $\frac{1 \times^4 C_3}{5}$ or $\frac{1}{5} \times 4$	M1	or $(\frac{1}{5} \times \frac{4}{4} \times \frac{3}{3} \times \frac{2}{2}) + (\frac{4}{5} \times \frac{1}{4} \times \frac{3}{3} \times \frac{2}{2})$ $+ (\frac{4}{5} \times \frac{3}{4} \times \frac{1}{3} \times \frac{2}{2}) + (\frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2})$	or $1 - \frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2}$ or $\frac{24 + 24 + 24 + 24}{5!}$
			$=\frac{4}{5}$ or 0.8 oe	A1		$\frac{4}{5} \times \dots M0A0 \text{ eg } \frac{4}{5} \times \frac{1}{5} M0A0$
				[2]		See comment before 6(i)
7	(i)	(a)	$X \sim B(30, 0.05)$ seen or implied	B1	eg by 0.8122 or $1-0.5535$ or $0.95^r \times 0.05^s$ $(r, s > 1)$ Allow B(30,0.95) or B(30, 0.5) for B1 30×0.05 alone insufficient for B1	If $n = 15$: B(15, 0.05) B1
			$P(X > 2) = 1 - 0.8122 \text{ alone or} 1 - (0.95^{30} + 30 \times 0.95^{29} \times 0.05 + 30 \times 0.95^{28} \times 0.05^{2})$	M1	$^{n}C_{r}$ insufficient for B1	$1 - (0.95^{15} + 15 \times 0.95^{14} \times 0.05 + {}^{15}C_{2} \times 0.95^{13} \times 0.05^{2}) \text{ M1}$
			= 0. 1878 or 0.188 (3 sfs)	A1 [3]		= 0.0362 A0

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding.

Penalise over-rounding only once in paper.

)uesti		Answer Answer	Marks	v for later rounding. Penalise over-rounding o	Guidance
7	(i)	(b)	Addition method: $X \sim B(30,0.05) \& Y \sim B(15,0.05)$ stated or implied	B1	NB eg 0.0362 implies B(15, 0.05) see below	Subtraction methods: X~B(30,0.05)&Y~B(15,0.05) stated or impl B1
			P(X = 2) = (0.8122-0.5535) or $^{30}C_2 \times 0.95^{28} \times 0.05^2$ or $0.2587/6$ $OR P(Y \ge 1) = (1 - 0.95^{15})$ or 0.5367	M1		$P(X=2) = (0.8122-0.5535) \text{ or } {}^{30}C_2 \times 0.95^{28} \times 0.05^2$ or $0.2587/6$ $OR P(Y=0) = 0.95^{15}$ or 0.4633 M1
			"0.2587/6" × "0.5367" or 0.1388	M1	fully correct method for $P(X=2) \times P(Y \ge 1)$	fully correct method for $P(X=2) \times P(Y=0)$ "0.2587" × "0.4633" or 0.1199/8 M1
			$P(X > 2) + P(X = 2) \times P(Y \ge 1)$ = "0.1878" + "0.1388" alone	M1	[their (a)+any p] alone, but dep 1 st M1	$1 - (P(X = 0,1) + P(X=2) \times P(Y=0))$ $= 1 - ("0.5535" + "0.1199")$ $OR P(X \ge 2) - P(X=2) \times P(Y=0))$ $= (1 - "0.5535") - "0.1199"$ $dep 1st M1 M1$
			= 0. 327 (3 sf) AG For A1 must see correct wking or 0.3265/6	A1	If ans 0.327, check whether it comes from a correct method (possibly not in MS) or clearly comes from an incorrect method eg $(0.4465 + 0.2587) \times 0.4633 = 0.327$ (ie $(P(X \ge 2) + P(X = 2)) \times P(Y = 0)$ B1M1M0M0A0	= 0. 327 (3 sf) AG A1 Do not use marks from a mixture of 3 rd column and other columns. Decide which column would give most marks and mark according to that method.
				[5]		If $n = 15$ for both distr's, see next page NB If 0.1392 seen, it comes from given answer – (i)(a) (ie 0.3270 – 0.1878).

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding.

Penalise over-rounding only once in paper.

	Questi		Answer	Marks	v for later rounding. Penanse over-rounding o	Guidance
7	(i)	(b)	Alternative scheme for the case where $n = 15$ is used for both distr's			If $n = 15$ for both distr's: B(15, 0.05) B0 P($X = 2$) = $^{15}C_2 \times 0.05^2 \times 0.95^{13}$ or 0.1348 OR P($Y \ge 1$) = 1 - 0.95 ¹⁵ or 0.5367 M1 "0.1348"×"0.5367" or 0.0723 correct method M1 their (i)(a) + "0.0732" Dep 1 st M1 M1
						= 0.1085 A0 NB Also mark subtraction methods if seen.
7	(ii)		Any use of 0.327 or their (i)(b) for 1^{st} M1 $(1-0.327)^3 \times 0.327 + (1-0.327)^4 \times 0.327$ Allow "correct" use of their (i)(a) or (i)(b) for 2^{nd} M1 $= 0.167 (3 \text{ sf})$	M1 M1 A1 [3]	$(0.5535 + 0.2586 \times 0.4633)^{3} \times 0.327 + (0.5535 + 0.2586 \times 0.4633)^{4} \times 0.327$	1 – 0.673 ⁵ – (1 – 0.673 ³) oe Allow <u>any</u> use of their (i)(b) for 1 st M1 then if "correct" use, also 2 nd M1 Allow use of their (i)(a) in "correct" method for M0M1A0 No marks for use of 0.95 & 0.05
8	(i)		$12\times10\times5$ (in numerators or alone) OR any prod of 3 probs×6(or ×3! or $^{3}P_{3}$)	M1	or ${}^{12}C_{1} \times {}^{10}C_{1} \times {}^{5}C_{1}$ or 600 (in numerators or alone) or eg $(\frac{12}{27} \times \frac{10}{26} \times \frac{5}{25} + \frac{12}{27} \times \frac{5}{26} \times \frac{10}{25}) \times 3$	or $\frac{4}{117}$ or 0.0342 oe Fully correct method
			$\frac{12}{27} \times \frac{10}{26} \times \frac{5}{25} \times 6 \qquad \text{or } \frac{12 \times 10 \times 5}{27}$ $= \frac{8}{39} \text{ oe or } 0.205 \text{ (3 sfs)}$	A1	2 \ 21 \ 26 \ 25 \ 21 \ 26 \ 25 \ \	Examples: $\frac{12}{27} \times \frac{10}{27} \times \frac{5}{27} \times 6 \text{ or } \frac{12}{25} \times \frac{10}{24} \times \frac{5}{23}$ M1M0A0
				[3]		or $\frac{1}{27} \times \frac{1}{26} \times \frac{1}{25} \times 6$ M1M0A0

	Questi		Answer Answer	Marks	v for later rounding. Penalise over-rounding o	Guidance		
8	(ii)		$0.4 \times \frac{x}{50}$ OR $0.6 \times \frac{50-x}{50}$ oe or $0.4 \times \frac{?}{50}$	M1	$0.4 \times p \text{ OR } 0.6 \times (1-p)$ or similar	$0.4 \times \frac{x}{50}$ or etc	$0.4 \times a$ etc	M1
			$0.4 \times \frac{x}{50} + 0.6 \times \frac{50 - x}{50} = 0.54$	M1	$0.4 \times p + 0.6 \times (1 - p) = 0.54$	$0.4 \times \frac{x}{50} + 0.6 \times \frac{y}{50} = 0.54$	0.4a + 0.6b = 0.54	
			30 30			AND x + y = 50	AND $a + b = 1$	M1
			4x = 60 oe, two terms	A1	p = 0.3	4x = 60 or 4y = 140	a = 0.3 or b = 0.7	A1
			no. of red = 15	A1	no. of red = 15	no. of red = 15	no. of red = 15	A1
			T & I:		Allow $x = 15$ as <u>answer</u> , but not if contradicted later			
			$0.4 \times \frac{x}{50}$ or etc OR one trial $(n \neq 15)$ M1		If (50) as (1) a similar rules	C		
			Trial of $n = 15$ M1A1 Answer stated A1		If $x \leftrightarrow (50-x)$ or $p \leftrightarrow (1-p)$: similar mks including 1 st A1 for $p = 0.7$ or $x = 35$	Correct answer scores full from incorrect method.	marks <u>uniess</u> clearly	y
			All Miswer stated	[4]				
9			If $0.8 \leftrightarrow 0.2$ apparently used consistently (i)(a) and A0 (i)(b) This may be implied by their answers with (i)(a) $0.2^{10} \times 0.8 = 8.19 \times 10^{-8}$; $0.2^9 \times 0.8 = 6$ (i)(b) $1 - 0.2^{10} = 0.99999999999999999999999999999999999$	nout work 4.10×10^{-7} $1 - 0.2$ precisely	ing as follows ; $0.2^{11} \times 0.8 = 1.64 \times 10^{-8}$ M1A0 $^{9} = 0.999999488$ M0M1A0; $1 - 0.2^{11} =$	0.999999999999999999999999999999999999		
9	(i)	(a)	$0.8^{10} \times 0.2$	M1	Allow $0.8^9 \times 0.2$ or $0.8^{11} \times 0.2$			
		()	= 0.0215 (3 sf)	A1 [2]	or 0.0268 or 0.0172		If $0.8 \leftrightarrow 0.2$, see al	bove
9	(i)	(b)	0.8 ¹⁰ or 0.107	M1	Not $0.8^{10} \times$ M0M0 Not just 0.8^{9} or 0.8^{11} M0M0	$0.2 + 0.8 \times 0.2 + + 0.8^9$ Allow M1 for 1 term omit	,	[2
			$1 - 0.8^{10}$ alone	M1	Allow M1 for 1–0.8 ⁹ or 1–0.8 ¹¹ alone or 0.866 or 0.914	Allow use of dots as abov as their 1 st & last and one		long
			= 0.893 (3 sf)	A1 [3]			If $0.8 \leftrightarrow 0.2$, see a	above

	Question		Answer	Marks		Guidance	
9	(ii)		$\frac{1}{0.2}$ alone	M1		Allow 1 \div their incorrect p used in (i)(a)	
			= 5	A1	(5, 1) M1A0	Ignore eg " $E(X)$ ="	
				[2]		If $1 \div 0.8 = 1.25$, see above	
9	(iii)		4 Allow (4, 1)	B1ft	or (ii) -1 or (ii) $\times 0.8$	ft (their (ii)–1, 1)	
				[1]			

S1 June 2014 Mark Scheme Final (without introduction)

(Questic	on	Answer	Marks	Guidan	ce
1	(i)	on	Median = 7.45 (m) IQR = 7.75 – 6.7 = 1.05 (m) allow 1.175 or 1.18 NOT 1.3	B1 M1	cao allow 7.775 – 6.6 or 77.5 – 67 or 77.75 – 66 or 7.8 – 6.5 even though this is an incorrect method or 78 – 65 allow 10.5 or 11.75 or 11.8 but only if med = 74.5	These <u>pairs</u> of values only, and subtract, for M1 eg 7.45, 7.75 – 6.7 = 1.05 B1M1A1 7.45, 7.775 – 6.6 = 1.175 B1M1A1 7.45, 7.8 – 6.5 = 1.3 B1M1A0 7.45, 7.7 – 6.5 = 1.2 B1M0A0 7.45, 77.5 – 67 = 10.5 B1M1A0 74.5, 77.5 – 67 = 10.5 B0M1A1 74.5, 7.75 – 6.7 = 10.5 B0M1A1 74.5, 77.75 – 6.6 = 11.75 B0M1A1
				[3]		7.45, 78 – 65 = 13 B1M1A0 74.5, 78 – 65 = 13 B0M1A0 74.5, 77 – 65 = 12 B0M0A0
1	(ii)		4 2 2 5 5 3 3 0 6 8 7 7 6 4 3 2 7 6 5 7 8 5 8	B1*	correct digits in correct leaves, ignore order, allow one omitted or extra or misplaced or incorrect digit	Allow a separate diag with leaves to left of stem. If only a separate diag is drawn, with leaves to right of stem: all correct including order, alignment and key: B1 If all digits are in correct rows and orders,
			Complete correct diag including order and	B1dep	key: eg 8 6 4 means 6.8 (<i>B</i>) and 6.4 (<i>A</i>)	if an digits are in correct rows and orders,

Q	uestic	on	Answer	Marks	Guidar	nce
			key and alignment	[2]	allow just 8 6 means 6.8 NOT 8 6 means 8.6 Allow 8 6 means 68, if consistent with (i)	& correct key, award this mark <u>unless</u> EITHER: 1. eg a 2 nd digit in one row is <u>clearly</u> aligned with a 3 rd digit in another OR 2. 1st, 3rd, 4th & 5th rows are <u>very</u> different lengths, eg because of crossing out and replacement
1	(iii)		One correct comment on size: B1. One corr Ignore any working; mark the statements or		ent on spread or shape: B1. The following are e Allow "First set" or "Right" for A, "Sec	
			A higher <u>overall</u> A has more taller trees or fewer shorter A has higher median (mean, ave, medium)	В1	B shorter overall B has fewer taller trees or more shorter B has lower median (mean, ave, medium)	NOT A higher than B NOT B has shorter trees than A Allow just quoting the two medians, even if wrong, so long as med of A is gter than med of B. Similarly if quote IQRs
			B more evenly spread or distributed B more spread out B has larger range or IQR or sd Ranges of both are similar A is nearer to normal	B1	A less evenly spread or distributed A less spread out A has smaller range or IQR or sd Allow A's heights are more consistent	NOT any reference to outliers NOT any reference to sample size
			A is negatively skewed A has a (unique) mode, or modal class or peak; (B doesn't)		Not other comment about skew Ignore any other reference to mode or most common	NOT any reference to indiv trees NOT two comments on size NOT two comments on spread
2	(a)		$(0^2 \times 0.3) + 2^2 \times 0.4 + 4^2 \times 0.3$	[2] M1	Ignore all else even if incorrect last two terms correct. NOT eg ÷ 6 or ÷ 3	eg highest on both is 8.5 B0 $2^2 \times 0.3 + (0) + 2^2 \times 0.3$ M2 1st or 3rd term correct M1
			$\begin{vmatrix} -2^2 \text{ or } -4 \\ = 2.4 \end{vmatrix}$	M1 A1 [3]	allow – (any number) ² , dep +ve result	÷ 3 M0M0A0
2	(b)	(i)	2k + 3k + 4k + 5k = 1 oe	B1	or $14k = 1$ oe "= 1" is essential	NOT just $2 + 3 + 4 + 5 = 14$ so $k = \frac{1}{14}$

Q	uestic	on	Answer	Marks	Guidan	ice
			$(k = \frac{1}{14} \mathbf{AG})$			Allow verification, eg stating that
				[1]		$\frac{2}{14} + \frac{3}{14} + \frac{4}{14} + \frac{5}{14} = 1$
2	(b)	(ii)	$\frac{2}{14}$, $\frac{3}{14}$, $\frac{4}{14}$, $\frac{5}{14}$ or $\frac{2}{14}$, $\frac{6}{14}$, $\frac{12}{14}$, $\frac{20}{14}$	B1	≥ 3 correct	2k, 6k,12k, 20k B1
			$\sum xp$	M1	≥ 3 correct terms added	$2k + 6k + 12k + 20k$ or $40k$ M1 $\div 4 \text{ M0A0}$
			$=\frac{20}{7}$ or $2\frac{6}{7}$ or 2.86 (3 sf) oe, eg $\frac{40}{14}$	A1	SC $1 \times \frac{1}{14} + 2 \times \frac{2}{14} + 3 \times \frac{3}{14} + 4 \times \frac{4}{14} (=2.143)$	
					B0M1A0	
				[3]		
3	(i)		Use of 5 or 6 instead of 5.5 for last value of 1.40)	x: all M-r	marks can be scored, but no A-marks. (ans: 5 g	gives 2.32 and 1.23; 6 gives 2.39 and
			Use of 5 and 6 instead of 5.5 (probably with	freqs 194	400/2) could lead to correct mean M1A1, but po	ssibly M1M1A0 for sd.
			$\frac{\Sigma fx}{\Sigma f}$ attempted $(=\frac{662000}{280900})$	M1	3 terms of Σfx correct and $\div \Sigma f$ Allow incorrect Σf NOT Σx	÷ 5 or ÷ 6 M0A0
			= 2.36 (3 sf)	A1		
			$\frac{\Sigma f x^2}{\Sigma f}$ attempted $(=\frac{2042350}{280900} =$		3 terms of Σfx^2 correct and $\div \Sigma f$ Allow incorrect Σf NOT Σx	$\frac{\sum f (x - \overline{x})^2}{\sum f}$
			7.270737)	M1	,	3 terms of num correct and $\div \Sigma f$ M2
			·			$(86900 \times 1.36^2 + 92500 \times 0.36^2 + 45000 \times 0.64^2)$
						$+37100\times1.64^2+19400\times3.1^2$), $(\frac{482210.64}{280900})$
						2 terms of num correct $\underline{\text{and}} \div \Sigma f M1$
						Allow incorrect Σf but NOT if $\Sigma f = \Sigma x$
			$-"2.36"^2$ (= 1.70 to 1.72, 3	3.61		NB √ not requ'd for M1M1
			sf)	M1	dep +ve result	
			s.d. = 1.31 or 1.30 (3 sf)	A1	÷ 5 or ÷ 6 M0M0A0 allow 1.3	Correct answer(s) without working score full marks
				[5]		

Q	uestic	on	Answer		Marks	Guidan	се
3	(ii)		2 3		B1 B1 [2]	allow $IQR = 3 - 1 = 2$, ie $UQ = 3$ implied	Ignore working for both, even if Incorrect NB 3, 2 B0B0 unless labelled correctly
4	If $\frac{2}{3}$	is inte	erpreted consistently as 0.6 or 0	.66 or 0.67 or 0	.7, max n	narks: (i)(a) M1M1A0 (i)(b) B0 (i)(c) B1ft	B1ft (ii) B1M1M1A0
4	(i)	(a)	Binomial seen or implied		M1	by use of table or ${}^{9}C_{6}$ or $(\frac{2}{3})^{p}(\frac{1}{3})^{q}$ $(p+q=9)$	Eg 0.6228 seen
			0.6228 – 0.3497		M1	${}^{9}C_{6}(\frac{1}{3})^{3}(\frac{2}{3})^{6}$	
			= 0.273 (3 sf)		A1	1792 6561	
					[3]		
4	(i)	(b)	0.3497 or 0.350 (3 sf)		B1	NB 0.3498 (from 0.6228 - 0.273) rounds to 0.350 so B1	
					[1]		
4	(i)	(c)	6		B1ft		
			2		B1ft		NB 2, 6 B0B0 unless labelled correctly
					[2]		
4	(ii)		27 seen		B1	not necessarily in a statement	
			B(27, $\frac{2}{3}$) seen or implied		M1		
			$^{27}\text{C}_{18}(\frac{1}{3})^9(\frac{2}{3})^{18}$		M1	or attempt eg $P(X_{1} = 1) \times P(X_{2} = 8) \times P(X_{3} = 9),$ $P(X_{1} = 2) \times P(X_{2} = 7) \times P(X_{3} = 9),$ $P(X_{1} = 3) \times P(X_{2} = 6) \times P(X_{3} = 9),$ etc $\geq 3 \text{ sets with } X_{1} + X_{2} + X_{3} = 18 \text{ (not nec'y added) M1}$	NB P($X_1 = 6$) × P($X_2 = 6$) × P($X_3 = 6$) = 0.273 ³ = 0.0203 M0M0A0 $\frac{55}{729} (= 0.0754) M0M0A0$
			= 0.161 (3 sf)		A1 [4]		
5	(i)		$S_{xx} = 20400 - \frac{360^2}{8}$ $S_{yy} = 6.88 - \frac{6.8^2}{8}$	(= 4200)	_		
			$S_{yy} = 6.88 - \frac{6.8^2}{8}$	(= 1.1)			

C	uestic	on	Answer	Marks	Guidan	ce
			$S_{xy} = 241 - \frac{360 \times 6.8}{8} \qquad (=-65)$	M1	Correct sub in a correct S formula	
			$r = \frac{\text{"-65"}}{\sqrt{\text{"4200"x"1.1"}}}$	M1	Correct sub in 3 correct <i>S</i> formulae and a correct <i>r</i> formula	
			=-0.956 (3 sf)	A1 [3]	Correct ans with no working M2A1	Ignore comment about $-1 < r < -0.9$
5	(ii)		eg As you move further away, prices drop	B1	High prices go with short distances oe	Both variables must be in context; miles & £ enough
					Allow "Strong (or high or good or equiv) neg corr'n between price and distance"	Ignore all else, even if incorrect NOT just neg corr'n between price & dist
				[1]		
5	(iii)		None	B1		Ignore all else, even if incorrect
				[1]		
5	(iv)		$b = \frac{\text{"-65"}}{\text{"4200"}} \qquad (= -0.0154762)$	M1	ft their S_{xy} & S_{xx} from (i) for M-marks only	or fresh start correct method
			$Y - \frac{6.8}{8} = \text{``} - 0.0154762\text{''}(x - \frac{360}{8})$ oe	M1	or $a = \frac{6.8}{8} + \text{``0.0154762''} \times \frac{360}{8}$ oe	
			y = -0.0155x + 1.55 (3 sf) oe	A1	allow $y = -0.015x + 1.5$	Must have " $y =$ "
			or $y = \frac{433}{280} - \frac{13}{840}x$ oe		(or figs which round to these)	
			280 840		(NOT $y = -0.016x + 1.6$	Allow figures in equn which round to
				[2]	NOT $y = -0.02x + 1.5$) Correct ans with no working M2A1	the correct figures to either 3 sf or 2 sf, even if they result from arith errors.
5	(1)		Values of x are chosen beforehand	[3] B1	x is fixed or given or set or predetermined oe	Not "x is constant."
3	(v)		or x is independent or controlled	ы	a is fixed of given of set of predetermined of	Not x is constant. Not just "y depends on x"
			of x is independent of controlled	[1]		Ignore all other, even if incorrect
6	(i)		654321	B1		8
	` '			[1]		
6	(ii)		$\Sigma d^2 = 0$ for first 6 teams	M1	May be implied by use of $\Sigma d^2 = 2$	
			$\Sigma d^2 = 2$	B1	_ ^ _	
			$1 - \frac{6\sum d^2}{8(8^2 - 1)}$	M1	ft their $\Sigma d^2 \neq 0$	using ranks from (i) can score 2nd M1 only

Q	uestic	on	Answer	Marks	Guidan	ce
			$=\frac{41}{42}$ or 0.976 (3 sf)	A1		
			72	[4]		
7	(i)		$\frac{n}{n+45} = \frac{5}{8}$ or $n:45=5:3$ or $\frac{3}{8}:45=\frac{5}{8}:n$	M1	$\frac{3F}{8} = 45 \& n = \frac{5}{8} \times F; 45 \times \frac{8}{3} = 45; 45 \times \frac{8}{3} \times \frac{5}{8}$	correct first step involving n or complete correct method for finding n
			n = 75	A1		
				[2]		
	(ii)		$\frac{45+"75"+52}{45+"75"+52+78}$ alone oe	M1	1 - $\frac{78}{45+"75"+52+78}$ oe or $\frac{"250"-78}{"250"}$ oe	$\frac{45+"75"}{"250"} + \frac{52+"75"}{"250"} - \frac{"75"}{"250"}$
					Completely correct method	or $0.48 + 0.508 - 0.48 \times 0.508$
			$=\frac{86}{125}$ or $\frac{172}{250}$ or 0.688 (3 sf) oe	A1ft	ft their integer answer to (i) eg if their (i) is 28, ans 0.616 or $\frac{125}{203}$ M1A1ft	
				[2]		
7	(iii)	(a)	$\frac{10}{25} \times \frac{6}{24} \text{ or } \frac{6}{25} \times \frac{10}{24} \text{ seen } (\text{or } \frac{2}{5} \times \frac{1}{4} \text{ or } \frac{6}{25} \times \frac{5}{12})$ oe	M1	or $\frac{10}{25} \times \frac{6}{25} + \frac{6}{25} \times \frac{10}{25}$ or $\frac{10}{25} \times \frac{6}{25} \times 2$ oe	ie allow M1 if '2×' is omitted OR if 25 instead of 24, but not both errors
					$\frac{{}^{10}\text{C}_1 \times {}^6\text{C}_1}{{}^{25}\text{C}_2}$ oe or $\frac{10 \times 6}{300}$ oe	allow M1 for correct num or denom
			$(\frac{10}{25} \times \frac{6}{24} + \frac{6}{25} \times \frac{10}{24})$ or $\frac{10}{25} \times \frac{6}{24} \times 2)$			
			$=\frac{1}{5}$	A1		
				[2]		NB long methods <u>may</u> be correct, eg
						$(\frac{14}{25} \times \frac{10}{14}) \times (\frac{11}{24} \times \frac{6}{11})$ same as $\frac{10}{25} \times \frac{6}{24}$
7	(iii)	(b)	FA + MC or FC + MA <u>Either</u> $\frac{4}{25} \times \frac{5}{24} \times 2$ <u>or</u> $\frac{10}{25} \times \frac{6}{24} \times 2$ NB ft their	M1	Allow $\frac{10}{25} \times \frac{6}{25} \times 2$ or $\frac{4}{25} \times \frac{5}{25} \times 2$	ie allow 25 instead of 24 AND allow one case with × 2
			$\frac{0!}{(iiia)} = \frac{25 \times 24}{24} \times 2$ NB it then	M1	or $\frac{10}{25} \times \frac{6}{24} + \frac{4}{25} \times \frac{5}{24}$ or $\frac{10}{25} \times \frac{6}{25} + \frac{4}{25} \times \frac{5}{25}$ NB ft their (iii)(a)	or both cases $\underline{\text{without}} \times 2$ ie allow 25 $\underline{\text{and}}$ one of these two errors

Question		on	Answer	Marks	Guidan	Guidance		
			$\left(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15}\right)$			cf scheme for (iii)(a)		
			25 \ 24 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$\frac{{}^{10}\text{C}_{1}\text{x}^{6}\text{C}_{1}}{{}^{25}\text{C}_{2}} + \frac{{}^{4}\text{C}_{1}\text{x}^{5}\text{C}_{1}}{{}^{25}\text{C}_{2}} \text{ oe } \text{ or } \frac{60+20}{300} \text{ oe}$	allow M1 if one of these fracts correct		
			$=\frac{4}{15}$ or 0.267 (3 sf)	A1	cao	NB 25 C ₂ in denom NOT M1, cf (iii)(a)		
			13	[2]		NB see note on long methods in 7(iiia)		
8	(i)		⁵ C ₂ oe seen anywhere or num= 10 alone	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ or $\frac{20}{1680}$ or $\frac{1}{84}$ oe seen	alone or \times eg $\frac{2}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} M1$		
			$\frac{{}^{5}\text{C}_{2}}{{}^{8}\text{C}_{4}}$ oe or $\frac{{}^{5}\text{C}_{2}\times4!}{{}^{8}\text{P}_{4}}$ oe all correct	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{4}C_{2} \times 2 \text{ or } \frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 4! \div 2 \text{ oe}$	$\frac{4}{8} \times \frac{3}{7} \times \frac{4}{6}$ oe all correct M2		
					or $\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 12$ oe all correct	NB $\frac{\text{incorrect}}{{}^{8}\text{C}_{4}}$ does not score		
			$=\frac{1}{7}$ or 0.143 (3 sf)	A1	Correct ans scores M1M1A1 regardless of method.			
				[3]				
8	(ii)		$6! \times 2$ alone or $5! \times 6 \times 2$ alone oe	M2	M1 for 6! or $5! \times 6$ or 6P_5 or 720 seen NB 5! scores M0 unless $5! \times 6$ or $5! \times 12$	M1 for 7! × 2 alone		
			= 1440	A1 [3]	NB 5! scores MO unless 5! × 6 or 5! × 12	NB 7! scores M0 unless 7! × 2 alone		
8	(iii)		$6! \times 4$ alone or $6! \times 2 \times 2$ alone	M2	M1 for 6! or ⁶ P ₅ or 720 seen	5!: M0 unless 5!×6 or 5!×12 or 5!×24		
			= 2880	A1	or $5! \times 6$ seen but NOT from $5! \times 3!$			
			- 400U	[3]				

If 0.3 and 0.7 are interchanged consistently through all four parts, all M-marks can be scored, but no A-marks. If 1-0.3 is calculated incorrectly (eg 0.6 or 0.66 or $\frac{2}{3}$) consistently, lose the A-mark in (i) but all other marks are available on ft, so long as 0 < ans < 1.

C	Questic	n	Answer	Marks	Guidan	ice
9	(i)	$0.7^4 \times 0.3$ alone = 0.0720 (3 sf) or	or $\frac{7203}{100000}$ oe	M1 A1	allow 0.072	
				[2]		
9	(ii)	$(0.7 + 0.7^2 + 0.7^2)$	³) × 0.3	M2	M1 for 1 term omitted, wrong or extra. must add terms, not mult.	$(1-0.7^4) - 0.3$ or $0.7599 - 0.3$ M2 $(1-0.7^4)$ or $1-0.3$ M1 0.7599 or 0.7 M1 Just $1-0.7^4$ or $1-0.3$: M0 $(1+0.7+0.7^2+0.7^3)\times0.3-0.3$ M2 1 term omitted, wrong or extra M1
		= 0.4599 or 0.46	$0 \text{ (3sf) or } \frac{4599}{10000} \text{ oe}$	A1	Allow 0.46	, 5
				[3]		
9	(iii)	$1 - 0.7^6$		M2	M1 for 0.7^6 alone or $1 - 0.7^5$ (= 0.832) or $1 - 0.7^7$ (= 0.918)	0.3(1+0.7+0.7 ² +0.7 ³ +0.7 ⁴ +0.7 ⁵) M2 or (ii) + 0.3(1 + 0.7 ⁴ + 0.7 ⁵) M2 or (i) + (ii) + 0.3(1 + 0.7 ⁵) M2 one term omitted or extra: M1 must add terms, not mult. NB ans 0.832 might be M1M0A0 from omitting last term. Could be, eg, their (ii) + 0.3(1 + 0.7 ⁴) correct working, but subtr from 1: M1
		= 0.882 (3 sf)		A1 [3]		
9	(iv)	$(1 - \text{``}0.882\text{''})^2 \times$	"0.882" oe	M1	or $(0.7^6)^2 \times (1 - 0.7^6)$ or $0.1176^2 \times (1 - 0.1176)$ or $(0.7^6)^2 \times$ their "0.882" or $0.3(0.7^{12} + (0.7^{13} + 0.7^{14} + + 0.7^{17}))$	Not $0.7^2 \times 0.3$ Completely correct method
		= 0.0122 (3 sf)		A1ft [2]	allow 0.0123	ft their "0.882" except if 0.3 or 0.7