OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4722
Core Mathematics 2
Monday 10 JANUARY 2005 Afternoon 1 hour 30 minutes
Additional materials:
Answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Simplify $(3+2 x)^{3}-(3-2 x)^{3}$.

2 A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=2 \quad \text { and } \quad u_{n+1}=\frac{1}{1-u_{n}} \text { for } n \geqslant 1
$$

(i) Write down the values of u_{2}, u_{3}, u_{4} and u_{5}.
(ii) Deduce the value of u_{200}, showing your reasoning.

A landmark L is observed by a surveyor from three points A, B and C on a straight horizontal road, where $A B=B C=200 \mathrm{~m}$. Angles $L A B$ and $L B A$ are 65° and 80° respectively (see diagram). Calculate
(i) the shortest distance from L to the road,
(ii) the distance $L C$.

The diagram shows a sketch of parts of the curves $y=\frac{16}{x^{2}}$ and $y=17-x^{2}$.
(i) Verify that these curves intersect at the points $(1,16)$ and $(4,1)$.
(ii) Calculate the exact area of the shaded region between the curves.
(i) Prove that the equation

$$
\sin \theta \tan \theta=\cos \theta+1
$$

can be expressed in the form

$$
\begin{equation*}
2 \cos ^{2} \theta+\cos \theta-1=0 \tag{3}
\end{equation*}
$$

(ii) Hence solve the equation

$$
\begin{equation*}
\sin \theta \tan \theta=\cos \theta+1 \tag{5}
\end{equation*}
$$

giving all values of θ between 0° and 360°.

6 (a) Find $\int x\left(x^{2}+2\right) \mathrm{d} x$.
(b) (i) Find $\int \frac{1}{\sqrt{ } x} \mathrm{~d} x$.
(ii) The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{ } x}$. Find the equation of the curve, given that it passes through the point $(4,0)$.

The diagram shows an equilateral triangle $A B C$ with sides of length 12 cm . The mid-point of $B C$ is O, and a circular arc with centre O joins D and E, the mid-points of $A B$ and $A C$.
(i) Find the length of the arc $D E$, and show that the area of the sector $O D E$ is $6 \pi \mathrm{~cm}^{2}$.
(ii) Find the exact area of the shaded region.

8 (i) On a single diagram, sketch the curves with the following equations. In each case state the coordinates of any points of intersection with the axes.
(a) $y=a^{x}$, where a is a constant such that $a>1$.
(b) $y=2 b^{x}$, where b is a constant such that $0<b<1$.
(ii) The curves in part (i) intersect at the point P. Prove that the x-coordinate of P is

$$
\begin{equation*}
\frac{1}{\log _{2} a-\log _{2} b} \tag{5}
\end{equation*}
$$

9 A geometric progression has first term a, where $a \neq 0$, and common ratio r, where $r \neq 1$. The difference between the fourth term and the first term is equal to four times the difference between the third term and the second term.
(i) Show that $r^{3}-4 r^{2}+4 r-1=0$.
(ii) Show that $r-1$ is a factor of $r^{3}-4 r^{2}+4 r-1$. Hence factorise $r^{3}-4 r^{2}+4 r-1$.
(iii) Hence find the two possible values for the ratio of the geometric progression. Give your answers in an exact form.
(iv) For the value of r for which the progression is convergent, prove that the sum to infinity is $\frac{1}{2} a(1+\sqrt{ } 5)$.

