Mark Scheme

Mark Scheme 4752 MEI PURE MATHS C2 JANUARY 2005

	ion A			1
1	$6x^5 + \frac{1}{2}x^{-\frac{1}{2}}$ o.e.	B1	$6x^5$	
		B1	$x^{\frac{1}{2}}$ soi	
		B1	$\frac{1}{2}x^{-\frac{1}{2}}$ isw	3
2	x ⁴ /4	B1	~	
	$\frac{x^{-2}}{-2}$	B2	B1 for kx^{-2}	
	c	B1		4
3	At least 1 period of sine curve	G1		
C	Sine curve from 0 to 360	G1	± 1 indicated	
	191.537rot to 3 or more sf348.463rot to 3 or more sf	B1 B1	After B1 B1, -1 for extras in the range SC1 for 192.8 and 347.2 (grads) SC1 for 180.2 and 359.8 (radians)	4
4	9.0 or 8.96 or 8.960	B3	M1 for $[BC^2=]6.8^2+4.1^2-2\times4.1\times6.8\times\cos 108$ A1 for 80.2(8), 8.37(grads), 6.49 (rads)	
	13.2577	B2	Correctly rounded to 3 or more sf M1 for 0.5×4.1×6.8×sin108 For complete long methods using BC, allow M1 and A1 for 13.2 to 13.3	5 [16]
5	a = 4, $r = 1/2$ identified	B1	Stated or identified by correct use	
	2 ⁻¹⁷	T2	M1 20 th term = their(a)x(their r) ¹⁹	
	8	S2	M1 S = their (a) / (1-their (r))	5
6	4, 7, 10, 13, 16 ignore extras	B1	For showing 1 st four or 2 nd four terms	
	15250	B4	B1 for $d = 3$ soi B1 for $a = 4$ soi M1 for use of $100/2[2a + 99d]$ o.e.	5
7	(i) 2.4, $2\frac{2}{5}, \frac{12}{5}$	B3	M1 for $30 = \frac{1}{2} \times 25 \times q$ o.e. M1 for $q = (2 \times 30) / 5^2$	5
	(ii) 22	P2	M1 for $(arc =)5$ x their 2.4	5
8	(i) 2.5, 2.50, 2.500, 2.499	B2	M1 for $\log_{10} 316$ or $\ln 316/\ln 10$	
	(ii) 6 www	B3	B2 for $6 \log_a a$ or $\log_a(a^6)$ Or B1 for $2\log_a(a)$ or $-\log_a a^{-4}$ SC1 Using $a=10 \Rightarrow 6$	5
			SC2 Using numerical a, not $10 \Rightarrow 6$	[20]
			Total for section A	36

Section A

a .•	ъ
Section	к
Section	· D

Sect	ion B	-			
9	iA	6.25	B2	M1 for $x = 5$ used to find y	2
					2
	i <i>B</i>	$(V =)$ area of cross-section \times	E1		
		length			
		$(\frac{100}{4})[\frac{10}{2}x^2 - \frac{1}{3}x^3]$ o.e.	M1		
		[val at $x = 10$] – [val at $x = 0$]	M1	Subs of correct limits into their integrand	
		4166 to 4167 or 4170	A2	A1 for 166.6 or 16666.6 or 41.6rot to 3 sf or more	5
	ii	52.62	B4	M3 for-	
				$2/2 \times [2.15x2 + 2(5.64x2 + 6.44x2)]$ oe	
				Or M2 if one slip Or M1 if 2 slips or one trap evaluated	5
				Of WIT II 2 slips of one trap evaluated	[12]
		Their(5262) – their (4167)	M1	Must be >0	
10	i	$y' = 3x^2 - 12x$	B1B1		
		use of $y' = 0$	M1		
		x = 0 and 4	A1 A1	Allow $y = 12$ and $y = -20$	
		(0, 12) and $(4, -20)$	211	f = 12 and $y = 20$	
		y'' = 6x - 12 used	M1	y' used each side of TP or good sketch	7
		max when $x = 0$, min when $x = 4$	A1	Both stated, only one needs testing	
	ii	when $x = 2 y' = -12$	B1		
		grad of normal = $1/12$	B1ft	from their y'	
		y + 4 = 1/12(x - 2)	M1ft	accept any numerical m	4
				$Or -4 = their(m) \times 2 + c$	[11]
		$y = \frac{1}{12}x - 4\frac{1}{6}$	A1	Any recognisable 25/6, at worst 4.1	
11	i	Excess temperature	B1		2
		At t =0 oe	B1		
	ii	$\log z = \log z_0 + \log (10^{-kt})$ $= \log z_0 - kt \log 10$	B1 B1	nb AG	2
	iii	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		If z= 68, 53P1, L1,M1, M1, M1	~
				available	
		$\log z : 1.66 \ 1.49 \ 1.30 \ 1.15 \ 0.95$	T1		
		correctly plotted line of best fit	P1	ft their values, within 2mm	
		line of best fit $k = 0.017$ to 0.019 or 0.02	L1 G2	Ruled, using their points M1 for attempting +/- gradient	9
		$z_0 = 66 \text{ to } 73$	B2	M1 for (log) $z_0 = 1.82$ to 1.86	
		temp of drink = 25 to 27	C2	M1 3 to 5 or their $69 \times 10^{-70 \text{ x their } k}$	[13]