OCR Maths S1

Mark Scheme Pack

2005-2014

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding

$1 \text { (i) } \begin{aligned} & \delta d^{2} \\ & =14 \\ & 1-\frac{6 \times \text { their } 14}{5 \times(25-1)} \\ & =0.3 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	Subtr \& squ 5 pairs \& add
(ii) Reverse rankings attempted 25341	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	3 correct T \& I to make $\Sigma d^{2}=40: 2 \mathrm{mks}$ or 0 mks
	6	
$\begin{aligned} & 2 \text { (i) (a) Geo(0.14) stated in (a) or (b) } \\ & \qquad \begin{array}{l} (0.86)^{4} \times 0.14 \\ =0.0766(3 \mathrm{sfs}) \end{array} \end{aligned}$	B1 M1 A1 	or $0.86^{n} \times 0.14$ or $0.14^{n} \times 0.86$ in (a) or $\geq \mathrm{M} 1$ in (b) or $\mathrm{Geo}(0.86)$ stated in (a) or (b) No wking: 0.077: B1M1A0
$\begin{aligned} & \text { (b) } 1-0.86^{7} \\ & \text { or } 0.14+0.86 \times 0.14 \ldots+0.86^{6} \times 0.14 \\ & =0.652(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M2 } & \\ \text { A1 } & 3 \end{array}$	$1-0.86^{8}$: M1 $+8^{\text {th }}$ term ($r=7$ or 0) or 1 missing term: M1
	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	
	8	
	B1 M1 A1 3	Or implied by use of tables or $0.35^{a} \times 0.65^{b}(a+b=16)$ in (a) or (b) Allow $1-0.9329$ or 0.0671 Or complete method using formula, $\mathrm{P}(r=8-16$ or $9-16)$ or $1-\mathrm{P}(r=0-7$ or $0-8)$
$\begin{aligned} \text { (b) } & 0.9771-0.1339 \\ & =0.843(3 \mathrm{sfs}) \end{aligned}$	M1 $\text { A1......... } 2$	Allow $0.9771-0.2892$ Or complete method using formula ($r=4-9$)
$\text { (ii) } \begin{aligned} & C_{6}(0.38){ }^{6}(0.62)^{10} \\ = & 0.202(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3	Absent or incorr coeff : M1 or ${ }^{16} \mathrm{C}_{6}(0.38)^{10}(0.62)^{6}: \quad$ M1
	8	
4 (i) Correct subst in \geq two S formulae $14464.1-\frac{265 \times 274.6}{5}$	M1	Any correct version or $14464.1-5 \times 53 \times 54.92$
$\begin{aligned} & \sqrt{\left(14176.54-\frac{265^{2}}{5}\right)\left(15162.22-\frac{274.6^{2}}{5}\right)} \\ & ==0.868(3 \mathrm{sfs}) \end{aligned}$	M1 A1 3	$\begin{aligned} & \sqrt{\left(14176.54-5 \times 53^{2}\right)\left(15162.22-5 \times 54.92^{2}\right)} \\ & \text { or fully correct method with }(x-\bar{x})^{2} \text { etc } \end{aligned}$
(ii) No difference oe	B1 1	Or slightly diff or more acc because of rounding errors when mult by 2.54 oe Not just "more accurate"
(iii)Choose y on x stated	B1ind	or implied, eg by $S_{x y} / S_{x x}$ or $y=a x+b$

$\begin{aligned} & 7 \text { (i) }{ }^{18} C_{7} \text { or }\left.{ }^{181}\right\|_{(111 \times 71)} \\ & \hdashline 31824 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \hline \text { A1 } & 2 \\ \hline \end{array}$	cao
$\begin{aligned} & \text { (ii) }{ }^{5} C_{2} \times{ }^{6} C_{2} \times{ }^{7} C_{3} \text { or } 5250 \\ & \div+31824 \\ & =875 / 5304 \text { or } 5250 / 31824 \text { oe } \\ & \text { or } 0.165(3 \mathrm{sfs}) \end{aligned}$	M2 M1 A1 4	M1: 1 correct ${ }^{n} \bar{C}_{r}$ or mult any three ${ }^{n} C_{r} \mathrm{~S}$ Divide by their (i). Indep If cancelled, must be clear have $\div 31824$ $\frac{5 \times 4 \times 6 \times 5 \times 7 \times 6 \times 5 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 2!\times 3!}$ Correct 7 fractions mult: M1 $\text { x7!: } \quad \text { M1 }\}$ $\div\left(2!^{2} \times 3!\right)$: M1 \} both dep any 7 fracts mult
$\begin{aligned} & \text { (iii) }{ }^{7}{ }^{7} C_{5} \times{ }^{11} C_{2} \text { or } 1155 \\ & \div 31824 \\ & =385 / 10608 \text { or } 1155 / 31824 \text { oe } \\ & =\quad \text { or } 0.0363(3 \mathrm{sfs}) \end{aligned}$	M1 M1 M1 A1	Seen or implied, eg by combs or list Divide by their (i). Indep $\frac{7 \times 6 \times 5 \times 4 \times 3 \times 11 \times 10 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 5!\times 2!}$ Correct 7 fractions mult: M1 $\text { x } 7!: \quad \text { M1 }\}$ \div (5! x 2!): M1\} both dep any 7 fracts mult
$\begin{aligned} & \text { (iv) }(2,2,3) \text { or }(2,3,2) \text { or }(3,2,2) \\ & { }^{5} C_{2} \times{ }^{6} C_{2} \times{ }^{7} C_{3}{ }^{5}{ }^{5} C_{2} \times{ }^{6} C_{3} \times{ }^{7} C_{2} \\ & +{ }^{5} C_{3} \times{ }^{6} C_{2} \times C^{7} C_{2} \\ & (\div 31824) \\ & \quad=175 / 442 \text { or } 12600 / 31824 \text { oe } \\ & \text { or } 0.396(3 \mathrm{sfs}) \end{aligned}$		Any one. Seen or implied eg by combs M1: one correct product. NOT ${ }^{5} C_{2} \times{ }^{6} C_{2} \times{ }^{7} C_{2}$ (No mk for $\div 31824$) Equiv method; ((iii)+etc) can imply M mks $\frac{5 \times 4 \times 6 \times 5 \times 7 \times 6 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 2{ }^{2} \times 3!}$ Correct 6 fractions mult: M1 x 7! : M1 $\}$ $\div\left(2!^{2} \times 3!\right):$ M1 \} both dep any 6 fracts mult Complement method: Triple with total 7, incl at least one 0 or 1 or $(0,7)$ or $(1,6)$ seen or implied: M1 One correct prod seen, eg ${ }^{5} \mathrm{C}_{0} \mathrm{x}^{6} \mathrm{C}_{2} \mathrm{x}^{7} \mathrm{C}_{5} \quad \mathrm{M} 1$ Full correct method, incl " 1 - "
	14	

1(i)	$\begin{aligned} & 2 / 3+\text { prod of } 2 \text { P's or } 1 \text { - prod of } 2 \text { P's } \\ & 2 / 3+1 / 3 \times 3 / 4 \quad \text { or } 1-1 / 3 \times 1 / 4 \\ & =11 / 12 \text { or } 0.917(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$	or $1 / 3 x^{3 / 4}$ or $1 / 3 x^{1 / 4}$
(ii)	$\begin{aligned} & 1 / 3 \times p \\ & 2 / 3+1 / 3 \times p=5 / 6 \quad \text { oe } \\ & p=1 / 2 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	or $1 / 3(1-p)$ or $1 / 3(1-p)=1-5 / 6$ SW: $1 / 2 \mathrm{X}^{1 / 3}=1 / 6$ M2A0, unless clear this is a check
Total		6	
2(i)	124.5, 4.8	B1B1 2	for 4.8 allow "same"
(ii)	mean smaller or generally smaller or means similar or hts similar oe More widely spread or varied oe	$\begin{array}{ll} \text { B1f } & \\ \text { B1f } & 2 \end{array}$	Assume $2^{\text {nd }}$ referred to unless clear $1^{\text {st }}$ or less consistent or gter dispersion or further from mean, gter variance Not "range" greater Allow opposite if ft (i)
(iii)	$\begin{aligned} & (" 124.5 \text { " }+2 \times 123) / 3 \\ & =123.5 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	$\text { or (50 x "124.5" + } 100 \text { x 123)/150 }$ cao
Total		6	
3(i)	$\begin{aligned} & 3 / 5 \mathrm{x}^{2 / 4} \mathrm{x}^{1 / 3} \text { or } 2 / 5 \mathrm{x}^{3 / 4} \mathrm{x}^{1 / 3} \\ & \mathrm{x} 2 \text { or }+ \\ & 3 / 5 \mathrm{x}^{2} \mathrm{x}^{1 / 3}+2 / 5 \mathrm{x}^{3} / 4 \mathrm{x}^{1 / 3} \\ & =1 / 5 \mathrm{AG} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \end{array}$	or $1 / 10$ from tree add 2 equal products of 3 probs all correct Must see correct working NB incorrect methods eg $3 / 5 x^{2} / 4 x^{2} / 3$
(ii)	$\begin{aligned} & \sum x p \\ & =4 \\ & \Sigma x^{2} p(=17) \\ & -\mu^{2} \\ & =1 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	≥ 3 terms added. Allow arith errors. ≥ 3 terms added. Allow arith errors Indep if +ve result $\Sigma(x-\mu)^{2} p$ M2; 3 terms: M1 dep +ve result $\Sigma x p \& \Sigma x^{2} p$, if \div eg 4: M0A0 $\left(-\mu^{2}\right.$ poss M1 $)$
Total		9	

7(i)	Binomial $n=10, p=0.9$	B1 B1	Both requ'd. Ignore $q=0.1$

8(i)(a)		M1 A1 M1dep M1dep A1	Attempt ranks, same dir'n Correct ranks Dep ranks attempted Correct formula with $n=9$, dep M1M1
(b)	Countries with larger pops tend to have larger capital pops. oe	B1ft 1	or ft (a) Must interp \& refer to context. Not "Gd corr'n country \& cap pops" Not "Gd agree't country \& cap pops" Not "Gd rel'nship country \& cap pops" Not "proportional"
(ii)	$\begin{aligned} & \frac{1533.76-(337.5 \times 28.3) / 9}{\sqrt{ }\left(\left(18959.11-337.5^{2} / 9\right)\left(161.65-28.3^{2} / 9\right)\right)} \\ & =0.698(3 \mathrm{sfs}) \end{aligned}$	M1	($=472.51 / /(6302.86 \times 72.66)$) Or correct subst in 2 " S " formulae, any version
	Increase	$\begin{aligned} & \text { B1 - - } \\ & 1 \end{aligned}$	or nearer to 1
-(iv)(a)-	 Est country pop from cap or x from y oe	B1ind B1ind 2	y indep or known or given or x unknown or $x \operatorname{dep}$ on y oe
--(b)-	-aty indieation-different-context, eg "Africa", "remote areas" unreliable	B1 B1dep 2	or reliable because r (or r_{s}) high: B1 or unreliable because r (or r_{s}) not hi: B1 "accurate": B0
Total		13	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to ≥ 3 sfs, ISW for later rounding Penalise 2 sfs only once in paper.

1(i)	Negative, because (grad or coeff of x in $1^{\text {st }}$ equn or x-value or reg coeff or B or -0.6) is negative	B1	1	Neg because x incr \& y decr
(ii)	$\begin{aligned} & x=-1.6 \times 7.0+21 \\ & x=9.8 \end{aligned}$	M1 A1	2	Sub $y=7.0$ in $2^{\text {nd }}$ eqn. Allow 1 sign error If sub in both must choose 2nd
(iii)	$y=-0.6(-1.6 y+21)+13$ or similar $\bar{x}=5, \bar{y}=10$	M1 A1A1	3	Obtain correct eqn in 1 variable. Allow 1 num'l error Allow without bars
Total		6		
In qus 2 \& 3 "prod" means "product of two probabilities"				
2(i)	$4 / 7$ or $0.571(3 \mathrm{sfs})$	B1	1	
(ii)	$\begin{aligned} & 5 / 8 x^{4} / 7+3 / 8 x^{5} / 8 \\ & =265 / 448 \text { or } 0.592(3 \mathrm{sfs}) \end{aligned}$	M1M1 A1		M1: one correct prod or add any two prods M1: all correct
(iii)	$\begin{aligned} & 3 / 8 \mathrm{X}^{5} / 8+5 / 8 \mathrm{X}^{3 / 7} \\ & =225 / 448 \text { or } 0.502(3 \mathrm{sfs}) \end{aligned}$	M1M1 A1		M1: one correct prod or add any two prods M1: all correct
Total		7		
3(i)	$\begin{aligned} & \frac{7!}{3!\times 2(!)} \\ & =420 \end{aligned}$	M1M1 A1		M1: 7!/(a factorial); or $\ldots \div(3!\times 2(!))$ M1: all correct
(ii)	$\begin{aligned} & \frac{5!}{2(!)} \\ & =60 \end{aligned}$	M1 A1	2	M1: 5 ! seen (not part of a C) or 5×4 ! or 120 seen or $\ldots \div 2(!)$ alone
(iii)	$\begin{aligned} & 1-4 / 7 \mathrm{x}^{3 / 6} \text { or } 1-{ }^{3} \mathrm{C}_{2} /{ }^{7} \mathrm{C}_{2} \text { or } 1-{ }^{4} \mathrm{P}_{2} /{ }^{7} \mathrm{P}_{2} \\ & \\ & \text { or }{ }^{3 / 7} \mathrm{x}^{2 / 6}+{ }^{3 / 7} \mathrm{x}^{4} / 6+4 / 7 \mathrm{x}^{3 / 6} \text { oe } \\ & \\ & \text { or }{ }^{3} \mathrm{C}_{2} /{ }^{7} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{1} \mathrm{x}^{4} \mathrm{C}_{1} /{ }^{7} \mathrm{C}_{2} \end{aligned} \quad \begin{aligned} & =5 / 7 \quad \text { or } 0.714(3 \mathrm{sfs}) \end{aligned}$	M1M1 A1	3	M1:1- prod or $1-\ldots / \mathrm{C}_{2}$ or $1-\mathrm{C}_{2} / .$. (or Ps) or add 3 prods or add 2 correct prods or ${ }^{3} \mathrm{C}_{2} /{ }^{7} \mathrm{C}_{2}$ or ${ }^{3} \mathrm{C}_{1} \mathrm{X}^{4} \mathrm{C}_{1} /{ }^{7} \mathrm{C}_{2}$ or add ≥ 5 out of 7 correct prods M1: all correct
Total		8		

4(i)	$\begin{aligned} & 0.4207 \text { or } 0.421(3 \mathrm{sfs}) \\ & \text { or } 0.8^{25}+25 \times 0.8^{24} \times 0.2+.{ }^{25} \mathrm{C}_{4} \times 0.4^{21} \times 0.2^{4} \\ & 0.579(3) \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } \\ \text { B1 } & 2 \end{array}$	or $1-0.6167$ or 0.3833 (3 sfs) or 1- (6 correct terms, 0 to 5)
(ii)	$\begin{aligned} & { }^{10} \mathrm{C}_{3} \times(1-0.27)^{7} \times 0.27^{3} \\ & =0.261(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(iii)		M1 A1 3	or $1-{ }^{n} \mathrm{C}_{0} \times 0.27^{0} \times 0.73^{n}>0.95$ oe allow incorrect sign M1 must be correct $\mathrm{ft}(1-0.27)$ from (ii) for M1M1 10 with incorrect sign in wking: SCB2 10 with just $0.73^{9}=0.059: \quad$ M1M1A1
Total		7	
5(i)	$1 / 3+1 / 4+p+q=1 \quad$ oe $0 \times \frac{1}{3}+1 \times \frac{1}{4}+2 p+3 q=1^{1} / 4$ oe equalize coeffs, eg mult eqn (i) by 2 or 3 Or make p or q subject of (i) or (ii) $p=1 / 4, q=1 / 6$ oe	B1 B1 M1 A1A1	allow one error. ft their equns subst or subtr not nec'y
(ii)	$\begin{aligned} & \sum x^{2} p(\text { not } / 4 \text { or } / 3 \text { etc }) \quad\left(=2^{3 / 4}\right) \\ & -\quad\left(1^{1 / 4}\right)^{2} \\ & =1.1875 \text { or } 1^{3} / 16 \text { oe } \\ & \text { sd }=\sqrt{ } /(\text { their } 1.1875)=1.09(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 B1f 4	≥ 2 non-zero terms correct. dep +ve result indep if +ve result or . $\left.x-1^{1 / 4}\right)^{2} p$ (≥ 2 (non-0) terms correct): M2 ft (i) $(0 \leq p, q<1)$ or letters p, q both M1s cao dep 1st M1 \& $/(+$ ve no. $) \quad$ eg $\sqrt{ } 2.75=1.66$
Total		9	

6(i)(a)	Little (or no) connection (agreement, rel'nship) between dist and commission Allow disagreement Unchanged. No change in rank	M1 A1 M1 M1 A1 5 B1ft 1 B1B1 2	≥ 5 ranks correct in each set all correct dep ranks attempted even if opp orders, allow arith errors Correct formula with $n=7, \operatorname{dep} 2^{\text {nd }}$ M1 calc r for ranks: $\begin{array}{cl} S_{x x}=S_{y y}=140-28^{2} / 7 . & S_{x y}=110-28^{2} / 7 \\ & =28) \\ & (=-2) \end{array}$ corr subst in one corr S (any version):M1 corr subst in $r=S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right) \quad$:M1 -0.07 without wking: M1A1M2A0 No mks unless $\left\|r_{s}\right\| \leq 1$ ft their r_{s} Must refer to context. Not "little corr'n between dist and com" not "strong disagreement" Ignore other comment
(ii)(a) (b)	$=-1$ Close to -1 or, eg ≈-0.9	B1 1 B1	indep cao not referring to "corr'n" rather than r allow "neg", not neg corr’n or neg skew
Total		10	

7(i)		M1 M1 A1 M1 M1 A1	6	Correct (149.5) $2720.5 / 100$ 27.2 240702.25 40.82 allow class width	With 150 $2725 / 100$ 27.25 242050 40.96 for 2nd M1	$\underline{\text { Tot }=}$ Allow Ms \& poss As ly
(ii)	Recog LQ in $1^{\text {st }}$ class $\underline{\&} \mathrm{UQ}$ in $3^{\text {rd }}$ class Graph: Interp: Attempt $25(.25)^{\text {th }}$ value $\mathrm{LQ}=3.0$ to 4.3 Attempt $75(.75)^{\text {th }}$ value $\mathrm{UQ}=27$ to 29 Subtract $\mathrm{IQR}=23 \text { or } 24 \text { or } 25$	B1 M1 M1 A1	4	both nec'y dep B1or M1 integer. dep M2		
(iii)(a) (b) (c)	Increase Increase No change	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Ignore	obably" e	
Total						
8(i)	Geometric. Each attempt (or result or try) indep	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$		In context. Not "even extra	trials, outcom	" Ignore
(ii)(a) (b)	$\begin{aligned} & \left(\frac{2}{3}\right)^{3} \times 1 / 3 \\ & =\frac{8}{81} \text { or } 0.0988(3 \mathrm{sfs}) \\ & (2 / 3)^{3} \\ & 1-\left({ }^{2} / 3\right)^{3} \\ & ={ }^{19} / 27 \text { or } 0.704(3 \mathrm{sfs}) \end{aligned}$	M2 A1 M1 M1 A1	3	$\left({ }^{2} / 3\right)^{2} x^{1} / 3$ or $\left({ }^{2} / 3\right)^{4} x$ allow other nu not $\left(2^{2} / 3\right)^{3} x \ldots$ or $1 / 3+2 / 3 x^{1} / 3+(2 / 3$ $1-(2 / 3)^{4}$ or $1-($ or 3 terms, with 2 or 3 correct terms or " p " + "qp" + " q or 1 - sum of 3 c	$1 / 3:$ erical " p " (${ }^{2} x^{1 / 3}$ " ${ }^{4}$ orrect 1 extra p" rect terms eans num v	$p<1): \mathrm{M} 1$ M2 M1 M1 M1 M1 M1 e, not $1 / 3$
(iii)	3	B1f	1	or $1 /{ }^{\prime} p^{\prime}$		
(iv)	$\left.1-{ }^{8} / 27\right)^{2} \times{ }^{19} / 27$ $(1-0.7037)$ or 0.2963 $\left({ }^{1} / 2963^{2} \times 0.7037\right.$ $={ }^{1216} /{ }_{19683}$ $=0.0618(3 \mathrm{sfs})$	M1 M1 A1	3	ft (b) for M1M1 n Allow figs round cao. allow art 0.06	st see metho to 2 sfs for 8 or 0.0617	if ft 1M1
Total						

Total 72 marks

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8(ii).

1i	$1-(3 / 10+1 / 5+2 / 5)$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	or $(3 / 10+1 / 5+2 / 5)+p=1$
ii	$\begin{aligned} & 3 / 10+2 \times 1 / 5+3 \times 2 / 5 \\ & 19 / 10 \text { oe } \end{aligned}$	M1	$\div 40 \mathrm{r} 6 \Rightarrow \mathrm{M0A} 0$
Total		4	
2i	$\begin{aligned} & \quad x=20 ; \quad y=11 ; \quad x^{2}=96 ; \quad y^{2}=31 ; \quad x y \\ & =52) \\ & S_{x x}=16 \quad \text { or } 3.2 \\ & S_{y y}=6.8 \quad \text { or } 1.36 \\ & S_{x y}=8 \\ & r=\frac{8}{\sqrt{(16 x 6.8)}} \quad \text { or } 1.6 \\ & =0 \\ & =0.767(3 \text { sfs }) \\ & \\ & = \end{aligned}$	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	$\operatorname{dep}-1 \leq r \leq 1$ ft their S 's ($S_{x x} \& S_{y y}+$ ve) for M1 only
ii	Small sample oe	B1f 1	
Total		6	
3 i	120	B1 1	not just 5!
iia	$\begin{aligned} & 3 \times 4!\text { or } 72 \quad(\div 5!) \\ & 3 / 5 \text { oe } \end{aligned}$	$\begin{array}{ll} \\ \\ \text { A1 } \\ \hline \end{array}$	oe, eg ${ }^{72} / 120$
b	Starts 1 or 21 (both) $\begin{aligned} & 1 / 5+1 / 5 \times 1 / 4 \\ & =1 / 4 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$12,13,14,15$, (≥ 2 of these incl 21 , or allow 1 extra) can be implied by wking or 5 x 3 ! or $4!+3$! $(\div 5!)$ complement: full equiv steps for Ms
Total		6	
4ia	W \& Y oe	B1 1	
b	X oe	B1 1	
ii	Geo probs always decrease or Geo has no upper limit to x or $x \neq 0$	B1 1	Geo not fixed no. of values diags have fixed no of trials not Geo has +ve skew
iii	W Bin probs cannot fall then rise or bimodal	B1 B1dep 2	indep allow Bin probs rise then fall
Total		5	
5 i	$\begin{aligned} & \frac{2685-\frac{140 \times 106.8}{8}}{} \text { or } \frac{2685-}{3500-\frac{140^{2}}{8}} \frac{8 \times 17.5 \times 13.35}{ग โ n ~} 0,1 \neg \mathrm{r}^{2} \\ & ={ }^{136} / 175 \text { or } 0.777(3 \mathrm{sfs}) \\ & y-106.8 / 8=0.777\left(x-{ }^{140 / 8)}\right. \\ & y=0.78 x-0.25 \text { or better or } y={ }^{136} / 175 x-1 / 4 . \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4\end{array}$	Correct sub in any correct formula for b (incl. $(x-\bar{x})$ etc) or $a=106.8 / 8-0.777 \mathrm{x}^{140} / 8 \quad \mathrm{ft} b$ for M1 ≥ 2 sfs sufficient for coeffs
ii	$\begin{aligned} & 0.78 \times 12-0.25 \\ & =9.1(2 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1f } 2 \end{aligned}$	M1: ft their equn A1: dep const term in equn
iiia b	Reliable Unreliable because extrapolating oe	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	Just "reliable" for both: B1
Total		8	

| 6 in | Geo ${ }^{2} / 3$) stated
 $(1 / 3)^{3} \mathrm{x}^{2 / 3}$
 $=2 / 810$ or 0.0247 (3 sfs) | M1
 M1
 A1 |
| :--- | :--- | :--- | :--- |

ii	$\begin{aligned} & (1 / 3)^{3} \\ & 1-(1 / 3)^{3} \\ & 26 / 27 \text { or } 0.963(3 \mathrm{sfs}) \end{aligned}$	M1 M1 $\text { A1 } 3$	or $2 / 3+1 / 3 x^{2} / 3+(1 / 3)^{2} x^{2} / 3: \mathrm{M} 2$ one term omitted or extra or wrong: M1 $1-(1 / 3)^{4}$ or $1-\left(\frac{2}{3}+1 / 3 x^{2} / 3+\left(\frac{1}{3}\right)^{2} x^{2} / 3\right)$:M1
iii	$\begin{aligned} & 1 / 2 / 3 \\ & =3 / 2 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	
Total		8	
7i	$2 / 9$ or ${ }^{7} / 9$ oe seen $3 / 9$ or $6 / 9$ oe seen $1 / 8$ or ${ }^{7} / 8$ oe seen Correct structure All correct	B1 B1 B1 B1 B1 5	ie 8 correct branches only, ignore probs \& values including probs and values, but headings not req'd
ii	$\begin{aligned} & 3 / 10 \times 7 / 9+7 / 10 \times 3 / 9+7 / 10 \times 6 / 9 \\ & 14 / 15 \text { or } 0.933 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M2 } \\ \text { A1 } \end{array}$	or $3 / 10 x^{7} / 9+7 / 10$ or $1-\frac{3}{10} X^{2} / 9$ M1: one correct prod or any prod $+{ }^{7} / 10$ or $3 / 10 x^{2} / 9$
iii	$\begin{aligned} & 3 / 10 \times 2 / 9 \times 7 / 8+7 / 10 \times 6 / 9 \\ & 21 / 40 \text { or } 0.525 \text { oe } \end{aligned}$	M2 A1 3	M1: one correct prod cao
	No ft from diag except: with replacement: (i) structure: B1 (ii) ${ }^{\text {9100 }} 10$: 22 (iii) 0.553 : B2		
Total		11	
8i	$\begin{aligned} & \mathrm{Med}=2 \\ & \mathrm{LQ}=1 \text { or } \mathrm{UQ}=4 \\ & \mathrm{IQR}=3 \end{aligned}$	B1 M1 A1 3	```cao or if treat as cont data: read cf curve or interp at 25 & 75 cao```
ii	Assume last value $=7$ (or eg 7.5 or 8 or 8.5) $x f \text { attempted } \quad \geq 5 \text { terms }$ 2.6 or 3 sf ans that rounds to 2.6 $x^{2} f$ or $\left.\quad . x-m\right)^{2} f \quad \geq 5$ terms $/\left(x^{2} f / 100-m^{2}\right)$ or $\left.\sqrt{ }(. x-m)^{2} f\right) / 100$ fully correct but $\mathrm{ft} m$ 1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7	B1 M1 A1 M1 M1 A1 6	stated, \& not contradicted in wking eg 7-9 or 7,8, 9 Not just in wking allow "midpts" in $x f$ or $x^{2} f$ dep M3 penalize > 3 sfs only once
iii	Median less affected by extremes or outliers etc (NOT anomalies)	B1 1	or median is an integer or mean not int. or not affected by open-ended interval general comment acceptable
iv	Small change in var'n leads to lge change in IQR UQ for W only just 4, hence IQR exaggerated orig data shows variations are similar	B1 1	for Old Moat LQ only just $1 \&$ UQ only just 3 oe specific comment essential
V	OM \% (or y) decr (as x incr) oe Old Moat	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	ranks reversed in OM or not rev in W NIS
Total		13	

9i	$\begin{aligned} & { }^{11} \mathrm{C}_{5} \times(1 / 4)^{6} \times(3 / 4)^{5} \\ & 0.0268(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	or $462 \times(1 / 4)^{6} \times(3 / 4)^{5}$
ii	$\begin{aligned} & q_{11}^{11}=0.05 \text { or }(1-p)^{11}=0.05 \\ & q=0.762 \text { or } 0.7616 \ldots \\ & p=0.238(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 A1f 4	(any letter except $p)^{11}=0.05$ oe oe or invlog($\left.\frac{\log 0.05}{11}\right)$ ft dep M2
iii	$\begin{aligned} & 11 \times p \times(1-p)=1.76 \quad \text { oe } \\ & 11 p-11 p^{2}=1.76 \quad \text { or } p-p^{2}=0.16 \\ & 11 p^{2}-11 p+1.76=0 \quad \text { or } p^{2}-p+0.16=0 \\ & \left(25 p^{2}-25 p+4=0\right) \\ & (5 p-1)(5 p-4)=0 \\ & \text { or } p=\frac{11-\frac{/\left(11^{2}-4 \times 11 \times 1.76\right)}{2 \times 11}}{} \\ & p=0.2 \text { or } 0.8 \end{aligned}$	M1 A1 A1 M1 A1 5	not $11 p q=1.76$ any correct equn after mult out or equiv with $=0$ or correct fact'n or subst'n for their quad equ'n eg $p=\frac{1 \pm \frac{/(1-4 \times 0.16)}{2}}{2}$
Total		11	

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW.

1	$\begin{aligned} & (0 \times 0.1)+1 \times 0.2+2 \times 0.3+3 \times 0.4 \\ & =2(.0) \\ & \left(0^{2} \times 0.1\right)+1 \times 0.2+2^{2} \times 0.3+3^{2} \times 0.4(=5) \\ & -2^{2} \\ & =1 \end{aligned}$	M1 A1 M1 M1 A1 5	≥ 2 non-zero terms correct eg $\div 4$: M0 ≥ 2 non-zero terms correct $\div 4$: M0 Indep, ft their μ. Dep +ve result $\begin{gathered} (-2)^{2} \times 0.1+(-1)^{2} \times 0.2+0^{2} \times 0.3+1^{2} \times 0.4: \mathrm{M} 2 \\ \geq 2 \text { non- } 0 \text { correct: } \mathrm{M} 1 \quad \div 4: \mathrm{M} 0 \end{gathered}$
Total		5	
2		M1 A1 M1 M1 A1 5	Consistent attempt rank other judge\quadRCFUP 35214 31452 12345 54321 All $5 d^{2}$ attempted \& added. Dep ranks att'd Dep $2^{\text {nd }}$ M1
Total		5	
3 i	$\begin{aligned} & { }^{15} \mathrm{C}_{7} \text { or }{ }^{15!}{ }_{77: 8!} \\ & 6435 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & 2 \end{aligned}$	
ii	${ }^{6} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{4} \text { or } 6!3!3!\times 9!/ 4!5!$ 2520	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Alone except allow } \div{ }^{15} \mathrm{C}_{7} \\ & \text { Or }{ }^{6} \mathrm{P}_{3} \times{ }^{9} \mathrm{P}_{4} \text { or }{ }^{6!3!} \times{ }^{9!} / 5!\text { Allow }^{15}{ }^{15} \mathrm{P}_{7} \\ & 362880 \\ & \text { NB not } 6!3!)^{9!} / 4! \end{aligned}$
Total		4	
4ia	$1 / 3$ oe	B1 1	B \rightarrow W MR: $\max ($ a)B0(b)M1M1(c)B1M1
b	$\begin{aligned} & \mathrm{P}(\mathrm{BB})+\mathrm{P}(\mathrm{WB}) \text { attempted } \\ & =4 / 10 \times 3 / 9+6 / 10 \times 4 / 9 \quad \text { or } 2 / 15+4 / 15 \\ & =2 / 5 \text { oe } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \end{aligned}$	Or $/ 10 \times 3 / 9 \mathrm{OR} / 10 \times 4 / 9$ correct NB $4 / 10 \times 4 / 10+6 / 10 \times 4 / 10=2 / 5$: M1M0A0
c	Denoms 9 \& 8 seen or implied $3 / 9 \times 2 / 8+6 / 9 \times 3 / 8$ $=1 / 3$ oe	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & 3 \end{aligned}$	Or ${ }^{2} / 15$ as numerator May not see wking
ii	P (Blue) not constant or discs not indep, so no	B1 1	Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue" NOT fixed no. of trials NOT because without repl Ignore extra
Total		8	

5 i	$\begin{aligned} & 1991 \\ & 100000 \text { to } 110000 \end{aligned}$	B1 ind B1 ind 2	Or fewer in 2001 Allow digits 100 to 110
iia	$\begin{aligned} & \text { Median }=29 \text { to } 29.9 \\ & \text { Quartiles } 33 \text { to } 34,24.5 \text { to } 26 \\ & =7.5 \text { to } 9.5 \\ & 140 \text { to } 155 \\ & 23 \text { to } 26.3 \% \end{aligned}$	B1 M1 A1 M1 A1 5	Or one correct quartile and subtr NOT from incorrect wking $\times 1000$, but allow without Rnded to 1 dp or integer 73.7 to 77% : SC1
b	Older Median (or ave) greater \} \% older mothers greater oe\} \% younger mothers less oe	$\begin{array}{ll} \text { B1 } & \\ & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	Or 1991 younger Any two Or 1991 steeper so more younger: B2 NOT mean gter Ignore extra
Total		10	

6ia	Correct subst in \geq two S formulae $\begin{aligned} & {\frac{767-\frac{60 \times 72}{8}}{\sqrt{\left(1148-\frac{60^{2}}{8}\right)\left(810-\frac{72^{2}}{8}\right)}} \text { or } \frac{227}{\sqrt{698 \sqrt{162}}}}_{=0.675(3 \mathrm{sfs})} \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \end{array}$	Any version All correct. Or $\frac{767-8 \times 7.5 \times 9}{/\left(\left(1148-8 \times 7.5^{2}\right)\left(810-8 \times 9^{2}\right)\right)}$ or correct substn in any correct formula for r
b	1 y always increases with x or ranks same oe	B1 B1 2	+ve grad thro’out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1, or increases because nearer to st line	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because y still increasing with x oe	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	Σd^{2} still 0 . Still same order. Ignore extra NOT differences still the same. NOT $\mathrm{ft}(\mathrm{i})(\mathrm{b})$
iii	13.8 to 14.0	B1 1	
iv	(iii) or graph or diag or my est Takes account of curve	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Must be clear which est. Can be implied. "This est" probably \Rightarrow using equn of line Straight line is not good fit. Not linear. Corr'n not strong.
Total		12	
7 i	P (contains voucher) constant oe Packets indep oe	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2 2	B1 for 0.9456 or 0.946 or 0.997 (2) or for 7 terms correct, allow one omit or extra NOT $1-0.9857=0.0143$ (see (iii))
iii	$\begin{aligned} & (1-0.9857) \\ & =0.014(3)(2 \mathrm{sfs}) \end{aligned}$	B1ft 1	Allow 1- their (ii) correctly calc'd
iv	$\mathrm{B}(11,0.25)$ or 6 in 11 wks stated or impl ${ }^{11} \mathrm{C}_{6} \times 075^{5} \times 0.25^{6} \quad(=0.0267663)$ $\mathrm{P}(6$ from 11) $\times 0.25$ $=0.00669$ or $6.69 \times 10^{-3}(3 \mathrm{sfs})$	B1 M1 M1 A1 4	$\begin{aligned} & \text { or } 0.75^{a} \times 0.25^{b}(a+b=11) \text { or }{ }^{11} \mathrm{C}_{6} \\ & \text { dep B1 } \end{aligned}$
Total		9	

8 i	$\begin{aligned} & \hline \sqrt{V 0.04}(=0.2) \\ & (1-\text { their } \sqrt{ } 0.04)^{2} \\ & =0.64 \end{aligned}$	M1 M1 A1 3	
ii	$\begin{aligned} & 1-p \text { seen } \quad \text { M1 for either } \\ & 2 p(1-p)=0.42 \text { or } p(1-p)=0.21 \text { oe } \\ & 2 p^{2}-2 p+0.42(=0) \text { or } p^{2}-p+0.21(=0) \\ & \frac{2 \pm \sqrt{\left((-2)^{2}-4 \times 0.42\right)} \text { or } \frac{1 \pm}{2 \times 2} \frac{\sqrt{\left((-1)^{2}-4 \times 0.21\right)}}{2 \times 1}}{} \begin{array}{l} \text { or }(p-0.7)(p-0.3)=0 \text { or }(10 p-7)(10 p-3)=0 \\ p=0.7 \text { or } 0.3 \end{array} . \end{aligned}$	B1 M1 M1 M1 A1 5	$2 p q=0.42$ or $p q=0.21$ Allow $p q=0.42$ or opp signs, correct terms any order ($=0$) oe Correct Dep B1M1M1 Any corr subst'n or fact'n Omit 2 in $2^{\text {nd }}$ line: max B1M1M0M0A0 One corr ans with no or inadeq wking: SC1 eg $0.6 \times 0.7=0.42 \Rightarrow p=0.7$ or 0.6 $\begin{array}{ll} \left.\begin{array}{l} p^{2}+2 p q+q^{2}=1 \\ p^{2}+q^{2}=0.58 \quad \end{array}\right\} & \text { B1 } \\ \left.\begin{array}{l} p=0.21 / q \end{array}\right\} & \\ p^{4}-0.58 p^{2}+0.0441=0 & \text { M1 } \\ \text { corr subst'n or fact'n } & \text { M1 } \end{array}$ $\begin{array}{lll} \mathrm{l} \\ \hline \end{array}$
Total		8	
9 ia	$\begin{aligned} & 1 /{ }^{1 / 5} \\ & =5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
b	$\left[\begin{array}{l} (4 / 5)^{3} \times 1 / 5 \\ -64 / 625 \text { or } 0.102(3 \mathrm{sfs}) \end{array}\right.$	$\begin{array}{ll} \mathrm{M} 1 \\ \mathrm{~A} 1 & 2 \end{array}$	
c	$\begin{aligned} & \left(\frac{4}{5}\right)^{42} \\ & =256 / 625 \text { or ar.t. } 0.410(3 \mathrm{sfs}) \text { or } 0.41 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	$\begin{gathered} \text { or } 1-\left(1 / 5+4 / 5 x^{1} / 5+\left({ }^{4} / 5\right)^{2} \times 1 / 5+(4 / 5)^{3} \times 1 / 5\right) \\ \text { NOT } 1-(4 / 5)^{4} \end{gathered}$
iia	$\mathrm{P}(Y=1)=p, \mathrm{P}(Y=3)=q^{2} p, \mathrm{P}(Y=5)=q^{4} p$	B1 1	$\begin{aligned} & \mathrm{P}(Y=1)+\mathrm{P}(Y=3)+\mathrm{P}(Y=5)=p+q^{2} p+q^{4} p \\ & p, p(1-p)^{2}, p(1-p)^{4} \\ & q^{1-1}, q^{3-1}, q^{5-1} \\ & \text { or any of these with } 1-p \text { instead of } q \\ & \text { "Always } q \text { to even power } \times p \text { " } \\ & \text { Either associate each term with relevant prob } \\ & \text { Or give indication of how terms derived } \\ & \quad \geq \text { two terms } \end{aligned}$
b	Recog that c.r. $=q^{2}$ or $(1-p)^{2}$ $\begin{aligned} & S_{\infty}=\frac{p}{1-q^{2}} \text { or } \frac{p}{1-(1-p)^{2}} \\ & \mathrm{P}(\text { odd })=\frac{1-q}{1-q^{2}} \\ & =\frac{1-q}{(1-q)(1+q)} \text { Must see this step for A1 } \\ & \left(=\frac{1}{1+q} \quad \text { AG }\right) \end{aligned}$	M1 M1 M1 A1 4	or eg $r=q^{2} p / p$ $\begin{aligned} & \left(=\frac{p}{2 p-p^{2}}\right)=\frac{p}{p(2-p)} \\ & \left(=\frac{1}{2-\bar{p})}\right)=\frac{1}{2-(1-q)} \end{aligned}$

4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to ≥ 3 sfs, ISW for later rounding Penalise over-rounding only once in paper.

1ia	$\begin{aligned} & 5!\text { or }{ }^{5} \mathrm{P}_{5} \\ & =120 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \end{array}$	
b	$\begin{aligned} & 4!\text { or }{ }^{4} \mathrm{P}_{4} \text { seen } \\ & 4!\times 2 \\ & 48 \end{aligned}$	M1 M1dep A1 3	$\begin{aligned} & \text { or } 2 \times 3!\text { or } 2!\times 3!\text { or } 2!\times{ }^{3} \mathrm{P}_{3} \\ & 2 \times 3!\times 4 \end{aligned}$
ii	$\begin{aligned} & 1 / 5 \mathrm{C}_{2} \text { or } 1 / 5 \times 1 / 4 \times 2 \text { or } 0.4 \times 0.25 \text { or } / 5 \mathrm{PP} 2 \\ & =1 / 10 \end{aligned}$	M1 $\text { A1 } 2$	$\begin{aligned} & \text { Allow M1 for }{ }^{5} \mathrm{C}_{2} \text { or } 1 / 5 \times 1 / 4 \text { or }^{1 / 20} \\ & \text { or } 1 / 5 \times 1 / 5 \times 2 \text { or }{ }^{1 / 25} \text { oe } \end{aligned}$
Total		7	
2i	$\begin{aligned} & (4 / 5)^{3} \times(1 / 5) \text { oe } \\ & =641650 \text { or } 0.102(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \\ \hline \end{array}$	Allow M1 for ($\left.{ }^{4} 5\right)^{4} \times(1 / 5)$
ii	$\begin{aligned} & (4 / 5)^{4} \text { alone } \\ & \text { or } 1-\left(1 / 5+4 / 5 x^{1 / 5}+(4 / 5)^{2} x^{1 / 5}+\left({ }^{4} / 5\right)^{3} x^{1 / 5}\right) \\ & \text { 256/625 or } 0.410 \text { (3 sfs } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ & \\ & 21 \end{array}$	Allow $(4 / 5)^{3}$ or $(4 / 5)^{5}$; not $1-(4 / 5)^{4}$ Allow one term omitted or wrong or "correct" extra Allow 0.41
iii	5	B1 1	
Total		5	
3 i	$r=\frac{212-\frac{24 \times 39}{5}}{\sqrt{\left(130-\frac{24^{2}}{5}\right)\left(361-\frac{39^{2}}{5}\right)}}$	B2 2	$\frac{24.8}{\sqrt{14.8 \times 56.8}} \text { or } \frac{24.8}{\sqrt{840.64}} \text { or } \frac{24.8}{3.85 \times 7.54} \text { or } \frac{24.8}{29}$ B2 for correct subst in r B1 for correct subst in any S
ii	$\begin{aligned} & R=0.7 \text { or }(B) \\ & \text { Definition of } r_{s} \text { is PMCC for ranks } \end{aligned}$	$\begin{array}{ll} \mathrm{B} 1 \\ \mathrm{~B} 1 & 2 \end{array}$	(A) and (B) true: B0B0 dep $1{ }^{\text {st }}$ B1
iii	$\left\{\begin{array}{l} r=0.855 \\ r_{s}=0.7 \end{array}\right.$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	or "unchanged": B1B1 Interchanged: B1
Total		6	
4i	$\begin{aligned} & 0.4 \times p=0.12 \quad \text { or }{ }^{0.12} / 0.4 \text { or }{ }^{12} / 40 \text { oe } \\ & p=0.3 \end{aligned}$	$\begin{array}{lll} \hline \text { M1 } & \\ \hline & \\ \hline \end{array}$	
ii	$0.4 \times(1-$ their 0.3$)$ oe eg $0 / 100 \times 28 / 40$ 0.28 or 28% oe	M1 A1ft 2	or $0.4-0.12$ or 0.28 or 28 seen Not 0.4×0.88 unless ans to (i) is 0.12
Total		4	
5ia	Binomial stated or implied 0.9806	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	by use of tables or $0.2^{a} \times 0.8^{b}, a+b=12$
b	$\begin{aligned} & 0.5583 \text { seen } \\ & 1-0.5583 \\ & =0.442(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	```add 10 corr terms or 1 -(add 3 corr terms): M2 or \(1-0.7946\) or 0.205 or 1-0.6774 or 0.323 or 1-0.3907 or 0.609 or add 9 terms or 1 -(add 2 or 4 terms): M1```
ii	$\begin{aligned} & { }^{15} \mathrm{C}_{4} \times 0.3^{4} \times 0.7^{11} \\ & =0.219(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M2 } \\ \text { A1 } & 3 \end{array}$	${ }^{15} \mathrm{C}_{4} \times 0.3^{11} \times 0.7^{4}: \mathrm{M} 1$
Total		8	

6 i		$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	$\begin{aligned} & \geq 2 \text { terms added } \div 3 \text { or } \div 6 \text { etc: M0 } \\ & \geq 2 \text { terms added } \div 3 \text { or } \div 6 \text { etc: M0 } \\ & \text { dep }+ \text { ve result } \\ & (-1.3)^{2} \times 0.2+(-0.3)^{2} \times 0.3+0.7^{2} \times 0.5: \text { M2 } \\ & \text { one term correct: M1 } \end{aligned}$ Use of Z: MR, lose last A1 (2.55, 0.4475)
ii	$\begin{aligned} & 0.2 \times 0.25+0.3 \times 0.1 \text { or } 0.05+0.03 \text { alone } \\ & =0.08 \text { oe } \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \end{aligned}$	M1 for one product eg correct $\times 2$: M1 or clearly ident (1,2), (2,1): M1
iii	$\left.\begin{array}{rl} 0.3 \times 0.1 & +0.3 \times 0.25+0.3 \times 0.65 \\ & +0.25 \times 0.2+0.25 \times 0.5 \end{array}\right)$ $=0.475 \text { or }{ }^{19} / 40 \text { oe }$	M2 A1 3	M1 : any 3, 4 of these prods alone or these 5 prods plus 1 extra or repeat or (ii) + prod or $0.3+$ prod or $0.25+$ prod or clearly identify $(1,2)(3,2)(2,2)(2,1)(2,3)$ $\begin{aligned} & \text { M2 for } 0.3+(0.2+0.5) \times 0.25 \\ & \quad \text { or } 0.25+(0.1+0.65) \times 0.3 \\ & \quad \text { or } 0.3+0.25-0.3 \times 0.25 \\ & \quad \text { or } 1-(0.2+0.5)(0.1+0.65) \end{aligned}$ M1 for $(0.2+0.5)(0.1+0.65)$
Total		11	
7ia	Results or matches are indep Prob of winning is constant	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	allow "wins" indep; not "trials" indep not "success"
ib	No of wins (or losses)	B1 1	
ii	$\begin{aligned} & { }^{21} \mathrm{C}_{10} p^{10} q^{11}={ }^{21} \mathrm{C}_{9} p^{9} q^{12} \\ & \frac{12}{10} p=q \text { or } \frac{12 p(1-p)^{-1}=1 \text { or similar }}{10} \\ & 1.2 p=1-p \text { oe eg } p=0.833(1-p) \\ & \quad \text { or } 352716 p=293930(1-p) \\ & p=5 / 11 \text { or } 0.455(3 \mathrm{sfs}) \text { oe } \end{aligned}$	M1 M1M1 M1 A1 5	or $(1-p)$ for q \& allow omit bracket or $352716 p^{10} q^{11}=293930 p^{9} q^{12}$ M1 for ${ }^{12} / 10$ or $6 / 5$ or 1.2 or $5 / 6$ or 0.833 M1 for $p \& q$ cancelled correctly or equiv equin in p or q (cancelled) nos not nec'y cancelled; not alg denom
Total		8	

8i	$\begin{aligned} & \mathrm{m}=26.5 \\ & \mathrm{LQ}=22 \\ & \mathrm{UQ}=39 \\ & \mathrm{IQR}=17 \end{aligned}$	$\begin{gathered} \text { or } 21.5 \\ 40 \\ 18.5 \end{gathered}$	$\begin{gathered} \text { or } 21.75 \\ 39.5 \\ 17.75 \\ \hline \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	M1 for either LQ or UQ A1 must be consistent LQ, UQ \& IQR
ii	Ave or overall or med or "it" similar Male spread greater or M more varied oe			B1f B1f 2	or F med (or ave) higher or F mean less or M \& F both have most in 20s or male range greater or more younger F or more older M
iii	Med less (or not) affected by extreme(s) or Mean (more) affected by extreme(s)			B1 1	oe; not "anomalies" ignore eg "less accurate"
iv	$\begin{aligned} & \frac{\text { Decode las }}{245 / 49} \\ & =5 \\ & \text { mean }=20 \\ & / /(9849 / 49 \\ & =13.3(3 \mathrm{~s} \\ & \mathrm{sd}=13.3 \end{aligned}$ Decode fir $245+200$ $10045 / 49$ $=205$ $\Sigma x^{2}=9849$ $\sqrt{\frac{" \sum x^{2} "}{49}-"}$ $=13.3 \mathrm{or}$	$\left./_{49}\right)^{2}$) $4 \sqrt{ } 11$ 11 10045 $\times 10045-4$ or 2	$\begin{array}{cc} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \\ 00 & \\ 9 & \text { B1 } \\ & \text { M1 } \\ & \\ & \\ & \\ & \\ \hline \end{array}$	M1 A1 B1f M1 A1 B1f 6	must consistently decode last or first $\begin{aligned} & 200+" 5 " \\ & \text { dep } \sqrt{ }+\mathrm{ve} \end{aligned}$ dep M1 or ans 176; award if not +200 allow $44 / 49$ or 9.08 seen dep $\sqrt{ }+$ ve Σx^{2} must be: attempt at Σx^{2} >9849 not involve 9849^{2} $\text { not }(\Sigma x)^{2} \text { eg } 10045^{2}, 445^{2}$ \bar{x} must be decoded attempt, eg 9.08
Total				12	
9 i	Because growth may depend on pH oe or expt is investigating if y depends on x			B1 1	In context. Not x is controlled or indep
ii	$\begin{aligned} & S_{x y}=17082.5-66.5 \times 1935 / 8(=997.8125) \\ & S_{x x}=558.75-66.5^{2} / 8 \quad(=5.96875) \\ & b=S_{x y} / S_{x x} \\ & =167(3 \mathrm{sfs}) \end{aligned}$			M1 A1 M1 A1 4	Correct sub into any correct b formula or $a=1935 / 8-" 167$ " $\times 66.5 / 8$ cao NB 3 sfs
iii	$\begin{aligned} & y=-1150+167 \times 7 \\ & =19 \text { to } 23 \end{aligned}$			$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	ft their eqn for M1 only
iv	No (or little) relationship or correlation			B1 1	or weak or small corr'n. Not "agreement"
va	Reliable as r high			B1 1	Allow without "interpolation" oe, but must include r high
b	Unreliable as extrapolationoe			B1 1	or unreliable as gives a neg value
vi	Unreliable (or No) because r near 0 or because little (or no or small) corr'n (or rel'n)			B1 1	or No because Q values vary widely for $\mathrm{pH}=8.5$
Total				11	

4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 s f s$, ISW for later rounding Penalise over-rounding only once in paper.

1(i)	(a) -1 (b) 0	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } 2 \end{array}$	```allow \(\approx-1\) or close to -1 not "strong corr'n", not -0.99 allow \(\approx 0\) or close to 0 not "no corr'n"```
(ii)	$\begin{array}{lllllllll} 4 & 3 & 2 & 1 & \text { or } 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 & 4 & 2 & 1 & 3 \\ \Sigma d^{2} & & & (=14) & & \\ 1- & \frac{6 \Sigma d^{2}}{4\left(4^{2}-1\right)} \\ & & & & & \\ =-0.4 & \text { oe } \end{array}$	M1 A1 M1 M1 A1 5	Ranks attempted, even if opp $\begin{aligned} & \text { Dep M1 } \quad \text { or } S_{x y}=23-{ }^{-100} / 4 \text { or } S_{x x}=S_{y y}=30--^{100} / 4 \\ & \text { Dep 2nd }{ }^{\text {nd }} \begin{array}{l} S_{x y} / \backslash\left(S_{x x} S_{y y}\right) \end{array} \end{aligned}$
Total		7	
2(i)	$\begin{aligned} & { }^{7} \underline{C}_{2} \frac{X^{8}}{}{ }^{8} \underline{C}_{5} \underline{C}_{3} \\ & ={ }^{56} / 143 \text { or }{ }^{1176} / 3003 \text { or } 0.392(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	${ }^{7} \mathrm{C}_{2} \mathrm{x}^{8} \mathrm{C}_{3} \quad$ or $1176 \quad:$ M1 $\left(\right.$ Any C or P) $/{ }^{15} \mathrm{C}_{5}$$\quad:$ M1 $(\mathrm{dep}<1)$or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ or $0.0392:$ M1$\times{ }^{5} \mathrm{C}_{2}$ or $\times 10 \quad:$ M1 (dep ≥ 4 probs mult)if $2 \leftrightarrow 3$, treat as MR max M1M1
(ii)	3 ! x 2 ! or ${ }^{3} \mathrm{P}_{3} \times{ }^{2} \mathrm{P}_{2}$ not in denom $=12$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$\begin{aligned} & \text { BABAB seen: M1 } \\ & 120-12: \text { M1A0 } \\ & \text { NB }^{4!} / 2!=12: ~ M 0 A 0 \\ & \hline \end{aligned}$
Total		5	
3(i)(a)	0.9368 or 0.937	B1 1	
(b)	$\begin{aligned} & 0.7799-0.5230 \text { or }{ }^{8} \mathrm{C}_{5} \times 0.45^{3} \times 0.55^{5} \\ & =0.2569 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Allow 0.9368-0.7799
(c)	0.7799 seen -0.0885 $=0.691(3 \mathrm{sfs})$ (not $1-0.0885)$	M1 M1 A1 3	${ }^{8} \mathrm{C}_{5} \times 0.45^{3} \times 0.55^{5}+{ }^{8} \mathrm{C}_{4} \times 0.45^{4} \times 0.55^{4}+{ }^{8} \mathrm{C}_{3} \times 0.45^{5} \times 0.55^{3}: \mathrm{M}$ 1 term omitted or wrong or extra: M1
(ii)(a)	$\begin{aligned} & { }^{10} \mathrm{C}_{2} \times\left({ }^{7} / 12\right)^{8} \times\left(\frac{5}{5} / 12\right)^{2} \text { seen } \\ & =0.105(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	or 0.105 seen, but not ISW for A1
(b)	$2^{31} / 72$ or ${ }^{175} / 72$ or $2.43(3 \mathrm{sfs})$	B1 1	$\mathrm{NB}^{12} / 5=2.4$: B 0
Total		9	
4(i)	$\begin{aligned} & 1 / 20 \times 1 /{ }_{10} \text { or } 1 / 200 \text { or } 0.005 \\ & \times 2 \\ & =1 / 100 \text { or } 0.01 \end{aligned}$	M1 M1dep A1 3	
(ii)	$\begin{aligned} & \mathrm{E}(X)=0+50 \mathrm{x}^{1} / 11^{10}+500 \mathrm{x}^{1} / 20 \text { or } \\ & 0+0.5 \mathrm{x}^{1} / 10+5 \mathrm{x}^{1} / 20 \quad=£ 0.30 \text { or } 3 / 10 \\ & =30 \mathrm{p} \\ & \text { Charge " } 30 \mathrm{p} \text { " }+20 \mathrm{p} \quad \text { or } 0.3+0.2 \\ & =50 \mathrm{p} \quad \text { or } 0.50 \text { or } 0.5 \end{aligned}$	M1 A1 M1 A1 4	
Total		7	

5(i)	$\begin{aligned} & { }^{12 / 22} x^{11} / 21 \\ & =2 / 7 \text { oe or } 0.286(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or ${ }^{12} \mathrm{C}_{2} /{ }^{22} \mathrm{C}_{2}$
(ii)	$\begin{array}{ll} { }^{7} / 15 \times 6 / 14 \times 8 / 13 & \text { or } / 65 \text { oe } \\ \times 3 \text { oe } & \\ =24 / 65 \text { or } 0.369(3 \mathrm{sfs}) & \end{array}$	M1 M1 A1 3	
(iii)	$\frac{x}{45} \times \frac{x-1}{44}=\frac{1}{15} \quad$ oе $\begin{aligned} & x^{2}-x-132=0 \quad \text { or } x(x-1)=132 \\ & (x-12)(x+11)=0 \\ & \text { or } x=1 \pm \frac{/\left(1 \frac{\underline{2}}{}-4 \times(-132)\right)}{2} \end{aligned}$ No. of $\mathrm{Ys}=12$	M1 A1 M1 A1 4	$\text { not } \frac{x}{45} \times \frac{x}{44}=\frac{1}{15} \text { or } \frac{x}{45} \times \frac{x}{45}=\frac{1}{15} \text { or } \frac{x}{45} \times \frac{x-1}{45}=\frac{1}{15}$ oe ft 3-term QE for M1 condone signs interchanged allow one sign error Not $x=12$ or -11 ans 12 from less wking, eg $12 \times 11=132$ or T \& I: full mks Some incorrect methods: $\begin{array}{ll} \frac{x}{45} \times \frac{x-1}{44}=\frac{1}{15} & \text { oe } \\ x^{2}+x=132 & \text { M1 } \\ x=11 & \text { A0 } \\ \begin{array}{ll} 12 \times 11=132 & \text { M1A0 } \\ x=12 \text { and (or "or") } & \text { M1A1M1 } \end{array} & \text { A0 } \end{array}$ NB 12 from eg 12.3 rounded, check method
Total		9	

6(i)(a)	256	B1 1	
			(i)(b) \& (ii)(abc): ISW ie if correct seen, ignore extras
(b)	Total unknown or totals poss diff or Y13 may be smaller or similar or size of pie chart may differ	B1 1	pie chart shows only proportions oe or no. of students per degree may differ not "no. of F may be less" not "Y13 may be larger"
(ii)(a)	B\&W does not show frequencies oe	B1 1	or B\&W shows spread or shows mks or M lger range
(b)	F generally higher or median higher F higher on average or F better mks FIQR is above M IQR F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewed	B1 $\text { B1 } 2$	1 mk about overall standard, based on median or on F's IQR being "higher" 1 mk about spread (or range or IQR) or about skewness. must be overall, not indiv mks must be comparison, not just figures Examples: not F higher mean not M have hiest and lowest mks condone F + ve skew
(c)	Advantage: B\&W shows med or Qs or IQR or range or hiest \& lowest or key values Disadvantage: B\&W loses info’ $B \& W$ shows less info’ B\&W not show freqs B\&W not show mode B\&W: outlier can give false impression hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from hist	B1 $\text { B1 } 2$	not B\&W shows skewness not $\mathrm{B} \& \mathrm{~W}$ shows info at a glance not B\&W easier to compare data sets not B\&W shows mean not B\&W shows spread not B\&W easier to calculate or easier to read not B\&W does not give indiv (or raw) data not B\&W does not show mean not hist shows freq for each mark not hist shows all the results not hist shows total allow adv of hist as disadv of B\&W
(iii)	$\begin{aligned} & 102 \times 51+26 \times 59 \\ & \div 128 \\ & =52.6(3 \mathrm{sfs}) \end{aligned}$	M1 M1dep A1 3	or $5202+1534$ or 6736
Total		10	

7(i)	$\begin{aligned} & \text { Geo stated } \\ & 0.7^{3} \times 0.3 \\ & 1029 / 1000 \text { oe or } 0.103(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	or implied by $0.7^{r} \mathrm{x} 0.3$ or $0.3^{r} \mathrm{x} 0.7$ Allow 0.7^{4} x 0.3
(ii)	$\begin{aligned} & 0.7^{6} \text { alone } \\ & =0.118(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$1-\left(0.3+0.3 \times 0.7+\ldots+0.3 \times 0.7^{5}\right) \quad$ not 1-0.7 ${ }^{6}$
(iii)	$\begin{aligned} & 0.7^{9} \\ & 1-0.7^{9} \\ & 0.960(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	not 0.3×0.7^{9} allow $1-0.7^{10}$ or 0.972 for M1 allow 0.96 , if no incorrect wking seen $0.3+0.7 \times 0.3+\ldots .+0.7^{8} \times 0.3: \text { M2 }$ 1 term omitted or wrong or "correct" extra: M1
(iv)	Bin stated $\begin{aligned} & { }^{5} \mathrm{C}_{2} \times 0.7^{3} \times 0.3^{2} \text { or } 0.8369-0.5282 \\ & =0.3087 \text { or } 0.309(3 \mathrm{sfs}) \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$	or implied by table or ${ }^{n} \mathrm{C}_{r} \underline{\text { or }} 0.7^{3} \times 0.3^{2}$ or 0.0309
Total		11	
8(i)	$\sqrt{\frac{168.6-\frac{88 \times 16.4}{8}}{\sqrt{\left(1136-\frac{88^{2}}{8}\right)\left(34.52-\frac{16.4^{2}}{8}\right)}}}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \end{aligned}$	$\left(=\frac{-11.8}{\sqrt{168 \times 0.9}}\right)$ M1: correct subst in any correct S formula M2: correct substn in any correct r formula allow -0.96, if no incorrect wking seen
(ii)	must refer to, or imply, external constraint on x e.g x is controlled or values of x fixed or chosen allow x is fixed	B1 1	not x is not random not x affects y not x not affected by y not x goes up same amount each time not charge affects no. of vehicles not x not being measured
(iii)	$\begin{aligned} & \frac{168.6-\frac{88 \times 16.4}{8}}{1136-\frac{88^{2}}{8}} \\ & =-0.0702(3 \mathrm{sfs}) \text { or }-{ }^{-59} / 840 \text { or }-{ }^{11.8} / 168 \\ & y-{ }^{16.4} / 8="-0.0702 "\left(x-{ }^{88} / 8\right) \\ & y=-0.07 x+2.8 \text { or better } \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4\end{array}$	ft their $S_{x y}$ and $S_{x x}$ incl ${ }^{168.6 / 1136}$ if used in (i) or -0.07 if no incorrect wking or $a=16.4 / 8-("-0.0702 ") \times{ }^{88} / 8$ or ${ }^{2371} / 840$ oe eg $y=-{ }_{-}^{59} / 840 x+{ }^{2371} / 840$
(iv)(a)	$\begin{aligned} & "-0.07 " \times 20+" 2.8 " \\ & =1.4(2) \text { million }(2 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	no ft
(b)	r close to -1 or corr'n is high just outside given data, so reliable	B1 $\text { B1 } 2$	or good corr'n or pts close to line but not if "close to -1 , hence unreliable" if r low in (i), ft: " r low" or "poor corr'n" etc or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a)
(v)	y on x x is indep	$\begin{array}{ll} \mathrm{B} 1 & \\ \text { B1 } & 2 \end{array}$	or x controlled or y depends on x or y not indep dep on not " x on y " r close to -1 so makes little difference: B2
Total		14	

4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to ≥ 3 sfs, ISW for later rounding. Penalise over-rounding only once in paper.

1 (i)	$\begin{aligned} & 0.2^{2}+0.7 \times 0.1 \times 2 \\ & =0.18 \mathrm{AG} \end{aligned}$		0.2^{2} or $0.7 \times 0.1: \quad$ M1 no errors seen \quad NB $2 \times 0.9 \times 0.1=0.18 \ldots$ M0A0
(ii)	$\begin{aligned} & 0.28+2 \times 0.18+3 \times 0.04+4 \times 0.01 \\ & =0.8 \text { oe } \\ & 0.28+2^{2} \times 0.18+3^{2} \times 0.04+4^{2} \times 0.01 \\ & -" 0.8{ }^{\prime 2} \\ & =0.88 \text { oe } \end{aligned}$	$\begin{array}{ll}\text { M1 } \\ & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 5\end{array}$	```\(\geq 2\) terms correct (excl \(0 \times 0.49\)) \(\div 5\) (or 4 or 10 etc): M0 \(\geq 2\) terms correct (excl \(0^{2} \times 0.49\)) dep +ve result cao \(\Sigma(x-\mu)^{2}: 2\) terms: M1; 5 terms M2 \(0.8^{2} \times 0.49+0.2^{2} \times 0.28+1.2^{2} \times 0.18+2.2^{2} \times 0.04+3.2^{2} \times 0.01\) SC Use original table, 0.4:B1 0.44: B1```
Total		8	
2(i)(a)	$\begin{aligned} & \frac{8736.9-\frac{202 \times 245.3}{7}}{7300-\frac{202^{2}}{7}} \text { or } \frac{1658.24}{1470.86} \\ & =1.127 \ldots \quad \quad(=1.13 \mathrm{AG}) \end{aligned}$	M1 A1 2	correct sub in any correct formula for b eg $\frac{236.8921}{210.1249}$ must see $1.127 \ldots$; 1.127.. alone: M1A1
(b)	$\begin{aligned} & y-245.3 / 7=1.13(x-202 / 7) \\ & y=1.1 x+2.5(\text { or } 2.4) \text { or } y=1.13 x+2.43 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$\begin{aligned} & \text { or } a=245 / 3-1.13 \times 202 /_{7} \\ & 2 \text { sfs suff. } \\ & \text { (exact:y }=1.127399 . x+2.50934 \ldots \text {). } \end{aligned}$
(ii)(a)	$(1.1(.) \times 30+.2.5(.))=$.35.5 to 36.5	B1f 1	
(b)	$(1.1(.) \times 100+.2.5(.))=$.112.4 to 115.6	B1f 1	
(iii)	(a) Reliable (b) Unreliable because extrapolated		Both reliable: B1 (a) more reliable than (b) B1 because (a) within data or (b) outside data B1 Ignore extras
Total		8	
3(i)(a)	$\begin{aligned} & \text { Geo stated } \\ & (7 / 8)^{2}(1 / 8) \\ & 49 / 512 \text { or } 0.0957(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	or impl. by $(1 / 8)^{n}(1 / 8)$ or $(1 / 8)^{n}\left({ }^{7} / 8\right)$ alone
(b)	$(7 / 8)^{3}$ alone $343 / 512$ or $0.670(3 \mathrm{sfs}) \quad$ allow 0.67	M2 $\text { A1 } 3$	or $\begin{array}{cc}1-\left(1 / 8+/ 8 \times 8+(/ 8)^{2} \times 1 / 8\right): & \text { M2 } \\ \text { one term incorrect, omit or extra: } & \text { M1 } \\ 1-(7 / 8)^{3} \text { or }(7 / 8)^{2} \text { alone: } & \text { M1 }\end{array}$
(ii)	8 -		
(iii)	Binomial stated or implied $\begin{aligned} & { }^{15} \mathrm{C}_{2}(7 / 8)^{13}(1 / 8)^{2} \\ & =0.289(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$	eg by $(1 / 8){ }^{\text {a }}(1 / 8)^{\text {b }}(a+b=15, a, b \neq 1)$, not just ${ }^{n} \mathrm{C}_{r}$
Total		10	
4 (i)	$\left.\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & \text { or } & 5 & 4 & 3 & 2\end{array}\right]$	M1 A1 M1dep M1dep A1 5	attempt ranks correct ranks $S_{x x}$ or $S_{y y}=55-15^{2} / 5(=10)$ or $S_{y y}=39-15^{2} / 5(=-6)$ ${ }^{-6} / \sqrt{ }(10 \times 10)$

(ii)	$1 \& 3$ Largest neg r_{s} or large neg r_{s} or strong neg corr'n or close(st) to -1 or lowest r_{s}ft if$\quad$$-1<(\mathrm{i})<-0.9$, ans $1 \& 2$ B1dep 2	NOT: furthest from 0 or closest to ± 1 little corr'n most disagreement	
Total		7	

5 (i)	$\begin{aligned} & 68 \\ & 75-59 \\ & =16 \\ & \hline \end{aligned}$	B1 M1 A1 3	attempt $6^{\text {th }} \& 18^{\text {th }}$ or $58-60,74-76 \&$ subtr must be from 75-59
(ii)	Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value	B1 1	NOT: ... by anomalies or freaks easier to calculate
(iii)	Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal class can find (or easier to read) frequs can find mean Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR) B\&W shows med (or Qs or IQR) B\&W easier to compare meds	B1 $\text { B1 } 2$	NOT: shows freqs shows results more clearly B\&W does not show freqs NOT: B\&W easier to compare $B \& W$ shows spread or variance or skew B\&W shows highest \& lowest Assume in order: Adv, Disadv, unless told Allow disadv of B\&W for adv of S\&L \& vice versa Ignore extras
(iv)	$\mathrm{m}=68.1$ NOT by restart $\mathrm{sd}=9.7$ (or same) NOT by restart	$\begin{array}{ll} \mathrm{B} 1 & \\ \mathrm{~B} 1 & 2 \end{array}$	Restart mean or mean \& sd: 68.1 or $68.087 \& 9.7$ or 9.73 B1 only
Total		8	

6 (i) (a)	$\begin{aligned} & 8! \\ & =40320 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	Allow ${ }^{4} \mathrm{P}_{4} \&{ }^{3} \mathrm{P}_{3}$ instead of 3! \& 4! thro’out Q6
(b)	$\begin{aligned} & 4 / 8 \times 4 / 7 \times 3 / 6 \times 3 / 5 \times 2 / 4 \times 2 / 3 \times 1 / 2 \\ & \times 2 \\ & =1 / 35 \text { or } 0.0286(3 \mathrm{sfs}) \end{aligned}$	M1 M1dep A1 3	$\begin{aligned} & \begin{array}{l} 4!\times 4!\div 8! \\ \times 2 \end{array} \begin{array}{r} \text { allow } 1-\text { above for M1 only } \\ \\ \\ \text { oe, eg }{ }^{1152} / 40320 \end{array} \end{aligned}$
(ii)(a)	$\begin{aligned} & 4!\times 4! \\ & =576 \end{aligned}$	$\begin{array}{lll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	allow 4! $\times 4!\times 2$ M1
(b)	1/16 or 00625	B1 1	
(c)	Separated by 5 or 6 qus stated or illus $\begin{aligned} & \frac{1}{4} \times 1 / 4 \times 3 \text { or } 1 / 16 \times 3 \\ & \left(1 / 4 \times \frac{1}{4} \text { or } 1 / 16 \text { alone or } \times(2 \text { or } 6):\right. \\ & \text { M1) } \\ & 3 / 16 \text { or } 0.1875 \text { or } 0.188 \end{aligned}$	M1 M2 A1 4	allow 5 only or 6 only or (4,5 or 6) can be impl by next M2 or M1 correct ans, but clearly B, J sep by 4: M0M2A0
Total		12	

7 (i)	Binomial $n=12, p=0.1$ Plates (or seconds) independent oe Prob of fault same for each plate oe	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 4 \end{array}$	B(12, 0.1) : B2 NOT: batches indep Comments must be in context Ignore incorrect or irrelevant
(ii)(a)	$\begin{aligned} & 0.9744-0.8891 \text { or }{ }^{12} \mathrm{C}_{3} \times 0.9^{9} \times 0.1^{3} \\ & =0.0852 \text { or } 0.0853(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(b)	$\begin{aligned} & 1-0.2824 \text { or } 1-0.9^{12} \\ & =0.718 \text { (3 sfs) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow 1-0.6590 or 1-0.9 ${ }^{\text {11 }}$
(iii)	"0.718" and $1-$ " 0.718 " used $\begin{aligned} (1-0.718)^{4} & +4(1-0.718)^{3} \times 0.718 \\ & +{ }^{4} \mathrm{C}_{2}(1-0.718)^{2} \times 0.718^{2} \end{aligned}$ $=0.317(3 \mathrm{sfs})$	B1 M2 $\text { A1 } 4$	ft (b) for B1M1M1 M1 for any one term correct (eg opp tail or no coeffs) $1-\mathrm{P}(3$ or 4$)$ follow similar scheme M2 or M1 $1-$ correct wking $(=0.623) \quad$ B1M2 cao
Total		12	

8 (i)	$\begin{aligned} & 1 / 6+3 \times(1 / 6)^{2} \\ & =1 / 4 \ldots \ldots \ldots . \end{aligned}$	M2 A1 3	$\begin{array}{r} \text { or } 3 \times(1 / 6)^{2} \text { or } 1_{6}^{1 / 6}+\left(\frac{1}{6}\right)^{2} \text { or }{ }^{1 / 6+2(1 / 6)^{2}} \\ \text { or } 1 / 6+4(1 / 6)^{2} \quad \text { M1 } \end{array}$
(ii)	$1 / 3$	B1 1	
(iii)	3 routes clearly implied out of 18 possible (equiprobable) routes	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & \text { or } 1 / 3 \times 1 / 6 \times 3 \\ & \text { or } 11 / 3 \times 1 / 6 \text { or } 1 / 6 \times 1 / 6 \times 3 \text { or } 1 / 3 \times 1 / 3 \times 3 \text { or } 1 / 4-1 / 6 \text { M1 } \\ & \text { but } 1 / 6 \times 1 / 6 \times 2 \end{aligned}$
			$\begin{aligned} & \frac{\left(\frac{1}{6}\right)^{2} \times 3}{\frac{1}{2}} \text { or } \frac{\frac{1}{4}-\frac{1}{6}}{\frac{1}{2}} \text { or } \frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}} \text { oe } \\ & \text { or } \frac{\mathrm{P}(48 \text { twice) }}{\mathrm{P} \text { (twice })} \text { stated or } \frac{\text { prob }}{\frac{1}{2}} \end{aligned}$
			Whatever $1^{\text {sit }}$, only one possibility on $2^{\text {nd }}$ M2
			$1 / 6$, no wking M1M1A1 $1 / 12$, no wking M0
		A1 3	
Total		7	

Total 72 marks

4732 Probability \& Statistics 1

1			Q1: if consistent " 0.8 " incorrect or ${ }^{1 / 8}, 7 / 8$ or 0.02 allow M marks in ii, iii \& $1^{\text {st }} \mathrm{M} 1$ in i
i	Binomial stated $\begin{aligned} & 0.9437-0.7969 \text { or }{ }^{8} \mathrm{C}_{3} \times 0.2^{3} \times 0.8^{5} \\ & =0.147(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	or implied by use of tables or ${ }^{8} \mathrm{C}_{3}$ or $0.2^{a} \times 0.8^{b} \quad(a+b=8)$
ii	$\begin{aligned} & 1-0.7969 \\ & =0.203(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	allow 1-0.9437 or 0.056(3) or equiv using formula
iii	$\begin{aligned} & 8 \times 0.2 \text { oe } \\ & 1.6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	$\begin{aligned} & 8 \times 0.2=2 \mathrm{M} 1 \mathrm{A0} \\ & 1.6 \div 8 \text { or }{ }^{1} / 1.6 \text { M0A0 } \end{aligned}$
Total		7	
2	$\begin{aligned} & \hline \text { first two } d \text { 's }= \pm 1 \\ & \Sigma d^{2} \text { attempted } \quad(=2) \\ & 1-\frac{6 \times \times 2 "}{7\left(7^{2}-1\right)} \\ & ={ }^{27} / 28 \text { or } 0.964(3 \mathrm{sfs}) \end{aligned}$	B1 M1 M1dep A1	$\begin{array}{\|ll\|} \hline S_{x x} \text { or } S_{y y}=28 & \text { B1 } \\ S_{x y}=27 & \text { B1 } \\ S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right) & \text { M1 dep B1 } \end{array}$ 1234567 \& 1276543 (ans $^{2} / 7$): MR, lose A1
Total		4	
3 i	x independent or controlled or changed Value of y was measured for each x x not dependent	B1 1	Allow Water affects yield, or yield is dependent or yield not control water supply Not just y is dependent Not x goes up in equal intervals Not x is fixed
ii	(line given by) minimum sum of squs	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	B1 for "minimum" or "least squares" with inadequate or no explanation
iii	$S_{x x}=17.5$ or 2.92 $S_{y y}=41.3$ or 6.89 $S_{x y}=25$ or 4.17 $r=\frac{S_{x y}}{\sqrt{\left(S_{x S} S_{y y}\right)}}$ $=0.930(3 \mathrm{sf})$	B1 M1 A1 3	or $91-21^{2} / 6$or $394-46^{2} / 6 \quad$ B1 for any oneor $186-21 \times 46 / 6$dep B1 \quad0.929 or 0.93 with or without wking B1M1A0 SC incorrect $n:$ max B1M1A0
iv	Near 1 or lg, high, strong, good corr'n or relnship oe Close to st line or line good fit	B1ft B1 2	$\|r\|$ small: allow little (or no) corr'n oe Not line accurate. Not fits trend
Total		8	

4			Q4: if consistent " 0.7 " incorrect or ${ }^{1} / 3,2 / 3$ or 0.03 allow M marks in ii , iii \& $1^{\text {st }} \mathrm{M} 1$ in i
i	$\begin{aligned} & \text { Geo stated } \\ & 0.7^{3} \times 0.3 \text { alone } \\ & 1029 / 10000 \text { or } 0.103(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	or implied by $q^{n} \times p$ alone $(n>1)$ $0.7^{3}-0.7^{4}$
ii	0.7^{-1} alone $={ }^{2401} / 10000 \text { or } 0.240(3 \mathrm{sf})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	$\begin{aligned} & 1-\left(0.3+0.7 \times 0.3+0.7^{2} \times 0.3+0.7^{3} \times 0.3\right) \\ & \text { NB } 1-0.7^{4}: \text { M0 } \end{aligned}$
iii	$=0.832(3 \mathrm{sfs})$	$\mathrm{M} 2$ A1 3	or $0.3+0.7 \times 0.3++\ldots .+0.7^{4} \times 0.3 \mathrm{M} 2$ M1 for one term extra or omitted or wrong or for 1- (above) M1 for $1-0.7^{6}$ or 0.7^{5} NB Beware: $1-0.7^{6}=0.882$
		8	
5 i	$\begin{aligned} & 25 / 10 \\ & =2.5 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Allow ${ }^{25} /(9+10)$ or 2.78: M1
ii	$\begin{aligned} & (19.5,25) \\ & (9.5,0) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	Allow (24.5, 47) Both reversed: SC B1 If three given, ignore $(24.5,47)$
iii	Don't know exact or specific values of x (or min or max or quartiles or median or whiskers). Can only estimate (min or max or quartiles or median or whiskers) oe Can't work out (.....) Data is grouped oe	B1 1	Exact data not known Allow because data is rounded
Total		5	

8ia	${ }^{18} / 19$ or ${ }^{1} / 19$ seen ${ }^{17} /{ }_{18}$ or ${ }^{1 /}{ }_{18}$ seen structure correct ie 6 branches all correct incl. probs and W \& R	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { B1 } 4 \end{aligned}$	regardless of probs \& labels (or 14 branches with correct $0 \mathrm{~s} \& 1 \mathrm{~s}$)
b	$\begin{aligned} & 1 / 20+19 / 20 \times 1 / 19+19 / 20 \times 18 / 19 \times 1 / 18 \\ & =3 / 20 \end{aligned}$	M2 A1 3	M1 any 2 correctterms added \quad19 $/ 20 \times 18 / 19 \times 17 / 18$ $1-{ }^{19} / 20 \times 1 / 19 \times{ }^{17} / 18$
iia	$\begin{aligned} & 19 / 20 \times 18 / 19 \\ & =9 / 10 \mathrm{oe} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	$19 / 20 \times 18{ }_{19} \times 1 /{ }_{18}+19 / 20 \times 18 / 19 \times{ }^{17} / 18$ or $1 / 20{ }^{17} / 20$
b	$\begin{aligned} & \left(\begin{array}{l} (\mathrm{P}(X=1)=1 / 20) \\ 19 \\ =1 / 20 \times 1 / 19 \\ =1 / 20 \\ \sum x p \\ =57 / 20 \quad \text { or } 2.85 \end{array}\right. \\ & =1 \end{aligned}$	M1 A1 M1 A1 4	$\begin{aligned} & \text { or } 1-\left(\frac{1}{20}+\frac{9}{10}\right) \\ & \quad \text { or } 2 \text { probs of } 1 / 20 \text { M1A1 } \\ & \geq 2 \text { terms, ft their } p \text { 's if } \Sigma p=1 \\ & \text { NB: }{ }^{19} / 20 \times 3=2.85 \text { no } \mathrm{mks} \end{aligned}$
			With replacement:
ia			Original scheme.
ib			$1 / 20+{ }_{10} / 20 \times 1 / 20+(19 / 20)^{2} \times 1 / 20$ $\text { or } 1-(19 / 20)^{2}$
iia			(19/20) $)^{2}$ or $(19 / 20) \times{ }^{19} / 20 .+\left({ }^{19} / 20\right)^{1} \times \ldots / 20 \mathrm{M} 1$.
b			$\begin{aligned} & \text { Original scheme } \\ & \text { But NB ans 2.85(25...) } \quad \text { M1A0M1A0 } \end{aligned}$
Total		13	

9i	$(1-0.12)^{n}$ $\underline{\log 0.05}$ or $0.88^{23}=0.052 \ldots$ $\log 0.88$ or $0.88^{24}=0.046 \ldots$ $n=24$	M1 M1 A1 3	Can be implied by $2^{\text {nd }}$ M1 allow $n-1$ or $\log _{0.88} 0.05$ or $23.4(\ldots)$ Ignore incorrect inequ or equals signs
ii	${ }^{6} \mathrm{C}_{2} \times 0.88^{4} \times 0.12^{2} \quad(=0.1295 \ldots)$ $\begin{aligned} & \times 0.12 \\ & =0.0155 \end{aligned}$	M3 M1 A1 5	
Total		8	

Total 72 marks

4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 s f s$, ISW for later rounding Penalise over-rounding only once in paper.

1 (i)	attempts at threading indep prob of succeeding in threading const	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ & \\ \hline \end{array}$	in context in context
(ii) (a)	$\begin{aligned} & 0.7^{4} \times 0.3 \\ & =0.0720 \text { (3sf) } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \end{array}$	Condone 0.072
(b)	$=0.168(3 \mathrm{sfs})$	M2 $\text { A1 } 3$	or 1 $\begin{array}{r} 1-\left(0.3+0.7 \times 0.3+0.7^{2} \times 0.3+0.7^{3} \times 0.3\right. \\ \left.+0.7^{4} \times 0.3\right) \end{array}$ M1 for one term omitted or extra or wrong or $1-0.7^{5}$ or $\left(0.3+\ldots+0.7^{4} \times 0.3\right)$ or $0.3,0.7$ muddle or 0.7^{4} or 0.7^{6} alone. 0.6 not 0.7 M 0 in (a) M1 in (b) 1/3,2/3 used M1in (a) M1 in (b)
(iii)	likely to improve with practice hence independence unlikely or prob will increase each time	B1	or thread strands gradually separate $1^{\text {st }} \mathrm{B} 1$ must be in context. hence independence unlikely or prob will decrease each time or similar Allow 'change'
Total		[9]	
2 (i) (a)	Use of correct midpts $\begin{array}{ll} \Sigma l f \div \Sigma f & (=706 \div 40) \\ =17.65 & \\ \Sigma l^{2} f & (=13050.5) \\ \sqrt{\frac{" 13050.5 "}{40}-17.65^{2}} & (=\sqrt{ } 14.74) \\ =3.84(3 \mathrm{sfs}) & \end{array}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 6 \end{array}$	$\begin{aligned} & 11,14,18,25.5 \\ & l \text { within class, } \geq \text { three } l f \text { seen } \\ & {[17.575,17.7]} \\ & \geq \text { three } l^{2} f \text { seen } \\ & \div 40,- \text { mean }^{2}, \sqrt{ } \text {.Dep }>0 . \\ & \sum(1-17.65)^{2} \text { 'f, at least } 3 \text { M1, } \div 40, \sqrt{ } \\ & \text { M1,3.84 A1. } \\ & \div 4 \Rightarrow \text { max B1M0A0M1M0A0 } \end{aligned}$
(b)	mid pts used or data grouped or exact values unknown oe	B1 1	not "orig values were guesses"
(ii)	$\begin{aligned} & 20 \div 5 \\ & =4 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	condone $20 \div[4,5]$ or ans 5
(iii)	$\begin{aligned} & 20.5^{\text {th }} \text { value requ'd and } \\ & 1^{\text {st }} \text { two classes contain } 14 \text { values } \\ & 16-20 \end{aligned}$	M1 B1 2	condone 20 oe or third class oe
(iv) (a)	increase	B1 1	
(b)	decrease	B1 1	
Total		[13]	
3 (i)	$\begin{aligned} & S_{h m}=0.2412 \\ & S_{h h}=0.10992 \\ & S_{m m}=27.212 \\ & r=\frac{S_{h m}}{\sqrt{ }\left(S_{h h} S_{m m}\right)} \\ & =0.139(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1 3	Allow x or $\div 5$ any one S correct ft their $S s$
(ii)	Small, low or not close to 1 or close to 0 oe pts not close to line oe	B1 ft B1	$1^{\text {st }} \mathrm{B} 1$ about value of r $2^{\text {nd }} \mathrm{B} 1$ about diag
(iii)	none or unchanged or "0.139" oe	B1 1	
(iv)	Larger oe	B1 1	
Total		[7]	

4 (i)	$\begin{aligned} & \left(0 \times \frac{1}{2}\right)+1 \times \frac{1}{4}+2 \times \frac{1}{8}+3 \times \frac{1}{8} \\ & =\frac{7}{8} \text { or } 0.875 \text { oe } \\ & \left(0 \times \frac{1}{2}\right)+1 \times \frac{1}{4}+2^{2} \times \frac{1}{8}+3^{2} \times \frac{1}{8} \quad(= \\ & \left.1 \frac{7}{8}\right) \\ & -\left(\times \frac{7}{8}{ }^{\prime}\right)^{2} \\ & =\frac{71}{64} \text { or } 1.11(3 \mathrm{sfs}) \text { oe } \end{aligned}$	M1 A1 M1 M1 A1 5	$\begin{aligned} & \geq 2 \text { non-zero terms seen } \\ & \text { If } \div 3 \text { or } 4 \text { M0M0M1(poss) } \\ & \geq 2 \text { non-zero terms seen } \\ & \text { dep +ve result } \\ & \text { M1 all4 (x-0.875) } \\ & \text { M1 mult }, \sum \text { A1 } 1.11 \end{aligned}$
(ii)	Bin stated or implied 0.922 (3 sfs)	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	Eg table or $\frac{1}{4}^{n} \times \frac{3}{4}^{m}(n+m=10, \mathrm{n}, \mathrm{m} \neq 1)$ or10C4 or 5(or 4 or 6) terms correct
(iii)	$\begin{aligned} & n=10 \& p=\frac{1}{8} \text { stated or implied } \\ & { }^{10} \mathrm{C}_{4} \times \frac{7^{6}}{8} \times \frac{1^{4}}{8} \\ & =0.0230(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	condone 0.023
Total		[10]	
5 (i)	$\begin{aligned} & \frac{6}{14} \times \frac{5}{13} \times \frac{3}{12} \\ & \times 3!\text { oe } \\ & =\frac{45}{182} \text { or } 0.247(3 \mathrm{sfs}) \text { oe } \end{aligned}$	M1 M1 A1 3	$\begin{aligned} & { }^{6} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1} \\ & \div{ }^{14} \mathrm{C}_{3} \\ & \text { With repl M0M1A0 } \end{aligned}$
(ii)	$\begin{aligned} & \frac{6}{14} \times \frac{5}{13} \times \frac{4}{12}+\frac{5}{14} \times \frac{4}{13} \times \frac{3}{12}+\frac{3}{14} \times \frac{2}{13} \times \frac{1}{12} \\ & =\frac{31}{364} \text { or } 0.0852(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \\ & \hline \end{aligned}$	${ }^{6} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{3}+{ }^{3} \mathrm{C}_{3} \quad$ M1 for any one $\left(\div{ }^{14} \mathrm{C}_{3}\right) \mathrm{M} 1$ all 9 numerators correct. With repl M1 $(6 / 14)^{3}+(5 / 14)^{3}+(3 / 14)^{3}$
Total		[6]	
6 (a)	A: diag or explanation showing pts close to st line, always increasing B:Diag or expl based on $\mathrm{r}=1=>\mathrm{pts}$ on st line $=>r(s)=1$	B1 B1 B1 3	Diag or expl based on $\mathrm{r}(\mathrm{s}) \neq 1=>$ pts not on st line => $\mathrm{r} \neq 1$ $\mathrm{r}=1=>\mathrm{pts}$ on st line\&r(s) $\neq 1=>$ pts not on st line B1B1 $\mathrm{r}=1=>\mathrm{r}(\mathrm{s})=1 \mathrm{~B} 2$
(b)	$\begin{aligned} & \bar{y}=2.4 \times 4.5+3.7 \\ & =14.5 \\ & 4.5=0.4 \times \text { "14.5"- } c \\ & c=1.3 \\ & \mathrm{a}^{\prime}=\mathrm{x}-\mathrm{b} \text { 'y }:-14.5 \mathrm{M} 1 \mathrm{~A} 1 ; \\ & \text { then } \mathrm{a}^{\prime}=4.5-0.4 \mathrm{x} 14.5=-1.3 \mathrm{M} 1 \mathrm{~A} 1 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	Attempt to sub expression for y $\mathrm{x}=0.96 \mathrm{x}+1.48$-c oe sub $x=4.5$ and solve $\mathrm{c}=1.3$ 14.5 M1A1. (y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1
Total		[7]	
7 (i)	25/37	B2 2	B1 num, B1 denom 25/37xp B1
(ii)	$\frac{15}{23}$ seen or implied $\times \frac{39}{59}$ seen or implied $=\frac{585}{1357}$ or $0.431(3 \mathrm{sfs})$ oe	M1 M2 A1 4	M1 num, M1 denom Allow M1 for 39/59x or + wrong p
Total		[6]	

8 (i)	$\begin{aligned} & 5!/ 2 \\ & =60 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow 5P3
(ii)	$\begin{aligned} & 4! \\ & =24 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow 2×4 !
(iii)	$\begin{aligned} & 2 / 5 \times 3 / 4 \text { or } 3 / 5 \times 2 / 4 \\ & \times 2 \\ & =3 / 5 \text { oe } \end{aligned}$	M1 M1 A1 3	allow M1 for $2 / 5 \times 3 / 5 \times 2$ or $12 / 25$ or $(6 \times 3!) \div(\mathbf{i}) \quad$ M2 \quad or $3!\div(\mathbf{i}), 6 \div(\mathbf{i}),(6+6) \div(\mathbf{i}), 6 \mathrm{k} \div(\mathbf{i})$ or 6×6 or 36 or 1-correct answer M1 (k,integer ≤ 5)
Total		[7]	
9 (i)	p^{2}	B1 1	
(ii)	$\left(q^{2} p\right)^{2}$ oe $=\mathrm{AG}$	B1 1	
(iii)	$\mathrm{r}=\mathrm{q}^{2}$ $\mathrm{a} /(1-\mathrm{r})$ used $\left(S_{\infty}=\right) \frac{p^{2}}{1-q^{2}}$	B1	May be impliedWith $\mathrm{a}=\mathrm{p}^{2}$ and $\mathrm{r}=\mathrm{q}^{2}$ or q^{4}
		M1 A1	
	$=\frac{p^{2}}{1-(1-p)^{2}}$	M1	Attempt to simplify using $\mathrm{p}+\mathrm{q}=1$ correctly. Dep on $r=q^{2}$ or q^{4} $\frac{(1-q)^{2}}{(1-q)(1+q)} \quad \text { or } p^{2} / p(1+q)$
	$p /(2-p) A G$	A1 5	Correctly obtain given answer showing at least one intermediate step.
P2Total		[7]	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 s f s$, ISW for later rounding Penalise over-rounding only once in paper

1 i	590	B1 1	Allow approximately 590
ii	Graph horiz (for $\geq 55 \mathrm{mks}$) oe	B1 1	or levels off, or grad $=0$, grad not increase Allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27 Double \& attempt read x Max C = 29 to 31.5	M1 M1 A1 3	eg $26 \mathrm{mks} \rightarrow 150^{\mathrm{th}} \quad 27 \mathrm{mks} \rightarrow 180^{\text {th }}$ eg read at cf $=300$ or 360 Indep of first M1 May be implied by ans Answer within range, no working, M1M1A1 32 without working, sc B1
v	$\begin{aligned} & \mathrm{LQ}=25.5-26.5 \text { or UQ }=34-35.5 \\ & \mathrm{IQR}=8-10 \end{aligned}$ (German) more spread	M1 A1 B1ft 3	M1 for one correct quartile dep ≥ 1 correct quartile or no working or less consistent, less uniform, less similar, more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR Correct comment with no working: M0A0B1
Total		9	
2 i	Opposite orders or ranks or scores or results or marks $r_{s}=-1$	B1 1	or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND value
ii	$\begin{aligned} & \text { Attempt } \Sigma d^{2} \\ & 1-\frac{6 \times \Sigma d^{2}}{3\left(3^{2}-1\right)} \\ & =-\frac{1}{2} \text { oe } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	$\text { dep } 1^{\text {st }} \text { M1 }$ Allow use wrong table for M1M1
iii	$\begin{aligned} & 3 \text { ! or }{ }^{3} P_{3} \text { or } 6 \\ & 1 \div \text { their ' } 6 \text { ' } \\ & \frac{1}{6} \text { oe eg } \frac{6}{36} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	r attempt list possible orders of $1,2,3 \geq 3$ orders) $2^{\text {nd }}$ M1 for fully correct method only or $\frac{1}{3} \times \frac{1}{2}(\times 1):$ M1M1
Total		7	
3 i	If x is contr (or indep) or y depend't, use y on x If neither variable contr'd (or indep) AND want est y from x : use y on x	$\begin{array}{\|ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen Allow y not controlled AND want est y from x Ignore incorrect comments
iia	$\begin{array}{ll} S_{x x}=510000-\frac{1800^{2}}{9} & (=150000) \\ S_{x y}=4080-\frac{1800 \times 14.4}{9} & (=1200) \\ b=\frac{1200^{\prime}}{150000^{\prime}} & (=0.008) \\ y-\frac{14.4}{9}=0.008\left(x-\frac{1800}{9}\right) \\ y=0.008 x(+0) & \end{array}$	M1 M1 M1 A1 4	or $\frac{510000}{9}-200^{2} \quad(=16666.7)$ or $\frac{4080}{9}-200 \times 1.6(=133.33)$ M1 for either S $b=\frac{133.33^{\prime}}{16666.7^{\prime}} \quad$ dep correct expressions both S 's or $a=\frac{14.4}{9}-0.008 \times \frac{1800}{9} \quad(=0)$ Must be all correct for M1 CAO
iib	312.5 or 313	Bift 1	ft their equn in (iia)
iic	-0.4	B1ft 1	ft their equn in (iia)

iid	Contraction oe Unreliable because extrapolated oe	B1(ft)	or length decreased, shorter, pushed in, shrunk, smaller or not in the range of x or not in range of previous results
Total		10	
4ia	0.299 (3 sf)	B1 1.	
ib	$\begin{aligned} & 0.2991-0.1040 \\ & =0.195(3 \mathrm{sf}) \quad \text { or } \frac{1280}{6561} \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Must subtract correct pair from table
iia	$\begin{aligned} & \begin{array}{l} 15 \\ =0.208(3 \mathrm{Cf}) \end{array} \\ & =0.22^{4} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \end{array}$	Allow M1 for ${ }^{15} \mathrm{C}_{4} \times 0.88{ }^{11} \times 0.22^{4}$
iib	$\begin{aligned} & (15 \times 0.22=) \\ & 15 \times 0.22 \times(1-0.22) \text { or }{ }^{\prime} 3.3 \times(1-0.22) \\ & =2.57(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$	Allow M1 for $15 \times 0.22 \times 0.88$
Total		8	
5 i	$\begin{aligned} & \frac{1}{2} \times \frac{1}{3} \text { or } \frac{2}{4} \times \frac{1}{3} \text { or } \frac{1}{{ }^{4} \mathrm{C}_{2}} \text { or } \frac{2}{12} \\ & \left(=\frac{1}{6}\right. \text { AG) } \\ & \frac{1}{4} \times \frac{2}{3} \text { or } 2 \times \frac{1}{4} \times \frac{1}{3} \text { or } \frac{1}{2} \times \frac{1}{3} \text { or } \frac{2}{4} \times \frac{1}{3} \end{aligned}$ Add two of these or double one $\left(=\frac{1}{3} \mathbf{A G}\right)$	B1 B1 B1 3	or 1 out of 6 or 2 out of 12 or $\frac{2!}{4!} \times 2$ or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{{ }^{4} \mathrm{C}_{2}}$ or $\frac{2!}{4!} \times 2$ or $\frac{2}{{ }^{4} \mathrm{C}_{2}}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1 or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	$X=3,4,5,6$ only, stated or used $\mathrm{P}(X=5)$ wking as for $\mathrm{P}(X=4)$ above or $1-\left({ }^{(} \frac{1}{6} "+\frac{1}{3}+\frac{1}{6}\right)$ or $\frac{1}{3}$ $\mathrm{P}(X=3)$ wking as for $\mathrm{P}(X=6)$ above or $1-\left(\frac{1}{3}+" \frac{1}{3} "+\frac{1}{6}\right)$ or $\frac{1}{6}$ $\begin{array}{llll}3 & 4 & 5 & 6\end{array}$ $\frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6}$ oe		Allow repetitions Allow other values with zero probabilities. or M1 for total of their probs = 1, dep B1 or $\mathrm{P}(X=3)=\frac{1}{6}, \mathrm{P}(X=4)=\frac{1}{3}, \mathrm{P}(X=5)=\frac{1}{3}, \mathrm{P}(X=6)=\frac{1}{6}$ Complete list of values linked to probs
iii	$\begin{aligned} & \left.\begin{array}{l} x p \\ =4 \frac{1}{2} \\ \Sigma x^{2} p \\ -4 \frac{1}{2}, 2 \\ =\frac{11}{12} \text { or } 0.917(3 \mathrm{sf}) \\ \hline \end{array}=21 \frac{1}{6}\right) \end{aligned}$	M1 A1 M1 M1 A1 5	≥ 2 terms correct ft ≥ 2 terms correct ft Independent except dependent on + ve result
Total		12	

6	$\begin{aligned} & m=(9 \times 6+3) \div 10 \\ & =5.7 \\ & 2=\frac{\Sigma x^{2}}{9}-6^{2} \\ & \Sigma x^{2}=2 \times 9+6^{2} \times 9 \text { or } 342 \\ & v=\frac{\left(' 342^{\prime}+3^{2}\right)}{10}-5.7^{\prime 2} \\ & =2.61 \text { oe } \end{aligned}$	M1 A1 M1 A1 M1 A1 6	or ((Sum of any 9 nos totalling 54) +3$) \div 10$ or $\frac{\Sigma(x-6)^{2}}{9}=2$ M1 or $\Sigma x^{2}=18+12 \times 54-36 \times 9$ or 342 A1 dep Σx^{2} attempted, eg $(\Sigma x)^{2}(=3249)$ or just state ' Σx^{2} '; allow $\sqrt{ }$ CAO
Total		6	
7 i	$\begin{aligned} & { }^{4} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{4} \text { or } 6 \times 20 \times 5 \\ & =600 \end{aligned}$	$\begin{aligned} & \text { M1M1 } \\ & \text { A1 } 3 \end{aligned}$	M1 for any 2 correct combs seen, even if added
ii	$\begin{aligned} & \frac{2}{4} \text { or } \frac{{ }^{3} C_{1}}{{ }^{4} C_{2}} \text { or } \frac{{ }^{3} C_{1} \times{ }^{6} C_{3} \times{ }^{5} C_{4}}{{ }^{4} C_{2} \times{ }^{6} C_{3} \times{ }^{5} C_{4}} \text { or } \\ & \frac{{ }^{3} C_{1} \times{ }^{6} C_{3} \times{ }^{5} C_{4}}{{ }^{600}} \\ & =\frac{1}{2} \text { oe } \end{aligned}$	M1 $\text { A1 } 2$	or $\frac{1}{4} \times 1+\frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4}+\frac{1}{4}$
iii	$\begin{aligned} & { }^{3} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{3}\left(\times{ }^{4} \mathrm{C}_{4}\right)+{ }^{3} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{4} \\ & 360 \end{aligned}$	M1M1 $\text { A1 } 3$	M1 either product seen, even if \times or \div by something
Total		8	

8			
8ia	$\begin{aligned} & \text { Geo(0.3) stated or implied } \\ & 0.7^{3} \times 0.3 \\ & =0.103(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 3	by $0.7^{n} \times 0.3$
b	$\begin{aligned} & 0.7^{3} \text { or } 0.343 \\ & 1-0.7^{3} \end{aligned}$	M1 M1	0.7^{3} must be alone, ie not $0.7^{3} \times 0.3$ or similar allow $1-0.7^{4}$ or 0.7599 or 0.76 for M1 only or $0.3+0.7 \times 0.3+0.7^{2} \times 0.3$: M1M1 1 term wrong or omitted or extra or $1-\left(0.3+0.7 \times 0.3+0.7^{2} \times 0.3\right)$ or $0.343: \quad$ M1
iia	State or imply one viewer in 1 four $\begin{aligned} & { }^{4} \mathrm{C}_{1} \times 0.7^{3} \times 0.3 \\ & \times 0.3 \\ & =0.123 \end{aligned}$	M1 M1 M1 A1 4	or $\mathrm{B}(4,0.3)$ stated, or C_{1} used, or YNNNY dep 1st M1
b	$\begin{aligned} & 0.7^{5}+{ }^{5} \mathrm{C}_{1} \times 0.7^{4} \times 0.3 \\ & =0.528(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 \\ \text { A1 } 2 \end{array}$	or $1-\left(0.3^{2}+2 \times 0.3^{2} \times 0.7+3 \times 0.3^{2} \times 0.7^{2}+4 \times 0.3^{2} \times 0.7\right)$ Not ISW, eg $1-0.528:$ M1A0
Total		12	

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding
Penalise over-rounding only once in paper.

1 i	$\begin{array}{r} 38 \\ 61 \\ \hline \end{array}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	Reversed: B1B0	
ii	Paper 2 Higher median or curve is to right	B1 B1dep 2	Indep of reason or similar Higher average or mean or midpoint Paper 2: half ≤ 61, cf paper 1 : half ≤ 38 Paper 1: more students scored lower marks (or lower than eg 40)	Ans "Paper 1", ignore reason: B0B0 unless reversed in (i) More scored higher mks Highest \& lowest mks are higher For each cf, the corresponding mark is higher in p2. None get 0-10 Some get 100 Eg 25 scored > 69 in p1, cf 65 scored > 69 in p2 NOT Marks are higher NOT marks seem higher NOT everyone gets higher mks NOT Curve steeper Ignore irrelevant or incorrect SC: If reversed in (i): (ii) p1 because median higher B1B1ft
iii	55, 25 73, 46 Paper $1 \mathrm{IQR}=30$ Paper 2 IQR $=27$ Suggestion correct or p2 less varied	M1 A1 A1 B1f indep	M1 one pair of quartiles p2 more consistent or less spread out Allow " p 2 has smaller range (or smaller variance") if IQRs found "It" is less varied: assume p2: B1	Allow $55 \pm 1,25 \pm 1$ Not necessarily subtracted $73 \pm 1,46 \pm 1$ 30 ± 1 27 ± 1 p1 more varied or more spread out or less consistent Little difference or similarly varied NOT p2 IQR smaller than p1 unless also says less varied oe If quartiles found but not IQRs: max M1A0A0B1 If no quartiles calculated can still score B1 Steeper curve alone MOA0A0B0 If IQRs wrong, with p1 < p2, ft "suggestion wrong": B1f Ignore irrelevant or incorrect

iv	$37(\pm 3)$	B2 2	B1 for 163 ($\pm 3)$	Not necessarily integer. B1 for 78-80 mks for min grade A on p2 SC: ans 105-110: B1 (from p1 10 mks hier instead of lower)
v	$\begin{aligned} & 37.5 \\ & 28.2 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	cao or sd the same	NOT eg 37.51 Ignore all working
Total		12		
2				SC:Consistent use of incorrect ($1-0.2$) score M-marks only SC:Consistent 0.8 insted of 0.2 , no A-marks: max M0M2M2M2 "Consistent" means in every part attempted
2i	$\begin{aligned} & 0.8^{2} \times 0.2 \\ & =\frac{16}{125} \text { or } 0.128 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$		
ii	$\begin{aligned} & 0.8^{2} \times 0.2+0.8^{3} \times 0.2+0.8^{4} \times 0.2 \\ & =\frac{976}{3125} \text { or } 0.312(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \mathrm{M} 2 \\ \mathrm{~A} 1 & \\ \hline \end{array}$	1 term omitted or wrong or extra: M1	Using $\mathrm{P}(X \leq 5) \& \mathrm{P}(X \leq 2)$; three methods: $1-0.8^{5}-\left(1-0.8^{2}\right) \text { or } 0.672-0.36: \text { M2 }$ Allow M1 for $1-0.8^{5}-\left(1-0.8^{3}\right)$ or $0.672-0.488$ or $1-0.8^{4}-\left(1-0.8^{2}\right)$ or $0.5904-0.36$ $0.8^{2}-0.8^{5}:$ M2 Allow M1 for $0.8^{3}-0.8^{5}$ or $0.8^{2}-0.8^{4}$ $\begin{equation*} 0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2+0.8^{4} \times 0.2-(0.2+0.8 \times 0.2) \tag{M2} \end{equation*}$ One term omitted or wrong or extra: But NB If include $0.8^{-1} \times 0.2$ in both $\mathrm{P}(X \leq 5) \& \mathrm{P}(X \leq 2)$, get correct ans but M1M0A0 M0 for eg $1-0.8^{5}-0.8^{2}$ or $0.672-0.64$
iii	$\begin{aligned} & 0.8^{4} \\ & =\frac{256}{625} \text { or } 0.4096 \text { or } 0.410(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3	$1-\left(0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2\right)$ 1 term omitted or wrong or extra: M1 $1-0.8^{4}$ or $0.590 \quad$ M1 or 0.8^{3} or 0.512 or 0.8^{5} or 0.328 : M1 Allow 0.41	$\begin{aligned} & 1-\left(0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2\right) \mathrm{M} 2 \\ & 0.2 \times 0.8^{4} \mathrm{M} 0 \quad 1-0.8^{n}(n \neq 4) \mathrm{M} 0 \end{aligned}$

iv	$\begin{aligned} & 0.2 \times 0.8 \times 0.2 \\ & \times 2 \end{aligned}$	M1 M1 A1 3	$\begin{aligned} & \text { or } 0.2 \times 0.8^{0} \times 0.8 \times 0.2 \\ & \text { or } 0.2 \times 0.8 \times 0.2+0.8 \times 0.2 \times 0.2 \end{aligned}$	or $0.032 \quad$ NOT $n \times 0.2^{2} \times 0.8$ except $n=2$ Fully correct method except allow M0M1 for $(0.2+0.8 \times 0.2) \times 2$, must see method Attempt 0,3 and/or 3,0, as well as 2,1and/or 1,2; max M1M0A0 $\begin{array}{ll}\text { Careful: } 0.2 \times 0.8 \times 0.2+0.2 \times 0.8^{-1} \times 0.128=0.064 & \text { M1M0A0 } \\ \text { Careful: } 0.8 \times 0.8 \times 0.2 \div 2=0.064:(\text { ie } \mathrm{P}(X=3) \div 2) & \text { M0M0A0 }\end{array}$
Total		11		
3 i	$\begin{aligned} & \frac{7351.12-\frac{86.6 \times 943.8}{12}}{\sqrt{\left(658.76-\frac{86.6^{2}}{12}\right)\left(83663-\frac{943.8^{2}}{12}\right)}} \text { or } \frac{540.03}{\sqrt{33.80 \times 9433}} \\ & =0.9564 \ldots \text { or } 0.956 \text { or } 0.96 \end{aligned}$	M1 M1 $\text { A1 } 3$	Must see at least 2 sfs	$1^{\text {st }} \mathrm{M} 1$ for correct subst in any correct S formula $2^{\text {nd }} \mathrm{M} 1$ for all correct subst'n in any correct r formula 0.96 or correct better, no working: M1M1A1 eg $0.958 \rightarrow 0.96$ with correct working M1M1A0 without working: M0M0A0
ii	Strong (or high or good or close etc) relationship (or corr'n or link) between amount spent on advert \& profit	B1 1	Allow Almost complete relationship or Very positive corr'n or Very reliable relationship or Near perfect relationship between spend on advert \& profit oe, in context	Must state or imply "strong" or "good" or equiv \& in context but NOT Strong agreement between etc NOT High spend on ads produces high profits NOT The more spent on adverts, the higher the profit NOT Positive corr'n between spend on ads \& profits NOT There is a relationship between spend on ads \& profit NOT There is a great relationship between etc NOT ans involving "proportion(al)" Ignore irrelevant or incorrect If incorrect r (<0.9) in (i), no ft for ans "weak rel'nship" here; but correct ans here scores B1 even if inconsistent with their r

iii	Relationship may not continue Corr'n not imply causation	B1 B1 2	Can't extrapolate Any indication that pattern may not continue Must state or imply referring to future Increase in profit may not be due to increase in spend on advertising. Variables may be increasing separately	Allow without context Examples: Can't predict future; Things can change May be recession ahead; Economic situation may change Cost of advertising may increase If spend too much on ads, profit may be reduced as a result Advertising may not be as successful in the future Item may go out of fashion NOT Spending on adverts may not bring high profits NOT Spending more on adverts may not bring higher profits (Since these just restate the question) NOT More money spent on ads will not affect profit Both variables may be affected by a third Other factors may affect profits Advertising not the sole factor affecting profits Two different categories of reason needed, as given above. Two reasons which both fall under the same category: only B1 NOT Because corr'n not equal to 1
iv	$\begin{aligned} & b=\frac{7351.12-\frac{86.6 \times 943.8}{12}}{658.76-\frac{86.6^{2}}{12}} \\ & =15.9788 \text { or } 16.0 \\ & y-\frac{943.8}{12}=" 16.0 \text { " }\left(x-\frac{86.6}{12}\right) \\ & y=16 x-37 \text { or better } \end{aligned}$	M1 A1 M1 A1 4	or $\frac{S_{x y}}{S x x}$ $\begin{aligned} & \text { or } a=\frac{943.8}{12}-" 16.0 " \times \frac{86.6}{12} \\ & (y=15.9788 x-36.664) \end{aligned}$	ft values of $S_{x y} \& S_{x x}$ if clearly shown in (i) Coeffs not nec'y rounded, but would round to 16 \& 37 These marks can be earned in (v) if not contradicted in (iv) If x on y line found: M-marks only $(x=271+0.0572 y)$
v	$\begin{aligned} & " 16 " \times 7.4-" 37 " \\ & 81400 \text { to } 81750 \end{aligned}$	M1 A1f 2	81.4 thousand to 81.7 thousand: M1A1 but 81.4 to 81.7 alone:	$" 16 " \times 7400-\times 37 ": \text { M0A0 }$ ft their (iv)
Total		12		

4i	$\begin{aligned} & 0.4 \times 0.7 \\ & 0.6+0.4 \times 0.7 \\ & =0.88 \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	or $0.6+$ prod of 2 probs Condone $0.6 \times 0.7+0.6 \times 0.3+0.4 \times 0.7$ or $0.6 \times 0.6+0.6 \times 0.4+0.4 \times 0.7$	$\begin{array}{ll} \hline 1 \text { - prod of } 2 \text { P's } & \text { or } 0.4 \times 0.3 \\ 1-0.4 \times 0.3 & \\ \hline \end{array}$
ii	$p+(1-p) \times p=0.51 \quad \text { or } 2 p-p^{2}=0.51$ $p^{2}-2 p+0.51=0$ $(p-0.3)(p-1.7)=0$ or $p=\frac{2 \pm \sqrt{4-4 \times 0.51}}{2}$ oe $p=0.3$	M1 A1 M1 A1 4	or $p^{2}+p \times(1-p)+(1-p) \times p$ Correct $\mathrm{QE}=0$ Condone omission of " $=0$ " Correct method for their 3-term QE Not $p=0.3$ or 1.7	$\begin{aligned} & \text { Condone } p+p \times 1-p \text { M1, } \quad \text { but } p+q p=0.51 \text { M0 } \\ & \text { or }(1-p)^{2}=0.49 \quad \text { M1A1 } \\ & 1-p= \pm 0.7 \quad \text { M1 must have } \pm \end{aligned}$ Correct ans from correct but reduced wking or T \& I or verification or no wking: 4 mks Ans $p=0.3$ or 1.7 from correct but reduced wking or T \& I or no wking: M1M1M1A0 Ans $p=0.3$ following correct wking except other solution incorrect: BOD 4 mks $\left.\left(\mathrm{eg} p=\frac{2 \pm \sqrt{4-4 \times 0.51}}{2} \text { so } p=0.3 \text { or }-1.3 \text { so } p=0.3: \quad 4 \mathrm{mks}\right)\right)$ $p=0.3$ from wrong wking but correct verification: BOD 4 mks $p=0.3$ from wrong wking alone: M0A0M0A0
Total		7		

5			Consistent use of $\frac{1}{3}$ or MR of 30% (eg 0.2): (i) B 1 B 0 B 1 B 1 (iia) B0 (iib) $0.7901-0.4609$ or ${ }^{5} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2} \quad \mathrm{M} 1 ; \quad=0.329(3 \mathrm{sf}) \mathrm{A} 1$ (iii) $p=$ "0.3292" M1; $\quad{ }^{7} \mathrm{C}_{3}(1-" 0.3292 ")^{4}(" 0.3292 ")^{3} \mathrm{M} 1 ; \quad=0.253(3 \mathrm{sf})$ A1 ie $\max 8 / 10$	
5 i	Binomial or B $(5,0.3)$ Prob of gift same for all pkts Whether pkt contains gift is indep of other pkts	$\begin{array}{ll} \text { B11 } \\ \text { B1 } & \\ & \\ \text { B1 } & \\ \text { B1 } & 4 \end{array}$	Prob of gift is constant or fixed or consistent or same oe Obtaining a gift is indep Each time receive a gift is indep Context needed for $3^{\text {rd }} \& 4^{\text {th }}$ B-mks	Allow mis-spellings but NOT "Biometric" Condone $\mathrm{B} \sim(5,0.3)$ or $\mathrm{B}(0.3,5)$: B1B1 but $\mathrm{B}(X=0.3, n=5)$: B 1 B 0 NOT: prob of success const; NOT prob stays same each go One box doesn't affect another. Pkts indep. Gifts indep She buys packets separately Prob of a gift is indep Prob of gift indep of one another \& const: B1B1 NOT: Each week is indep NOT: Number of gifts received is indep NOT: Events indep If Geo(0.3) stated, can score max B0B0B1B1 If Geo($5,0.3$) stated, can score max B0B1B1B1
iia	0.8369	B1 1	or 0.837	
-	$\begin{aligned} & 0.8369-0.5282 \text { or }{ }^{5} \mathrm{C}_{2}(0.7)^{3}(0.3)^{2} \\ & =0.3087 \text { or } 0.309(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$		
iii	$\begin{aligned} & p=" 0.3087 " \\ & { }^{7} C_{3}(1-" 0.3087 ")^{4}(" 0.3087 ")^{3} \\ & =0.235(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \end{aligned}$	(iib) used in a calc'n eg "0.3087" $\times 3 \times 10$	or B(7, "0.3087") stated or 1 - " 0.3087 " used instead of " 0.3087 " $n=35 \text { or 15: max M1M0A0 }$
Total		10		

6 i	$\begin{array}{lc} \hline 7!\div 3! & 7!\div 2! \\ \div 2! & \div 3! \\ =420 & \end{array}$	M1 M1dep A1 3	But $\mathrm{NOT}^{7} \mathrm{P}_{4}$ or 7!/(7-4)! if seen	$\frac{7!}{3!+2!}: \text { M1M0 }$ $\frac{7!}{3!\times n!}$ any n : M1M0
iia	$\begin{aligned} & { }^{5} \mathrm{C}_{3} \text { or }{ }^{10} \mathrm{C}_{4} \text { seen } \\ & { }^{5} \mathrm{C}_{3} \times{ }^{10} \mathrm{C}_{4} \\ & =2100 \end{aligned}$	M1 M1 A1 3	or 10 or 210	$\begin{aligned} & \frac{{ }^{5} C_{3} \times{ }^{10} C_{4}}{\text { anything }} \text { M1M1A0 } \\ & { }^{5} \mathrm{P}_{3} \times{ }^{10} \mathrm{P}_{4} \text { or } 60 \times 5040 \text { or } 302400: \text { SC B1 } \end{aligned}$
b	$\begin{aligned} & { }^{4} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{4} \text { or }{ }^{4} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{3} \quad \text { or } 756 \text { or } \\ & 336 \\ & { }^{4} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{3} \quad \text { or } 1092 \\ & \div 2100 \text { or } \div \text { (iia) dep } \geq \text { one M1 scored } \\ & =\frac{13}{25} \text { or } 0.52 \\ & \\ & \\ & \text { " } 2100 \text { " }-\left({ }^{4} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{4} \text { or }{ }^{4} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{3}\right) \\ & \text { or " } 2100 \text { " }-(504 \text { or } 504) \quad \text { M1 } \\ & \text { " } 2100 \text { " }-\left({ }^{4} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{3}\right) \quad \text { M1 } \\ & \div \text { " } 2100 \text { " or (iia) dep } \geq \mathrm{M} 1 \quad \text { M1 } \end{aligned}$	M1 M1 M1dep A1 4	$\begin{array}{ll} \begin{array}{l} \frac{3}{5} \text { or } \frac{4}{10} \text { oe } \\ \frac{3}{5} \times\left(1-\frac{4}{10}\right) \text { or }\left(1-\frac{3}{5}\right) \times \frac{4}{10} \end{array} \\ \frac{3}{5} \times\left(1-\frac{4}{10}\right)+\left(1-\frac{3}{5}\right) \times \frac{4}{10} & \\ =\frac{13}{25} & \\ \frac{3}{5} \text { or } \frac{4}{10} \text { oe } & \text { M1 } \\ \frac{3}{5}+\frac{4}{10}-\frac{3}{5} \times \frac{4}{10} & \text { M1 } \\ \frac{3}{5}+\frac{4}{10}-\frac{3}{5} \times \frac{4}{10}-\frac{3}{5} \times \frac{4}{10} & \text { M1 } \\ =\frac{13}{25} & \text { A1 } \end{array}$	Not from incorrect wking SC $\frac{1}{5} \times \frac{9}{10}$ or $\frac{4}{5} \times \frac{1}{10}$ M1 $\begin{aligned} & \frac{1}{5} \times \frac{9}{10}+\frac{4}{5} \times \frac{1}{10} \quad \text { M1 } \\ & \left(=\frac{13}{50} \quad \text { A0 }\right) \end{aligned}$ Not from incorrect wking ie P (WA or GA or both) Must be correct figures ie P(WA or GA but not both) Must be correct figures $\begin{array}{cc} \mathrm{SC} & :{ }^{4} \mathrm{P}_{2} \times{ }^{9} \mathrm{P}_{4}+{ }^{4} \mathrm{P}_{3} \times{ }^{9} \mathrm{P}_{3}: \\ \div \text { M1 } \\ \div \text { (iia) } & \text { M1dep } \end{array}$ Careful: 336 or 756 can be obtained by incorrect methods.
Total		10		

7i	$\begin{aligned} & (0 \times a)+2 \times(1-a) \\ & =2-2 a \quad \text { or } 2(1-\mathrm{a}) \text { oe } \end{aligned}$		$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or 2(1-a) Not ISW	Condone $2 \times 1-a$ $E g E(X)=2-2 a ; 2-2 a=1 ; a=0.5: \quad$ MB $2 \times(1-a) \div 2:$ M0A0
ii	$\begin{aligned} & (0 \times a)+2^{2} \times(1-a) \\ & \quad-"(2-2 a){ }^{2} \\ & =4-4 a-4+8 a-4 a^{2} \\ & =4 a-4 a^{2} \\ & (=4 a(1-a)) \quad \text { AG } \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	or 4-4a oe - (i) ${ }^{2}$ dep contains a; ISW; Indep mk or $4(1-a)-4(1-a)^{2}$ $4(1-a)(1-(1-a))$ Correct table oe	Condone $2^{2} \times 1-a$ $4-4 a-4 \pm 8 a \pm 4 a^{2}$ or $4-4 a-4 \pm 4 a^{2}$ or equiv M1M1A0 $4-4 a-2(1-a)^{2}$ M1M1A0 Must see this line, correctly obtained Careful: $4-4 a-(2-2 a)^{2}=4-4 a-\left(4-4 a^{2}\right)=-4 a+4 a^{2}=4 a(1-a)$ M1M1A0 only
Total			5		
8 i	EDCBA		B1 1	$\begin{array}{ll} \hline \mathrm{A} & 5 \\ \mathrm{~B} & 4 \\ \mathrm{C} & 3 \\ \mathrm{D} & 2 \\ \mathrm{E} & 1 \end{array}$	NOT just 5, 4, 3, 2, 1
iia	$\begin{aligned} & 1-\frac{6 \Sigma d^{2}}{5\left(5^{2}-1\right)}= \\ & 1-\frac{6 \times \Sigma d^{2}}{5 \times 24}= \\ & \left(\Sigma d^{2}=2 \mathbf{A}\right. \end{aligned}$	or $0.1=\frac{6 \times \Sigma d^{2}}{5 \times 24}$	M1 $\text { A1 } 2$	One correct step or better \& nothing incorrect for A1	$\begin{aligned} & 1-\frac{6 \times 2}{5\left(5^{2}-1\right)} \\ & =1-\frac{6 \times 2}{5 \times 24} \text { or } 1-\frac{12}{5 \times\left(5^{2}-1\right)} \text { One correct step or better \& nothing } \end{aligned}$ incorrect for A1 $(=0.9 \mathrm{AG})$
b	$d^{2}: 0,0,0,$ BACDE or	y order	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or $d: 0,0,0,1,-1$ any order Any two adjacent dogs interchanged	May not be seen If clearly comparing second race with third; DECBA or similar: B1, but must be clear
Total			5		

Total 72 marks

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to ≥ 3 sfs, ISW for later rounding
Penalise over-rounding only once in paper.

1ia	$\begin{aligned} & \frac{3247-\frac{251 \times 65}{5}}{\sqrt{\left(14323-\frac{251^{2}}{5}\right)\left(855-\frac{65^{2}}{5}\right)}} \text { or } \frac{-16}{\sqrt{1722.8 \times 10}} \\ & =-0.1219 \ldots \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \end{aligned}$	M1 for correct subst in any correct S formula M2 for correct subst' n in any correct r formula Must see at least 4 sfs	$\begin{aligned} & \text { or } \frac{-80}{\sqrt{8614 \times 50}} \\ & \text { Allow }-0.1218 \end{aligned}$
b	Poor/no/little/weak/not strong corr'n or rel'nship or link between income \& distance oe	B1 1	or slight neg/weak corr'n (oe) between income \& distance In context, ie any comment on income \& distance, even if incorrect	eg, Poor neg corr'n, so higher distance, lower income No rel'nship. Low income doesn't cause low distance NOT "Not proportional ..." NOT "negative corr'n ..." No recovery of this mark in (ii)
c	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other NOT "Little effect" NOT "Not much effect"
ii	r close to 0 , or small, or poor corr'n oe or $r=-0.122$ Unreliable	B1 B1dep 2	or Weak/no corr'n or poor rel'nship oe or No evidence to link sales \& distance Condone "innacurate"or "incorrect" or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason	or because small sample Ignore other Allow: "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because r not close to -1" "Unreliable because r smaller than (-)0.7" NOT "Unreliable because extrapolated": B0B0 but "Unreliable because extrapolated and poor corr'n": B1B1
Total		7		

2		$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	Ignore labels of rows or columns No ranks seen, $d=(0), \pm 1, \pm 1, \pm 2$, or $d^{2}=(0), 1,1,4$ any order: M1A1 NOT ($\Sigma d)^{2}$	No wking, $\Sigma d^{2}=6$: M1A1M1 No wking, $\Sigma d^{2}=$ eg 14: M0A0M0, but can gain $3^{\text {rd }}$ M1 No wking, ans $\frac{2}{5}$: Full mks Allow both sets of ranks reversed NB incorrect method: 2341 2134 OR $d=(0), \pm 2, \pm 1, \pm 3$ any order OR $d^{2}=(0), 4,1,9$ any order (leading to $\Sigma d^{2}=14$ and $r_{s}=-\frac{2}{5}$): M0A0M1M1A0
Total		5		
3ia	$\begin{aligned} & (1-0.5565) \text { or } 12 \times 0.85^{11} \times(1-0.85)+0.85^{12} \\ & =0.4435 \text { or } 0.443 \text { or } 0.444(3 \mathrm{sf}) \end{aligned}$	M1 $\text { A1 } 2$	$\text { or } 1-\left((1-0.85)^{12} \ldots .^{12} \mathrm{C}_{10} \times 0.85^{10}(1-0.85)^{2}\right)$ ie 1 - (all 11 correct binomial terms)	or 1-0.557 NB $1-0.4435$ (oe): M0A0
b	$\begin{aligned} & 0.5565-0.2642 \text { or }{ }^{12} \mathrm{C}_{10}(1-0.85)^{2}(0.85)^{10} \\ & =0.2923 \text { or } 0.2924 \text { or } 0.292(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$		or $0.557-0.264$
c	$\begin{aligned} & 12 \times 0.85 \times(1-0.85) \\ & =1.53 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$		
ii	$\left(\frac{3}{4}\right)^{2}$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly $\times 2$) $\left(\frac{3}{4}\right)^{2} \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe \quad or $\frac{27}{128}$ or 0.211 $2 \times\left(\frac{3}{4}\right)^{2} \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe $=\frac{27}{64}$ or $0.422(3 \mathrm{sfs})$	M1 M1 M1 A1 4	eg $\left(\frac{3}{4}\right)^{2}+\frac{3}{4} \times \frac{1}{4}$ or $2 \times\left(\frac{3}{4}\right)^{2}+2 \times \frac{3}{4} \times \frac{1}{4}$ or $0.5625+0.1875$ or $0.5625+0.375$ or eg 0.5625×0.375 Fully correct method	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{8}$ eg in table or list Allow even if further incorrect wking Ans 0.211 : check wking but probably gets M1M1M0A0 Use of 0.85 instead of $\frac{1}{4}:$ MR max M1M1M1A0
Total		10		

4 i	Method is either: Just $4 \div 3$ or $\frac{4}{3}$ or: Use of ratio of correct frequencies AND ratio of widths (correct or 4 and 2)			
4 i	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$ or $\left(5.6 \div \frac{28}{5}\right) \times \frac{4}{3} \quad$ or $\frac{4}{3}$ or $4 \div 3 \quad$ oe $=1 \frac{1}{3}$ or $\frac{4}{3}$ or $1.33(3 \mathrm{sf})$ oe	M2 A1 3	M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$ or $\left(5.6 \div \frac{28}{4}\right) \times \frac{4}{2} \quad$ or $0.8 \times 2 \quad$ oe $\quad(=1.6)$ No wking, ans 1.3: M2A0 Ans 1.6: Check wking but probably M1M0A0	Correct calc'n using 5.6, 28, 4, 5, 3 oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1 ie fully correct method: M2 or: incorrect class widths, otherwise correct method: M1 $\frac{4}{3}$ correctly obtained (or no wking) then further incorrect: M1M0A0 Use of ratio of widths OR freqs but not both: M0 eg $5.6 \times \frac{4}{28}(=0.8)$ or $5.6 \times \frac{3}{5}(=3.36): \quad$ M0 $\frac{4}{2}=2: \text { M0M0A0 }$
ii	25 or 26 or 25.5 Med is $21^{\text {st }}$ (or $22^{\text {nd }}$ or $21.5^{\text {th }}$) in 31-35 class or " 25 - 4" Can be implied by calc'n Med > 33 or "more than"	$\begin{array}{ll} \text { B1 } \\ \text { B1 } \\ \text { B1 } & 3 \end{array}$	or 25 \& 26 or med in last ≈ 7 in class or $33 \approx 14^{\text {th }}$ in class or $33 \approx 18^{\text {th }}$ in whole set Can be implied by diagram indep	May be implied, eg by 21 or 22 or 21.5 Calc'ns need not be correct but need to contain relevant figures for gaining B1B1 $\text { The " } \approx \text { " sign means } \pm 2$ Alternative Method: Ignore comment on skew NB Use EITHER the main method OR the Alternative Method (above), not a mixture of the two. Choose the method that gives most marks.

iii	$\begin{aligned} & \geq 3 \text { mid-pts attempted } \\ & \Sigma f x \div 50 \text { attempted } \quad\left(=\frac{1819}{50}\right) \\ & =36.38 \text { or } 36.4(3 \mathrm{sf}) \\ & \Sigma f x^{2} \text { attempted } \quad(=68055.5) \\ & \sqrt{\frac{68055.5}{50}-\left(\frac{1819}{50}\right)^{2}} \text { or } \sqrt{1361.11-36.38^{2}} \\ & (=\sqrt{37.6056}) \end{aligned}$ Alt for variance: $\begin{array}{ll} \Sigma f(x-\bar{x})^{2}(=1880.28) & \text { M1 } \\ \sqrt{\frac{1880.28}{50}} & \text { M1 } \\ =6.13(3 \mathrm{sf}) & \text { A1 } \end{array}$	M1 M1 A1 M1 M1 A1 6	seen or implied ≥ 3 terms. or 36 with correct working ≥ 3 terms. completely correct method except midpts \& ft their mean, dep not $\sqrt{ }$ (neg)	Not nec'y correct values $(29,33,40.5,53)$ Allow on boundaries. Not class widths Allow on boundaries. Not class widths (3364, 30492, 22963.5, 11236) Allow class widths for this mark only NB mark is not just for "- mean ${ }^{2}$ ", unlike q5(iii) $\Sigma(f x)^{2}:$ M0M0A0 If no wking for $\Sigma f x^{2}$, check using their x and f If no wking or unclear wking: full mks for each correct ans for incorrect ans: $\begin{array}{ll} 35.8 \leq \mu \leq 36.9 & \text { M0M1A0 } \\ 6.0 \leq \text { sd } \leq 6.25 & \text { M1M0A0 } \end{array}$
iv	(a) Decrease (b) Increase (c) Same (d) Same	$\begin{aligned} & \text { B1B1 } \\ & \text { B1B1 } 4 \end{aligned}$	Ignore other, eg "slightly" or "probably"	Ignore any comments or reasons, even if incorrect
Total		16		
5	If done with replacement, no marks in any pa	of this	stion.	
5 i	All correct probs correctly placed, matching labels, if any	$\text { B2 } 2$	B1 for 4 correct probs anywhere	Allow B2 with missing labels but only if probs consistently placed, ie R above B throughout
ii	$\begin{aligned} & \frac{4}{10} \times \frac{6}{9}+\frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}+\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} \\ & \text { or } \frac{4}{15}+\frac{1}{6}+\frac{1}{6} \\ & \left(=\frac{3}{5} \quad \text { AG }\right) \end{aligned}$	B2 2	B1: two of these products (or their results) added (not multiplied) or $1-\left(\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}+\frac{6}{10} \times \frac{4}{9} \times \frac{3}{8}+\frac{4}{10} \times \frac{3}{9}\right)$ or $1-\left(\frac{1}{6}+\frac{1}{10}+\frac{2}{15}\right)$	B1: 1 - two of these products (or results) added (not multiplied) NB incorrect methods can lead to correct ans AG so no wking no mks No ft from tree in (i)

iii	$\begin{aligned} & \Sigma x p \text { attempted } \\ & =\frac{16}{15} \text { oe or } 1.07(3 \mathrm{sfs}) \\ & \Sigma x^{2} p \text { attempted } \quad\left(=\frac{23}{15} \text { or } 1.53\right) \\ & \quad-\quad \text { "16 } \frac{16}{15} "^{2} \\ & =\frac{89}{225} \text { oe or } 0.39 \dot{5} \text { or } 0.396(3 \mathrm{sfs}) \end{aligned}$ Alt for $\operatorname{Var}(X)$: $\Sigma(x-\bar{x})^{2} p$	M1 A1 M1 M1 A1	Both non-zero terms $\quad \div 3$ etc or $\frac{1}{\Sigma x p}:$ M0 Both non-zero terms $\quad \div 3$ etc: or $\frac{1}{\Sigma x^{2} p}:$ M0 indep but dep +ve result Ans 0.388 : check wking but probably comes from $\mu=1.07$; premature rounding: M1M1A0 $\frac{1}{6} \times \frac{16}{15}^{2}+{\frac{3}{5} \times \frac{1}{15}^{2}+{\frac{7}{30} \times \frac{14}{15}^{2}}^{2} \text {. }{ }^{2}}$ all correct M2, 2 terms correct M1	Not $\Sigma x p^{2}$ NB easier to gain than equiv mark in qu 4(iii) not 0.395 , but check for dot over 5 for recurring
Total		9		
6ia	5040	B1 1		
b	$\begin{aligned} & 6!\text { or } 5!\times 6 \quad \text { or } 720 \\ & \div 7!\text { or } \div \text { " } 5040 \text { " or } 1440 \text { or }(5!\text { or } 6!) \times 2 \\ & =\frac{2}{7} \text { oe or } 0.286(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	$\left.$Any $\div 7!$ or " $5040 "$ but NOT any $\times 2$\right\|$^{1 / 7 \times 1 / 6} \quad$ M1* $\times 6$ or $\times 2$ M1 dep*	NOT $6!$ in denom eg $6!/ 5040$ or $1 / 7$ or 0.143 or $\frac{1}{21}$ (3 sfs): M1M1A0
iia	$3!\times 4$! alone or 144 $\begin{aligned} & (\div 7!\text { or " } 5040 ") \\ & =1 / 35 \text { oe or } 0.0286(3 \mathrm{sf}) \end{aligned}$	M1 $\text { A1 } 2$	$4 / 7 \times 3 / 6 \times 3 / 5 \times 2 / 4 \times 2 / 3 \times 1 / 2$ oe or $\overline{7 C 3 o r 7 C 4}$	Not $3!\times 4!\times \ldots($ eg not $3!\times 4!\times 5)$ not $\frac{1}{31 \times 4!}$, not $\frac{1}{144}$ NB no mark for $\div 7$! or " 5040 " in this part
b	5 seen or 5! seen $3!\times 4!\times 5$ or $5!\times 3$! or 720 or 5×144 $\begin{aligned} & (\div 7!\text { or " } 5040 ") \\ & =1 / 7 \text { oe or } 0.143(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 3	$\begin{array}{ll} \text { or } 5 \times 3 / 7 \times{ }^{2} / 6 \times \frac{1}{5}(\times 4 / 4 \times 3 / 3 \times 2 / 2) & \text { oe: M2 } \\ \text { or } 5 \times \frac{1}{7 C 3 \text { or } 7 C 4}: & \text { M2 } \\ \text { or } 5 \times \text { "(iia)": } & \text { M2 } \end{array}$	or $\mathrm{GGGBBBB}, \mathrm{BGGGBBB}, \mathrm{BBGGGBB}, \mathrm{BBBGGGB}$, BBBBGGG NB no mark for $\div 7$! or " 5040 " in this part
Total		9		

7 i	x	B1 1	Ignore explanations. "Neither" or "Both": B0	
ii	Diag showing vertical differences only State that sum of squares of these is min oe	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	Allow description instead of diag: "Distances from pts to line // to y-axis" oe dep vert or horiz lines (not both) drawn or described	Allow \geq one line, from a point to the line Must have Min, Squares, Distances \& Sum
iii	-1 Ranks opposite or reversed or perfect neg corr'n between ranks oe	B1 B1dep 2	Not approx -1 As x increases, y decreases	Allow eg: -1 because neg corr'n so ranks must be reversed Ignore other NOT neg corr'n or strong neg rel'nship oe NOT comment about "disagreement" or "agreement"
iv	$\begin{aligned} & \text { "Negative" } \\ & \text { or "Not }-1 \text { " } \end{aligned}$	B1 1	eg "Strong neg" or any negative value >-1 or "Close to -1 "	Any implication of Negative, except NOT "Negative gradient" and NOT " -1 " given as the value of r
Total		6		
8	Incorrect p (eg "cubical die means 18 sides hence $p=\frac{1}{18}$ "): can gain all B \& M marks.			
8 B	$25 / 216$ oe or 0.116 (3 sfs)	B1 1		
- ii	$\begin{aligned} & \left(\frac{5}{6}\right)^{-7} \times 1 / 6 \text { alone } \\ & =0.0465(3 \mathrm{sfs}) \text { or } \frac{78125}{1679616} \end{aligned}$		M1 for $\left(\frac{5}{6}\right)^{8} \times 1 / 6$ alone	
iii	$(5 / 6)^{8}$ oe alone $=0.233(3 \mathrm{sfs})$ or $\frac{390625}{1679616}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	$1-\mathrm{P}(X \leq 8)$, with exactly 8 correct terms	NOT $1-\left(\frac{5}{6}\right)^{8}, \quad \operatorname{NOT}\left(\frac{5}{6}\right)^{8} \times \ldots$
iv	NB If more than 5 products are added (eg P($\begin{aligned} & (5 / 6)^{9} \times 1 / 6+(5 / 6)^{10} \times 1 / 6+(5 / 6)^{11} \times 1 / 6+(5 / 6)^{12} \times 1 / 6 \\ & (=0.0323+0.0268+0.0224+0.0187) \end{aligned}$ $=0.100(3 \mathrm{sfs})$	$1 \leq X \leq 12$ M3 A1 4	: no marks M3 for all correct or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116 or M1 for ≥ 1 of these terms or values seen; ignore incorrect Allow 0.1 with wking	$\begin{array}{ll} (5 / 6)^{9}-(5 / 6)^{13} \quad \text { or } 1-(5 / 6)^{13}-\left[1-(5 / 6)^{9}\right] & \text { M3 } \\ \text { or }(5 / 6)^{8,9} \text { or } 10 \\ \text { or } 1-(5 / 6)^{12, ~ 13 ~ o r ~} 14 \\ \text { or } \pm\left[(5 / 6)^{12, ~} 13 \text { or } 14-\left[\left(1-\left(1-(5 / 6)^{8,9}-(5 / 6)^{13}\right)\right] \text { or } \pm\left[1-(5 / 6)^{9}-(5 / 6)^{13}\right]\right.\right. & \text { M1 } \end{array}$
Total		10		

Total 72 marks

Note: "(3 sf)" means "answer which rounds to ... to 3 sf". If correct ans seen to $\geq 3 \mathrm{sf}$, ISW for later rounding

Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & 0.1+0.3+2 p+p=1 \quad \text { oe } \\ & p=0.2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$		
1	(ii)	$\begin{aligned} & \sum_{x p} \\ & =2.7 \text { oe } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1f } \\ & {[2]} \\ & \hline \end{aligned}$	≥ 2 terms correct, FT p	eg $\div 4 . \mathrm{M0A} 0$
2	(i)	x because values (or depths) are fixed (or controlled or chosen or predetermined or manipulated or given oe) because they can be changed or it is changed or because it is not measured ie not "read off" oe or because we change the values ourselves	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	Allow "because it goes up in intervals" or "because it is taken at set intervals" Ignore all else NB " x is changed" B1, but " x changes" B0	NOT: x, as values are constant x, as y depends on x x as $\%$ sand depends on depth Depth, as not affected by $\%$ sand content x, as it is not dependent x, because y is measured x, because it changes y, which is the depth and this is controlled
2	(ii)	$\begin{array}{ll} \hline S_{x x}=7344-\frac{216^{2}}{9} & (=2160) \\ S_{y y}=30595-\frac{512.4^{2}}{9} & (=1422.36) \\ S_{x y}=10674-\frac{216 \times 512.4}{9} & (=-1623.6) \\ r=\frac{-1623.6{ }^{\prime \prime}}{\sqrt{\prime 21600^{\prime \prime} x^{\prime \prime} 1422.36^{\prime \prime}}} & \\ =-0.926(3 \mathrm{sf}) & \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	correct subst in any S formula correct subst in all Ss \& in r	

Question			Answer	Marks M1	Guidance	
2	(iii)	(a)	$\begin{align*} & b=\frac{"-1623.6 "}{" 2160 "} \quad \text { or }-0.75 \ldots \text { or }-\frac{451}{600} \\ & y-\frac{512.4}{9}="-0.75 \ldots "\left(x-\frac{216}{9}\right) \\ & y=-0.75 x+75(.0)(2 \mathrm{sf}) \\ & \text { or } y=-\frac{451}{600} x+\frac{5623}{75} \tag{A1} \end{align*}$	M1 M1 A1 [3]	ft $S_{x y} \& S_{x x}$ from (ii) or $a=\frac{512.4}{9}-0.75 \ldots \times\left(-\frac{216}{9}\right)$ or $\frac{5623}{75}$ 2 sf is enough Allow $y=-0.75 x+(-75)$	If ans to (i) is $y, \& x$ on y found here: $\begin{array}{ll} b^{\prime}=\frac{"-1623.6 "}{" 1422.36 "} & (=-1.14) \\ x-\frac{216}{9}="-1.14 "\left(y-\frac{512.4}{9}\right) & \text { M1 } \\ x=-1.14 y+89(.0) & \text { M1 } \\ x & \text { A1 } \end{array}$ If ans to (i) is x, but x on y found here: B1 only for $x=-1.14 y+89(.0)$
2	(iii)	(b)	r close to -1 (or high or strong), $\|r\|$ close to 1 25 within range of data oe, so reliable 100 outside range of data oe, so unreliable Must give reasons Allow "accurate" instead of "reliable"	B1 B1 B1 [3]	Allow strong or good or high corr'n or rel'nship etc or so more reliable or so less reliable $\begin{array}{ll}\text { If (ii) }\|r\|<0.7: & \\ \text { poor corr'n oe } & \text { B1f } \\ 25 \text { unreliable } & \text { B1f } \\ 100 \text { unreliable } & \text { B1f }\end{array}$	or strong neg corr'n. Award this mark even if comment linked to 100 instead of linked to 25 . BUT: " r close to -1 , so unreliable": B0 Can still score next marks if mention "within" and "outside range" or 100 gives neg \%age "Reliable because r near -1 " B1B0B0 "Small sample so unreliable" B0B0B0 Ignore all else
3	(i)		$\begin{aligned} & (1-0.12)^{13} \text { or } 13 \times(1-0.12)^{12} \times 0.12 \\ & (1-0.12)^{13}+13 \times(1-0.12)^{12} \times 0.12 \\ & =0.526(3 \mathrm{sf}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1[3] } \end{gathered}$	Either seen Fully correct method	1 - correct terms: M1M0A0
3	(ii)		$\begin{aligned} & { }^{13} \mathrm{C}_{2} \times 0.12^{2} \times(1-0.12)^{11} \\ & 2 \times{ }^{11} 0.275275 \text { " } \times(1-" 0.275275 \text { " }) \\ & =0.399(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	or 0.275(...) Correct method except allow omit " $2 \times$ "	Allow if \times or + something NB unlike $2^{\text {nd }}$ M1 in (i) which is for fully correct method NB $2 \times 0.12 \times 0.88:$ MOMOA0

Question			Answer	Marks M1 A1	Guidance	
4	(a)		$\left.\begin{array}{lllllllll}3 & 5 & 1 & 4 & 2 & 3 & 1 & 5 & 2\end{array}\right]$	M1 A1 M1 M1 A1 [5]	Attempt ranks for both variables Correct ranks May be implied by $\Sigma d^{2}=10$ $S_{x x}$ or $S_{y y}=55-\frac{15^{2}}{5}(=10)$ or $S_{x y}=50-\frac{15^{2}}{5}$ (=5) $\frac{5}{\sqrt{10 \times 10}}$	If use alphabetical order for one or both sets of ranks, M0A0. eg if $1,2,3,4,5$, seen or $\Sigma d^{2}=14$ or 16 , check carefully. But can score $2^{\text {nd }} \& 3^{\text {rd }} \mathrm{M} 1 \mathrm{~s}$. Also see example below
4	(b)		$n\left(n^{2}-1\right)$ greater or increases or becomes $(n+1)\left((n+1)^{2}-1\right)$ Σd^{2} unchanged (or not increase) Allow d^{2} unchanged r_{s} greater	B1ind B1ind B1 [3]	or "denom increases" or " \div by larger number"or "fraction decreases" or "value taken from 1 decreases" oe or $d=0$ or $d^{2}=0$ or the difference is 0 $\mathrm{dep} \geq \mathrm{B} 1$ or no explanation "Little diff between rankings so r_{s} same" or "rankings unchanged" B0B0B0	Allow increases to 6×35 NOT just " n increases" NOT $n\left(n^{2}-1\right)$ changes NOT "difference is unchanged" Use of incorrect formula can score max B1B1B0 (B0 for r_{s} greater) "Increases because more agreement" B1 only
5	(i)	(a)	$\left(\frac{6}{3}=\right) 2$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	$\left(\frac{6}{9} \times 3=\right) 2$	
5	(i)	(b)	$\begin{aligned} & 2 / 6 \times 2 \\ & =\frac{2}{3} \text { oe or } 0.667 \text { or } 0.67 \text { or } 0.7 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1[2] } \end{gathered}$	Allow $2 / 5 \times 2$ or ans 0.8 for M1	Can be implied, eg $\frac{1}{3}=0.3$, ans 0.6 : M1A0 Allow 0.66 or 0.666

Question			Answer	Marks B1 B1 $[2]$	Guidance	
5	(ii)		$\begin{aligned} & (3.5,6) \\ & (0.5,0) \text { or }(6.5,15) \end{aligned}$		Ignore incorrect	$(6,3.5)$ AND (15, 6.5): B1
5	(iii)	(a)	$\begin{array}{ll} \frac{\Sigma x f}{21} & \\ =5.43(3 \mathrm{sf}) & \text { or } \frac{114}{21} \text { or } \frac{38}{7} \text { oe } \\ \frac{\Sigma x^{2} f}{21} & \text { or } \frac{817.5}{21} \text { or } 38.9 \ldots \\ \\ - \text { " } 5.43 " 2 & \text { or }=9.46 \text { or } 9.4592 \ldots \\ \left(\sqrt{9.4592 \ldots)} \begin{array}{ll} 3.08(3 \mathrm{sfs}) & \end{array}\right. \\ & \\ \hline \end{array}$	M1 A1 M1 M1 A1 [5]	Allow x within classes, incl end pts $\text { then } \div 5 \text { : M0A0 }$ Allow x within class, incl end pt $\quad \div 5$: M0 dep +ve result; done before $\sqrt{ }$; not $-\left(\bar{x}^{2} \div \ldots\right)$	≥ 2 non-zero terms correct ft their x ≥ 2 non-zero terms correct ft their x Calc 4 values of $(x-\bar{x})^{2}$ or $(x-\bar{x})^{2} f$ or (11.8, 0.184, 6.61, 50) or $(70.5,1.65,26.4,100)$ or 199 M1 $\frac{\Sigma(x-\bar{x})^{2} f}{21}$ fully correct method M1
5	(iii)	(b)	Actual values or exact hours unknown oe Don't have raw data. oe or measured to nearest hour oe	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	or Data given in classes or grouped oe or Data evenly distributed in classes oe	Mid-points or medians or averages of class boundaries used oe

Question		Answer	Marks	Guidance	
6	(i)	V because [probs or values or geometric or etc] decreasing or halving or Highest prob is 1st Allow if word "decreasing" or "halving" or "sloping downwards" or any equivalent seen NOT "Positive skew"	B1 B1 [2]	X because mode $=1$ oe or Highest prob is $\mathrm{P}(1)$ oe B2 Z because $P(0)=0$ or variable can't be 0 oe Allow "Geo distr'n cannot be zero" oe B2 "None of them": Ignore any reason given. B2	For answer V the first B1 is indep, but not for other answers, ie: V with no reason or incorrect reason scores B1B0, but Z or X or any other letter with no reason or incorrect reason scores B0B0. In all cases, once mark(s) have been scored, ignore all other comments.
6	(ii)	Y. Peaks at 2 Y. Like normal, peak at 2 Y. Highest prob is middle one (or is at 2) Y. $\mathrm{P}(X=2)$ is max Y. Increase to 2 then decr Y. 14641 alone or with $0.5^{4} \times$ Y. $0.0625,0.25,0.375,0.25,0.0625$ Y. $P(1)=P(3)$ and $P(2)$ is greater/different or equiv of any of the above	B1B1B1	Ignore all else	If values of some probs listed: For $3^{\text {rd }} \mathrm{B} 1$ must link list with Y diag, eg "symmetrical" or "peak in middle" or "peak at 2 " or " $1^{\text {st }}=$ last" or " $2^{\text {nd }}=4^{\text {th" }}$ "same shape as Y diag". etc etc
		If none of the above applies: Any implication that values not all equal eg: Not uniform or values increase (then decrease) or there is a peak Symmetrical or mirror image oe or ${ }^{4} \mathrm{C}_{0}={ }^{4} \mathrm{C}_{4}$ or $2 \mathrm{nd}=4$ th or similar or mean $=2$, or $\mathrm{E}(X)=2$, or 2 is hi'est prob, or peak at 2 , or peak is middle value Y	B1 B1 B1 [3]	${ }^{4} \mathrm{C}_{0},{ }^{4} \mathrm{C}_{1},{ }^{4} \mathrm{C}_{2}$, etc indep indep indep	

Question			Answer	Marks	Guidance	
7	(i)		Geo(0.6) or $\mathrm{G}(0.6)$ or Geo with $p=0.6$ P (woman) const or chance of woman const Each voter has same prob Whether one voter is a woman is indep of whether any other is a woman	B1B1 B1 B1 [4]	Allow Geo(60\%) B1B1 or \%age of women is constant Allow: "voter(s) independent", "Men \& women are independent" " $\mathrm{P}($ woman $)$ is indep" "Each woman is indep"	Bin(..., 0.6) B0B1. Can still score comment marks In context Allow "vote indep" In context (EACH comment must be in context) Ignore all else
7	(ii)		$\begin{aligned} & 0.4^{3} \times 0.6 \\ & ={ }^{24} / 625 \text { or } 0.0384 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1f } \\ {[2]} \\ \hline \end{gathered}$	ft their $\operatorname{Geo}(p)$ from (i) ft their $\operatorname{Geo}(p)$ from (i)	Allow $0.3^{3} \times 0.6$ (but no other $q^{3} \times 0.6$) eg if $p=0.4$, ans 0.0864 M1A1f
7	(iii)		0.4^{3} alone, or $\left(0.4^{4}+0.4^{3} \times 0.6\right)$ or $\left(0.4^{4}+\right.$ (ii)) $=8 / 125 \text { or } 0.064$	M1 A1f [2]	$\begin{aligned} & 1-\left(0.6+0.4 \times 0.6+0.4^{2} \times 0.6\right) \\ & \quad \quad \text { allow extra term } \\ & \left.0.4^{3} \times 0.6\right) \quad \\ & \mathrm{ft} \text { their } \operatorname{Geo}(p) \text { from (i) } \\ & \mathrm{ft} \text { their } \mathrm{Geo}(p) \text { from (i) } \end{aligned}$	Allow M1 for 0.4^{4} alone (= 0.0256) M0 for $0.4^{r} \times 0.6$ and for $1-0.4^{3}$ eg if $p=0.4$, ans 0.216 M1A1f
8	(i)		Binomial stated $\begin{aligned} & 1-0.9648 \\ & =0.0352(3 \mathrm{sfs}) \quad \text { or } 9 / 256 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	or implied by $\mathrm{C} \times 0.5^{r}$ or use of table or ${ }^{8} \mathrm{C}_{7} \times 0.5^{7} \times 0.5+0.5^{8}$ fully correct method	or $0.5^{7} \times 0.5+0.5^{8}$ or $0.5^{8}+0.5^{8}$ $1-\left(0.5^{8}+8 \times 0.5^{8}+{ }^{8} \mathrm{C}_{2} 0.5^{8} \ldots\right)$ all correct
8	(ii)	(a)	$\begin{aligned} & { }^{22} \mathrm{C}_{11} \times 0.5^{11} \times 0.5^{11} \\ & =0.168(3 \mathrm{sfs}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Fully correct method. Not ISW	eg 0.168^{2} or 2×0.168 or 1-0.168: M0A0

Question			Answer	Marks M1	Guidance	
8	(ii)	(b)	$1-" 0.168 "$ $\begin{aligned} & 1 / 2(1-" 0.168 ") \\ & =0.416(3 \mathrm{sfs}) \end{aligned}$		or $0.5^{22}\left({ }^{22} \mathrm{C}_{12}+{ }^{22} \mathrm{C}_{13}+{ }^{22} \mathrm{C}_{14}+\ldots+22+1\right)$ All 11 correct terms seen, or correct ans: M2 or $\mathrm{P}(X=12,13, \ldots 21,22)$ stated or implied with ≥ 2 terms shown or one extra term M1	or $1-\left({ }^{22} \mathrm{C}_{12}+{ }^{22} \mathrm{C}_{13}+{ }^{22} \mathrm{C}_{14}+\ldots+22+1\right)$ 1 - all 12 correct terms or similar marks for $\mathrm{P}(X=10,9,8 \ldots 0)$
9	(i)	(a)	$\begin{array}{lll} { }^{9} \mathrm{P}_{4} & \text { or }{ }^{9!} / 5! & \text { or }{ }^{9} \mathrm{C}_{4} \times 4! \\ =3024 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	alone	oe eg ${ }^{9} \mathrm{C}_{1} \times{ }^{8} \mathrm{C}_{1} \times{ }^{7} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1} \quad$ or $9 \times 8 \times 7 \times 6$
9	(i)	(b)	$\begin{aligned} & { }^{8} \mathrm{P}_{3} \text { or } 8 \times 7 \times 6 \text { oe or }{ }^{8} \mathrm{C}_{3} \times 3! \\ & \times 5\left(\text { or }{ }^{5} \mathrm{C}_{1}\right) \\ & =1680 \end{aligned}$	M1 M1 A1 [3]	$\begin{aligned} & \text { Allow } \times \ldots \text { or } \div \ldots . \\ & \text { Correct } \times 5 \text { or }{ }^{8} \mathrm{C}_{3} \times 5\left(\text { or }{ }^{5} \mathrm{C}_{1}\right) \end{aligned}$ Not ISW, eg ${ }^{1680 / 3024}$: M1M1A0	or (${ }^{9} \mathrm{P}_{4}$ or " 3024 ") $\times \frac{5}{} / 9 \mathrm{M} 2$
					SC: consistent use of with replacement in (i) (or if only (a) or (b) attempted) (ia) M0A0 (ib) 999×5 or 4995 M1 M0A0	

Question			Answer	Marks	Guidance	
9	(ii)	(a)	$\begin{aligned} & { }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1} \text { or }{ }^{5} \mathrm{C}_{4} \text { oe } \\ & { }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{4} \text { oe correct method so far } \\ & \div \quad \text { Allow anything } \div{ }^{9} \mathrm{C}_{4} \\ & ={ }^{9} \mathrm{C}_{4} \quad(=45 \\ & ={ }^{5} / 14 \text { or } 0.357(3 \mathrm{sfs}) \text { oe, } \mathrm{eg}^{35} / 98 \text { or }{ }^{45} / 126 \end{aligned}$	M1 M1 M1 A1 [4]	$\begin{aligned} & { }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1} \times 4!\left(\text { or }{ }^{5} \mathrm{P}_{3} \times 4 \times 4\right) \text { or } 5!\left(\text { or }{ }^{5} \mathrm{P}_{4}\right) \\ & 960+120 \text { oe correct method so far } \\ & \div{ }^{9} \mathrm{P}_{4} \quad \text { [must involve any P or any !] } \div{ }^{9} \mathrm{P}_{4} \end{aligned}$ Marks must come from one method, not mixture of two methods	$\begin{aligned} & 5 / 9 \times 4 / 8 \times 3 / 7 \times 4 / 6 \quad \text { Allow } \times \text { or }+\ldots \\ & \times 4 \quad \text { correct method so far } \\ & \\ & 5 / 9 \times 4 / 8 \times 3 / 7 \times 2 / 6 \quad \text { Allow } \times \text { or }+\ldots \\ & \text { or: } \\ & 5 / 9 \times 4 / 8 \times 3 / 7 \times 4 / 6 \text { or } 5 / 9 \times 4 / 8 \times 3 / 7 \quad \text { M1 } \\ & 5 / 9 \times 4 / 8 \times 3 / 7 \times 4 / 6 \times 3+5 / 9 \times 4 / 8 \times 3 / 7 \text { M1 } \\ & \text { NB } 5 / 9 \times 4 / 8 \times 3 / 7 \times 3=5 / 14 \text { M0MOM0A0 } \\ & \hline \end{aligned}$
9	(ii)	(b)	$\begin{aligned} & 9,8,7,4 \text { or } 9,8,6,5 \quad \text { No mark yet } \\ & 2 \\ & \div{ }^{9} \mathrm{C}_{4} \text { oe } \\ & ={ }^{1} / 63 \text { oe or } 0.0159(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	$1 / 9 \times 1 / 8 \times 1 / 7 x^{1 / 6}: 4 / 9 x^{3} / 8 x^{2} / 7 \times 1 / 6 \quad$ Allow \times or $+\ldots$ $\times 4!\times 2 \quad!\times 2 \quad$ fully correct method NB Marks from one method only, not mixed methods	$\begin{aligned} & 4!+4!\text { or } 2 \times 4 \text { ! oe } \\ & \div{ }^{9} \mathrm{P}_{4} \text { or } \div(\mathrm{i})(\text { a) oe } \\ & \quad \text { Must be (} 96 \text { or } 48 \text { or } 24) \div{ }^{9} \mathrm{P}_{4} \\ & \quad \\ & \begin{array}{l} 2 / 9 \times 2 / 8 \times 1 / 7 \times 1 / 6 \quad \text { allow } \times \text { or }+\ldots \end{array} \text { M1 } \\ & \times 4!/ 4 \times 2 \quad \text { fully correct method } \end{aligned}$
					SC: consistent use of with replacement in (ii), (or if only (a) or (b) attempted) (iia) $\begin{array}{ll} (5 / 9)^{4} & \text { M1 } \\ +{ }^{4} \mathrm{C}_{3}(5 / 9)^{3}(4 / 9)(=0.400) & \text { M1 } \end{array}$ (iib) $\left(\frac{1}{9}\right)^{4} \quad(=0.000152) \quad$ M1 attempt find no of gps M1A0	$1-\left((4 / 9)^{4}+4(4 / 9)^{3}(5 / 9)+{ }^{4} \mathrm{C}_{2}\left({ }^{4} / 9\right)^{2}(5 / 9)^{2}\right) \quad \text { M2 }$ One term missing or extra or wrong M1

Question		Answer	Marks	Guidance	
1	(i)	$\begin{array}{lc} \begin{array}{lc} \Sigma x=1366 & \Sigma y=17.6 \\ \Sigma x y=4784.8 & \Sigma x^{2}=374460 \\ & \Sigma y^{2}=62.82 \\ S_{x x}=374460-\frac{1366^{2}}{5} & \text { or } 1268.8 \\ S_{y y}=62.82-\frac{17.6^{2}}{5} & \text { or } 0.868 \\ S_{x y}=4784.8-\frac{1366 \times 17.6}{5} & \text { or }-23.52 \\ r=\frac{-23.52}{\sqrt{1268.8 \times 0.868}} & \text { or } \frac{-23.52}{33.186 \ldots} \\ =-0.709(3 \mathrm{sfs}) & \text { oe } \\ = \end{array} \end{array}$	B1 M1 M1 A1 [4]	any three correct; may be implied by $2 S$'s OR, using S_{x} $\bar{x}=\frac{1366}{5}$ or 27 $(-23.2)^{2}+(-3.2$ correct sub in any correct S formula, ft $\Sigma \mathrm{s}, \bar{x}, \bar{y}$ $0.68^{2}+0.18^{2}$ $(-23.2) \times 0.68+(-32)$ corr sub into $3 S \mathrm{~S}$ and r, ft $\Sigma \mathrm{s}, \bar{x}, \bar{y}$ If no workin cao -0.71 : SC 3;	$=\Sigma(x-\bar{x})^{2}$ etc: $73.2, \bar{y}=\frac{17.6}{5}$ or 3.52 , either:B1 $3.2)^{2}+(-9.2)^{2}+16.8^{2}+18.8^{2}$ $(-0.32)^{2}+(-0.02)^{2}+(-0.52)^{2}$ $2) \times 0.18+(-9.2) \times(-0.32)+16.8 \times(-0.02)$ $+18.8 \times(-0.52)$ seen: -0.7 : SC 1
1	(ii)		M1 M1 A1 A1ft [4]	ft their $S_{x y} \& S_{x x} \& \Sigma$ from (i) or $a=\frac{" 17.6 "}{5}-"(-0.0185) " \times \frac{" 1366 "}{5}$ if a incorrect, must see method for M1 cao; must be " $y=$..." coeffs that round to $-0.019 \& 8.6$ to 2 sfs ft their $y \times 1000$, dep M1M1, dep sub 280 (not 280000) Allow "k" for thousand No working, ans in range: M1M1A0A1	use of x on y line: 3277 or 3278
1	(iii)	There may be other factors oe Correlation does not imply causation oe	B1 [1]	or any suggestion of another factor that could be involved, eg Depends on state of the economy oe Must state or clearly imply: EITHER corr'n does not imply causation OR there could be another factor involved Ignore all else	NOT: Tourists \& sales not nec'y linked Sales are not entirely dep on tourists Could be a coincidence Might be different other years More tourists wd incr sales -0.8 is not strong corr'n Only shows good neg corr'n Sample is small Could be affected by extremes Neg corr'n not nec'y imply neg relnship

6

Question		Answer	Marks	Guidance	
2		$\begin{aligned} & \frac{1.4}{50} \\ & 1.5+\frac{1.4}{50} \\ & =1.528 \text { or } \frac{191}{125} \text { or } 1.53(3 \mathrm{sf}) \\ & \frac{0.05}{50}-\left(\frac{1.4}{50}\right)^{2} \\ & \sqrt{0} .000216 \\ & =0.0147(3 \mathrm{sf}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { dep M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	$\begin{aligned} & 1.4+50 \times 1.5 \quad(=76.4) \\ & \frac{' 76.4^{\prime}}{50} \\ & \\ & \left(\Sigma x^{2}-2 \times 1.5 \times \times^{\prime} 76.4^{\prime}+50 \times 1.5^{2}=0.05\right) \\ & \left(\Rightarrow \Sigma x^{2}=116.75 ; \text { no marks yet }\right) \\ & \frac{0.05+2 \times 1.5 \times^{\prime} 76.4^{\prime}-50 \times 1.5^{2}}{50}-' 1.528^{\prime 2} \text { all correct } \end{aligned}$ fully correct method, ie nothing added etc cao not isw	eg $\frac{1.4+1.5}{50}$ M0M0A0 not $\frac{0.05}{50}-{ }^{\prime} 1.528^{\prime 2}$
3	(i)	23	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	Allow 22.5	NOT 22 (ie $3.5^{\text {h }}$ no) Correct ans is the $4^{4 \mathrm{t}}$ or $3.75^{\text {h }}$ no.
3	(ii)	$\begin{array}{\|l\|} \hline 0 \\ 0 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	B1 for 30, 30	
3	(iii)	38 or 40 39 40.75	B2 [2]	B1 for 38 or 39 seen B2 for $38 \& 39$ seen alone, not in a range 40, 40.75: similar scheme as for 38,39	

Question		Answer	Marks	Guidance	
3	(iv)	Shows all the data or you can see all the values oe You can see the actual/exact/indiv numbers/values/results No data is lost oe Shows the shape of the distribution oe Can perform calculations of your choice (eg mean) Shows which group (or class, NOT value) has the highest frequency (or is the mode) oe	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	any implication of all the data or the actual numbers/values/results or similar eg Can compare each indiv result Easier to see the numbers eg can find frequencies No mks for ans to (v) given in (iv) unless labelled as (v)	NOT Shows the spread/skew/trend Any comment on skew You can see the actual frequ's Easier to compare sets of data Shows more info or more data Easier to read off the data Ignore all other
3	(v)	Shows the median or it's easier to see the median (or quartiles or IQR) It can measure the middle 50% easily	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	eg Shows mean and quartiles B1 Shows range and median B1 No mks for ans to (v) given in (iv) unless labelled as (v) Ignore all other	NOT Shows the spread/skew/trend Can see data in diag form Shows max or min or range Easier to compare sets of data Not affected by outliers Easy to see outliers Shows s.d. or shows mean Can see important data items/measures
4	(i)	Top: 2 branches $\frac{4}{5}, \frac{1}{5} \& R$, B shown Bottom: $1^{\text {st }}$ branch: prob $=1$ or $\frac{5}{5}, \& R$ shown no $2^{\text {nd }}$ branch OR branch with prob $=0$ or $\frac{0}{5}$	B1 B1 [2]	consistent allow eg $\frac{4}{4}$ ignore any $3^{\text {rd }}$ layer branches	Any missing label(s) on first three branches, subtr B1 once No label needed on zero branch, if drawn.

Question			Answer	Marks	Guidance	
4	(ii)		$\begin{aligned} & \frac{5}{6} \times \frac{1}{5} \text { or } \frac{1}{6}(\times 1) \text { or } \frac{1}{6} \text { seen } \\ & \frac{5}{6} \times \frac{1}{5}+\frac{1}{6}(\times 1) \\ & \frac{1}{3} \quad \text { oe } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	all correct cao	or $1-\frac{5}{6} \times \frac{4}{5}$ or $1-\frac{2}{3} \quad$ M2 ft incorrect tree dep probs ≤ 1 if $3^{\text {rd }}$ tree prob $=1$, (ii)M1M1A0 if $3^{\text {rd }}$ tree $\operatorname{prob} \neq 1$, (ii)M1M0A0 NB!! $2 \times \frac{5}{6} \times \frac{1}{5}=\frac{1}{3}$ M1M0A0
4	(iii)		$\frac{4}{5} \times \frac{3}{4}+\frac{1}{5}(\times 1)$ or $\quad 1-\frac{4}{5} \times \frac{1}{4}$ or $1-0.2$ all correct $=\frac{4}{5}$ or 0.8 oe	M1 A1 [2]	or $\left(\frac{5}{6} \times \frac{4}{5} \times \frac{3}{4}+\frac{5}{6} \times \frac{1}{5}\right) \div \frac{5}{6}$ all correct May be seen without working M1A1 cao	but $\frac{5}{6} \times\left(\frac{4}{5} \times \frac{3}{4}+\frac{1}{5}\right) \quad$ M0 ft incorrect tree: (iii) M1A0
5	(i)	(a)	1	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		NOT close to 1
5	(i)	(b)	-1	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		NOT close to -1
5	(ii)		Σd^{2} attempted $\quad(=10)$ $1-\frac{6 \times \Sigma d^{2}}{4\left(4^{2}-1\right)}$ $=0$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	if $\Sigma d^{2}=10$, may be implied by next line if $\Sigma d^{2} \neq 10$, must see working dep M1 Use of ($\Sigma d)^{2}$ M0M0A0	$\begin{array}{lll} S_{x x} \text { or } S_{y y}=30-\frac{100}{4} & (=5) & \text { or } \\ S_{x y}=25-\frac{100}{4} & (=0) & \text { M1 } \\ \frac{0}{\sqrt{5 x 5}} & & \text { M1 } \end{array}$

Question			Answer	Marks	Guidance	
6			$\begin{aligned} & (1-0.1) \div 5 \quad(=0.18) \\ & 3 \times 0.18 \text { or } 2 \times 0.18 \text { or } 7 \times 0.1 \text { (or result of these)(poss } \times 100) \\ & (3 \times 0.18 \text { only scores if using } £ 3, \text { not } \text { score of } 3 \text {. Similarly for } 2 \times 0.18) . \\ & 4 \times 3 \times 0.18 \text { AND } 2 \times 0.18+7 \times 0.1 \quad(\text { poss } \times 100) \\ & (\text { or } 2.16 \text { AND } 1.06 \text { or } 216 \text { AND } 106) \\ & \text { '2.16' }-1.06 \text { ' or ' } 216 \text { ' }-106 \prime \\ & \underline{\text { must be attempt gain on } 1,2,3,4-\text { loss on } 5,6} \\ & \text { E(profit for } 100 \text { rolls) }=(£) 110 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { dep } \\ \text { dny M1 } \\ \text { A1 } \end{gathered}$	can be implied, eg by 18 5×0.18 or 10×0.1 (or result of these) $($ poss $\times 100$) 3 AND $5 \times 0.18+10 \times 0.1 \quad$ (poss $\times 100$) (or 3 AND 1.9 or 300 AND 190) 3 - ' 1.9 ' or 300 - ' 190 ' must be attempt receipt - payout on 5,6 $\mathrm{E}($ profit for 100 rolls $)=(£) 110$ NB $300-(0.1 \times 300+0.18 \times 300)=300-84=216$ M1M1M0M0A0	or, using exp no. of 5's \& 6's 18×5 or 10×10 300 AND $18 \times 5+10 \times 10$ (NB $300+100 \times 0.18+100 \times 0.1$ is insuff) Eg: $300-100 \times(5 \times 0.18+\underline{\mathbf{6}} \times 0.1)=150$ M1M1M0M1A0 Mark one method only Must be matched pair eg 300-106 or 216-190: M1M1M0M0A0
7	(i)	(a)	${ }^{7} \mathrm{P}_{5}$ or $\frac{7!}{2!}$ or $7 \times 6 \times 5 \times 4 \times 3$ or ${ }^{7} \mathrm{C}_{5} \times 5$! alone $=2520$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	${ }^{7} \mathrm{P}_{2}$ or $\frac{7!}{2!} \mathrm{M} 0 \mathrm{~A} 0$	$\begin{aligned} & { }^{7} \mathrm{C}_{5}=21 \text { or } 5!=120 \text { M0A0 } \\ & \text { but see (i)(b) } \end{aligned}$
7	(i)	(b)	$\begin{aligned} & { }^{6} \mathrm{P}_{4} \text { or } \frac{6!}{2!} \text { or } 6 \times 5 \times 4 \times 3 \text { or }{ }^{6} \mathrm{C}_{4} \times 4 \text { ! or } 360 \\ & \times 2 \text { (see middle column) } \\ & \\ & =720 \end{aligned}$	M1 M1 A1 [3]		or ' 2520 ' $-5 \times{ }^{6} \mathrm{P}_{4} \mathrm{M} 2$ SC ONLY on ft from (i)(a): if (i)(a) $5!=120$, then (i)(b) $4!\times 2=48$ alone M1M0A0 Other $\mathrm{SC}^{5} \mathrm{P}_{3} \times 2 \quad \mathrm{M} 2$ (from a vowel at each end, ie treat as MR) NOT isw eg $\frac{720}{12520^{\prime}}=\frac{2}{7}$ M1M1A0
7	(ii)	(a)	21	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		

Question			Answer	Marks	Guidance	
7	(ii)	(b)	${ }^{5} \mathrm{C}_{3}$ or $\frac{5!}{3!2!}$ $\frac{{ }^{5} \mathrm{C}_{3}}{5} \mathrm{C}_{5}$ seen or 10 seen in num $\frac{{ }^{5} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{5}}{}$ $\frac{10}{11}$ or $0.909(3 \mathrm{sf})$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	$\begin{aligned} & \frac{5}{7} \times \frac{4}{6} \text { oe seen } \\ & \frac{5}{7} \times \frac{4}{6} \div\left(\frac{5}{7} \times \frac{4}{6}+\frac{2}{7} \times \frac{1}{6}\right) \end{aligned}$	Allow ${ }^{5} \mathrm{C}_{2}$ seen BOD
8	(i)		$\begin{array}{\|l} 1-0.1754 \text { alone } \\ =0.825(3 \mathrm{sfs}) \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Allow 1-0.2855 or 0.7145 or 0.715 alone	
8	(ii)	(a)	$\begin{aligned} & { }^{4} \mathrm{C}_{2} \times 0.7^{2} \times 0.3^{2} \\ & =\frac{1323}{5000} \text { or } 0.265(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	All correct	
8	(ii)	(b)		B1 M1 M1 M1 M1 A1 [6]	Both needed ie $3 \times$ their $\mathrm{P}(4) \times(\text { their } \mathrm{P}(3))^{2}$ ie $3 \times$ (their $\mathrm{P}(4))^{2} \times$ their $\mathrm{P}(2) \mathrm{ft}(\mathrm{ii})(\mathrm{a})$ For M mks ignore extra combs eg $\mathrm{P}(4,4,3)$ If $\mathrm{B}(30,0.6)$ clearly being used: Any 5 combs adding to 10 seen $\mathrm{P}(8)={ }^{30} \mathrm{C}_{8} \times 0.4^{22} \times 0.6^{8}$ or 0.0002 $\mathrm{P}(9)={ }^{30} \mathrm{C}_{9} \times 0.4^{21} \times 0.6^{9}$ or 0.0007 $\mathrm{P}(10)={ }^{30} \mathrm{C}_{10} \times 0.4^{20} \times 0.6^{10}$ or 0.0020 all three correct M2 or two correct M1 No more marks	if " $3 \times$ " omitted twice or " 3 ! \times " qused twice allow M1M0 $\zeta e g$ ans $0.0560,0.0559,0.336$, probably B1M1M1M1M0A0 but must see method

Question			Answer	Marks	Guidance	
9	(i)	(a)	Geo stated or implied $0.9^{5} \times 0.1$ alone $=0.059(0 \ldots)(2 \mathrm{sfs})$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	eg by $0.9^{p} \times 0.1$ or $0.1^{p} \times 0.9$ alone, $p>1$ all correct	
9	(i)	(b)	$\begin{aligned} & 0.9^{5} \text { or } 0.59 \ldots \quad(\mathrm{NB} \text { cf ans to (i)(a)!!) } \\ & 1-0.9^{5} \\ & =0.4095 \text { or } 0.410(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	$\begin{aligned} & 0.1+0.9 \times 0.1+\ldots 0.9^{4} \times 0.1: \text { M2 } \\ & 1 \text { term wrong or omit or extra } \\ & \quad \text { or } 1-(\text { all terms correct }): \quad \text { M1 } \\ & \text { or } 1-0.9^{6}: \end{aligned}$	M0M0A0 for $0.9^{p} \times 0.1$
9	(ii)	(a)	$\begin{aligned} & 0.05+0.95^{2} \times 0.05 \\ & =\frac{761}{8000} \text { or } 0.0951(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	All correct	$\begin{array}{r} \mathrm{NB}!!2 \times 0.95 \times 0.05=0.095 \\ \mathrm{M} 0 \mathrm{~A} 0 \end{array}$
9	(ii)	(b)	$0.05,0.95^{2} \times 0.05, \ldots \quad$ or $\frac{1}{20}, \frac{361}{8000}, \ldots$ oe $\begin{aligned} & \frac{0.05}{1-0.95^{2}} \text { or } \frac{0.05}{1-0.9025} \text { oe } \\ & =\frac{20}{39} \text { or } 0.513(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	≥ 2 terms. Not nec'y added May be implied by next line or $\frac{0.05}{1-(1-0.5)^{2}}$ or $\frac{0.05}{2 \times 0.05-0.05^{2}}$ or $\frac{1}{1.95}$ oe	or $r=0.95^{2}$ stated or implied $\text { NB } \frac{0.05}{1-0.5 \times 0.05}=0.0513 \mathrm{M} 0 \mathrm{~A} 0$

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 s f s$, ISW for later rounding. Penalise over-rounding only once in paper.
" 3 sf" means "answer which rounds to ... to 3 sf". Penalise over-rounding if no better answer is seen and penalise only once in the paper.

Question		Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { M1 } \end{gathered}$	Guidance	
1	(i)	$\begin{align*} & 2 k+4 k+6 k+8 k=1 \\ & k=\frac{1}{20} \text { AND } \quad 6 \times \frac{1}{20}=\frac{3}{10} \tag{AG} \end{align*}$	M1 A1 [2]	$\text { or } 2+4+6+8=20$ Must see both for A1 $\begin{gather*} \text { or } 2 k+4 k+6 k+8 k=20 k \\ \mathrm{P}(X=6)=\frac{6 k}{20 k}=\frac{3}{10} \tag{A1} \end{gather*}$	Must see correct wk'g for $k=\frac{1}{20}$, otherwise M0A0 NB $k \times 6=\frac{3}{10} \Rightarrow k=\frac{1}{20}$ M0A0 (even if tested by showing that $k=\frac{1}{20}$ gives $\Sigma p=1$) Just showing $\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+\frac{4}{10}=1$ M0A0
1	(ii)	$\begin{aligned} & 2 \times \frac{1}{10}+4 \times \frac{2}{10}+6 \times \frac{3}{10}+8 \times \frac{4}{10} \text { oe } \\ & =6 \\ & 2^{2} \times \frac{1}{10}+4^{2} \times \frac{2}{10}+6^{2} \times \frac{3}{10}+8^{2} \times \frac{4}{10} \text { oe }(=10) \\ & -6^{\prime 2} \\ & =4 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [5] } \\ & \hline \end{aligned}$	```\geq3 terms correct ft their values of p, dep }\Sigmap= cao \geq 3 \text { terms correct; ft their values of p;} dep }\Sigmap= ft their values of p; dep +ve result & \Sigmap=1 cao```	Allow i.t.o. k for M1 $\quad \div 4 \mathrm{M} 0$ Allow ito k for M1M1 $\div 4$ M0 NOT - $\mathrm{m}^{2} \div 4$ $\sqrt{ } 4=2$ lose final A1, not ISW, unless labelled sd
2	(i)	$\begin{aligned} & \frac{3}{4}+\frac{1}{4} \times \frac{3}{8} \\ & \quad+\frac{1}{4} \times \frac{5}{8} \times \frac{3}{16} \\ & =\frac{447}{512} \text { or } 0.873(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { [3] } \end{aligned}$	$\begin{aligned} & \frac{1}{4} \times \frac{5}{8} \times \frac{13}{16} \quad\left(=\frac{65}{512} \text { or } 0.127\right) \\ & 1-\frac{1}{4} \times \frac{5}{8} \times \frac{13}{16} \end{aligned}$	
2	(ii)	$\begin{aligned} & 0.6 p \text { or equiv seen } \\ & 0.4+0.6 p=0.58 \\ & p=0.3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Tree diag alone insufficient for mark. Or $0.6 p=0.18$. " 0.18 " alone insufficient	NB $0.6 \times 0.3=0.18$ seen at the end is probably a check, not an answer. But if 0.3 seen and 0.18 is very clearly indicated as the ans then B1M1A0

Question		Answer	Marks	Guidance	
3	(i)	$\begin{array}{ll} S_{x x}=8700000-\frac{7000^{2}}{6} & (=533333) \\ S_{x y}=509900-\frac{7000 \times 456}{6} & (=-22100) \\ b=-\frac{22100 "}{" 533333 "} \text { or }-\frac{663}{16000} & (=-0.0414) \\ y-\frac{456}{6}="-0.0414 "\left(x-\frac{7000}{6}\right) \\ y=-0.0414 x+124(3 \mathrm{sf}) & \end{array}$	M1 M1 M1 A1 [4]	Correct subst' n in any correct S formula Correct subst' n in any correct b formula from two correct S formulae ft their b except if using r or $y=-\frac{663}{16000} x+\frac{3979}{32} \quad$ or $y=-0.041 x+124$	or $a=\frac{456}{6}-("-0.0414 ") \times \frac{7000}{6}$ oe ft " b " Allow $y=-0.04 x+124$ if $-0.041 \ldots$ seen above
3	(ii)	70 to 72	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	or 71 per thousand, NOT 71000	No ft from (i) Ignore method
3	(iii)	Extrapolation oe Corr'n not high or small sample	B1 B1 [2]	 Poor corr'n oe, or pts not close to line oe $2^{\text {nd }}$ B1	"Line only allows for countries poorer than Nigeria" $\quad 1^{\text {st }} \mathrm{B} 1$ Allow "Value for Nigeria is -ve $1^{\text {st }} \mathrm{B} 1$ NOT "Other factors may apply" oe Ignore all else
3	(iv)	$\begin{aligned} & S_{x x}=8700000+1300^{2}-\frac{(7000+1300)^{2}}{7} \\ & S_{y y}=36262+96^{2}-\frac{(456+96)^{2}}{7} \\ & S_{x y}=509900+1300 \times 96-\frac{8300 \times 552}{7} \\ & r=\frac{"-19814.3^{"}}{\sqrt{5548571 " \times 1948.86 "}} \\ & =-0.606(3 \mathrm{sf}) \end{aligned}$	M1 A1 M1 A1 [4]	or $10390000-\frac{(8300)^{2}}{7}=\frac{3840000}{7}$ or 548571 or $45478-\frac{552^{2}}{7}=\frac{13642}{7}$ or 1948.86 or $634700-\frac{8300 \times 552}{7}=-\frac{138700}{7}$ or -19814.3 Correct subst' n in any correct r formula from 3 correct subs in 3 correct S formulae, ie all correct method	Correct sub in any correct S formula M1 Correct value of any S seen or implied by r A1 SC If $n=6$, but otherwise correct allow M1A0M1A0 (ans $r=-0.574$, must see wking)

Question			Answer	Marks	Guidance	
3	(v)		No effect oe	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	Stay the same oe Allow just "No"	Ignore all else
4	(i)	(a)	6	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		
4	(i)	(b)	$3 \times 3 \times 3$ $=27$	M1 A1 [2]	$3!+7 \times 3 \quad 3+3 \times 6+6 \quad 3!\times 4+3$ Complete correct method. Allow methods equiv to these. Only allow other methods if they appear correct	$\begin{aligned} & \text { (Explanation for 3! } \times 4+3 \text { : } \\ & \text { 123: 3!, } 112 \& 122: 3!, 223 \& 233: \\ & \text { 3!, } 331 \& 311: 3 \text { ! } \\ & \text { 111, 222, 333: } 3 \text { Candidates need } \\ & \text { not include this) } \end{aligned}$
4	(i)	(c)	$\text { (i)(b) }-3$ If answer is not 24 , this method must be explicitly stated in order to give M1A1ft $=24 \quad \text { ft their (i)(b) }$	M1 A1ft [2]	or $3!+6 \times 3$ or $3!+3!\times 3$ or $6+3!\times 3!\div 2$! or $3!\times 4$ Complete correct method. Allow methods equiv to these. Only allow other methods if they appear correct	or 8×3 (Explanation: there are 8 possible orders starting with 1. Candidates need not include this)
4	(ii)		eg 1123: $\frac{4!}{2!} \times 3$ alone allow M1 for $\frac{4!}{2!} \times 3$! alone eg 1122: $\frac{4!}{2!2!} \times 3$ alone allow M1 for $\frac{4!}{2!2!} \times 3$! alone Total $=54$	M2 M2 A1 [5]	 Allow methods equiv to these, eg correctly listing cases Only allow other methods if they appear correct. NB $3 \times 3 \times 2 \times 2=36 \quad \& \quad 3 \times 3 \times 2 \times 1=18$ are incorrect methods unless clear justification given	This method only scores if $3 \times 3 \times 3 \times 3-\ldots$ is used: No. with 4 rep'ns $=3$ M1 No. with 3 rep'ns $=\frac{4!}{3!} \quad$ M1 $\times 6(=24)$ M1 or $8 \times 3 \mathrm{M} 2$ 81-('3’+‘24’) or 81-27 M1 (allow 81-3 or 81-24) 18, 36 only score if a correct method seen,, or eg: 18 orders listed starting with " 1 " or 18 orders listed with two repetitions

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Answer \\
Attempt find total area, (even if includes \(a^{2}\)) eg \(20 \times 1.4 a+10 \times 3.4 a+6 \times 4.6 a+4 \times 2.6 a+10 \times 3 a+30 a\) or \(28 a+34 a+27.6 a+10.4 a+30 a+30 a\) or \(20 \times 1.4+10 \times 3.4+6 \times 4.6+4 \times 2.6+10 \times 3+30\) \\
or \(28+34+27.6+10.4+30+30\) \\
or \(7 \times 20+17 \times 10+23 \times 6+\ldots .\). \\
or \(160 a\) or 160 or 16 or \(16 a\) (if area, not ht) \\
\(800 \div\) their total (must involve area, not ht) eg \(160 a=800,800 \div\)
\[
a=5
\] \\
"Box" \(\Rightarrow\) area. "Square" possibly \(\Rightarrow\) area
\end{tabular}} \& Marks \& Guidan \& \\
\hline 6 \& (i) \& \& \begin{tabular}{l}
M1 \\
M1dep \\
A1 \\
[3]
\end{tabular} \& \begin{tabular}{l}
 \\
Correct ans with nothing incorrect seen: M1M1A1 \\
But where the correct answer clearly results from incorrect working, eg \(a=800 / 167=4.8\) rounded to \(a=5\), then max M1M1A0
\end{tabular} \& \begin{tabular}{l}
Trial methods, eg:
\[
\begin{array}{ll}
a=5 \text { gives } \& 7 \times 20+17 \times 10+23 \times 6+\ldots . \\
=800 \& \text { M1 }
\end{array}
\] \\
But no of apples \(=800 \mathrm{M} 1\) \\
Hence \(a=5 \quad\) A1
\[
\begin{array}{ll}
a=10 \text { gives } 14 \times 20+34 \times 10+46 \times 6+.= \\
1600 \& \text { M1 } \\
\text { But no of apples }=800 \& \text { M1 } \\
\text { Hence } a=5 \& \text { A1 }
\end{array}
\] \\
NOT "1cm = 5" (because may just come from counting squares) NB total ht \(=16 \mathrm{~cm}\) so if 16 seen, must clearly be area eg 800/16 may score 0 or 2
\end{tabular} \\
\hline 6 \& (ii) \& \(\frac{1}{2}\) total area or \(\frac{1}{2}\) total no. apples ft their 6(i) Median is in 50 - 56 class stated or implied Calculate (approx) \(\frac{2}{3}\) of way along class or \(\frac{1}{3}\) of way from top of class
\[
\text { Median }=53.9 \text { to } 54 \quad \text { Not eg } 54.2
\] \& B1f
M1

M1
A1

[4] \& \begin{tabular}{l}
Correct ans with nothing incorrect seen: M1M1A1

But where the correct answer clearly results from incorrect working, eg $a=800 / 167=4.8$ rounded to $a=5$, then max M1M1A0

 \&

Examples of correct methods:

$$
\begin{aligned}
& 400-(7 \times 20+17 \times 10) \quad(=90) \\
& 50+\frac{" 90 "}{23 \times 6} \times 6=54 \\
& 200-(70+85) \quad(=45) \\
& 50+\frac{" 45 "}{69} \times 6=54 \\
& 400.5-(7 \times 20+17 \times 10) \quad(=90.5) \\
& 50+\frac{" 90.5 "}{23 \times 6} \times 6=54
\end{aligned}
$$

Use of $\mathrm{LB}=49.5$: eg median $=49.5+\operatorname{appr} \frac{2}{3} \times 6=53.4$ B1M1A1A0
\end{tabular}

\hline
\end{tabular}

Question			$$	Marks	Guidan	
7	(i)			M1 M1 A1 depM2 A1 [4]	eg $1-\frac{6 \times \Sigma d^{2}}{n\left(n^{2}-1\right)}$ or $1-\frac{6 \times n^{2}}{n\left(n^{2}-1\right)}$ or $1-\frac{6 \times 1^{n}}{n\left(n^{2}-1\right)}$ or $1-\frac{6 \times 6^{2}}{n\left(n^{2}-1\right)}=\frac{63}{65}$ Any correct eqn after cancelling n or take out factor of n; can be implied by $n=14$ But A0 if $n=14$ clearly follows from incorrect working If no working or unclear working, but $n=14$, M1M1A1A1	Trial method: $\begin{array}{ll} \begin{array}{ll} \Sigma d^{2}=14 & \text { M1 } \\ 1-\frac{6 \times 14}{14\left(14^{2}-1\right)} & \text { oe } \end{array} \text { M1 } \\ =\frac{63}{65} & \text { A1 } \quad(0.969: \text { A0 }) \\ \Rightarrow n=14 \quad & \text { A1 } \\ & \text { Conclusion needed } \end{array}$
7	(ii)	(a)	$r=1 \Rightarrow$ st line, hence true (or $r_{s}=1$) oe Explanation essential Must state or imply "true"	B1 [1]	$r=1 \Rightarrow y$ incr as x incr, so $r_{s}=1$ oe Allow "True because perfect corr'n" or "True because $r=1$ means pts ranked in order so $r_{s}=1$ " " $r=1$ means the ranks will agree" " $r=1$ means all d 's are 0 , hence $r_{s}=1-0=1$ "	NOT " r incr so ranks incr" NOT " $r_{s}=r$ for ranks so true" NOT "True because strong corr'n"
7	(ii)	(b)	Diag, ≥ 3 pts, not on st line but with $x_{n+1}>x_{n}$ \& $y_{n+1}>y_{n}$, Zig zag line or curve, moving up \& right so r_{s} can still be 1 eg "expon'l curve gives $r \neq 1$ but $r_{s}=1$ " B1B1	B1 B1dep [2]	Ignore explan if correct diag given Ignore any st line drawn Allow numerical example for which $r \neq 1$ but $r_{s}=1$. If expl'n contradicts diag, mark diag For $2^{\text {nd }} \mathrm{B} 1$ must state or imply "false"	

Question			Answer	Marks	Guidance	
8	(i)	(a)	$\begin{aligned} & 0.9^{4} \times 0.1 \\ & =\frac{6561}{100000} \text { or } 0.0656(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$		
8	(i)	(b)	$\begin{aligned} & 0.9^{5} \\ & =\frac{59049}{100000} \text { or } 0.59(2 \mathrm{sf}) \end{aligned}$	M1 A1 [2]	Allow 0.9^{4} or $1-0.9^{5}$:M1 but $1-0.9^{n}(n \neq 5)$ or $0.1 \times 0.9^{n}: \mathrm{M} 0$	$\begin{aligned} & 1-\left(0.1+0.9 \times 0.1+0.9^{2} \times 0.1+\right. \\ & \left.\ldots 0.9^{4} \times 0.1\right) \end{aligned}$ Allow without " 1 -" OR omit last term $\text { NB } 0.9^{5} \times 0.1=0.0590 \text { M0A0 }$
8	(i)	(c)	$\begin{array}{ll} 0.1 \times 0.1 \text { or }[0.1 \times 0.1 \times 0.9+0.1 \times 0.1 \times 0.1] & \text { oe } \\ +0.1 \times 0.9 \times 0.1 & \text { oe } \\ +0.9 \times 0.1 \times 0.1 & \text { oe } \\ =0.028 & \end{array}$	M1 M1 M1 A1 [4]	M1M1 two correct terms, no incorrect multiples M1 all correct Ans 0.027 probably M0M1M1A0 but check working SC if no M-mks scored: SSF, SSS, FSS, SFS or SS, FSS, SFS seen or implied: B1	$3 \times 0.1^{2} \times 0.9+0.1^{3}$ no incorrect multiples M2 for 1st term; M1 for 2nd This method only scores using " 1 - ": $0.9^{3} ; 3 \times 0.9^{2} \times 0.1$ no incorrect multiples M1; M1 1 - one or both terms with no further wking: M1(dep M1) eg $1-0.9^{3}$ alone M1M0M1
8	(ii)	(a)	$\begin{aligned} & 0.9 \times 0.8 \times 0.1 \\ & =\frac{9}{125} \text { or } 0.072 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	alone or allow $\times 0.8$ (ie girls in wrong order) (= 0.0576)	NOT $0.9 \times 0.8 \times 0.1 \times 0.2=0.0144:$ M0A0 NOT $0.9 \times 0.8 \times 0.2=0.144: \quad$ M0A0
8	(ii)	(b)	$\begin{aligned} & 0.9^{9 \text { or } 10} \times 0.8^{9 \text { or } 10} \times 0.1(\text { or } \times 0.2 \text {, not } \\ & \times 0.1 \times 0.2) \\ & (0.9 \times 0.8)^{9} \times 0.1 \quad \text { oe } \\ & =5.2 \times 10^{-3} \text { or } 0.0052(2 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	allow $0.9^{9 \text { or } 10} \times 0.8^{9 \text { or } 10} \times 0.1 \times{ }^{18,19,20} \mathrm{C}_{1}$ fully correct SC Consistent use of 0.8 for both girls: (ii)(a) or 0.9 for both girls: (ii)(a) seen, allow (a) 0 (b) B1	If ans $=0.00360$ or 0.0150 see SC below 0.128 (ii)(b) 0.00360 081 (ii)(b) 0.0150 If both these ans

Question		Answer	Marks		Guidance
1	(i)	2 0 4 7 3 2 3 4 0 5 7 9 5 3 5 5 6 8 6 2 5 7 9 $2 \mid 4$ means 24 or similar	B1 B1 B1 [3]	B1 for stem correct AND (3 branches correct OR 5 branches correct nos but incorrectly ordered) B1 for all correct	Ignore "0" and/or " 1 " in stem, without leaves Allow incorrect alignment. Allow space instead of line. Allow left-facing diag If all digits are in correct rows and orders, award this mark unless: $4^{\text {th }}$ row is not the longest OR eg a $3^{\text {rd }}$ digit in one row is clearly aligned with a $4^{\text {th }}$ digit in another
1	(ii)	47.6 (3 sf) or $\frac{857}{18}$ or $47 \frac{11}{18}(\mathrm{~cm})$ oe 51 (cm)	B1 B1ft [2]	cao ft wrong diag	eg $857 \div 18=41.6$ B0 but $\frac{857}{18}=41.6$ ISW B1
1	(iii)	49 (or $9^{\text {th }}$ no.) becomes 51 or 53 (or $10^{\text {th }}$ no.) becomes 55	B1 B1 [2]	No marks for identifying 49 \& 53 alone or 51 \& 55 alone	NB NO ft from wrong diag NOT eg '51 or higher’ Allow embedded answer eg 53 identified as incorrect and state $(55+49) \div 2=52$ scores 2nd B1
2	(i)	$\left.\begin{array}{\|llllllllllll} \hline 5 & 2 & 4 & 1 & 3 & & \text { or A B B C } & \text { D } & \text { E (grades) } \\ 3 & 4 & 5 & 2 & 1 & & & 3 & 1 & 5 & 2 & 4 \end{array}\right]$	M1 A1 M1 M1 A1 [5]	Attempt ranks Correct ranks; allow both sets reversed Can be implied by eg $\Sigma d^{2}=14$ Attempt Σd^{2} dep 1st M1 ft $\Sigma d^{2} \quad$ dep $1^{\text {st }}$ M1 If one set reversed, $r_{s}=-0.3$ M1A0M1M1A0	One set reversed: A0 Use PMCC on ranks: $1^{\text {st }}$ M1A1 as main scheme then: $\begin{aligned} & \Sigma x=\Sigma y=15 \quad \Sigma x^{2}=\Sigma y^{2}=55 \Sigma x y=48 \\ & \mathrm{~S}_{x x}=\mathrm{S}_{y y}=10 \\ & \mathrm{~S}_{x y}=3 \\ & \text { allow one arith error M1 } \\ & r=3 / \sqrt{ }(10 \times 10) \quad \text { allow one arith error M1 } \\ & =0.3 \end{aligned}$
2	(ii)	$\Sigma d^{2}=8$ or ' 2 the same and 2 differ by 2 ' 1432	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	May be implied	Allow $d^{2}=8$ or similar

Question		Answer	Marks		Guidance
3	(i)	$\begin{aligned} & 1 \times 0.4+3 \times 0.3+5 \times 0.2+7 \times 0.1 \\ & =3 \\ & 1^{2} \times 0.4+3^{2} \times 0.3+5^{2} \times 0.2+7^{2} \times 0.1 \\ & -" 3{ }^{2} \\ & =4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	≥ 3 terms correct \div eg 4 M 0 ≥ 3 terms correct \div eg 4 M 0 Dep +ve result	Use of $\Sigma(x-\bar{x})^{2} \times p$: $\begin{aligned} & 2^{2} \times 0.4+0+2^{2} \times 0.2+4^{2} \times 0.1 \quad \text { M2 } \\ & \text { or } 2 \text { correct non-zero terms M1 } \end{aligned}$
3	(ii)	$\begin{aligned} & 775,757,577 \\ & \frac{2}{3} \text { or } 0.667(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	Must show all three	Allow repeats, eg list of 6 orders Alt method $X_{1}: 5$ or $7, \quad X_{2}: 5$ or $7 ; \quad X_{3}$: 5 or 7 or X_{1}, X_{2}, X_{3} can be 5 or 7
3	(iii)	Binomial stated, or seen or implied with any $n \& p$ $\begin{aligned} & { }^{11} \mathrm{C}_{4} \times 0.8^{7} \times 0.2^{4} \\ & =0.111(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	eg by $0.8^{r} \times 0.2^{s}(r, s>1)$ not just by ${ }^{n} C_{r}$ Correct method Correct answer, no working M1M1A1	NB 0.0388 scores B1M0A0 as it is ${ }^{11} \mathrm{C}_{5} \times 0.8^{6} \times 0.8^{5}$
4	(i)	5.74 0.13 or 'the same'	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	NB 0.13 seen within working; B0	$\operatorname{eg} \frac{\Sigma x^{2}}{10}-(\text { their mean })^{2}=0.13^{2} \text { scores B0 for } 0.13$
4	(ii)	$\begin{aligned} & \left(10 \times{ }^{‘} 5.744^{\prime}+15 \times 5.6\right) \div 25 \text { oe all correct } \\ & =5.656=5.66(3 \mathrm{sf}) \end{aligned}$	M1 A1ft [2]	$\text { eg } 5.74 \times \frac{2}{5}+5.6 \times \frac{3}{5}$ ft their 5.74	$\text { NB }(5.74+5.6) \div 2=5.67 \text { M0A0 }$ NB 5.7 with no wking: M0A0 even if already penalised elsewhere for over-rounding
4	(iii)	$1^{\text {st }} \mathrm{gp}$ (or one gp) is more consistent (or less spread oe) but less accurate (or mean further from true mean oe)	B1ft B1ft [2]	$2^{\text {nd }} \mathrm{gp}$ (or one gp) more accurate or etc but less consistent or etc If neither B1 scored, but state 'consistency does not imply accuracy' or similar: SC B1 Equiv answers accepted, but no others	$1^{\text {st }} \mathrm{gp}$ (or one gp) more consistent or etc $2^{\text {nd }} \mathrm{gp}$ (or the other gp) more accurate or etc Ignore all other, eg ignore 'Claim false' or 'Claim true' etc even if it contradicts other statements Reference to mean of all 25 does not score Follow through their values for $1^{\text {st }} \mathrm{gp}$: eg if ${ }^{\text {st }} \mathrm{gp} \mathrm{sd}=5.13$: $1^{\text {st }} \mathrm{gp}$ less accurate and less consistent oe B1B1 Similar for other ft .

Question			Answer	Marks		Guidance
5	(i)		$\begin{array}{ll} S_{x x}=503.45-\frac{70.3^{2}}{10} & (=9.241) \\ S_{y y}=103.94-\frac{30.8^{2}}{10} & (=9.076) \\ S_{x y}=211.9-\frac{70.3 \times 30.8}{10} & (=-4.624) \\ r=\frac{"-4.624^{\prime \prime}}{\sqrt{" 9.241 " \times " 9.076 " ~}} \\ =-0.5049 \ldots . \text { or }-0.505(3 \mathrm{sfs}) \end{array}$	M1 M1 A1 [3]	Correct sub in any correct S formula Correct sub in any correct r formula Correct ans with no wking: M1M1A1	Must be correct sub in all S 's \& r but not nec'y accurate
5	(ii)		Correlation (of UR \& CPI) does not imply causation oe or r not close to -1	B1 [1]	Both (UR \& CPI) may depend on another factor or r small or poor corr'n oe Ignore all else	Allow One may depend on another factor Allow without context NOT eg UR is independent NOT eg Only for the given years NOT eg Only for certain months
5	(iii)	(a)	$\begin{aligned} & b^{\prime}=\frac{S_{x y}}{S_{y y}}=\frac{"-4.624^{\prime \prime}}{" 9.076^{\prime \prime}}\left(=-\frac{1156}{2269} \text { or }-0.50948\right) \\ & x-\frac{70.3}{10}="-\frac{1156}{2269} \text { " }\left(y-\frac{30.8}{10}\right) \\ & x=-0.51 y+8.6 \quad(2 \mathrm{sfs}) \\ & \text { or } x=-\frac{1156}{2269} y+8.6 \end{aligned}$	M1 M1 A1 [3]	ft their S 's or $a^{\prime}="-\frac{1156}{2269} " \times\left(-\frac{30.8}{10}\right)+\frac{70.3}{10}$ NB use $b^{\prime}(=-0.509)$, not $r(=-0.5049)$	$\begin{array}{ll} \text { If } y \text { on } x: \quad b=\frac{S_{x y}}{S x x}=\frac{"-4.624 "}{" 9.241 "} & (=-0.500) \\ y-3.08="-0.500 " \times(x-7.03) \text { or } a=3.08+0.5 \times 7.03 \\ & \text { M1 } \\ y=-0.50 x+6.6 & \text { M0 } \end{array}$
5	(iii)	(b)	$\begin{aligned} & x=-0.509 \times 4.0+8.60 \\ & =6.56(3 \mathrm{sf}) \text { or } 6.6(2 \mathrm{sf}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \\ \text { [2] } \end{gathered}$	Allow sub $y=0.04$ for M1 only ft their equn; ans to 2 sf	If y on x found in (a) $4.0=-0.500 x+6.60 \mathrm{M} 1 \quad x=5.2(2 \mathrm{sf}) \quad$ A1ft
6			In all three parts of q 6, where the right method that is very clearly incorrect, aw	wer is M0A	en following a method which is unclea in (i) \& (iii), and in (ii) award M0M0A0	award full marks. If the right answer follows from a unless there is a partly correct method worth M1.
6	(i)		$\frac{1}{5} \times \frac{1}{4} \times 2$ or $\frac{2}{5} \times \frac{1}{4}$ alone oe $=\frac{1}{10}$ or 0.1 oe	M1 A1 [2]	or $\frac{{ }^{2} \mathrm{C}_{2}}{{ }^{5} \mathrm{C}_{2}}$ or $\frac{1}{{ }^{5} \mathrm{C}_{2}} \quad$ or $\frac{{ }^{2} \mathrm{P}_{2}}{{ }^{5} \mathrm{P}_{2}}$ Allow ${ }^{5} \mathrm{C}_{3}$ instead of ${ }^{5} \mathrm{C}_{2}$	Allow M1 for $\frac{1}{5} \times \frac{1}{4}$, but NOT other methods leading to $\frac{1}{20}$ and NOT $\frac{1}{20}$ with no wking M1 for totally correct method except $\frac{1}{5} \times \frac{1}{4}$ seen: M1 NB $\frac{2}{5} \times \frac{1}{4} \times 2$ MOA0; $\frac{2}{{ }^{5} \mathrm{C}_{2}}$ MOA0; $\frac{2}{5} \times \frac{1}{5}$ MOA0

Question			Answer	Marks		Guidance
6	(ii)		$\frac{2}{5} \times \frac{3}{4} \times \frac{2}{3}$ or $\frac{1}{5} \times \frac{3}{4} \times \frac{2}{3} \times 2$ oe or $\frac{1}{5}$ or 0.2 (not from incorrect method) or correct list of 6 comb's with 1 vowel or $\frac{2}{\ldots} \times \frac{3}{\ldots} \times \frac{2}{\ldots} \times 3$ or $\frac{1}{\ldots} \times \frac{3}{\ldots} \times \frac{2}{\ldots} \times 6$ $\frac{1}{5} \times \frac{3}{4} \times \frac{2}{3} \times 2 \times 3$ oe fully correct method $=\frac{3}{5}$ or 0.6 oe	M1 M1 A1 [3]	$\frac{2 \times{ }^{3} \mathrm{C}_{2}}{\ldots . .} \text { or } \frac{\ldots .}{{ }^{5} \mathrm{C}_{3}} \text { or } \frac{6}{\ldots . .} \text { or } \frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}$ $\frac{2 \times{ }^{3} \mathrm{C}_{2}}{{ }^{5} \mathrm{C}_{3}} \text { oe or } 6 \div 10$ Allow ${ }^{5} \mathrm{C}_{2}$ instead of ${ }^{5} \mathrm{C}_{3}$. Not P's	Only if using complement (ie $1-\mathrm{P}(0 \mathrm{~V}$ or 2 V$)$): $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \quad$ OR $\frac{2}{5} \times \frac{3}{4} \times \frac{1}{3} \times 3$ M1 $1-\left(\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}+\frac{2}{5} \times \frac{3}{4} \times \frac{1}{3} \times 3\right)$ M1 5 ! or 120 alone is probably an incorrect method in this part See comment before 6(i)
6	(iii)		$\begin{aligned} & 1-\frac{1}{{ }^{5} \mathrm{C}_{4}} \text { or } 1-\frac{1}{5} \text { or } \frac{5!-4!}{5!} \text { or } \frac{1 \times{ }^{4} \mathrm{C}_{3}}{{ }^{5} \mathrm{C}_{4}} \text { or } \frac{1}{5} \times 4 \\ & =\frac{4}{5} \text { or } 0.8 \text { oe } \end{aligned}$	M1 A1 [2]	$\begin{aligned} & \text { or } \quad \begin{array}{l} \left(\frac{1}{5} \times \frac{4}{4} \times \frac{3}{3} \times \frac{2}{2}\right)+\left(\frac{4}{5} \times \frac{1}{4} \times \frac{3}{3} \times \frac{2}{2}\right) \\ +\left(\frac{4}{5} \times \frac{3}{4} \times \frac{1}{3} \times \frac{2}{2}\right)+\left(\frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2}\right) \end{array} \end{aligned}$	or $1-\frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} \quad$ or $\quad \frac{24+24+24+24}{5!}$ $\frac{4}{5} \times \ldots \text { MOA0 eg } \frac{4}{5} \times \frac{1}{5} \text { M0A0 }$ See comment before 6(i)
7	(i)	(a)	$\begin{aligned} & X \sim \mathrm{~B}(30,0.05) \quad \text { seen or implied } \\ & \mathrm{P}(X>2)=1-0.8122 \text { alone or } \\ & 1-\left(0.95^{30}+30 \times 0.95^{29} \times 0.05+\right. \\ & \left.{ }^{30} \mathrm{C}_{2} \times 0.95^{28} \times 0.05^{2}\right) \\ & =0.1878 \text { or } 0.188(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1 [3]	eg by 0.8122 or $1-0.5535$ or $0.95^{r} \times 0.05^{s}(r, s>1)$ Allow $\mathrm{B}(30,0.95)$ or $\mathrm{B}(30,0.5)$ for B 1 30×0.05 alone insufficient for $B 1$ ${ }^{n} \mathrm{C}_{r}$ insufficient for B1	```If \(n=15\) : B(15, 0.05) \[1-\left(0.95^{15}+15 \times 0.95^{14} \times 0.05+{ }^{15} \mathrm{C}_{2} \times 0.95^{13} \times 0.05^{2}\right) \mathrm{M} 1 \] \[=0.0362 \]None```

Question			Answer	Marks		Guidance
7	(i)	(b)	Addition method: $X \sim \mathrm{~B}(30,0.05) \& Y \sim \mathrm{~B}(15,0.05)$ stated or implied	B1	NB eg 0.0362 implies $B(15,0.05)$ see below	Subtraction methods: $X \sim B(30,0.05) \& Y \sim B(15,0.05)$ stated or impl B1
			$\begin{array}{ll} \mathrm{P}(X=2)=(0.8122-0.5535) & \\ \text { or }^{30} \mathrm{C}_{2} \times 0.95^{28} \times 0.05^{2} & \text { or } 0.2587 / 6 \\ \underline{\mathrm{OR}} \mathrm{P}(Y \geq 1)=\left(1-0.95^{15}\right) & \text { or } 0.5367 \end{array}$	M1		$\begin{aligned} & \mathrm{P}(X=2)=(0.8122-0.5535) \text { or }{ }^{30} \mathrm{C}_{2} \times 0.95^{28} \times 0.05^{2} \\ & \text { OR } \mathrm{P}(Y=0)=0.95^{15} \quad \text { or } 0.2587 / 6 \\ & \text { or } 0.4633 \quad \text { M1 } \end{aligned}$
			$\text { "0.2587/6" × "0.5367" or } 0.1388$	M1	fully correct method for $\mathrm{P}(X=2) \times \mathrm{P}(Y \geq 1)$	fully correct method for $\mathrm{P}(X=2) \times \mathrm{P}(Y=0)$ " $0.2587 " \times$ " $0.4633 "$ or 0.1199/8
			$\begin{aligned} & \mathrm{P}(X>2)+\mathrm{P}(X=2) \times \mathrm{P}(Y \geq 1) \\ & =" 0.1878 "+" 0.1388 " \text { alone } \end{aligned}$	M1	[their (a)+any p] alone, but dep $1^{\text {st }}$ M1	$\begin{aligned} & 1-(\mathrm{P}(X=0,1)+\mathrm{P}(X=2) \times \mathrm{P}(Y=0)) \\ & =1-(" 0.5535 "+\times 0.1199 ") \\ & \text { OR P(X:2)-P(X=2)×P(Y=0))} \\ & =(1-" 0.5535 ")-" 0.1199 " \\ & \quad \operatorname{dep} 1^{\text {st }} \text { M1 } \end{aligned}$
			$=0.327$ (3 sf) AG	A1		$=0.327$ (3 sf) AG A1
			For A1 must see correct wking or 0.3265/6...		from a correct method (possibly not in MS) or clearly comes from an incorrect method eg $(0.4465+0.2587) \times 0.4633=0.327$ (ie $(\mathrm{P}(X \geq 2)+\mathrm{P}(X=2)) \times \mathrm{P}(Y=0)$ B1M1M0M0A0	Do not use marks from a mixture of $3^{\text {rd }}$ column and other columns. Decide which column would give most marks and mark according to that method.
				[5]		If $n=15$ for both distr's, see next page NB If 0.1392 seen, it comes from given answer - (i)(a) (ie $0.3270-0.1878$).

Question			Answer	Marks		Guidance
7	(i)	(b)	Alternative scheme for the case where $n=15$ is used for both distr's			If $n=15$ for both distr's: $\mathrm{B}(15,0.05)$ B0 $\mathrm{P}(X=2)={ }^{15} \mathrm{C}_{2} \times 0.05^{2} \times 0.95^{13}$ or 0.1348 OR P $(Y \geq 1)=1-0.95^{15}$ or 0.5367 M1 " $0.1348 " \times " 0.5367 "$ or 0.0723 correct method M1 their (i)(a) + " $0.0732 " \quad$ Dep 1 $1^{\text {st }}$ M1 M1 $=0.1085$ A0 NB Also mark subtraction methods if seen.
7	(ii)		Any use of 0.327 or their (i)(b) for $1^{\text {st }} \mathrm{M} 1$ $(1-0.327)^{3} \times 0.327+(1-0.327)^{4} \times 0.327$ Allow "correct" use of their (i)(a) or (i)(b) for $2^{\text {nd }}$ M1 $=0.167(3 \mathrm{sf})$	M1 M1 A1 [3]	$\begin{aligned} & (0.5535+0.2586 \times 0.4633)^{3} \times 0.327+ \\ & (0.5535+0.2586 \times 0.4633)^{4} \times 0.327 \end{aligned}$	$1-0.673^{5}-\left(1-0.673^{3}\right)$ oe Allow any use of their (i)(b) for $1^{\text {st }}$ M1 then if "correct" use, also $2^{\text {nd }}$ M1 Allow use of their (i)(a) in "correct" method for M0M1A0 No marks for use of $0.95 \& 0.05$
8	(i)		$12 \times 10 \times 5$ (in numerators or alone) OR any prod of 3 probs $\times 6$ (or $\times 3$! or ${ }^{3} \mathrm{P}_{3}$) $\begin{aligned} & \frac{12}{27} \times \frac{10}{26} \times \frac{5}{25} \times 6 \quad \text { or } \frac{12 \times 10 \times 5}{{ }^{27} \mathrm{C}_{3}} \\ & =\frac{8}{39} \text { oe or } 0.205(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	or ${ }^{12} \mathrm{C}_{1} \times{ }^{10} \mathrm{C}_{1 \times}{ }^{5} \mathrm{C}_{1}$ or 600 (in numerators or alone) or eg $\left(\frac{12}{27} \times \frac{10}{26} \times \frac{5}{25}+\frac{12}{27} \times \frac{5}{26} \times \frac{10}{25}\right) \times 3$	or $\frac{4}{117}$ or 0.0342 oe Fully correct method Examples: $\begin{array}{ll} \frac{12}{27} \times \frac{10}{27} \times \frac{5}{27} \times 6 \text { or } \frac{12}{25} \times \frac{10}{24} \times \frac{5}{23} & \text { M1M0A0 } \\ \text { or } \frac{1}{27} \times \frac{1}{26} \times \frac{1}{25} \times 6 & \text { M1M0A0 } \end{array}$

Question			Answer		Guidance		
8	(ii)		$0.4 \times \frac{x}{50}$ OR $0.6 \times \frac{50-x}{50}$ oe or $0.4 \times \frac{?}{50}$ $0.4 \times \frac{x}{50}+0.6 \times \frac{50-x}{50}=0.54$ $4 x=60 \quad$ oe, two terms no. of red $=15$ T \& I: $0.4 \times \frac{x}{50}$ or etc OR one trial $(n \neq 15)$ M1 Trial of $n=15$ Answer stated	M1 M1 A1 A1 [4]	$0.4 \times p$ OR $0.6 \times(1-p) \quad$ or similar $\begin{aligned} & 0.4 \times p+0.6 \times(1-p)=0.54 \\ & p=0.3 \end{aligned}$ no. of red $=15$ Allow $x=15$ as answer, but not if contradicted later If $x \leftrightarrow(50-x)$ or $p \leftrightarrow(1-p)$: similar mks including $1^{\text {st }} \mathrm{A} 1$ for $p=0.7$ or $x=35$	$\begin{aligned} & 0.4 \times \frac{x}{50} \text { or etc } \\ & 0.4 \times \frac{x}{50}+0.6 \times \frac{y}{50}=0.54 \\ & \text { AND } x+y=50 \\ & 4 x=60 \text { or } 4 y=140 \\ & \text { no. of red }=15 \end{aligned}$ Correct answer scores full from incorrect method.	$\begin{aligned} & 0.4 \times a \text { etc } \\ & 0.4 a+0.6 b=0.54 \\ & \text { AND } a+b=1 \\ & \begin{array}{l} \text { M1 } \\ a=0.3 \text { or } b=0.7 \end{array} \\ & \text { A1 } \\ & \text { no. of red }=15 \end{aligned} \quad \text { A1 } \$ l$ marks unless clearly
9			If $0.8 \leftrightarrow 0.2$ apparently used consistently in $9(\mathrm{i})(\mathrm{a})$, (i)(b) \& possibly (ii). SC; can score all M-marks in all three parts, and A1 in (ii) but A0 in (i)(a) and A0 (i)(b) This may be implied by their answers without working as follows (i)(a) $0.2^{10} \times 0.8=8.19 \times 10^{-8} ; \quad 0.2^{9} \times 0.8=4.10 \times 10^{-7} ; \quad 0.2^{11} \times 0.8=1.64 \times 10^{-8} \quad$ M1A0 (i)(b) $1-0.2^{10}=0.999999898$ M1M1A0; $\quad 1-0.2^{9}=0.999999488 \mathrm{M} 0 \mathrm{M} 1 \mathrm{~A} 0 ; \quad 1-0.2^{11}=0.999999979 ; \quad 0.2^{10}=1.024 \times 10^{-7} \mathrm{M} 1 \mathrm{M} 0 \mathrm{~A} 0$ But if $0.9999 \ldots$ or similar, unclear precisely which method used so M0M0A0 (ii) $1 \div 0.8=1.25 \mathrm{M} 1 \mathrm{~A} 1$ NB!!!!! Any other $p(\neq 0.2$ or 0.8) can score only M1 in (ii) \& possibly B1ft in (iii)				
9	(i)	(a)	$\begin{aligned} & 0.8^{10} \times 0.2 \\ & =0.0215(3 \mathrm{sf}) \end{aligned}$	M1 A1 [2]	$\begin{gathered} \text { Allow } 0.8^{9} \times 0.2 \text { or } 0.8^{11} \times 0.2 \\ \text { or } 0.0268 \text { or } 0.0172 \end{gathered}$		If $0.8 \leftrightarrow 0.2$, see above
9	(i)	(b)	$\begin{aligned} & 0.8^{10} \text { or } 0.107 \ldots \\ & 1-0.8^{10} \text { alone } \\ & =0.893(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	Not $0.8^{10} \times \ldots$ M0M0 Not just 0.8^{9} or 0.8^{11} M0M0 Allow M1 for $1-0.8^{9}$ or $1-0.8^{11}$ alone or 0.866 or 0.914	$0.2+0.8 \times 0.2+\ldots+0.8$ Allow M1 for 1 term om Allow use of dots as abo as their $1^{\text {st }} \&$ last and one	0.2 (10 terms) M2 or extra , for M1 or M2, so long ther term seen If $0.8 \leftrightarrow 0.2$, see above

Question		Answer		Marks	P3sfs, ISW for later rounding. Penalise over-rounding only once in paper.Marks	
9	(ii)	$\begin{aligned} & \frac{1}{0.2} \text { alone } \\ & =5 \end{aligned}$		M1 A1 [2]	$(5,1) \mathrm{M} 1 \mathrm{~A} 0$	Allow $1 \div$ their incorrect p used in (i)(a) Ignore eg " $\mathrm{E}(X)=$ " If $1 \div 0.8=1.25$, see above
9	(iii)	4	Allow (4, 1)	$\begin{gathered} \text { B1ft } \\ \text { [1] } \end{gathered}$	or (ii) - 1 or (ii) $\times 0.8$	ft (their (ii)-1, 1)

S1 June 2014 Mark Scheme Final (without introduction)

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise over-rounding only once in paper.

Question		AnswerMedian $=7.45(\mathrm{~m})$ $\mathrm{IQR}=7.75-6.7$ $=1.05(\mathrm{~m}) \quad$ allow 1.175 or 1.18 NOT 1.3	Marks	Guida	
1	(i)		B1 M1 A1 [3]	cao allow 7.775-6.6 or 77.5-67 or $77.75-66$ or $7.8-6.5$ even though this is an incorrect method or 78-65 allow 10.5 or 11.75 or 11.8 but only if med $=74.5$	These pairs of values only, and subtract, for M1 eg
1	(ii)	4 2 2 5 5 3 3 0 6 8 7 7 6 4 3 2 7 6 5 7 8 5 8 Complete correct diag including order and	B1* B1dep	correct digits in correct leaves, ignore order, allow one omitted or extra or misplaced or incorrect digit key: eg $8\|6\| 4$ means $6.8(B)$ and $6.4(A)$	Allow a separate diag with leaves to left of stem. If only a separate diag is drawn, with leaves to right of stem: all correct including order, alignment and key: B1 If all digits are in correct rows and orders,

Question			Answer	Marks	Guidance	
			key and alignment	[2]	allow just 8 \| 6 means 6.8 NOT 8 \| 6 means 8.6 Allow $8 \mid 6$ means 68, if consistent with (i)	\& correct key, award this mark unless EITHER: 1. eg a $2^{\text {nd }}$ digit in one row is clearly aligned with a $3^{\text {rd }}$ digit in another OR 2. 1st, 3rd, 4th \& 5th rows are very different lengths, eg because of crossing out and replacement
1	(iii)		One correct comment on size: B1. One correct comment on spread or shape: B1. The following are examples only. Ignore any working; mark the statements only. Allow "First set" or "Right" for A, "Second set" or "Left" for B.			
2	(a)		A higher overall A has more taller trees or fewer shorter A has higher median (mean, ave, medium) B more evenly spread or distributed B more spread out B has larger range or IQR or sd Ranges of both are similar A is nearer to normal A is negatively skewed A has a (unique) mode, or modal class or peak; (B doesn't) $\begin{aligned} & \left(0^{2} \times 0.3\right)+2^{2} \times 0.4+4^{2} \times 0.3 \\ & -2^{2} \text { or }-4 \\ & =2.4 \end{aligned}$	B1 B1 [2] M1 M1 A1 [3]	B shorter overall B has fewer taller trees or more shorter B has lower median (mean, ave, medium) A less evenly spread or distributed A less spread out A has smaller range or IQR or sd Allow A's heights are more consistent Not other comment about skew Ignore any other reference to mode or most common Ignore all else even if incorrect last two terms correct. NOT eg $\div 6$ or $\div 3$ allow - (any number) ${ }^{2}$, dep +ve result	NOT A higher than B NOT B has shorter trees than A Allow just quoting the two medians, even if wrong, so long as med of A is gter than med of B. Similarly if quote IQRs NOT any reference to outliers NOT any reference to sample size NOT any reference to indiv trees NOT two comments on size NOT two comments on spread eg highest on both is 8.5 B 0 $2^{2} \times 0.3+(0)+2^{2} \times 0.3 \quad \text { M2 }$ 1st or 3rd term correct M1 $\div 3 \text { M0M0A0 }$
2	(b)	(i)	$2 k+3 k+4 k+5 k=1$ ое	B1	or $14 k=1$ oe "= 1" is essential	NOT just $2+3+4+5=14$ so $k=\frac{1}{14}$

Question			Answer$\left(k=\frac{1}{14} \mathbf{A G}\right)$	Marks[1]	Guidance	
						Allow verification, eg stating that $\frac{2}{14}+\frac{3}{14}+\frac{4}{14}+\frac{5}{14}=1$
2	(b)	(ii)	$\frac{2}{14}, \frac{3}{14}, \frac{4}{14}, \frac{5}{14} \quad \text { or } \frac{2}{14}, \frac{6}{14}, \frac{12}{14}, \frac{20}{14}$ $\Sigma x p$ $=\frac{20}{7}$ or $2 \frac{6}{7}$ or $2.86(3 \mathrm{sf})$ oe, eg $\frac{40}{14}$	B1 M1 A1 [3]	≥ 3 correct ≥ 3 correct terms added $\text { SC } 1 \times \frac{1}{14}+2 \times \frac{2}{14}+3 \times \frac{3}{14}+4 \times \frac{4}{14}(=2.143)$ B0M1A0	$\begin{array}{\|lc} \hline 2 k, 6 k, 12 k, 20 k & \text { B1 } \\ 2 k+6 k+12 k+20 k \text { or } 40 k & \text { M1 } \\ \div 4 \text { M0A0 } & \end{array}$
3	(i)		Use of 5 or 6 instead of 5.5 for last value of x : all M-marks can be scored, but no A-marks. (ans: 5 gives 2.32 and 1.23; 6 gives 2.39 and 1.40) Use of 5 and 6 instead of 5.5 (probably with freqs 19400/2) could lead to correct mean M1A1, but possibly M1M1A0 for sd.			
			$\begin{aligned} & \frac{\Sigma f x}{\Sigma f} \text { attempted } \\ & =2.36(3 \mathrm{sf}) \\ & \frac{\Sigma f x^{2}}{\Sigma f} \text { attempted } \quad\left(=\frac{662000}{280900}\right) \\ & 7.270737) \\ & \\ & \\ & \\ & \begin{array}{l} \text { " } 28090900 \end{array} \\ & \text { sf }) \\ & \text { s.d. }=1.31 \text { or } 1.30(3 \mathrm{sf}) \end{aligned}$	M1 A1 M1 M1 A1 [5]	3 terms of $\Sigma f x$ correct.. and $\div \Sigma f$ Allow incorrect Σf NOT Σx 3 terms of $\Sigma f x^{2}$ correct and $\div \Sigma f$ Allow incorrect Σf NOT Σx dep +ve result $\div 5 \text { or } \div 6 \text { M0M0A0 }$ allow 1.3	$\div 5 \text { or } \div 6 \text { M0A0 }$ $\frac{\Sigma f(x-\bar{x})^{2}}{\Sigma f}$ 3 terms of num correct and $\div \Sigma f$ M2 $\left(86900 \times 1.36^{2}+92500 \times 0.36^{2}+45000 \times 0.64^{2}\right.$ $\left.+37100 \times 1.64^{2}+19400 \times 3.1^{2}\right), \quad\left(\frac{482210.64}{280900}\right)$ 2 terms of num correct and $\div \Sigma f$ M1 Allow incorrect Σf but NOT if $\Sigma f=\Sigma x$ NB $\sqrt{ }$ not requ'd for M1M1 Correct answer(s) without working score full marks

Question			Answer	Marks	Guidance	
3	(ii)		$\begin{array}{\|l\|} \hline 2 \\ 3 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \\ & \hline \end{aligned}$	allow $\mathrm{IQR}=3-1=2$, ie UQ = 3 implied	Ignore working for both, even if Incorrect NB 3, 2 B0B0 unless labelled correctly
4	If $\frac{2}{3}$ is interpreted consistently as 0.6 or 0.66 or 0.67 or 0.7 , max marks: (i)(a) M1M1A0 (i)(b) B0 (i)(c) B1ft B1ft (ii) B1M1M1A0					
4	(i)	(a)	Binomial seen or implied $\begin{aligned} & 0.6228-0.3497 \\ & =0.273(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	by use of table or ${ }^{9} \mathrm{C}_{6}$ or $\left(\frac{2}{3}\right)^{p}\left(\frac{1}{3}\right)^{q}(p+q=9)$ $\begin{aligned} & { }^{9} \mathrm{C}_{6}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{6} \\ & \frac{1792}{6561} \end{aligned}$	Eg 0.6228 seen
4	(i)	(b)	0.3497 or 0.350 (3 sf)	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	NB 0.3498 (from 0.6228-0.273) rounds to 0.350 so B1	
4	(i)	(c)	$\begin{array}{\|l\|} \hline 6 \\ 2 \end{array}$	B1ft B1ft [2]		NB 2, 6 B0B0 unless labelled correctly
4	(ii)		27 seen $B\left(27, \frac{2}{3}\right)$ seen or implied ${ }^{27} \mathrm{C}_{18}\left(\frac{1}{3}\right)^{9}\left(\frac{2}{3}\right)^{18}$ $=0.161(3 \mathrm{sf})$	B1 M1 M1 A1 [4]	not necessarily in a statement or attempt eg $\begin{aligned} & \mathrm{P}\left(X_{1}=1\right) \times \mathrm{P}\left(X_{2}=8\right) \times \mathrm{P}\left(X_{3}=9\right), \\ & \mathrm{P}\left(X_{1}=2\right) \times \mathrm{P}\left(X_{2}=7\right) \times \mathrm{P}\left(X_{3}=9\right) \\ & \mathrm{P}\left(X_{1}=3\right) \times \mathrm{P}\left(X_{2}=6\right) \times \mathrm{P}\left(X_{3}=9\right), \text { etc } \\ & \geq 3 \text { sets with } X_{1}+X_{2}+X_{3}=18 \text { (not nec'y added) M1 } \end{aligned}$	$\begin{array}{ll} \mathrm{NB} \mathrm{P}\left(X_{1}=6\right) \times \mathrm{P}\left(X_{2}=6\right) \times \mathrm{P}\left(X_{3}=6\right) \\ =0.273^{3}=0.0203 & \text { M0M0A0 } \\ & \\ \frac{55}{729}(=0.0754) & \text { M0M0A0 } \end{array}$
5	(i)		$\begin{array}{ll} S_{x x}=20400-\frac{360^{2}}{8} & (=4200) \\ S_{y y}=6.88-\frac{6.8^{2}}{8} & (=1.1) \tag{=1.1} \end{array}$			

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Answer \& \& \multicolumn{2}{|l|}{Guidance} \\
\hline \& \& \[
\begin{aligned}
\& S_{x y}=241-\frac{360 \times 6.8}{8} \\
\& r=\frac{4-65 "}{\sqrt{" 4200 " \times " 1.1 "}} \\
\& =-0.956(3 \mathrm{sf})
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
[3]
\end{tabular} \& \begin{tabular}{l}
Correct sub in a correct \(S\) formula \\
Correct sub in 3 correct \(S\) formulae and a correct \(r\) formula \\
Correct ans with no working M2A1
\end{tabular} \& Ignore comment about \(-1<r<-0.9\) \\
\hline 5 \& (ii) \& eg As you move further away, prices drop \& \begin{tabular}{l}
B1 \\
[1]
\end{tabular} \& \begin{tabular}{l}
High prices go with short distances oe \\
Allow "Strong (or high or good or equiv) neg corr'n between price and distance"
\end{tabular} \& \begin{tabular}{l}
Both variables must be in context ; miles \& \(£\) enough \\
Ignore all else, even if incorrect \\
NOT just neg corr'n between price \& dist
\end{tabular} \\
\hline 5 \& (iii) \& None \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { [1] }
\end{aligned}
\] \& \& Ignore all else, even if incorrect \\
\hline 5 \& (iv)

(v) \& \begin{tabular}{l}
$$
\begin{aligned}
& b=\frac{"-65 "}{44200 "} \quad(=-0.0154762) \\
& Y-\frac{6.8}{8}="-0.0154762 "\left(x-\frac{360}{8}\right) \text { oe } \\
& y=-0.0155 x+1.55 \quad(3 \mathrm{sf}) \text { oe } \\
& \text { or } y=\frac{433}{280}-\frac{13}{840} x \text { oe }
\end{aligned}
$$

Values of x are chosen beforehand or x is independent or controlled

 \&

M1

M1

A1

[3]

B1

[1]

 \&

ft their $S_{x y} \& S_{x x}$ from (i) for M-marks only or $a=\frac{6.8}{8}+$ " $0.0154762 " \times \frac{360}{8}$ oe allow $y=-0.015 x+1.5$

(or figs which round to these)

(NOT $y=-0.016 x+1.6$

NOT $y=-0.02 x+1.5$)

Correct ans with no working M2A1

x is fixed or given or set or predetermined oe

 \&

or fresh start correct method

Must have " $y=$ "

Allow figures in equn which round to the correct figures to either 3 sf or 2 sf , even if they result from arith errors.

Not " x is constant."

Not just " y depends on x "

Ignore all other, even if incorrect
\end{tabular}

\hline 6 \& (i) \& 654321 \& $$
\begin{aligned}
& \text { B1 } \\
& \text { [1] } \\
& \hline
\end{aligned}
$$ \& \&

\hline 6 \& (ii) \& \[
$$
\begin{aligned}
& \Sigma d^{2}=0 \text { for first } 6 \text { teams } \\
& \Sigma d^{2}=2 \\
& 1-\frac{6 \sum d^{2}}{8\left(8^{2}-1\right)}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| B1 |
| M1 | \& May be implied by use of $\Sigma d^{2}=2$ ft their $\Sigma d^{2}(\neq 0)$ \& using ranks from (i) can score 2nd M1 only

\hline
\end{tabular}

Question			Answer	Marks	Guidance	
			$=\frac{41}{42}$ or $0.976(3 \mathrm{sf})$	A1 [4]		
7	(i)		$\begin{aligned} & \frac{n}{n+45}=\frac{5}{8} \text { or } n: 45=5: 3 \text { or } \frac{3}{8}: 45= \\ & \frac{5}{8}: n \\ & n=75 \end{aligned}$	M1 A1 [2]	$\frac{3 F}{8}=45 \& n=\frac{5}{8} \times F ; \quad 45 \times \frac{8}{3}-45 ; \quad 45 \times \frac{8}{3} \times \frac{5}{8}$	correct first step involving n or complete correct method for finding n
	(ii)		$\frac{45+" 75 "+52}{45+" 75 "+52+78}$ alone oe $=\frac{86}{125}$ or $\frac{172}{250}$ or $0.688(3 \mathrm{sf})$ oe	M1 A1ft [2]	$1-\frac{78}{45+" 75 "+52+78}$ oe or $\frac{250 "-78}{" 250 "}$ oe Completely correct method ft their integer answer to (i) eg if their (i) is 28 , ans 0.616 or $\frac{125}{203} \mathrm{M} 1 \mathrm{~A} 1 \mathrm{ft}$	$\begin{aligned} & \frac{45+" 75 "}{" 250 "}+\frac{52+" 75 "}{" 250 "}-\frac{" 75 "}{" 250 "} \\ & \text { or } 0.48+0.508-0.48 \times 0.508 \end{aligned}$
7	(iii)	(a)	$\frac{10}{25} \times \frac{6}{24} \text { or } \frac{6}{25} \times \frac{10}{24} \text { seen (or } \frac{2}{5} \times \frac{1}{4} \text { or } \frac{6}{25} \times \frac{5}{12} \text {) }$ oe $\begin{aligned} & \left(\frac{10}{25} \times \frac{6}{24}+\frac{6}{25} \times \frac{10}{24} \quad \text { or } \frac{10}{25} \times \frac{6}{24} \times 2\right) \\ & =\frac{1}{5} \end{aligned}$	M1 A1 [2]	or $\frac{10}{25} \times \frac{6}{25}+\frac{6}{25} \times \frac{10}{25} \quad$ or $\frac{10}{25} \times \frac{6}{25} \times 2$ oe $\frac{{ }^{10} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1}}{{ }^{25} \mathrm{C}_{2}}$ oe or $\frac{10 \times 6}{300}$ oe	ie allow M1 if ' $2 \times$ ' is omitted OR if 25 instead of 24 , but not both errors allow M1 for correct num or denom NB long methods may be correct, eg $\left(\frac{14}{25} \times \frac{10}{14}\right) \times\left(\frac{11}{24} \times \frac{6}{11}\right)$ same as $\frac{10}{25} \times \frac{6}{24}$
7	(iii)	(b)	$\mathrm{FA}+\mathrm{MC}$ or $\mathrm{FC}+\mathrm{MA}$ Either $\frac{4}{25} \times \frac{5}{24} \times 2$ or $\quad \frac{10}{25} \times \frac{6}{24} \times 2 \quad$ NB ft their (iiia)	M1	Allow $\frac{10}{25} \times \frac{6}{25} \times 2$ or $\frac{4}{25} \times \frac{5}{25} \times 2$ or $\frac{10}{25} \times \frac{6}{24}+\frac{4}{25} \times \frac{5}{24}$ or $\frac{10}{25} \times \frac{6}{25}+\frac{4}{25} \times \frac{5}{25}$ NB ft their (iii)(a)	ie allow 25 instead of 24 AND allow one case with $\times 2$ or both cases without $\times 2$ ie allow 25 and one of these two errors

Question		Answer	Marks	Guidance	
		$\begin{aligned} & \left(\frac{4}{25} \times \frac{5}{24} \times 2+\frac{10}{25} \times \frac{6}{24} \times 2=\frac{1}{5}+\frac{1}{15}\right) \\ & =\frac{4}{15} \text { or } 0.267(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { [2] } \end{aligned}$	$\frac{{ }^{10} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1}}{{ }^{25} \mathrm{C}_{2}}+\frac{{ }^{4} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1}}{{ }^{25} \mathrm{C}_{2}}$ oe or $\frac{60+20}{300}$ oe cao	cf scheme for (iii)(a) allow M1 if one of these fracts correct NB ${ }^{25} \mathrm{C}_{2}$ in denom NOT M1 , cf (iii)(a) NB see note on long methods in 7(iiia)
8	(i)	${ }^{5} \mathrm{C}_{2}$ oe seen anywhere or num= 10 alone $\frac{{ }^{5} \mathrm{C}_{2}}{{ }^{8} \mathrm{C}_{4}}$ oe or $\frac{{ }^{5} \mathrm{C}_{2} \times 4!}{{ }^{8} \mathrm{P}_{4}}$ oe all correct $=\frac{1}{7} \text { or } 0.143(3 \mathrm{sf})$	M1 M1 A1 [3]	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ or $\frac{20}{1680}$ or $\frac{1}{84}$ oe seen $\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times{ }^{4} \mathrm{C}_{2} \times 2$ or $\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 4!\div 2$ oe or $\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 12$ oe all correct Correct ans scores M1M1A1 regardless of method.	alone or $\times \ldots \quad$ eg $\frac{2}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ M1 $\frac{4}{8} \times \frac{3}{7} \times \frac{4}{6}$ oe all correct M2 NB $\frac{\text { incorrect }}{{ }^{8} \mathrm{C}_{4}}$ does not score
8	(ii)	$6!\times 2$ alone or $5!\times 6 \times 2$ alone oe $=1440$	M2 A1 [3]	M1 for $6!$ or $5!\times 6$ or ${ }^{6} \mathrm{P}_{5}$ or 720 seen NB 5! scores M0 unless $5!\times 6$ or $5!\times 12$	M1 for $7!\times 2$ alone NB 7! scores M0 unless $7!\times 2$ alone
8	(iii)	$\begin{aligned} & 6!\times 4 \text { alone or } 6!\times 2 \times 2 \text { alone } \\ & =2880 \end{aligned}$	M2 A1 [3]	M1 for 6 ! or ${ }^{6} \mathrm{P}_{5}$ or 720 seen or $5!\times 6$ seen but NOT from $5!\times 3$!	5!: M0 unless $5!\times 6$ or $5!\times 12$ or $5!\times 24$
9	If 0.3 and 0.7 are interchanged consistently through all four parts, all M-marks can be scored, but no A-marks. If $1-0.3$ is calculated incorrectly (eg 0.6 or 0.66 or $\frac{2}{3}$) consistently, lose the A -mark in (i) but all other marks are available on ft , so long as $0<$ ans <1.				

Question		Answer	Marks	Guidance	
9	(i)	$\begin{aligned} & 0.7^{4} \times 0.3 \text { alone } \\ & =0.0720(3 \mathrm{sf}) \text { or } \frac{7203}{100000} \text { oe } \end{aligned}$	M1 A1 [2]	allow 0.072	
9	(ii)	$\left(0.7+0.7^{2}+0.7^{3}\right) \times 0.3$ $=0.4599 \text { or } 0.460(3 \mathrm{sf}) \text { or } \frac{4599}{10000} \text { oe }$	M2 A1 [3]	M1 for 1 term omitted, wrong or extra. must add terms, not mult. Allow 0.46	$\left(1-0.7^{4}\right)-0.3$ or $0.7599-0.3$ M2 $\left(1-0.7^{4}\right)-\ldots$ or $1-0.3-\ldots$ M1 $0.7599-\ldots$ or $0.7-\ldots$$\quad$ M1
9	(iii)	$1-0.7^{6}$ $=0.882(3 \mathrm{sf})$	M2 A1 [3]	$\begin{array}{r} \text { M1 for } 0.7^{6} \text { alone or } 1-0.7^{5}(=0.832) \\ \text { or } 1-0.7^{7}(=0.918) \end{array}$	$\begin{array}{ll} \hline 0.3\left(1+0.7+0.7^{2}+0.7^{3}+0.7^{4}+0.7^{5}\right) \text { M2 } \\ \text { or (ii) }+0.3\left(1+0.7^{4}+0.7^{5}\right) & \text { M2 } \\ \text { or (i) }+(i i)+0.3\left(1+0.7^{5}\right) & \text { M2 } \end{array}$ one term omitted or extra: M1 must add terms, not mult. NB ans 0.832 might be M1M0A0 from omitting last term. Could be, eg, their (ii) $+0.3\left(1+0.7^{4}\right)$ correct working, but subtr from 1: M1
9	(iv)	$(1-" 0.882 ")^{2} \times \text { "0.882" oe }$ $=0.0122(3 \mathrm{sf})$	M1 A1ft [2]	or $\left(0.7^{6}\right)^{2} \times\left(1-0.7^{6}\right)$ or $0.1176^{2} \times(1-0.1176)$ or $\left(0.7^{6}\right)^{2} \times$ their " 0.882 " or $0.3\left(0.7^{12}+\left(0.7^{13}+0.7^{14}+\ldots+0.7^{17}\right)\right)$ allow 0.0123	Not $0.7^{2} \times 0.3$ Completely correct method ft their " 0.882 " except if 0.3 or 0.7

