Edexcel Maths C3 Past Paper Pack 2005-2013 | Centre
No. | | | | Paper Reference | | | | | Surname | Initial(s) | | | |------------------|---|--|--|-----------------|---|---|---|---|---------|------------|-----------|--| | Candidate
No. | ; | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** # **Core Mathematics C3 Advanced Level** Monday 20 June 2005 – Morning Time: 1 hour 30 minutes | Materials required | for | examination | |--------------------|------|-------------| | Mathematical Form | ulae | (Green) | Items included with question papers Nil Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G. Hewlett Packard HP 48G. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 7 questions in this question paper. The total mark for this paper is 75. There are 20 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited. $\stackrel{\text{Printer's Log. No.}}{N23494B}$ Examiner's use only Team Leader's use only Question 1 2 3 4 5 6 7 Leave Turn over Total | • (a) Given that $\sin^2 \theta + \cos^2 \theta = 1$, show that $1 + \tan^2 \theta = \sec^2 \theta$. | (2) | |--|-----| | (b) Solve, for $0 \le \theta \le 360^{\circ}$, the equation | | | $2\tan^2\theta+\sec\theta=1,$ | | | giving your answers to 1 decimal place. | (6) | - **2.** (a) Differentiate with respect to x - (i) $3 \sin^2 x + \sec 2x$, (3) (ii) $\{x + \ln(2x)\}^3$. **(3)** Given that $y = \frac{5x^2 - 10x + 9}{(x - 1)^2}$, $x \ne 1$, (b) show that $\frac{dy}{dx} = -\frac{8}{(x-1)^3}$. (6) **3.** The function f is defined by $$f:x \to \frac{5x+1}{x^2+x-2} - \frac{3}{x+2}, \ x > 1.$$ - (a) Show that $f(x) = \frac{2}{x-1}$, x > 1. - (b) Find $f^{-1}(x)$. (3) The function g is defined by $$g: x \to x^2 + 5, x \in \mathbb{R}.$$ (c) Solve $fg(x) = \frac{1}{4}$. (3) | 4. | | | $f(x) = 3e^x - \frac{1}{2} \ln x - 2,$ | x > 0. | |----|-----|-------------------------------|--|--------| | | (a) | Differentiate to find $f'(x)$ |). | | The curve with equation y = f(x) has a turning point at P. The x-coordinate of P is α . (b) Show that $$\alpha = \frac{1}{6}e^{-\alpha}$$. **(2)** **(3)** The iterative formula $$x_{n+1} = \frac{1}{6} e^{-x_n}, \ x_0 = 1,$$ is used to find an approximate value for α . (c) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimal places. **(2)** (d) By considering the change of sign of f'(x) in a suitable interval, prove that $\alpha = 0.1443$ correct to 4 decimal places. **(2)** | 5. | (a) | Using the identity $cos(A + B) \equiv cos A cos B - sin A sin B$, prove that | |----|-----|---| | | | | $$\cos 2A \equiv 1 - 2\sin^2 A. \tag{2}$$ (b) Show that $$2\sin 2\theta - 3\cos 2\theta - 3\sin \theta + 3 \equiv \sin \theta (4\cos \theta + 6\sin \theta - 3).$$ (4) - (c) Express $4 \cos \theta + 6 \sin \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. - (d) Hence, for $0 \le \theta < \pi$, solve $$2 \sin 2\theta = 3(\cos 2\theta + \sin \theta - 1),$$ giving your answers in radians to 3 significant figures, where appropriate. **(5)** | uestion 5 continued | | | |---------------------|--|--| Leave blank **6.** Figure 1 shows part of the graph of y = f(x), $x \in \mathbb{R}$. The graph consists of two line segments that meet at the point (1, a), a < 0. One line meets the x-axis at (3, 0). The other line meets the x-axis at (-1, 0) and the y-axis at (0, b), b < 0. In separate diagrams, sketch the graph with equation (a) $$y = f(x + 1)$$, (2) (b) $$y = f(|x|)$$. (3) Indicate clearly on each sketch the coordinates of any points of intersection with the axes. Given that f(x) = |x - 1| - 2, find (c) the value of a and the value of b, (2) (d) the value of x for which f(x) = 5x. **(4)** | (| Question 6 continued | blank | |---|----------------------|-------| 7. | A particular species of orchid is being studied. The population p at time t years after the study started is assumed to be | | |----|--|---| | | $p = \frac{2800a e^{0.2t}}{1 + a e^{0.2t}}$, where a is a constant. | | | | Given that there were 300 orchids when the study started, | | | | (a) show that $a = 0.12$, (3) |) | | | (b) use the equation with $a = 0.12$ to predict the number of years before the population of orchids reaches 1850. | L | | | 236 | 1 | | | (c) Show that $p = \frac{336}{0.12 + e^{-0.2t}}$. (1) | ١ | | | (d) Hence show that the population cannot exceed 2800. (2) |) | | | | | | | | - | | | | - | | | | | | | | - | | | | | | | | - | | | | | | | | - | | | | | | | | - | | | | - | | uestion 7 continued | | bla | |---------------------|------------------|-----| C | | | (Total 10 marks) | | **END** | Centre
No. | | | Paper Reference | | | | | Surname | Initial(s) | | | |------------------|--|--|-----------------|---|---|---|---|---------|------------|-----------|--| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ### 6665/01 ## **Edexcel GCE** # **Core Mathematics C3 Advanced Level** Monday 23 January 2006 – Afternoon Time: 1 hour 30 minutes | Materials required for examination | Items included with question papers | | | | | | |------------------------------------|-------------------------------------|--|--|--|--|--| | Mathematical Formulae (Green) | Nil | | | | | | Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 20 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited. $\stackrel{\text{Printer's Log. No.}}{N23495A}$ Examiner's use only Team Leader's use only Question Number 1 2 3 4 Leave Total W850/R6665/57570 7/7/3/3/3/3/3 1. Figure 1 shows the graph of y = f(x), $-5 \le x \le 5$. The point M(2, 4) is the maximum turning point of the graph. Sketch, on separate diagrams, the graphs of (a) $$y = f(x) + 3$$, (2) (b) $$y = |f(x)|,$$ (2) (c) $$y = f(|x|)$$. (3) Show on each graph the coordinates of any maximum turning points. | | blank | |----------------------|-------| | Question 1 continued | Q1 | | | | | (Total 7 marks) | | | 2. | Express | |----|---------| | | LAPICE | $$\frac{2x^2 + 3x}{(2x+3)(x-2)} - \frac{6}{x^2 - x - 2}$$ as a single fraction in its simplest form. **(7)** | | The point P lies on the curve with equation $y = \ln\left(\frac{1}{3}x\right)$. The x-coordinate of P is 3. | |---|--| | | Find an equation of the normal to the curve at the point P in the form $y = ax + b$, where a and b are constants.
 | | (5) | | | | | _ | | | | | | _ | _ | | | | | | | | | _ | _ | | | _ | | | | | | | | | 4. | (a) Differentiate with respect to x | | |----|---|-----| | | (i) x^2e^{3x+2} , | | | | | (4) | | | (ii) $\frac{\cos(2x^3)}{3x}$. | | | | | (4) | | | (b) Given that $x = 4 \sin(2y + 6)$, find $\frac{dy}{dx}$ in terms of x. | | | | | (5) | | _ | | | | _ | | | | _ | | | | | | | | _ | | | | _ | | | | _ | | | | _ | | | | | | | | _ | | | | _ | | | | _ | | | | _ | | | | | | | | _ | | | | _ | | | | _ | | | | _ | | | | | | | | | | | | _ | | | | | | | 5. $$f(x) = 2x^3 - x - 4$$. (a) Show that the equation f(x) = 0 can be written as $$x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}.$$ (3) The equation $2x^3 - x - 4 = 0$ has a root between 1.35 and 1.4. (b) Use the iteration formula $$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{1}{2}\right)},$$ with $x_0 = 1.35$, to find, to 2 decimal places, the values of x_1 , x_2 and x_3 . **(3)** The only real root of f(x) = 0 is α . (c) By choosing a suitable interval, prove that $\alpha = 1.392$, to 3 decimal places. **(3)** | 6. | | $f(x) = 12 \cos x - 4 \sin x.$ | | | | | | | |----|--|---|--|--|--|--|--|--| | | Given that $f(x) = R \cos(x + \alpha)$, where $R \ge 0$ and $0 \le \alpha \le 90^{\circ}$, | | | | | | | | | | (a) find the value of R and the value of α . | | | | | | | | | | (b) | Hence solve the equation | | | | | | | | | | $12\cos x - 4\sin x = 7$ | | | | | | | | | | for $0 \le x < 360^{\circ}$, giving your answers to one decimal place. (5) | | | | | | | | | (c) | (i) Write down the minimum value of $12 \cos x - 4 \sin x$. (1) | | | | | | | | | | (ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs. | | | | | | | | | | (2) | _ | nestion 6 continued | | |---------------------|--| (Total 12 marks) **(2)** **(4)** 7. (a) Show that (i) $$\frac{\cos 2x}{\cos x + \sin x} \equiv \cos x - \sin x$$, $x \neq (n - \frac{1}{4})\pi$, $n \in \mathbb{Z}$, (ii) $$\frac{1}{2}(\cos 2x - \sin 2x) \equiv \cos^2 x - \cos x \sin x - \frac{1}{2}$$. (3) (b) Hence, or otherwise, show that the equation $$\cos\theta \left(\frac{\cos 2\theta}{\cos\theta + \sin\theta}\right) = \frac{1}{2}$$ can be written as $$\sin 2\theta = \cos 2\theta. \tag{3}$$ (c) Solve, for $0 \le \theta \le 2\pi$, $$\sin 2\theta = \cos 2\theta$$, giving your answers in terms of π . | estion 7 continued | | |--------------------|--| | estion 7 continued | 8. | The | funct | tions | f | and | σ | are | defined | h | v | |----|------|-------|-------|---|-----|---|-----|----------|-----|----| | o. | 1110 | Tulle | 10113 | 1 | and | 5 | arc | actifica | · U | ·y | $$f: x \to 2x + \ln 2, \quad x \in \mathbb{R},$$ $$g: x \to e^{2x}, \qquad x \in \mathbb{R}.$$ (a) Prove that the composite function gf is $$gf: x \to 4e^{4x}, \qquad x \in \mathbb{R}.$$ (4) (b) In the space provided on page 19, sketch the curve with equation y = gf(x), and show the coordinates of the point where the curve cuts the y-axis. (1) (c) Write down the range of gf. **(1)** (d) Find the value of x for which $\frac{d}{dx}[gf(x)]=3$, giving your answer to 3 significant figures. **(4)** | Overtion 8 continued | blank | |----------------------|-------| | Question 8 continued | Centre
No. | | | Paper Reference Surname | | | Initial(s) | | | | | | |------------------|--|--|-------------------------|---|---|------------|---|---|---|-----------|--| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | ## 6665/01 ## **Edexcel GCE** ## **Core Mathematics C3 Advanced Level** Monday 12 June 2006 – Afternoon Time: 1 hour 30 minutes | Materials | required | for | examination | |-----------|----------|-----|-------------| | | | | | Mathematical Formulae (Green) Items included with question papers Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper. When a calculator is used, the answer should be given to an appropriate degree of accuracy. You must write your answer for each question in the space following the question. If you need more space to complete your answer to any question, use additional answer sheets. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). Full marks may be obtained for answers to ALL questions. There are 8 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit. This publication may be reproduced only in accordance with cel Limited copyright policy. W850/R6665/57570 3/3/3/3/3/36,300 Examiner's use only Team Leader's use only Ouestion Number 1 Leave Turn over Total | | Simplify $\frac{3x^2 - x - 2}{x^2 - 1}$. | (| |-----|---|-----| | (b) | Hence, or otherwise, express $\frac{3x^2-x-2}{x^2-1} - \frac{1}{x(x+1)}$ as a single fraction in its simform. | ple | | | iorin. | (| (Total 6 marks) | Differentiate, with respect to x , | | |--------------------------------------|-----| | (a) $e^{3x} + \ln 2x$, | (3) | | (b) $(5+x^2)^{\frac{3}{2}}$. | (3) | | (b) $(3+x)^2$. | (3) | 3. Figure 1 Figure 1 shows part of the curve with equation y = f(x), $x \in \mathbb{R}$, where f is an increasing function of x. The curve passes through the points P(0, -2) and Q(3, 0) as shown. In separate diagrams, sketch the curve with equation (a) $$y = |f(x)|$$, (3) (b) $$y = f^{-1}(x)$$, (3) (c) $$y = \frac{1}{2} f(3x)$$. (3) Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes. | Question 3 continued | Leave
blank | |----------------------|----------------| L | eave | | |----|------|--| | hl | ank | | | 4. | A heated metal ball is dropped into a liquid. As the ball cools, its temperature, $T ^{\circ}$ C, t minutes after it enters the liquid, is given by | |----|---| | | $T = 400 e^{-0.05t} + 25, t \geqslant 0.$ | | | (a) Find the temperature of the ball as it enters the liquid. (1) | | | (b) Find the value of t for which $T = 300$, giving your answer to 3 significant figures. (4) | | | (c) Find the rate at which the temperature of the ball is decreasing at the instant when $t = 50$. Give your answer in °C per minute to 3 significant figures. | | | (3) | | | (d) From the equation for temperature T in terms of t , given above, explain why the temperature of the ball can never fall to $20 ^{\circ}$ C. | | | (1) | **5.** Figure 2 shows part of the curve with equation $$y = (2x-1)\tan 2x, \ \ 0 \leqslant x < \frac{\pi}{4}.$$ The curve has a minimum at the point P. The x-coordinate of P is k. (a) Show that k satisfies the equation $$4k + \sin 4k - 2 = 0.$$ The iterative formula $$x_{n+1} = \frac{1}{4}(2 - \sin 4x_n), \ x_0 = 0.3,$$ is used to find an approximate value for k. (b) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimal places. (3) **(6)** (c) Show that k = 0.277, correct to 3 significant figures. **(2)** | | Le
 bla | |--------------------|-------------| | estion 5 continued | Le | eav | e | |----|-----|---| | hl | anl | , | | 6. | (a) Using $\sin^2 \theta + \cos^2 \theta = 1$, show that $\csc^2 \theta - \cot^2
\theta = 1$. | (2) | |----|---|-----| | | (b) Hence, or otherwise, prove that | | | | $\csc^4\theta - \cot^4\theta \equiv \csc^2\theta + \cot^2\theta.$ | | | | (c) Solve, for $90^{\circ} < \theta < 180^{\circ}$, | (2) | | | | | | | $\csc^4\theta - \cot^4\theta = 2 - \cot \theta.$ | (6) | 7. For the constant k, where k > 1, the functions f and g are defined by f: $$x \mapsto \ln(x+k)$$, $x > -k$, g: $x \mapsto |2x-k|$, $x \in \mathbb{R}$. (a) On separate axes, sketch the graph of f and the graph of g. On each sketch state, in terms of k, the coordinates of points where the graph meets the coordinate axes. **(5)** (b) Write down the range of f. **(1)** (c) Find $fg\left(\frac{k}{4}\right)$ in terms of k, giving your answer in its simplest form. **(2)** The curve C has equation y = f(x). The tangent to C at the point with x-coordinate 3 is parallel to the line with equation 9y = 2x + 1. (d) Find the value of k. **(4)** | | Leave
blank | |---|------------------| | | | | _ | | | | | | _ | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | _ | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | | | | Question 7 continued | b | |----------------------|---| **8.** (a) Given that $\cos A = \frac{3}{4}$, where $270^{\circ} < A < 360^{\circ}$, find the exact value of $\sin 2A$. (5) (b) (i) Show that $$\cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right) \equiv \cos 2x$$. Given that $$y = 3\sin^2 x + \cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right),$$ (ii) show that $$\frac{dy}{dx} = \sin 2x$$. **(4)** **(3)** | (Total 12 m | Q8 | |----------------------|----| Question 8 continued | | | Centre
No. | | | | | Pape | r Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|---------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** # **Core Mathematics C3 Advanced Level** Thursday 18 January 2007 – Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Green) CFX 9970G, Hewlett Packard HP 48G. Items included with question papers Nil Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio | Instructions | to | Candidates | |---------------|----|--------------| | instituctions | · | Cullululucos | In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited. $\stackrel{\text{Printer's Log. No.}}{N23583A}$ Examiner's use only Total W850/R6665/57570 3/3/3/3/3/3/21,900 | 1. (a) By writing $\sin 3\theta$ as $\sin (2\theta + \theta)$, show that | | |--|-----| | $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta.$ | | | | (5) | | (b) Given that $\sin \theta = \frac{\sqrt{3}}{4}$, find the exact value of $\sin 3\theta$. | | | 4 ′ | (2) | $$f(x) = 1 - \frac{3}{x+2} + \frac{3}{(x+2)^2}, \ x \neq -2.$$ (a) Show that $f(x) = \frac{x^2 + x + 1}{(x+2)^2}, x \neq -2.$ (4) (b) Show that $x^2 + x + 1 > 0$ for all values of x. **(3)** (c) Show that f(x) > 0 for all values of $x, x \neq -2$. **(1)** | - | | |-------|--| | Leave | | | hlank | | 3. The curve C has equation $$x = 2 \sin y$$. (a) Show that the point $P(\sqrt{2}, \frac{\pi}{4})$ lies on C. (1) (b) Show that $\frac{dy}{dx} = \frac{1}{\sqrt{2}}$ at P. **(4)** (c) Find an equation of the normal to C at P. Give your answer in the form y = mx + c, where m and c are exact constants. (4) | (4) | |-----| L | eave | | |----|------|--| | hl | ank | | **4.** (i) The curve C has equation $$y = \frac{x}{9 + x^2}.$$ Use calculus to find the coordinates of the turning points of C. **(6)** (ii) Given that $$y = (1 + e^{2x})^{\frac{3}{2}},$$ find the value of $\frac{dy}{dx}$ at $x = \frac{1}{2} \ln 3$. **(5)** | nestion 4 continued | | |---------------------|--| 5. Figure 1 Figure 1 shows an oscilloscope screen. The curve shown on the screen satisfies the equation $$y = \sqrt{3}\cos x + \sin x.$$ (a) Express the equation of the curve in the form $y = R\sin(x + \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < \frac{\pi}{2}$. | (b) Find the values of x , $0 \le x < 2\pi$, for which $y = 1$. | (b) | Find the values of x , | $0 \le x < 2\pi$, for which $y = 1$. | |---|-----|--------------------------|--| |---|-----|--------------------------|--| **(4)** $$f: x \mapsto \ln(4-2x), x < 2 \text{ and } x \in \mathbb{R}.$$ (a) Show that the inverse function of f is defined by $$\mathbf{f}^{-1}: x \mapsto 2 - \frac{1}{2} \mathbf{e}^x$$ and write down the domain of f^{-1} . **(4)** (b) Write down the range of f^{-1} . **(1)** (c) In the space provided on page 16, sketch the graph of $y = f^{-1}(x)$. State the coordinates of the points of intersection with the x and y axes. **(4)** The graph of y = x + 2 crosses the graph of $y = f^{-1}(x)$ at x = k. The iterative formula $$x_{n+1} = -\frac{1}{2}e^{x_n}, \ x_0 = -0.3$$ is used to find an approximate value for k. (d) Calculate the values of x_1 and x_2 , giving your answers to 4 decimal places. **(2)** (e) Find the value of k to 3 decimal places. **(2)** | Question 6 continued | Leave
 blank | |----------------------|------------------| 7. | | $f(x) = x^4 - 4x - 8.$ | |----|-----|--| | | (a) | Show that there is a root of $f(x) = 0$ in the interval $[-2, -1]$. | | | (b) | Find the coordinates of the turning point on the graph of $y = f(x)$. | | | | | (3) (3) - (c) Given that $f(x) = (x-2)(x^3 + ax^2 + bx + c)$, find the values of the constants, a, b and c. (3) - (d) In the space provided on page 21, sketch the graph of y = f(x). (3) - (e) Hence sketch the graph of y = |f(x)|. (1) | | Leave
 blank | |----------------------|--------------------| | Question 7 continued | Q7 | | (Total 13 marks) | l Y I | | Leave | | |-------|--| | hlank | | **8.** (i) Prove that $$\sec^2 x - \csc^2 x = \tan^2 x - \cot^2 x.$$ **(3)** (ii) Given that $$y = \arccos x$$, $-1 \leqslant x \leqslant 1$ and $0 \leqslant y \leqslant \pi$, (a) express $\arcsin x$ in terms of y. **(2)** (b) Hence evaluate $\arccos x + \arcsin x$. Give your answer in terms of π . (1) | Question 8 continued | | Lea
bla | |----------------------|---------------------------|------------| Q8 | | | (Total 6 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | Paper Reference | | | | Surname | Initial(s) | | | | |------------------|--|--|-----------------|---|---|---|---------|------------|---|-----------|--| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** # **Core Mathematics C3** # **Advanced Level** Thursday 14 June 2007 – Afternoon Time: 1 hour 30 minutes | Materials required | for examination | |--------------------|-----------------| | Mathematical Formu | ılae (Green) | Items included with question papers Nil Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators
must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited. $\begin{array}{c} N26109A \\ N26109A \\ N850/R6665/57570 N850/R6665/5750 \\ N850/R6665/5750 \\ N850/R6665/5750 \\ N850/R6665/5750 \\ N850/R6665/5750 \\ N850/R666/5750 N850/R666/570 N850/R66/570 \\ N850/R666/570 \\ N850/R66/570 \\ N850/R66/570 \\$ Examiner's use only Team Leader's use only Total | Leave | | |-------|--| | hlank | | | 1. | Find the exact solutions to the equations | |----|---| | | (a) $\ln x + \ln 3 = \ln 6$, (2) | | | (b) $e^x + 3e^{-x} = 4$. (4) | 2. $$f(x) = \frac{2x+3}{x+2} - \frac{9+2x}{2x^2+3x-2}, \quad x > \frac{1}{2}.$$ (a) Show that $f(x) = \frac{4x-6}{2x-1}$. (7) (b) Hence, or otherwise, find f'(x) in its simplest form. **(3)** | Leave | | |-------|--| | hlank | | 3. A curve C has equation $$y = x^2 e^x.$$ (a) Find $\frac{dy}{dx}$, using the product rule for differentiation. **(3)** (b) Hence find the coordinates of the turning points of C. **(3)** (c) Find $\frac{d^2y}{dx^2}$. **(2)** (d) Determine the nature of each turning point of the curve C. **(2)** | Leave | | |-------|--| | blank | | - 4. $f(x) = -x^3 + 3x^2 1.$ - (a) Show that the equation f(x) = 0 can be rewritten as $$x = \sqrt{\left(\frac{1}{3-x}\right)}. (2)$$ (b) Starting with $x_1 = 0.6$, use the iteration $$x_{n+1} = \sqrt{\left(\frac{1}{3 - x_n}\right)}$$ to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places. (2) (c) Show that x = 0.653 is a root of f(x) = 0 correct to 3 decimal places. (3) 5. The functions f and g are defined by $$f: x \mapsto \ln(2x-1),$$ $x \in \mathbb{R}, x > \frac{1}{2},$ $$g: x \mapsto \frac{2}{x-3}, \qquad x \in \mathbb{R}, x \neq 3.$$ (a) Find the exact value of fg(4). **(2)** (b) Find the inverse function $f^{-1}(x)$, stating its domain. **(4)** (c) Sketch the graph of y = |g(x)|. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the *y*-axis. (3) **(3)** (d) Find the exact values of x for which $\left| \frac{2}{x-3} \right| = 3$. | estion 5 continued | | | |--------------------|--|--| Leave | |-------| | blank | | 6. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where $R > 0$ and $0 < \alpha < 1$ | $<\frac{\pi}{2}$. (4) | |--|------------------------| | (b) Hence find the greatest value of $(3 \sin x + 2 \cos x)^4$. | (2) | | (c) Solve, for $0 < x < 2\pi$, the equation | | | $3\sin x + 2\cos x = 1,$ | | | giving your answers to 3 decimal places. | (5) | _ | |--|--|---| | | | _ | _ | 7. (a) Prove that $$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 2 \csc 2\theta, \qquad \theta \neq 90n^{\circ}.$$ **(4)** (b) On the axes on page 20, sketch the graph of $y = 2 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$. **(2)** (c) Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation $$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 3,$$ giving your answers to 1 decimal place. **(6)** | 8. | The amount of a certain type of drug in the bloodstream t hours after it has been taken is given by the formula | |----|--| | | $x = De^{-\frac{1}{8}t},$ | | | where x is the amount of the drug in the bloodstream in milligrams and D is the dose given in milligrams. | | | A dose of 10 mg of the drug is given. | | | (a) Find the amount of the drug in the bloodstream 5 hours after the dose is given. Give your answer in mg to 3 decimal places. (2) | | | A second dose of 10 mg is given after 5 hours. | | | (b) Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places. | | | (2) | | | No more doses of the drug are given. At time <i>T</i> hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg. | | | (c) Find the value of T. (3) | Q8 | |-----|---------------------------|-----------| | | (Total 7 marks) | | | END | TOTAL FOR PAPER: 75 MARKS | | | Centre
No. | | | | | Pape | er Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|----------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** # **Core Mathematics C3** ### **Advanced** Thursday 17 January 2008 – Afternoon Time: 1 hour 30 minutes | Materials required for examination | Items included with question papers | | | |------------------------------------|-------------------------------------|--|--| | Mathematical Formulae (Green) | Nil | | | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. Write your answers in the spaces provided in this question paper. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited. $\overset{\text{Printer's Log. No.}}{H26315RB}$ ____ Examiner's use only Team Leader's use only Ouestion 1 2 3 4 5 6 7 8 Leave Turn over Total W850/R6665/57570 3/3/3/3/3/3/3/2/2/ | - | ~ • | | |----|-------|------| | 1. | Given | that | | | CHACH | unai | $\frac{2x^4 - 3x^2 + x + 1}{(x^2 - 1)} \equiv (ax^2 + bx + c) + \frac{dx + e}{(x^2 - 1)},$ find the values of the constants a, b, c, d and e. **(4)** | 2. A curve C has equati | |--------------------------------| |--------------------------------| $$y = e^{2x} \tan x$$, $x \neq (2n+1)\frac{\pi}{2}$. (a) Show that the turning points on C occur where $\tan x = -1$. **(6)** (b) Find an equation of the tangent to C at the point where x = 0. (2) | 2 | C() 1 (O) 1 | • TD | |----|----------------------------|------------------------------| | 3. | $f(x) = \ln(x+2) - x + 1,$ | $x > -2, x \in \mathbb{R}$. | (a) Show that there is a root of f(x) = 0 in the interval 2 < x < 3. **(2)** (b) Use the iterative formula $$x_{n+1} = \ln(x_n + 2) + 1, \ x_0 = 2.5$$ to calculate the values of x_1, x_2 and x_3 giving your answers to 5 decimal places. **(3)** (c) Show that x = 2.505 is a root of f(x) = 0 correct to 3 decimal places. **(2)** Figure 1 Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin O and the points A(5, 4) and B(-5, -4). In separate diagrams, sketch the graph with equation (a) $$y = |\mathbf{f}(x)|$$, (3) (b) $$y = f(|x|)$$, (3) (c) $$y = 2f(x+1)$$. (4) On each sketch, show the coordinates of the points corresponding to A and B. | Question 4 continued | |----------------------| |
| | | | | | | | It takes 5730 years for half of the substance to decay. (b) Find the value of c to 3 significant figures. (4) (c) Calculate the number of atoms that will be left when t = 22 920. (d) In the space provided on page 13, sketch the graph of R against t. | | ioactive decay of a substance is given by | | |--|-----------|--|-----| | (a) Find the number of atoms when the substance started to decay. (1) It takes 5730 years for half of the substance to decay. (b) Find the value of c to 3 significant figures. (4) (c) Calculate the number of atoms that will be left when t = 22 920. (d) In the space provided on page 13, sketch the graph of R against t. | | $R = 1000e^{-ct}, \qquad t \geqslant 0.$ | | | It takes 5730 years for half of the substance to decay. (b) Find the value of c to 3 significant figures. (4) (c) Calculate the number of atoms that will be left when t = 22 920. (d) In the space provided on page 13, sketch the graph of R against t. | where R | R is the number of atoms at time t years and c is a positive constant. | | | (b) Find the value of c to 3 significant figures. (4) (c) Calculate the number of atoms that will be left when t = 22 920. (d) In the space provided on page 13, sketch the graph of R against t. | (a) Find | d the number of atoms when the substance started to decay. | (1) | | (c) Calculate the number of atoms that will be left when t = 22 920. (d) In the space provided on page 13, sketch the graph of R against t. | It takes: | 5730 years for half of the substance to decay. | | | (d) In the space provided on page 13, sketch the graph of R against t. | (b) Find | d the value of c to 3 significant figures. | (4) | | | (c) Calo | culate the number of atoms that will be left when $t = 22 920$. | (2) | | | (d) In tl | he space provided on page 13, sketch the graph of R against t . | (2) | **6.** (a) Use the double angle formulae and the identity $$cos(A+B) \equiv cos A cos B - sin A sin B$$ to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only. (4) (b) (i) Prove that $$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} \equiv 2\sec x, \qquad x \neq (2n+1)\frac{\pi}{2}.$$ **(4)** (ii) Hence find, for $0 < x < 2\pi$, all the solutions of $$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = 4.$$ | stion 6 continued | | |-------------------|--| 7. | A curve | C has | equation | |----|---------|-------|----------| | | | | | $$y = 3\sin 2x + 4\cos 2x, -\pi \leqslant x \leqslant \pi.$$ The point A(0, 4) lies on C. (a) Find an equation of the normal to the curve C at A. (5) (b) Express y in the form $R\sin(2x+\alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the value of α to 3 significant figures. **(4)** (c) Find the coordinates of the points of intersection of the curve C with the x-axis. Give your answers to 2 decimal places. **(4)** | estion 7 continued | | |--------------------|------| | |
 | **8.** The functions f and g are defined by $$f: x \mapsto 1 - 2x^3, x \in \mathbb{R}$$ $$g: x \mapsto \frac{3}{x} - 4, \ x > 0, \ x \in \mathbb{R}$$ (a) Find the inverse function f^{-1} . **(2)** (b) Show that the composite function gf is $$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}.$$ **(4)** (c) Solve gf(x) = 0. **(2)** (d) Use calculus to find the coordinates of the stationary point on the graph of y = gf(x). (5) | Overtion 8 continued | | blank | |----------------------|---------------------------|-------| | Question 8 continued | Q8 | | | (Total 13 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | | | Pape | r Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|---------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** ## **Core Mathematics C3** ## Advanced Friday 6 June 2008 – Afternoon Time: 1 hour 30 minutes | Materials | required | for | examina | tior | |-----------|-----------|------|---------|------| | Mathemati | cal Formu | ılae | (Green) | | **Items included with question papers** Ni Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 7 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited. $\stackrel{\text{Printer's Log. No.}}{N30745}A$ Examiner's use only Team Leader's use only Turn over Total W850/R6665/57570 3/3/3/3 | 1. The point <i>P</i> lies on the curve with equation | | |---|---| | $y = 4e^{2x+1}.$ | | | The y -coordinate of P is 8. | | | (a) Find, in terms of ln 2, the <i>x</i> -coordinate of <i>P</i> . | | | (a) Time, in terms of in 2, the x -coordinate of T . |) | | (b) Find the equation of the tangent to the curve at the point P in the form $y = ax + b$ where a and b are exact constants to be found. (4) | | | | - | | | - | | | - | | | - | | | - | | | _ | | | _ | | | _ | | | - | | | - | | | - | | | - | | | _ | | | _ | | | _ | | | _ | | | - | | | - | | | - | | | - | | | _ | | | _ | | | _ | | | _ | | _ | | |---|--| | • | | | _ | | $$f(x) = 5\cos x + 12\sin x$$ Given that $f(x) = R\cos(x - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$, (a) find the value of R and the value of α to 3 decimal places. **(4)** (b) Hence solve the equation $$5\cos x + 12\sin x = 6$$ for $0 \leqslant x < 2\pi$. **(5)** (c) (i) Write down the maximum value of $5\cos x + 12\sin x$. **(1)** (ii) Find the smallest positive value of x for which this maximum value occurs. **(2)** |
 | |------| | | | | | | | | | | | | | | |
 | uestion 2 continued | | |---------------------|--| | uestion 2 continued | Figure 1 Figure 1 shows the graph of y = f(x), $x \in \mathbb{R}$. The graph consists of two line segments that meet at the point P. The graph cuts the y-axis at the point Q and the x-axis at the points (-3, 0) and R. Sketch, on separate diagrams, the graphs of (a) $$y = |f(x)|$$, (2) (b) $$y = f(-x)$$. (2) Given that f(x) = 2 - |x+1|, (c) find the coordinates of the points P, Q and R, (3) (d) solve $$f(x) = \frac{1}{2}x$$. (5) | | | _ | |--|--|---| | | | _ | | | | _ | | | | _ | | | | | | | | _ | | | | _ | | | | _ | | | | | | | | | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | | | | | | | | | _ | | | | _ | | | | _ | | | | _ | **4.** The function f is defined by $$f: x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x - 3}, \quad x > 3.$$ - (a) Show that $f(x) = \frac{1}{x+1}$, x > 3. - (b) Find the range of f. (2) (c) Find $f^{-1}(x)$. State the domain of this inverse function. **(3)** The function g is defined by $$g: x \mapsto 2x^2 - 3, \quad x \in \mathbb{R}.$$ (d) Solve $fg(x) = \frac{1}{8}$. |
 | |------| | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | |
 | | | | | | | |
 | estion 4 continued | | | |--------------------|--|--| 6. (a) Given that $\sin^2 \theta + \cos^2 \theta \equiv 1$, show that $1 + \cot^2 \theta \equiv \csc^2 \theta$. | | |--|-----| | 2, 2 | (2) | | (b) Solve, for $0 \le \theta < 180^{\circ}$, the equation | | | $2 \cot^2 \theta - 9 \csc \theta = 3$, | | | giving your answers to 1 decimal place. | | | | (6) | - **6.** (a) Differentiate with respect to x, - (i) $e^{3x}(\sin x + 2\cos x)$, (3) (ii) $x^3 \ln (5x+2)$. (3) Given that $y = \frac{3x^2 + 6x - 7}{(x+1)^2}$, $x \ne -1$, (b) show that $\frac{dy}{dx} = \frac{20}{(x+1)^3}$. **(5)** (c) Hence find $\frac{d^2y}{dx^2}$ and the real values of x for which $\frac{d^2y}{dx^2} = -\frac{15}{4}$. | estion 6 continued | | | |--------------------|--|---| | | | | | | | _ | | | | | | | | | | | | _ | | | | _ | | | | _ | | | | | | | | _ | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | $$f(x) = 3x^3 - 2x - 6$$ (a) Show that f(x) = 0 has a root, α , between x = 1.4 and x = 1.45 (2) (b) Show that the equation f(x) = 0 can be written as $$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, \quad x \neq 0.$$ **(3)** (c) Starting with $x_0=1.43$, use the iteration $$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$$ to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places. (3) (d) By choosing a suitable interval, show that $\alpha = 1.435$ is correct to 3 decimal places. | | ٠. | z | -1 | |---|-----|---|----| | | - | ч | | | ı | • | , | п | | • | . = | | , | |
 | |------|
 | Question 7 continued | | bla | |----------------------|--|-----| (Total 11 marks) TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | Paper Reference | | | | | Surname | Initial(s) | | | |------------------|--|--|-----------------|---|---|---|---|---------|------------|-----------|--| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** ## **Core Mathematics C3** ### **Advanced** Thursday 15 January 2009 - Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Green) Items included with question papers Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited. $\begin{array}{c} {\rm Printer's\ Log.\ No.} \\ H31123A \end{array}$ W850/R6665/57570 3/3/3/3 Examiner's use only Team Leader's use only Ouestion 1 2 3 Leave Turn over Total | (a) Find the value of $\frac{dy}{dx}$ at the point where $x = 2$ on the curve with | | |--|-----| | $y = x^2 \sqrt{(5x - 1)}.$ | (6) | | (b) Differentiate $\frac{\sin 2x}{x^2}$ with respect to x . | (4) | $$f(x) = \frac{2x+2}{x^2-2x-3} - \frac{x+1}{x-3}$$ (a) Express f(x) as a single fraction in its simplest form. **(4)** (b) Hence show that $f'(x) = \frac{2}{(x-3)^2}$ |
 | |------| | | | | | | | | |
 | Figure 1 Figure 1 shows the graph of y = f(x), 1 < x < 9. The points T(3, 5) and S(7, 2) are turning points on the graph. Sketch, on separate diagrams, the graphs of (a) $$y = 2f(x) - 4$$, (3) (b) $$y = |f(x)|$$. (3) Indicate on each diagram the coordinates of any turning points on your sketch. | Find the equation of the tangent to the curve $x = \cos(2y + \pi)$ at $\left(0, \frac{\pi}{4}\right)$. | | |---|-----| | Give your answer in the form $y = ax + b$, where a and b are constants to be found. | (6) | 5. The functions f and g are defined by $$f: x \mapsto 3x + \ln x, \quad x > 0, \quad x \in \mathbb{R}$$ $g: x \mapsto e^{x^2}, \quad x \in \mathbb{R}$ (a) Write down the range of g. (1) (b) Show that the composite function fg is defined by $$fg: x \mapsto x^2 + 3e^{x^2}, \quad x \in \mathbb{R}$$. **(2)** (c) Write down the range of fg. **(1)** (d) Solve the equation $\frac{d}{dx} [fg(x)] = x(xe^{x^2} + 2)$. (6) | estion 5 continued | | |--------------------|--| **6.** (a) (i) By writing $3\theta = (2\theta + \theta)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ **(4)** (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8\sin^3\theta - 6\sin\theta + 1 = 0.$$ Give your answers in terms of π . **(5)** (b) Using $\sin(\theta - \alpha) = \sin\theta\cos\alpha - \cos\theta\sin\alpha$, or otherwise, show that $$\sin 15^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$$ **(4)** | estion 6 continued | | | |--------------------|--|---| | | | | | | | _ | | | | | | | | | | | | _ | | | | _ | | | | _ | | | | | | | | _ | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | $$f(x) = 3xe^x - 1$$ The curve with equation y = f(x) has a turning point P. (a) Find the exact coordinates of P. **(5)** The equation f(x) = 0 has a root between x = 0.25 and x = 0.3 (b) Use the iterative formula $$x_{n+1} = \frac{1}{3} e^{-x_n}$$ with $x_0 = 0.25$ to find, to 4 decimal places, the values of x_1 , x_2 and x_3 . **(3)** (c) By choosing a suitable interval, show that a root of f(x) = 0 is x = 0.2576 correct to 4 decimal places. | Question 7 continued | bla | |----------------------|-----| Leave | | |-------|--| | hlank | | | 8. | (a) Express $3 \cos \theta + 4 \sin \theta$ in the form $R \cos(\theta - \alpha)$, where R and α are constant and $0 < \alpha < 90^{\circ}$. | nts, $R > 0$ | |----|---|--------------| | | | (4) | | | (b) Hence find the maximum value of $3 \cos \theta + 4 \sin \theta$ and the smallest positive θ for which this maximum occurs. | value of | | | | (3) | | | The temperature, $f(t)$, of a warehouse is modelled using the equation | | | | $f(t) = 10 + 3 \cos(15t)^{\circ} + 4 \sin(15t)^{\circ},$ | | | | where <i>t</i> is the time in hours from midday and $0 \le t < 24$. | | | | (c)
Calculate the minimum temperature of the warehouse as given by this mode | el. (2) | | | (d) Find the value of t when this minimum temperature occurs. | (3) | Question 8 continued | | blank | |----------------------|---------------------------|-------| Q8 | | | (Total 12 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | Paper Reference | | | | Surname | Initial(s) | | | | | |------------------|--|--|-----------------|---|---|---|---------|------------|---|-----------|--|------------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | $\left \right $ | Paper Reference(s) ## 6665/01 # **Edexcel GCE** ## **Core Mathematics C3** ### Advanced Thursday 11 June 2009 – Morning Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | | | | |------------------------------------|------------------------------------|--|--|--| | Mathematical Formulae (Orange or | Nil | | | | | Green) | | | | | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited. Printer's Log. No. H34264A Examiner's use only Total W850/R6665/57570 4/5/5/3 Figure 1 Figure 1 shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the x-axis at the point A where $x = \alpha$. To find an approximation to α , the iterative formula $$x_{n+1} = \frac{2}{(x_n)^2} + 2$$ is used. (a) Taking $x_0 = 2.5$, find the values of x_1, x_2, x_3 and x_4 . Give your answers to 3 decimal places where appropriate. **(3)** (b) Show that $\alpha = 2.359$ correct to 3 decimal places. | (b) Solve, for $0 \le \theta \le 360^{\circ}$, the equation | | |--|-----| | $2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2$ | (6) | | | (0) | 3. | Rabbits were introduced onto an island. The number of rabbits, P , t years after they were introduced is modelled by the equation | |----|---| | | $P=80e^{\frac{1}{5}t}, \qquad t\in\mathbb{R},\ t\geqslant 0$ | | | (a) Write down the number of rabbits that were introduced to the island. (1) | | | (b) Find the number of years it would take for the number of rabbits to first exceed 1000. | | | (c) Find $\frac{dP}{dt}$. | | | (2) | | | (d) Find P when $\frac{\mathrm{d}P}{\mathrm{d}t} = 50$. | - **4.** (i) Differentiate with respect to x - (a) $x^2 \cos 3x$ (3) (b) $$\frac{\ln(x^2+1)}{x^2+1}$$ (4) (ii) A curve C has the equation $$y = \sqrt{(4x+1)}, x > -\frac{1}{4}, y > 0$$ The point P on the curve has x-coordinate 2. Find an equation of the tangent to C at P in the form ax + by + c = 0, where a, b and c are integers. **(6)** | stion 4 continued | | | |-------------------|--|--| Figure 2 Figure 2 shows a sketch of part of the curve with equation y = f(x), $x \in \mathbb{R}$. The curve meets the coordinate axes at the points A(0,1-k) and $B(\frac{1}{2}\ln k,0)$, where k is a constant and k > 1, as shown in Figure 2. On separate diagrams, sketch the curve with equation (a) $$y = |f(x)|,$$ (3) (b) $$y = f^{-1}(x)$$. (2) Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes. Given that $f(x) = e^{2x} - k$, (c) state the range of f, (1) (d) find $$f^{-1}(x)$$, (3) (e) write down the domain of f^{-1} . (1) | | Leave | |----------------------|-------| | Overtion 5 continued | blank | | Question 5 continued | 6. | (a) | Use the identity $\cos(A+B) = \cos A \cos B - \sin A \sin B$, to show that | |----|-----|---| | | | $\cos 2A = 1 - 2\sin^2 A \tag{2}$ | | | The | e curves C_1 and C_2 have equations | | | | $C_1: y = 3\sin 2x$ | | | | $C_2: y = 4\sin^2 x - 2\cos 2x$ | | | (b) | Show that the x-coordinates of the points where C_1 and C_2 intersect satisfy the equation | | | | $4\cos 2x + 3\sin 2x = 2\tag{3}$ | | | (c) | Express $4\cos 2x + 3\sin 2x$ in the form $R\cos (2x - \alpha)$, where $R > 0$ and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places. | | | (d) | Hence find, for $0 \le x < 180^{\circ}$, all the solutions of | | | | $4\cos 2x + 3\sin 2x = 2$ | | | | giving your answers to 1 decimal place. | | | | (4) | estion 6 continued | | | |--------------------|--|---| | | | | | | | _ | | | | | | | | | | | | _ | | | | _ | | | | _ | | | | | | | | _ | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | 7. The function f is defined by $$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}, \quad x \in \mathbb{R}, \ x \neq -4, \ x \neq 2$$ (a) Show that $$f(x) = \frac{x-3}{x-2}$$ (5) The function g is defined by $$g(x) = \frac{e^x - 3}{e^x - 2}, \quad x \in \mathbb{R}, \ x \neq \ln 2$$ - (b) Differentiate g(x) to show that $g'(x) = \frac{e^x}{(e^x 2)^2}$ (3) - (c) Find the exact values of x for which g'(x) = 1 (4) | 8. (a) Write down $\sin 2x$ in terms of $\sin x$ and $\cos x$. | | |---|-----| | (a) write down om 2n in terms of only and cook. | (1) | | (b) Find, for $0 < x < \pi$, all the solutions of the equation | | | | | | $\csc x - 8\cos x = 0$ | | | giving your answers to 2 decimal places. | (5) | | | (5) | Centre
No. | | | | | Pape | er Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|----------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** ## **Core Mathematics C3** ## **Advanced** Wednesday 20 January 2010 – Afternoon Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | |------------------------------------|------------------------------------| | Mathematical Formulae (Pink or | Nil | | Green) | | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer to each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 9 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any
blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited. N35381A W850/R6665/57570 5/5/5/4/3/3 Examiner's use only Team Leader's use only Question 1 2 3 4 5 6 7 8 9 Leave Turn over Total $$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$$ | $\frac{3x^2-3}{3x+1}$ | | | | | | |--|-----|--|--|--|--| | as a single fraction in its simplest form. | (4) | $$f(x) = x^3 + 2x^2 - 3x - 11$$ (a) Show that f(x) = 0 can be rearranged as $$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$$ **(2)** The equation f(x) = 0 has one positive root α . The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ is used to find an approximation to α . - (b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 . (3) - (c) Show that $\alpha = 2.057$ correct to 3 decimal places. (3) | (a) Express $5 \cos x - 3 \sin x$ in the form $R \cos(x + \alpha)$, where $R > 0$ and $0 < \alpha$ | $\alpha < \frac{1}{2}\pi. \tag{4}$ | |---|------------------------------------| | (b) Hence, or otherwise, solve the equation | | | $5\cos x - 3\sin x = 4$ | | | for $0 \le x < 2\pi$, giving your answers to 2 decimal places. | (5) | 4. (i) Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$. (4) (ii) Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$. **(5)** _ | | | blank | |----|--|-------| | 5. | Sketch the graph of $y = \ln x $, stating the coordinates of any points of intersection with the axes. | | | | (3) | - - 6. Figure 1 Figure 1 shows a sketch of the graph of y = f(x). The graph intersects the y-axis at the point (0, 1) and the point A(2, 3) is the maximum turning point. Sketch, on separate axes, the graphs of - (i) y = f(-x) + 1, - (ii) y = f(x+2) + 3, - (iii) y = 2f(2x). On each sketch, show the coordinates of the point at which your graph intersects the y-axis and the coordinates of the point to which A is transformed. **(9)** | | Leave | |----------------------|-------| | Overtion (continued | blank | | Question 6 continued | 7. (a) By writing $\sec x$ as $\frac{1}{\cos x}$, show that $\frac{d(\sec x)}{dx} = \sec x \tan x$. (3) Given that $y = e^{2x} \sec 3x$, (b) find $\frac{dy}{dx}$. **(4)** The curve with equation $y = e^{2x} \sec 3x$, $-\frac{\pi}{6} < x < \frac{\pi}{6}$, has a minimum turning point at (a, b). (c) Find the values of the constants a and b, giving your answers to 3 significant figures. **(4)** |
 | |------| estion 7 continued | | |--------------------|--| 8. Solve | $\csc^2 2x - \cot 2x = 1$ | | |---|---------------------------|-----| | for $0 \leqslant x \leqslant 180^{\circ}$. | | (7) | 9. | (i) | Find the | exact | solutions | to | the | equations | S | |--|----|-----|----------|-------|-----------|----|-----|-----------|---| |--|----|-----|----------|-------|-----------|----|-----|-----------|---| (a) $$\ln(3x - 7) = 5$$ **(3)** (b) $$3^x e^{7x+2} = 15$$ **(5)** (ii) The functions f and g are defined by $$f(x) = e^{2x} + 3, x \in \mathbb{R}$$ $$g(x) = \ln(x - 1), x \in \mathbb{R}, x > 1$$ $$x \in \mathbb{R}$$ $$g(x) = \ln(x - 1),$$ $$x \in \mathbb{R}, x > 1$$ (a) Find f^{-1} and state its domain. **(4)** (b) Find fg and state its range. **(3)** | Question 9 continued | | blank | |----------------------|---------------------------|-------| Q9 | | | (Total 15 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | | | Pape | er Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|----------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** ## **Core Mathematics C3** ## Advanced Tuesday 15 June 2010 – Morning Time: 1 hour 30 minutes | Materials required for | examination | |------------------------|-------------| | Mathematical Formulae | (Pink) | Items included with question papers Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer to each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited. Printer's Log. No. H35385A W850/R6665/57570 4/5/3/3/3 Examiner's use only Team Leader's use only Question 1 Leave Turn over Total | 1. | (a) | Show | that | |----|-----|------|------| | | | | | $$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$ **(2)** (b) Hence find, for $$-180^{\circ} \leqslant \theta < 180^{\circ}$$, all the solutions of $$\frac{2\sin 2\theta}{1+\cos 2\theta}=1$$ Give your answers to 1 decimal place. **(3)** _ | 2. | A curve | C has | equation | |----|---------|-------|----------| | | | | | $$y = \frac{3}{(5-3x)^2}, \quad x \neq \frac{5}{3}$$ The point P on C has x-coordinate 2. Find an equation of the normal to C at P in the form ax + by + c = 0, where a, b and c are integers. **(7)** **(2)** 3. $f(x) = 4\csc x - 4x + 1$, where x is in radians. - (a) Show that there is a root α of f(x) = 0 in the interval [1.2, 1.3]. - (b) Show that the equation f(x) = 0 can be written in the form $$x = \frac{1}{\sin x} + \frac{1}{4} \tag{2}$$ (c) Use the iterative formula $$x_{n+1} = \frac{1}{\sin x_n} + \frac{1}{4}, \quad x_0 = 1.25,$$ to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places. (3) (d) By considering the change of sign of f(x) in a suitable interval, verify that $\alpha = 1.291$ correct to 3 decimal places. | tion 3 continued | | |------------------|--| **4.** The function f is defined by $$f: x \mapsto |2x-5|, x \in \mathbb{R}$$ (a) Sketch the graph with equation y = f(x), showing the coordinates of the points where the graph cuts or meets the axes. **(2)** (b) Solve f(x) = 15 + x. **(3)** The function g is defined by $$g: x \mapsto x^2 - 4x + 1, \quad x \in \mathbb{R}, \quad 0 \leqslant x \leqslant
5$$ (c) Find fg(2). **(2)** (d) Find the range of g. (3) | uestion 4 continued | | |---------------------|--| **5.** Figure 1 Figure 1 shows a sketch of the curve C with the equation $y = (2x^2 - 5x + 2)e^{-x}$. (a) Find the coordinates of the point where C crosses the y-axis. **(1)** (b) Show that C crosses the x-axis at x = 2 and find the x-coordinate of the other point where C crosses the x-axis. **(3)** (c) Find $$\frac{dy}{dx}$$. (3) (d) Hence find the exact coordinates of the turning points of C. |
 | |------| | estion 5 continued | | | |--------------------|--|--| 6. Figure 2 Figure 2 shows a sketch of the curve with the equation y = f(x), $x \in \mathbb{R}$. The curve has a turning point at A(3, -4) and also passes through the point (0, 5). - (a) Write down the coordinates of the point to which A is transformed on the curve with equation - (i) y = |f(x)|, (ii) $$y = 2f(\frac{1}{2}x)$$. (4) (b) Sketch the curve with equation $$y = f(|x|)$$ On your sketch show the coordinates of all turning points and the coordinates of the point at which the curve cuts the *y*-axis. **(3)** The curve with equation y = f(x) is a translation of the curve with equation $y = x^2$. (c) Find f(x). **(2)** (d) Explain why the function f does not have an inverse. **(1)** | estion 6 continued | | |--------------------|--| 7. (a) Express $2\sin\theta - 1.5\cos\theta$ in the form $R\sin(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the value of α to 4 decimal places. **(3)** (b) (i) Find the maximum value of $2 \sin \theta - 1.5 \cos \theta$. (ii) Find the value of θ , for $0 \le \theta < \pi$, at which this maximum occurs. **(3)** Tom models the height of sea water, H metres, on a particular day by the equation $$H = 6 + 2\sin\left(\frac{4\pi t}{25}\right) - 1.5\cos\left(\frac{4\pi t}{25}\right), \quad 0 \le t < 12,$$ where *t* hours is the number of hours after midday. (c) Calculate the maximum value of H predicted by this model and the value of t, to 2 decimal places, when this maximum occurs. **(3)** (d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres. **(6)** - - | nestion 7 continued | | |---------------------|--| **8.** (a) Simplify fully $$\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}$$ (3) Given that $$ln(2x^2+9x-5) = 1 + ln(x^2+2x-15), \quad x \neq -5,$$ (b) find x in terms of e. (4) | Centre
No. | | | Paper Reference | | | Surname | Initial(s) | | | | | |------------------|--|--|-----------------|---|---|---------|------------|---|---|-----------|--| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) #### 6665/01 ## **Edexcel GCE** ## **Core Mathematics C3 Advanced** Monday 24 January 2011 – Morning Time: 1 hour 30 minutes | Materials required for examination | Items included with question pape | | | |------------------------------------|-----------------------------------|--|--| | Mathematical Formulae (Pink) | Nil | | | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer to each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance wite Edexcel Limited copyright policy. ©2011 Edexcel Limited. H35404RA Examiner's use only Team Leader's use only Turn over | Leave | |-------| | blank | | l. (a | a) | Express $7\cos x - 24\sin x$ in the form $R\cos(x+\alpha)$ where $R>0$ and $0<\alpha<\frac{\pi}{2}$. | | | | | | |-------|-----------|---|-----|--|--|--|--| | | | Give the value of α to 3 decimal places. | | | | | | | | | | (3) | | | | | | (1 | b) | Hence write down the minimum value of $7\cos x - 24\sin x$. | | | | | | | | | | (1) | | | | | | (| (c) | Solve, for $0 \le x < 2\pi$, the equation | | | | | | | (, | <i>C)</i> | solve, for $0 \leqslant x \leqslant 2n$, the equation | | | | | | | | | $7\cos x - 24\sin x = 10$ | | | | | | | | | giving your answers to 2 decimal places. | | | | | | | | | | (5) | 2. (a) Express $$\frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)}$$ as a single fraction in its simplest form. **(4)** Given that $$f(x) = \frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)} - 2, \quad x > 1,$$ (b) show that $$f(x) = \frac{3}{2x - 1}$$ **(2)** (c) Hence differentiate f(x) and find f'(2). **(3)** | estion 2 continued | | |--------------------|--| 3. | Find | all | the | solutions | of | |-----------|------|-----|-----|-----------|----| |-----------|------|-----|-----|-----------|----| $2\cos 2\theta = 1 - 2\sin\theta$ | in the interval $0 \leqslant \theta < 360^{\circ}$. | (6) | |--|-----| 4. | Joan brings a cup of hot tea into a room and places the cup on a table. At time t minutes after Joan places the cup on the table, the temperature, θ °C, of the tea is modelled by the equation | |----|--| | | $\theta = 20 + Ae^{-kt},$ | | | where A and k are positive constants. | | | Given that the initial temperature of the tea was 90°C, | | | (a) find the value of A . (2) | | | The tea takes 5 minutes to decrease in temperature from 90°C to 55°C. | | | (b) Show that $k = \frac{1}{5} \ln 2$. (3) | | | (c) Find the rate at which the temperature of the tea is decreasing at the instant when t = 10. Give your answer, in °C per minute, to 3 decimal places. |
 |
 | | |------|------|--| | | | | 5. Figure 1 Figure 1 shows a sketch of part of the curve with equation y = f(x), where $$f(x) = (8-x) \ln x, \quad x > 0$$ The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure 1. (a) Write down the coordinates of A and the coordinates of B. **(2)** (b) Find f'(x). (3) (c) Show that the x-coordinate of Q lies between 3.5 and 3.6 **(2)** (d) Show that the x-coordinate of Q is the solution of $$x = \frac{8}{1 + \ln x}$$ **(3)** To find an approximation for the x-coordinate of Q, the iteration formula $$x_{n+1} = \frac{8}{1 + \ln x_n}$$ is used. (e) Taking $x_0 = 3.55$, find the values of x_1 , x_2 and x_3 . Give your answers to 3 decimal places. **(3)** **6.** The function f is defined by f: $$x \mapsto \frac{3-2x}{x-5}$$, $x \in \mathbb{R}$, $x \neq 5$ (a) Find $f^{-1}(x)$. **(3)** Figure 2 The function g has domain $-1 \le x \le 8$, and is linear from (-1, -9) to (2, 0) and from (2, 0) to (8, 4). Figure 2 shows a sketch of the graph of y = g(x). (b) Write down the range of g. **(1)** (c) Find gg(2). **(2)** (d) Find fg(8). **(2)** - (e) On separate diagrams, sketch the graph with equation - (i) y = |g(x)|, - (ii) $y = g^{-1}(x)$. Show on each sketch the coordinates of each point at which the graph meets or cuts the axes. **(4)** (f) State the domain of the inverse function g^{-1} . **(1)** |
estion 6 continued | | |--------------------|--| 7. | The curve | C has | equation | |------------|-----------|-------|----------| | <i>,</i> • | The curve | Cinas | equation | $$y = \frac{3 + \sin 2x}{2 + \cos 2x}$$ (a) Show that $$\frac{dy}{dx} = \frac{6\sin 2x + 4\cos 2x + 2}{(2 + \cos 2x)^2}$$ **(4)** | (b) | Find an equation of the tangent to C at the point on C where $x = \frac{\pi}{2}$. | | |-----|--|---------| | | Write your answer in the form $y = ax + b$, where a and b are exact cons | stants. | **(4)** **8.** (a) Given that $$\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$$ show that $\frac{d}{dx}(\sec x) = \sec x \tan x$. **(3)** Given that $$x = \sec 2y$$ (b) find $\frac{dx}{dy}$ in terms of y. **(2)** (c) Hence find $\frac{dy}{dx}$ in terms of x. **(4)** |
 | |------| | | | | | | | | | | | Question 8 continued | | Leave
 blank | |----------------------|---------------------------|------------------| Q8 | | | (Total 9 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | | | Pape | r Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|---------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) #### 6665/01 ## **Edexcel GCE** # **Core Mathematics C3 Advanced** Thursday 16 June 2011 – Afternoon Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | |------------------------------------|------------------------------------| | Mathematical Formulae (Pink) | Nil | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance wit Edexcel Limited copyright policy. ©2011 Edexcel Limited. P38159A W850/R6665/57570 5/5/3/2 Turn over Total | . Differentiate with respect to x | | |-------------------------------------|-----| | (a) $\ln(x^2 + 3x + 5)$ | (2) | | (b) $\frac{\cos x}{x^2}$ | (3) | **(3)** | 2. | $f(x) = 2\sin(x^2) + x - 2,$ | $0 \le x < 2\pi$ | |----|------------------------------|------------------| (a) Show that f(x) = 0 has a root α between x = 0.75 and x = 0.85 (2) The equation f(x) = 0 can be written as $x = \left[\arcsin(1 - 0.5x)\right]^{\frac{1}{2}}$. (b) Use the iterative formula $$x_{n+1} = \left[\arcsin\left(1 - 0.5x_n\right)\right]^{\frac{1}{2}}, \quad x_0 = 0.8$$ to find the values of x_1 , x_2 and x_3 , giving your answers to 5 decimal places. (c) Show that $\alpha = 0.80157$ is correct to 5 decimal places. (3) 3. Figure 1 Figure 1 shows part of the graph of y = f(x), $x \in \mathbb{R}$. The graph consists of two line segments that meet at the point R(4,-3), as shown in Figure 1. Sketch, on separate diagrams, the graphs of (a) $$y = 2f(x+4)$$, (3) (b) $$y = |f(-x)|$$. (3) On each diagram, show the coordinates of the point corresponding to R. | 4. | The function f is defined by | | |----|--|-----| | | $f: x \mapsto 4 - \ln(x+2), x \in \mathbb{R}, \ x \geqslant -1$ | | | | (a) Find $f^{-1}(x)$. | (3) | | | (b) Find the domain of f^{-1} . | (1) | | | The function g is defined by | | | | $g: x \mapsto e^{x^2} - 2, x \in \mathbb{R}$ | | | | (c) Find $fg(x)$, giving your answer in its simplest form. | (3) | | | (d) Find the range of fg. | (1) | 5. | The mass, m grams, of a leaf t days after it has been picked from a tree is given by | |----|--| | | $m = p e^{-kt}$ | | | where k and p are positive constants. | | | When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams. | | | (a) Write down the value of p. (1) | | | (b) Show that $k = \frac{1}{4} \ln 3$. (4) | | | (c) Find the value of t when $\frac{dm}{dt} = -0.6 \ln 3$. (6) | **6.** (a) Prove that $$\frac{1}{\sin 2\theta} - \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90n^{\circ}, \ n \in \mathbb{Z}$$ (4) - (b) Hence, or otherwise, - (i) show that $\tan 15^\circ = 2 \sqrt{3}$, (3) (ii) solve, for $0 < x < 360^{\circ}$, $$\csc 4x - \cot 4x = 1$$ **(5)** | uestion 6 continued | | |---------------------|--| 7. $$f(x) = \frac{4x-5}{(2x+1)(x-3)} - \frac{2x}{x^2-9}, \qquad x \neq \pm 3, \ x \neq -\frac{1}{2}$$ (a) Show that $$f(x) = \frac{5}{(2x+1)(x+3)}$$ (5) The curve C has equation y = f(x). The point $P\left(-1, -\frac{5}{2}\right)$ lies on C. (b) Find an equation of the normal to C at P. **(8)** | | _ | |--|---| | | | | | | | | _ | | | | | | | | | | | | _ | _ | _ | _ | | | | | | | | | | | | _ | _ | | | | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | estion 7 continued | | | |--------------------|--|--| 8. | (a) | Express $2\cos 3x - 3\sin 3x$ in the form $R\cos(3x + \alpha)$, where R and α are constants, $R > 0$ | |----|-----|--| | | | and $0 < \alpha < \frac{\pi}{2}$. Give your answers to 3 significant figures. | | | | (4) | | | | $f(x) = e^{2x} \cos 3x$ | | | (b) | Show that $f'(x)$ can be written in the form | | | (0) | | | | | $f'(x) = R e^{2x} \cos(3x + \alpha)$ | | | | where R and α are the constants found in part (a). | | | | (5) | | | (c) | Hence, or otherwise, find the smallest positive value of x for which the curve with | | | | equation $y = f(x)$ has a turning point. (3) | Question 8 continued | | Leave | |----------------------|---------------------------|-------| Q8 | | | (Total 12 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | | | Pape | er Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|----------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) #### 6665/01 ## **Edexcel GCE** # Core Mathematics C3 Advanced Monday 23 January 2012 – Morning Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | |------------------------------------|------------------------------------| | Mathematical Formulae (Pink) | Nil | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following
the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2012 Pearson Education Ltd. Printer's Log. No. P40084A W850/R6665/57570 5/7/5/ Turn over Total **PEARSON** | (a) $x^2 \ln(3x)$ | | |---------------------------|-----| | | (4) | | (b) $\frac{\sin 4x}{x^3}$ | | | $\frac{1}{x^3}$ | (5) | Figure 1 shows the graph of equation y = f(x). The points P(-3, 0) and Q(2, -4) are stationary points on the graph. Sketch, on separate diagrams, the graphs of (a) $$y = 3f(x+2)$$ (b) $$y = |f(x)|$$ On each diagram, show the coordinates of any stationary points. | 3. The area, $A \text{ mm}^2$, of a bacterial culture growing in milk, t hours after middal t | y, is given by | |--|-------------------| | $A = 20 e^{1.5t}, t \geqslant 0$ | | | (a) Write down the area of the culture at midday. | (1) | | (b) Find the time at which the area of the culture is twice its area at midd answer to the nearest minute. | ay. Give your (5) | Find an equation of the normal to the curve at <i>P</i> . | | | | |---|---|-----|--| | Ι | rind an equation of the normal to the curve at F. | (7) | _ | | | | # 5. Solve, for $0 \leqslant \theta \leqslant 180^\circ$, | $2\cot^2 3\theta = 7\csc 3\theta - 5$ | | |--|------| | Give your answers in degrees to 1 decimal place. | (10) | 6. $f(x) = x^2 - 3x + 2\cos(\frac{1}{2}x), \quad 0 \le x \le \pi$ (a) Show that the equation f(x)=0 has a solution in the interval 0.8 < x < 0.9 (2) The curve with equation y = f(x) has a minimum point P. (b) Show that the x-coordinate of P is the solution of the equation $$x = \frac{3 + \sin\left(\frac{1}{2}x\right)}{2} \tag{4}$$ (c) Using the iteration formula $$x_{n+1} = \frac{3 + \sin(\frac{1}{2}x_n)}{2}, \quad x_0 = 2$$ find the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places. (3) (d) By choosing a suitable interval, show that the *x*-coordinate of *P* is 1.9078 correct to 4 decimal places. **(3)** | |
 | |--|------| uestion 6 continued | | |---------------------|--| 7. The function f is defined by $$f: x \mapsto \frac{3(x+1)}{2x^2+7x-4} - \frac{1}{x+4}, \quad x \in \mathbb{R}, x > \frac{1}{2}$$ - (a) Show that $f(x) = \frac{1}{2x-1}$ (4) - (b) Find $f^{-1}(x)$ (3) - (c) Find the domain of f^{-1} (1) $$g(x) = \ln(x+1)$$ (d) Find the solution of $fg(x) = \frac{1}{7}$, giving your answer in terms of e. (4) | estion 7 continued | | | |--------------------|--|--| **(6)** | 8. | (a) | Starting from | the formulae | for $\sin(A+B)$ |) and $\cos(A+B)$, | prove that | |----|-----|---------------|--------------|-----------------|---------------------|------------| |----|-----|---------------|--------------|-----------------|---------------------|------------| $$\tan\left(A+B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{4}$$ (b) Deduce that $$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3}\tan\theta}{\sqrt{3 - \tan\theta}}$$ (3) (c) Hence, or otherwise, solve, for $0 \le \theta \le \pi$, $$1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan (\pi - \theta)$$ Give your answers as multiples of π . |
 | |------| | | | | | | | | | | | | | | |
 |
 | Question 8 continued | | Leave | |----------------------|---------------------------|-------| Q8 | | | (Total 13 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | | | Pape | er Refer | ence | | | Surname | Initial(s) | |---------------|--|--|---|---|------|----------|------|---|---|-----------|------------| | Candidate | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** # **Core Mathematics C3 Advanced** Thursday 14 June 2012 – Morning Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | |------------------------------------|------------------------------------| | Mathematical Formulae (Pink) | Nil | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. ### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 32 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2012 Pearson Education Ltd. Examiner's use only Team Leader's use only 1 2 Turn over Total **PEARSON** | 1. Expr | ess | |---------|-----| | | | $$\frac{2(3x+2)}{9x^2-4} - \frac{2}{3x+1}$$ | as a single fraction in it | s simplest form. | | |----------------------------|------------------|-----| | as a single maction in it | s simplest form. | (4) | | | | (-) | 2. $$f(x) = x^3 + 3x^2 + 4x - 12$$ (a) Show that the equation f(x) = 0 can be written as $$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \qquad x \neq -3$$ (3) The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2 (b) Use the iteration formula $$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, n \geqslant 0$$ with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3 . (3) **(3)** The root of f(x) = 0 is α . (c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places. Figure 1 Figure 1 shows a sketch of the curve C which has equation $$y = e^{x\sqrt{3}} \sin 3x , \quad -\frac{\pi}{3} \leqslant x \leqslant \frac{\pi}{3}$$ (a) Find the x coordinate of the turning point P on C, for which x > 0 Give your answer as a multiple of π . **(6)** (b) Find an equation of the normal to C at the point where x = 0 **(3)** | | Leave
blank | |---|----------------| | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | - | | | - | | | _
| | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | | | | _ | | | _ | | | | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | | | | | | | bl | |----------------------|----| | Question 3 continued | Figure 2 Figure 2 shows part of the curve with equation y = f(x)The curve passes through the points P(-1.5, 0) and Q(0, 5) as shown. On separate diagrams, sketch the curve with equation (a) $$y = |\mathbf{f}(x)|$$ (2) (b) $$y = f(|x|)$$ (2) (c) $$y = 2f(3x)$$ (3) Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes. | Question 4 continued | Leave | |----------------------|-------| Leave | |-------| | blank | | 5. (a) Express $4\csc^2 2\theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$. | (2) | |--|-----| | (b) Hence show that | | | $4\csc^2 2\theta - \csc^2 \theta = \sec^2 \theta$ | | | | (4) | | (c) Hence or otherwise solve, for $0 < \theta < \pi$, | | | $4\csc^2 2\theta - \csc^2 \theta = 4$ | | | giving your answers in terms of π . | (3) | 6. | The functions f and g are defined by | | |----|---|---| | | $f: x \mapsto e^x + 2, \qquad x \in \mathbb{R}$ | | | | $g: x \mapsto \ln x$, $x > 0$ | | | | (a) State the range of f. (1) | | | | (b) Find fg(x), giving your answer in its simplest form. | | | | (2) That $Ig(x)$, giving your answer in its simplest form. | 1 | | | (c) Find the exact value of x for which $f(2x+3) = 6$ | 1 | | | (d) Find f ⁻¹ , the inverse function of f, stating its domain. | | | | (3) | J | | | (e) On the same axes sketch the curves with equation $y = f(x)$ and $y = f^{-1}(x)$, giving the coordinates of all the points where the curves cross the axes. | , | | | (4) | 1 | Leave | | |--|-------|--| | | blank | Question 6 continued | bla | |----------------------|-----| 7. (a) Differentiate with respect to x , | | |--|-----| | (i) $x^{\frac{1}{2}} \ln(3x)$ | | | (ii) $\frac{1-10x}{(2x-1)^5}$, giving your answer in its simplest form. | (6) | | (b) Given that $x = 3 \tan 2y$ find $\frac{dy}{dx}$ in terms of x. | (5) | 8. | $f(x) = 7\cos 2x - 24\sin 2x$ | | |----|---|-----| | | Given that $f(x) = R\cos(2x + \alpha)$, where $R > 0$ and $0 < \alpha < 90^{\circ}$, | | | | (a) find the value of R and the value of α . | (3) | | | (b) Hence solve the equation | | | | $7\cos 2x - 24\sin 2x = 12.5$ | | | | for $0 \le x < 180^{\circ}$, giving your answers to 1 decimal place. | (5) | | | (c) Express $14\cos^2 x - 48\sin x \cos x$ in the form $a\cos 2x + b\sin 2x + c$, where a , b , and c are constants to be found. | (2) | | | (d) Hence, using your answers to parts (a) and (c), deduce the maximum value of | | | | $14\cos^2 x - 48\sin x \cos x$ | (2) | Question 8 continued | | blank | |----------------------|---------------------------|-------| | Question 8 continued | Q8 | | | (Total 12 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | Paper Reference | | | | | Surname | Initial(s) | | | |------------------|--|--|-----------------|---|---|---|---|---------|------------|-----------|--| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** # **Core Mathematics C3 Advanced** Friday 25 January 2013 – Afternoon Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | |------------------------------------|------------------------------------| | Mathematical Formulae (Pink) | Nil | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. ## **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. ### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2013 Pearson Education Ltd. Examiner's use only Turn over **Total** **PEARSON** | 1. | The curve C has equation | | |----|---|-----| | | $y = (2x - 3)^5$ | | | | The point P lies on C and has coordinates $(w, -32)$. | | | | Find | | | | (a) the value of w , | (2) | | | (b) the equation of the tangent to C at the point P in the form $y = mx + c$, where $m = c$ are constants. | | | | | (5) | 2. | | | g(x) | $= e^{x-1}$ | + x - 6 | |----|----|---------|------|-------------|---------| | | G1 |
. • | | | • | (a) Show that the equation g(x) = 0 can be written as $$x = \ln(6 - x) + 1, \quad x < 6$$ **(2)** The root of g(x) = 0 is α . The iterative formula $$x_{n+1} = \ln(6 - x_n) + 1,$$ $x_0 = 2$ is used to find an approximate value for α . (b) Calculate the values of x_1 , x_2 and x_3 to 4 decimal places. (3) (c) By choosing a suitable interval, show that $\alpha = 2.307$ correct to 3 decimal places. Figure 1 Figure 1 shows part of the curve with equation $y = f(x), x \in \mathbb{R}$. The curve passes through the points Q(0,2) and P(-3,0) as shown. (a) Find the value of ff(-3). **(2)** On separate diagrams, sketch the curve with equation (b) $$y = f^{-1}(x)$$, **(2)** (c) $$y = f(|x|) - 2$$, (2) (d) $$y = 2f\left(\frac{1}{2}x\right)$$. **(3)** Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes. | Question 3 continued | Leave | |----------------------|-------| 4. | (a) | Express $6\cos\theta + 8\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. | | |----|-----|---|-----| | | | Give the value of α to 3 decimal places. | | | | | | (4) | | | (b) | $p(\theta) = \frac{4}{12 + 6\cos\theta + 8\sin\theta}, 0 \leqslant \theta \leqslant 2\pi$ | | | | | Calculate | | | | | (i) the maximum value of $p(\theta)$, | | | | | (ii) the value of θ at which the maximum occurs. | (4) | | | | | (4) | 5. (i) Differentiate with respect to x(a) $y = x^3 \ln 2x$ (b) $$y = (x + \sin 2x)^3$$ **(6)** Given that $x = \cot y$, (ii) show that $\frac{dy}{dx} = \frac{-1}{1+x^2}$ (5) | Leave | |-------| | blank | | 6. | (i) | Without using a calculator, find the exact value of | | |----|------|---|-----| | | | $(\sin 22.5^{\circ} + \cos 22.5^{\circ})^{2}$ | | | | | You must show each stage of your working. | (5) | | | (ii) | (a) Show that $\cos 2\theta + \sin \theta = 1$ may be written in the form | | | | | $k \sin^2 \theta - \sin \theta = 0$, stating the value of k . | (2) | | | | (b) Hence solve, for $0 \le \theta < 360^{\circ}$, the
equation | | | | | $\cos 2\theta + \sin \theta = 1$ | (4) | Leave | l | |--|-------|---| | | blank | 7. $$h(x) = \frac{2}{x+2} + \frac{4}{x^2+5} - \frac{18}{(x^2+5)(x+2)}, \qquad x \geqslant 0$$ (a) Show that $$h(x) = \frac{2x}{x^2 + 5}$$ (4) (b) Hence, or otherwise, find h'(x) in its simplest form. (3) Figure 2 Figure 2 shows a graph of the curve with equation y = h(x). (c) Calculate the range of h(x). **(5)** | Leave
blank | |------------------| Question 7 continued | blank | |----------------------|-------| 8. | The value of Bob's car can be calculated from the formula | | | | | |----|--|------------------|--|--|--| | | $V = 17000e^{-0.25t} + 2000e^{-0.5t} + 500$ | | | | | | | where V is the value of the car in pounds $(£)$ and t is the age in years. | | | | | | | (a) Find the value of the car when $t = 0$ | (1) | | | | | | (b) Calculate the exact value of t when $V = 9500$ | (4) | | | | | | (c) Find the rate at which the value of the car is decreasing at the instant who Give your answer in pounds per year to the nearest pound. | en $t = 8$. (4) | uestion 8 continued | | |---------------------|-----------------| (Total 9 marks) | **END** | Centre
No. | | | | | Pa | iper Re | eferenc | e | | Surname | Initial(s) | |------------------|--|--|---|---|----|---------|---------|---|-----|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 5 | / | 0 | 1 R | Signature | | Paper Reference(s) # 6665/01R # **Edexcel GCE** # **Core Mathematics C3 Advanced** Thursday 13 June 2013 – Morning Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | | | |------------------------------------|------------------------------------|--|--| | Mathematical Formulae (Pink) | Nil | | | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. ### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. ### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2013 Pearson Education Ltd. Printer's Log. No. P42953A W850/R6665/57570 5/5/5/ Examiner's use only | Question
Number | Leave
Blank | |--------------------|----------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | 1 | | Turn over **Total** **PEARSON** ## 1. Express $$\frac{3x+5}{x^2+x-12} - \frac{2}{x-3}$$ as a single fraction in its simplest form. **(4)** Figure 1 Figure 1 shows a sketch of the curve with equation y = f(x), x > 0, where f is an increasing function of x. The curve crosses the x-axis at the point (1, 0) and the line x = 0 is an asymptote to the curve. On separate diagrams, sketch the curve with equation (a) $$y = f(2x), x > 0$$ (2) (b) $$y = |f(x)|, x > 0$$ (3) Indicate clearly on each sketch the coordinates of the point at which the curve crosses or meets the *x*-axis. | $f(x) = 7\cos x + \sin x$ | | |---|-----| | Given that $f(x) = R\cos(x - \alpha)$, where $R > 0$ and $0 < \alpha < 90^{\circ}$, | | | (a) find the exact value of R and the value of α to one decimal place. | (3) | | (b) Hence solve the equation | | | $7\cos x + \sin x = 5$ | | | for $0 \le x \le 360^\circ$, giving your answers to one decimal place. | (5) | | (c) State the values of k for which the equation | | | $7\cos x + \sin x = k$ | | | has only one solution in the interval $0 \le x \le 360^{\circ}$ | (2) | Leave
blank | |------------------| Question 3 continued | | |----------------------|--| 4. The functions f and g are defined | by | |---|----| |---|----| $$f: x \mapsto 2|x| + 3, \qquad x \in \mathbb{R},$$ $$g: x \mapsto 3-4x, \qquad x \in \mathbb{R}$$ (a) State the range of f. (2) (b) Find fg(1). **(2)** (c) Find g^{-1} , the inverse function of g. **(2)** (d) Solve the equation $$gg(x) + [g(x)]^2 = 0$$ **(5)** | | Leave
blank | |---|----------------| _ | | | uestion 4 continued | | |---------------------|--| 5. (a) Differentiate $$\frac{\cos 2x}{\sqrt{x}}$$ with respect to x. (3) (b) Show that $\frac{d}{dx}(\sec^2 3x)$ can be written in the form $$\mu(\tan 3x + \tan^3 3x)$$ where μ is a constant. **(3)** (c) Given $x = 2\sin\left(\frac{y}{3}\right)$, find $\frac{dy}{dx}$ in terms of x, simplifying your answer. (4) | | Leave
blank | |---|------------------| | | | | _ | | | _ | | | | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | - | | | _ | | | | | | Question 5 continued | blan | |----------------------|------| 6. (i) | Use an appropriate double angle formula to show that | | |---------------|---|-----| | | $\csc 2x = \lambda \csc x \sec x$, | | | | and state the value of the constant λ . | (3) | | (ii) | Solve, for $0 \le \theta \le 2\pi$, the equation | | | | $3\sec^2\theta + 3\sec\theta = 2\tan^2\theta$ | | | | You must show all your working. Give your answers in terms of π . | (6) | 7. Figure 2 Figure 2 shows a sketch of part of the curve with equation y = f(x) where $$f(x) = (x^2 + 3x + 1)e^{x^2}$$ The curve cuts the *x*-axis at points *A* and *B* as shown in Figure 2. (a) Calculate the *x* coordinate of *A* and the *x* coordinate of *B*, giving your answers to 3 decimal places. **(2)** (b) Find f'(x). **(3)** **(3)** The curve has a minimum turning point at the point *P* as shown in Figure 2. (c) Show that the x coordinate of P is the solution of $$x = -\frac{3(2x^2 + 1)}{2(x^2 + 2)}$$ (d) Use the iteration formula $$x_{n+1} = -\frac{3(2x_n^2 + 1)}{2(x_n^2 + 2)}, \quad \text{with } x_0 = -2.4,$$ to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places. **(3)** The *x* coordinate of *P* is α . (e) By choosing a suitable interval, prove that $\alpha = -2.43$ to 2 decimal places. (2) | Leave
blank | |----------------| | | | | | | | | | | | Question 7 continued | blar | |----------------------|------| 8. Figure 3 The population of a town is being studied. The population P, at time t years from the start of the study, is assumed to be $$P = \frac{8000}{1 + 7e^{-kt}}, \qquad t \geqslant 0,$$ where k is a positive constant. The graph of *P* against *t* is shown in Figure 3. Use the given equation to (a) find the population at the start of the
study, (2) (b) find a value for the expected upper limit of the population. **(1)** Given also that the population reaches 2500 at 3 years from the start of the study, (c) calculate the value of k to 3 decimal places. **(5)** Using this value for k, (d) find the population at 10 years from the start of the study, giving your answer to 3 significant figures. **(2)** (e) Find, using $\frac{dP}{dt}$, the rate at which the population is growing at 10 years from the start of the study. **(3)** | Question 8 continued | | blank | |----------------------|---------------------------|-------| | Zacono o continuou | Q8 | | | (Total 13 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | **END** | Centre
No. | | | | | Pape | er Refer | ence | | | Surname | Initial(s) | |---------------|--|--|---|---|------|----------|------|---|---|-----------|------------| | Candidate | | | 6 | 6 | 6 | 5 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6665/01 # **Edexcel GCE** # **Core Mathematics C3** ### Advanced Thursday 13 June 2013 – Morning Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | |------------------------------------|------------------------------------| | Mathematical Formulae (Pink) | Nil | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 32 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2013 Pearson Education Ltd. Printer's Log. No. P43016A W850/R6665/57570 5/5/5/5 Examiner's use only Team Leader's use only 1 Turn over Total ### 1. Given that $$\frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 - 4}, \quad x \neq \pm 2$$ | find the values of the constants a , b , c , d and e . | | |--|--| ### **2.** Given that $$f(x) = \ln x, \quad x > 0$$ sketch on separate axes the graphs of - (i) y = f(x), - (ii) y = |f(x)|, - (iii) y = -f(x 4). Show, on each diagram, the point where the graph meets or crosses the x-axis. In each case, state the equation of the asymptote. **(7)** | 3. | C: | 414 | |----|---------|------| | • | Given | าทวา | | | CILVCII | unai | $$2\cos(x+50)^\circ = \sin(x+40)^\circ$$ (a) Show, without using a calculator, that $$\tan x^{\circ} = \frac{1}{3} \tan 40^{\circ} \tag{4}$$ (b) Hence solve, for $0 \le \theta \le 360$, $$2\cos(2\theta + 50)^{\circ} = \sin(2\theta + 40)^{\circ}$$ giving your answers to 1 decimal place. **(4)** | 4. | $f(x) = 25x^2e^{2x} - 16,$ | $x \in \mathbb{R}$ | |----|----------------------------|--------------------| | | _() | | (a) Using calculus, find the exact coordinates of the turning points on the curve with equation y = f(x). **(5)** (b) Show that the equation f(x) = 0 can be written as $x = \pm \frac{4}{5} e^{-x}$ (1) The equation f(x) = 0 has a root α , where $\alpha = 0.5$ to 1 decimal place. (c) Starting with $x_0 = 0.5$, use the iteration formula $$x_{n+1} = \frac{4}{5} e^{-x_n}$$ to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places. (3) (d) Give an accurate estimate for α to 2 decimal places, and justify your answer. **(2)** |
 | |------|
 | | | | | | | | | | | | | | | | Leave
blank | |----------------| Question 4 continued | bla | |----------------------|-----| 5. Given that $$x = \sec^2 3y, \qquad 0 < y < \frac{\pi}{6}$$ (a) find $\frac{dx}{dy}$ in terms of y. **(2)** (b) Hence show that $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{6x(x-1)^{\frac{1}{2}}}$$ **(4)** (c) Find an expression for $\frac{d^2y}{dx^2}$ in terms of x. Give your answer in its simplest form. (4) | 6. | Find algebraically the exact solutions to the equations | | | |----|---|-----|--| | | (a) $\ln(4-2x) + \ln(9-3x) = 2\ln(x+1)$, $-1 < x < 2$ | (5) | | | | (b) $2^x e^{3x+1} = 10$ | | | | | Give your answer to (b) in the form $\frac{a + \ln b}{c + \ln d}$ where a, b, c and d are integers. | (5) | 7. The function f has domain $-2 \le x \le 6$ and is linear from (-2, 10) to (2, 0) and from (2, 0) to (6, 4). A sketch of the graph of y = f(x) is shown in Figure 1. Figure 1 (a) Write down the range of f. (1) (b) Find ff(0). **(2)** The function g is defined by $$g: x \to \frac{4+3x}{5-x}, \quad x \in \mathbb{R}, \quad x \neq 5$$ (c) Find $g^{-1}(x)$ **(3)** (d) Solve the equation gf(x) = 16 **(5)** | | Leave
blank | |---|----------------| | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | - | | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | Question 7 continued | blar | |----------------------|------| Figure 2 Kate crosses a road, of constant width 7 m, in order to take a photograph of a marathon runner, John, approaching at 3 m s^{-1} . Kate is 24 m ahead of John when she starts to cross the road from the fixed point A. John passes her as she reaches the other side of the road at a variable point B, as shown in Figure 2. Kate's speed is $V \, \mathrm{m} \, \mathrm{s}^{-1}$ and she moves in a straight line, which makes an angle θ , $0 < \theta < 150^{\circ}$, with the edge of the road, as shown in Figure 2. You may assume that V is given by the formula $$V = \frac{21}{24\sin\theta + 7\cos\theta}, \qquad 0 < \theta < 150^{\circ}$$ (a) Express $24\sin\theta + 7\cos\theta$ in the form $R\cos(\theta - \alpha)$, where R and α are constants and where R > 0 and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places. (3) Given that θ varies, (b) find the minimum value of *V*. **(2)** Given that Kate's speed has the value found in part (b), (c) find the distance AB. **(3)** Given instead that Kate's speed is 1.68 m s⁻¹, (d) find the two possible values of the angle θ , given that $0 < \theta < 150^{\circ}$. **(6)** | | Leave | |---------------------------|-------| | Question 8 continued | Q8 | | (Total 14 marks) | | | TOTAL FOR PAPER: 75 MARKS | | **END** ### **Core Mathematics C3** Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2. ### Logarithms and exponentials $$e^{x \ln a} = a^x$$ #### Trigonometric identities $$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$ $$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$ $$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$ $$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$ $$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$ $$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$ $$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$ #### Differentiation f(x) f'(x) tan kx $$k \sec^2 kx$$ sec x $\sec x \tan x$ cot x $-\csc^2 x$ cosec x $-\csc x \cot x$ $$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$ #### **Core Mathematics C2** Candidates sitting C2 may also require those formulae listed under Core Mathematics C1. Cosine rule $$a^2 = b^2 + c^2 - 2bc \cos A$$ Binomial series $$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$ where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ $$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$ Logarithms and
exponentials $$\log_a x = \frac{\log_b x}{\log_b a}$$ Geometric series $$u_n = ar^{n-1}$$ $$S_n = \frac{a(1-r^n)}{1-r}$$ $$S_{\infty} = \frac{a}{1-r}$$ for $|r| < 1$ #### Numerical integration The trapezium rule: $$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$, where $h = \frac{b - a}{n}$ # **Core Mathematics C1** ### Mensuration Surface area of sphere = $4\pi r^2$ Area of curved surface of cone = $\pi r \times \text{slant height}$ ### Arithmetic series $$u_n = a + (n-1)d$$ $$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$