
Mark Scheme

Qn	Answer	Mk	Comment
3	Let $P(B) = x$		
	Using $P(AUB) = P(A) + P(B) - P(A \cap B)$	M1	Correct set of equations
	0.9 = 2x + x - 0.3 x = 0.4	M1	Correct solution
	P(B) = 0.4	A1	
4 (i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	1 value correct
(i)	$F(x - t) 0k 10k 12k 12k 10k$ $50k = 1 \rightarrow k = 1/50$	B1 B1 M1	all 3 correct sum of 1
(ii)	E(X) = 110k = 2.2	M1 A1	sum of rp cao
(iii)	P(X > 2.2) = 22k = 0.44	B1	
5 (i)	$\binom{12}{8}$ ways of choosing forwards = 495	M1 A1	
(ii)			
	$\binom{12}{8} \times \binom{11}{7}$ ways of choosing team	M1 M1	Product with (i) backs
	=495x330 = 163350	A1	cao
6 (i)	P(Correct forecast) = $\frac{55+128+81}{365} = \frac{264}{365}$	M1 A1	Numerator
(ii)	P(Correct forecast given sunny forecast)		
	$=\frac{55}{75}=0.733$	M1 A1	Denominator
(iii)	P(Correct forecast given wet weather)		
	$=\frac{81}{117}=0.692$	M1 A1	Denominator
(iv)	P(Cloudy weather given correct forecast)		
	$=\frac{128}{264}=0.485$	M1 A1	Denominator
Qn	Answer	Mk	Comment

7 (i) A	Median distance = 88^{th} value = 480	M1 A1	Within 5 cao
В	Lower Quartile = 44^{th} value = 320	B1	
	Upper Quartile = 132^{nd} value = 680	B1	
	Interquartile range = $680 - 320 = 360$	M1	ft
(ii)	0 320 480 680 1200	G1 G1 G1	Basic idea Linear 0 - 1200 Box including median (accurate)
(iii)	DistanceFrequency $0 < d \le 200$ 20 $200 < d \le 400$ 44 $400 < d \le 600$ 54 $600 < d \le 800$ 32 $800 < d \le 1000$ 19 $1000 < d \le 1200$ 7	M1 M1	Correct classes Correct frequencies
(iv)	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1 M1	mid points fx
	Estimate of mean = 507.95	A1	
(v)	Mid point of first class now 150 Total increase of 1000 New estimate of mean = 513.6	M1 A1	150
(vi)	The point (0,0) would move to (100,0)	E1 E1	point (0,0) point (100,0)
Qn	Answer	Mk	Comment

8	Number not turning up $X \sim B(16,0.2)$		
(i)	$P(X=0) = 0.8^{16} = 0.0281$	M1 A1	0.8^{16} or tables
(ii)	$P(X > 3) = 1 - P(X \le 3)$ or $P(X \le 12)$ = 1 - 0.5981 = 0.4019	M1 M1 A1	Manipulation Use of tables
(iii)	$X \sim B(17,0.2) \rightarrow P(X \ge 1) = 0.9775$ Greater than 0.9 so acceptable	M1 A1 E1	B(17,0.2) 0.9775
(iv)	$X \sim B(18,0.2) \rightarrow P(X \ge 2) = 0.9009$ Can make 18 appointments $X \sim B(19,0.2) \rightarrow P(X \ge 3) = 0.7631$	M1 A1 A1 M1	18 and ≥2 0.9009 18 ok 19 and ≥3
(v)	Now $X \sim B(20,p)$ Let p be probability of not turning up. H ₀ : p = 0.2 H ₁ : p \neq 0.2	B1 B1 B1	
	$P(X \le 1) = 0.0692 > 2.5\%$ cannot reject H ₀ conclude that the proportion of patients not turning up is unchanged.	M1 M1 A1 E1	0.0692 correct comparison cannot reject H ₀