edexcel

January 2005 6663 Core Mathematics C1 Mark Scheme

	Mark Scheme			
Question number	Scheme		Marks	
1.	(a) 4		B1	
	(b) $16^{-\frac{3}{2}} = \frac{1}{16^{\frac{3}{2}}}$ and attempt to find $16^{\frac{3}{2}}$	-	M1	
	$\frac{1}{64}$ (or exact equivalent, e.g. 0.015625)		Al	(3)
	(b) Any attempt to evaluate $16^{\frac{3}{2}}$.			3
	Answer only scores both marks.			
		ļ		
		1		
***************************************		-	»	

Question number	Scheme	Marks
2.	(i) (a) $15x^2 + 7$	M1 A1 A1 (3)
	(i) (b) 30x	B1ft (1)
	(ii) $x + 2x^{\frac{3}{2}} + x^{-1} + C$ A1: $x + C$, A1: $x + C$, A1: x^{-1}	M1 A1 A1 A1(4)
	(i) (a) A1: 2 terms correctly differentiated. A1: Fully correct.	8
	(ii) Allow any equivalent version of each term.	
į į		
ļ		

Question number	Scheme		N	Marks	
3.	Attempt to use discriminant $b^2 - 4ac$ (Need not be equated to zero)		M1		
	$144 - 4 \times k \times k = 0$		A1		
	Attempt to solve for k		М1		
	k=6		A1		(4)
	Alternative for first 2 marks				4
	Attempt to complete square $(x \pm p)^2 \pm q \pm c$, $p \neq 0$, $q \neq 0$	M1			
	$1 - \frac{36}{k^2} = 0 \text{or equiv.}$	A1			
)	Other alternatives	:			
,	(i) $x^2 + \frac{12}{k}x + 1$ must be equivalent to $(x+1)^2$	M1 A1			
	Compare coefficients and attempt to solve for k : $\frac{12}{k} = 2$ $k = 6$	Ml A1			
ļ	(ii) Finding the root first, e.g. $(\sqrt{k}x + \sqrt{k})^2 = 0$, so $x = -1$	M1 A1			
	Substitute the root to find k , $k = 6$	M1 A1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Answer only Scores 2 marks: M0 A0 M1 A1 The first two marks would only be scored if solution then justifies that $k =$ equal roots.	6 gives			
)					
-	·				
		I			ı

Question number	Scheme	Marks	
4.	$x^{2} + 2(2-x) = 12$ or $(2-y)^{2} + 2y = 12$ (Eqn. in x or y only)	M1	
	$x^2-2x-8=0$ or $y^2-2y-8=0$ (Correct 3 term version)	A1	
	(x-4)(x+2) = 0 $x =$ or $(y-4)(y+2) = 0$ $y =$	М1	
	x = 4, $x = -2$ or $y = 4$, $y = -2$	A1	
	y=-2, $y=4$ or $x=-2$, $x=4$ (M: attempt one, A: both)	M1 A1ft (6	5)
	A1ft requires 3 s.f. accuracy if not exact.		
	"Non-algebraic" solutions:		
	No working, and only one correct solution pair found (e.g. $x = 4$, $y = -2$): M0 A0 M0 A0 M1 A1 No working, and both correct solution pairs found, but not demonstrated: M0 A0 M1 A1 M1 A1		
	Both correct solution pairs found, and demonstrated, perhaps in a table of values: Full marks		
			-
	-•		

Question number	Scheme	Marks	
5.	(a) -3, -1, 1 B1: One correct	B1 B1	(2)
	(b) 2 (ft only if terms in (a) are in arithmetic progression)	B1ft	(1)
	(c) Sum = $\frac{1}{2}n\{2(-3) + (n-1)(2)\}$ or $\frac{1}{2}n\{(-3) + (2n-5)\}$	M1 A1ft	
	$= \frac{1}{2}n\{2n-8\} = n(n-4) \tag{*}$	A1	(3)
			6

Question number	Scheme	Marks	_
6.	(a) Reflection in x -axis	B1	
	(3,2) 2 and 4 labelled (or (2, 0) and (4, 0) seen)	B1	
	Image of $P(3,2)$	B1	(3)
	Stretch parallel to x-axis	M1	
	1 and 2 labelled (or $(1, 0)$ and $(2, 0)$ seen)	A1	
	Image of $P(1\frac{1}{2}, -2)$	A1	(3) 6

Question number	Scheme	Marks	
7.	(a) $\frac{5-x}{x} = \frac{5}{x} - 1$ $(= 5x^{-1} - 1)$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x - 5x^{-2}$	M1 A1 A1	
	When $x = 1$, $\frac{dy}{dx} = 3$ (*)	A1	(5)
	(b) At $P, y = 8$	B1	
	Equation of tangent: $y-8=3(x-1)$ $(y=3x+5)$ (or equiv.)	M1 A1ft	(3)
	(c) Where $y = 0$, $x = -\frac{5}{3}$ (= k) (or exact equiv.)	M1 A1	(2)
			10
	(a) First M1 can also be scored by an attempt to use the quotient or product rule to differentiate $\frac{5-x}{x}$.		
	(b) The B mark may be earned in part (a).		
	·		
		•	

Question number	Scheme	Marks	
8.	(a) $p = 15, q = -3$	B1 B1	(2)
	(b) Grad. of line ADC: $m = -\frac{5}{7}$, Grad. of perp. line $= -\frac{1}{m} \left(= \frac{7}{5} \right)$	B1, M1	
	Equation of <i>l</i> : $y-2 = \frac{7}{5}(x-8)$	M1 A1ft	
	7x-5y-46=0 (Allow rearrangements, e.g. $5y=7x-46$)	A1	(5)
	(c) Substitute $y = 7$ into equation of l and find $x =$	M1	
	$\frac{81}{7}$ or $11\frac{4}{7}$ (or exact equiv.)	A1	(2) 9
	(a) Special case: If B0 B0 from main scheme, allow M1 for a correct method, e.g. $8 = \frac{1+p}{2}$. (b) Finding eqn. of <i>ADC</i> instead of <i>l</i> scores M1 A0 A0.		

Marks	Mar	ļ	Question number
11	B1, M1	9. (a) Gradient of tangent at P: $m = 4$, Grad. of normal $= -\frac{1}{m} \left(= -\frac{1}{4} \right)$	9.
.1 (4)	M1 A1	Equation of normal: $y-4 = -\frac{1}{4}(x-1)$ $(4y = -x + 17)$	
	B1	(b) $(3x-1)^2 = 9x^2 - 6x + 1$	
.1ft	M1 A1ft	Integrate: $\frac{9x^3}{3} - \frac{6x^2}{2} + x \ (+C)$	
A1 (5)	M1, A1	Substitute (1, 4) to find $c =$, $c = 3$ $(y = 3x^3 - 3x^2 + x + 3)$	
	B1	(c) Gradient of (tangent to) C is ≥ 0	_
(2)	BI	Gradient of given line is < 0 (-2)	
11			
		(a) Using gradient of tangent is M0. (b) Alternative:	
		$y = \frac{(3x-1)^3}{9} \text{ (+C)}$ M1 A1 (numerator) A1 (denominator) Substitute (1, 4) to find $c =, c = \frac{28}{9} \left(y = \frac{(3x-1)^3}{9} + \frac{28}{9} \right)$ M1, A1	

Question number	Scheme	Marks
10.	(a) $x^2 - 6x + 18 = (x - 3)^2, +9$	B1, M1 A1 (3)
	(b) "U"-shaped parabola	M1
	Vertex in correct quadrant	Alft
	P: (0, 18) (or 18 on y-axis)	B1.
	Q: (3,9)	B1ft (4)
	(c) $x^2 - 6x + 18 = 41$ or $(x-3)^2 + 9 = 41$	M1
	Attempt to solve 3 term quadratic $x =$	M1
	$x = \frac{6 \pm \sqrt{36 - (4 \times -23)}}{2}$ (or equiv.)	A1
)	$\sqrt{128} = \sqrt{64} \times \sqrt{2}$ (or equiv. surd manipulation)	M1
	$3 + 4\sqrt{2}$ (Ignore other value)	A1 (5)
		12,
	 (a) M1 requires (x±a)²±b±18, a≠0, b≠0 Answer only: full marks. 	