Mark Scheme

1 (i)	$11^{-2} = \frac{1}{121}$	B1 1	$\frac{1}{121}$ ($\frac{1}{11^2}$ = B0)
	$100^{\frac{3}{2}} = 1000$	M1 A1 2	Square rooting or cubing soi 1000
(iii)	$\sqrt{50} + \frac{6}{\sqrt{3}}$	B1	$5\sqrt{2}$ (allow <u>+</u>)
	$\sqrt{50} + \frac{6}{\sqrt{3}}$ $= 5\sqrt{2} + \frac{6\sqrt{3}}{3}$ $= 5\sqrt{2} + 2\sqrt{3}$	M1	Attempt to rationalise $\frac{6}{\sqrt{3}}$
	$=5\sqrt{2}+2\sqrt{3}$	A1 3	сао
		<u>6</u>	
2	<i>q</i> =2	B1	(allow embedded values)
	<i>r</i> =3	B1	
		M1	$qr^2 + 10 = p$ or other correct method
	<i>p</i> =28	A1√4	
		<u>4</u>	
3(i)	$y = 5\sqrt{2x}$	M1	$\sqrt{2x}$ or $\sqrt{\frac{x}{2}}$ seen $y = 5\sqrt{2x}$
		A1 2	$y = 5\sqrt{2x}$
(ii)	Translation $\begin{pmatrix} 0\\ -3 \end{pmatrix}$	B1	Translation
		B1 2	$\begin{pmatrix} 0\\ -3 \end{pmatrix}$ o.e.
		<u> </u>	

4	Either		
	y = 2x + 1		
	or $y = \frac{x^2 + 11}{3}$	M1	Substitute for x/y or attempt to get an equation in 1 variable only
	$x^2 - 6x + 8 = 0$	A1	Obtain correct 3 term quadratic
	(x-2)(x-4) = 0	M1	Correct method to solve 3 term quadratic
	x = 2 x = 4 $y = 5 y = 9$	A1	or one correct pair of values B1
	y = 5 y = 9	A1	second correct pair of values B1 c.a.o
	OR		
	$x = \frac{y - 1}{2}$		
	_		
	$\frac{(y-1)^2}{4} - 3y + 11 = 0$		
	$y^2 - 14y + 45 = 0$ (y - 5)(y - 0) = 0		
	(y-5)(y-9) = 0 y=5 y=9		
	$\begin{array}{c} y = 3 \\ x = 2 \\ x = 4 \end{array}$		
	x - 2 $x - 1$		<u>SR</u> If colution by graphical
			If solution by graphical methods:
			setting out to draw a
			parabola <u>and</u> a line M1 both correct A1
			reading off of coordinates
			at intersection point(s) M1 one correct pair A1
			second correct pair A1
			OR
			No working shown:
			one correct pair B1
			second correct pair B1 full justification that these
			are the only solutions B3
		<u>5</u>	
L		1	

5 (i)		B1	Correct curve in +ve quadrant
		B1 2	in -ve quadrant
(ii)		M1	Positive cubic with clearly seen max and min points
		A1	(-1,0) (0,0) (1,0) Any one point stated or marked on sketch
	(-1,0) (0,0) (1,0)	A1 3	Curve passes through all 3 points and no extras stated or marked on sketch
(iii)		B1	Graph <u>only</u> in bottom right hand quadrant
		B1 2	Correct graph, passing through origin
		<u>7</u>	

6 (i)	$49 - 4 \times -2 \times 3 = 73$	M1	Uses $b^2 - 4ac$
	2 real roots	A1	73
		B1√3	2 real roots (ft from their value)
(ii)	$(p+1)^2 - 64 = 0$ or $2[(x+\frac{p+1}{4})^2 - \frac{(p+1)^2}{16} + 4] = 0$	M1	Attempts $b^2 - 4ac = 0$ (involving p) or attempts to complete square (involving p)
		A1	$(p+1)^2 - 64 = 0$ aef
	<i>p</i> = -9,7	B1	<i>p</i> = -9
		B1 4	p= 7
		<u>7</u>	

Mark Scheme

7 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 - 3$	B1	1 term correct
		B1 2	Completely correct (+c is an error, but only penalise
(ii)	$y = 2x^3 + 2x^2 + 3x + 3$	M1	once) Attempt to expand brackets
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 4x + 3$	A1	$2x^3 + 2x^2 + 3x + 3$
		A1 A1 4	2 terms correct Completely correct
			SRRecognisable attemptat product ruleM1one part correctA1second part correctA1final simplified answerA1
(iii)	$y = x^{\frac{1}{5}}$	B1	$x^{\frac{1}{5}}$ soi
	$y = x^{\frac{1}{5}}$ $\frac{dy}{dx} = \frac{1}{5}x^{-\frac{4}{5}}$	B1	$\frac{1}{5}x^c$
		B1 3	$kx^{-\frac{4}{5}}$
		9	
8(i)	2[10+x+x] > 64	B1 1	20 + 4x > 64 o.e.
(ii)	<i>x</i> (<i>x</i> +10) < 299	B1	x(x+10) < 299
	$x^{2} + 10x - 299 < 0$ $(x - 13)(x + 23) < 0$	B1 2	Correctly shows $(x-13)(x+23) < 0$ AG
			<u>SR</u> <u>Complete</u> proof worked backward B2
(iii)	x > 11 (x-13)(x+23) < 0	B1√ M2	x > 11 ft from their (i) Correct method to solve (x-13)(x+23) < 0 eg graph
	-23 < <i>x</i> <13	A1	-23 < x < 13 seen in this form or as number line SR if seen with no working B1
	:.11 < x < 13	B1 5	
		<u>8</u>	

Mark Scheme

9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x$	B1		4 <i>x</i>
	$\frac{dy}{dx} = 4x$ At x=3 , $\frac{dy}{dx} = 12$	B1	2	12
(ii)	Gradient of tangent = - 8	M1		$\frac{dy}{dx} = -8$ $x=-2$ $y=8$
	4x = -8 $x = -2$ $y = 8$	A1		<i>x</i> =-2
	<i>y</i> = 8	A1	3	<i>y</i> =8
(iii)	Gradient = 6	B1		Gradient = or approaches 6
(iv)	$\frac{dy}{dx} = 2kx$ $x = 1$ $\frac{dy}{dx} = 2k$ $k = 3$	M1 M1		$\frac{dy}{dx} = 2kx$ $\frac{dy}{dx} = 2k$ $k = 3$ CWO
	$\frac{dy}{dx} = 2k$ k = 3	A1 √	3	<i>k</i> = 3 CWO
			<u>9</u>	

10(i)	Gradient DE = $-\frac{1}{2}$	B1 1	$-\frac{1}{2}$ (any working seen
(ii)	$y-3 = -\frac{1}{2}(x-2)$	M1	must be correct) Correct equation for straight line, any gradient, passing through F
		A1	$y-3 = -\frac{1}{2}(x-2)$ aef
	x + 2y - 8 = 0	A1 3	x+2y-8=0 (this form but can have fractional coefficients e.g. $\frac{1}{2}x + y - 4 = 0$
(iii)	Gradient EF = $\frac{4}{2}$ =2	B1	Correct supporting working
	$-\frac{1}{2} \times 2 = -1$	B1 2	must be seen Attempt to show that product of their gradients = - 1 o.e.
(iv)	$DF = \sqrt{4^2 + 3^2} = 5$	M1	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ used
		A1 2	5
(v)	DF is a diameter as angle DEF is a right angle.	B1	Justification that DF is a diameter
	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$	B1	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$
	Radius = 2.5	B1	Radius = 2.5
	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$ 9 25	В1√	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$
	$x^{2} + y^{2} - 3y + \frac{9}{4} = \frac{25}{4}$ $x^{2} + y^{2} - 3y - 4 = 0$	B1 5	$x^{2} + y^{2} - 3y - 4 = 0$ obtained correctly with at least one line of intermediate working. SR For working that only shows $x^{2} + y^{2} - 3y - 4 = 0$ is equation for a circle with centre $(0, 1\frac{1}{2})$ B1
		<u>13</u>	radius 2.5 B1
		<u>··</u>	