
Mark Scheme 4721 January 2006

## Mark Scheme

| 1 | (i)       | 1                                                          |            |   | (allow embedded values throughout                                                      |
|---|-----------|------------------------------------------------------------|------------|---|----------------------------------------------------------------------------------------|
|   | . ,       | $x^{\frac{1}{3}} = 2$                                      |            |   | question 1)                                                                            |
|   |           | <i>x</i> = 8                                               | B1         | 1 | 8                                                                                      |
|   | (ii)      | $10^{t} = 1$                                               | <b>D</b> 1 | - |                                                                                        |
|   | (:::      | t=0                                                        | B1         | 1 | 0                                                                                      |
|   | (iii<br>) | $(y^{-2})^2 = \frac{1}{21}$                                |            |   |                                                                                        |
|   | /         | 1                                                          |            |   |                                                                                        |
|   |           | $(y^{-2})^2 = \frac{1}{81}$<br>$y^{-4} = \frac{1}{81}$     |            |   |                                                                                        |
|   |           | $y = \pm 3$                                                | B1         |   | y = 3                                                                                  |
| 2 |           | •                                                          | B1         | 2 | y = -3                                                                                 |
| 2 | (i)       | $(3x+1)^2 - 2(2x-3)^2$                                     | M1         |   | Square to get at least one 3 or 4 term quadratic                                       |
|   |           | $= (9x^{2} + 6x + 1) - 2(4x^{2} - 12x + 9)$                | A1         |   | $9x^2 + 6x + 1$ or $4x^2 - 12x + 9$ soi                                                |
|   |           | $= x^{2} + 30x - 17$                                       | A1         | 3 | $x^2 + 30x - 17$                                                                       |
|   | (ii)      | $2x^3 + 6x^3 + 4x^3 = 12x^3$                               | B1         |   | 2 of $2x^3$ , $6x^3$ , $4x^3$ soi<br><b>N.B. www for these terms,</b> must be positive |
|   |           |                                                            |            |   | <b>14.D.</b> www.tor these terms, must be positive                                     |
|   |           | 12                                                         | B1         | 2 | 12 or $12 x^3$                                                                         |
| 3 | (i)       | $dy$ 15 $y^4$ 1 $y^{-\frac{1}{2}}$                         | B1         |   | $15x^4$                                                                                |
|   |           | $\frac{dy}{dx} = 15x^4 - \frac{1}{2}x^{-\frac{1}{2}}$      | B1         |   | $kx^{-\frac{1}{2}}$                                                                    |
|   |           |                                                            | B1         | 3 |                                                                                        |
|   |           |                                                            | DI         |   | $cx^4 - \frac{1}{2}x^{-\frac{1}{2}}$ only                                              |
|   | (ii)      | $\frac{d^2 y}{dr^2} = 60x^3 + \frac{1}{4}x^{-\frac{3}{2}}$ | M1         |   | Attempt to differentiate their 2 term $\frac{dy}{dx}$ and                              |
|   |           | ur 4                                                       |            |   | get one correctly differentiated term                                                  |
|   |           |                                                            | A1         | 2 | $60x^3 + \frac{1}{2}x^{-\frac{3}{2}}$                                                  |
|   |           |                                                            |            |   | 4                                                                                      |
| 4 | (i)       |                                                            | B1         |   | Correct curve in one quadrant                                                          |
|   |           | ļ.                                                         | B1         | 2 | Completely correct                                                                     |
|   |           |                                                            |            | _ |                                                                                        |
|   |           |                                                            |            |   |                                                                                        |
|   | (ii)      | ľ                                                          | M1         |   | Translate (i) horizontally                                                             |
|   |           |                                                            | A1√        | 2 | (2)                                                                                    |
|   |           |                                                            |            | 4 | Translates all of their (i) $\begin{bmatrix} 5\\0 \end{bmatrix}$                       |
|   |           | 3                                                          |            |   | 3 must be labelled or stated                                                           |
|   | (iii      | (One-way) stretch, sf 2, parallel                          | B1         |   | Stretch                                                                                |
|   | )         | to the y-axis                                              | B1         |   | (Scale) factor 2                                                                       |
|   |           |                                                            | B1         | 3 | Parallel to y-axis o.e.                                                                |
|   |           |                                                            |            |   | CD                                                                                     |
|   |           |                                                            |            |   | SR<br>Stretch B1                                                                       |
|   |           |                                                            |            |   | Solution B1<br>Sf $\sqrt{2}$ parallel to <i>x</i> -axis B2                             |
|   |           |                                                            | 1          |   |                                                                                        |

| _ |           |                                                               |     |   |                                                                                                    |
|---|-----------|---------------------------------------------------------------|-----|---|----------------------------------------------------------------------------------------------------|
| 5 | (i)       | $x^{2} + 3x = \left(x + \frac{3}{2}\right)^{2} - \frac{9}{4}$ | B1  |   | $a = \frac{3}{2}$                                                                                  |
|   |           |                                                               | B1  | 2 | $b = -\frac{9}{4}$ o.e.                                                                            |
|   | (ii)      | $y^{2} - 4y - \frac{11}{4} = (y - 2)^{2} - \frac{27}{4}$      | B1  |   | p = -2                                                                                             |
|   |           | 4 ` ′ 4                                                       | B1  | 2 | $q = -\frac{27}{4}$ o.e.                                                                           |
|   | (iii<br>) | Centre $\left(-\frac{3}{2},2\right)$                          | B1√ | 1 | $\left(-\frac{3}{2},2\right)$                                                                      |
|   |           |                                                               |     |   | N.B. If question is restarted in this part, ft<br>from part (iii) working only                     |
|   | (iv)      | $\text{Radius} = \sqrt{\frac{27}{4} + \frac{9}{4}}$           | M1  |   | $\sqrt{-their'b'-their'q'}$ or use $\sqrt{(f^2 + g^2 - c)}$                                        |
|   |           | $=\sqrt{9}$<br>= 3                                            | A1  | 2 | 3 (±3 scores A0)                                                                                   |
| 6 | (i)       | $y = x^3 - 3x^2 + 4$                                          |     | - | $3x^2-6x$                                                                                          |
|   | (1)       | 5                                                             | B1  |   | 3x - 6x<br>1 term correct                                                                          |
|   |           | $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x$                 | B1  |   | Completely correct                                                                                 |
|   |           | $3x^2 - 6x = 0$                                               | M1  |   | $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$                                                              |
|   |           | 3x(x-2) = 0                                                   | M1  |   | Correct method to solve quadratic                                                                  |
|   |           | x = 0  x = 2                                                  | A1  |   | <i>x</i> = 0, 2                                                                                    |
|   |           | y = 4  y = 0                                                  | A1√ | 6 | y = 4, 0<br>SR one correct (x,y) pair www B1                                                       |
|   | (ii)      | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 6$               | M1  |   | Correct method to find nature of stationary points (can be a sketch)                               |
|   |           | $x = 0  y'' = -6 \qquad -\text{ ve max}$                      | B1  |   | x = 0 max                                                                                          |
|   |           | $x = 2  y'' = 6 \qquad + \text{ ve min}$                      | B1  | 3 | x = 2 min<br>(N.B. If no method shown but both min and<br>max correctly stated, award all 3 marks) |
|   | (iii      | Increasing                                                    | M1  |   | Any inequality (or inequalities) involving                                                         |
|   | )         | x < 0 $x > 2$                                                 | A1  | 2 | both their x values from part (i)<br>Allow $x \le 0$ $x \ge 2$                                     |
|   |           |                                                               |     |   |                                                                                                    |

## **Mark Scheme**



| 8 | (i)  | $y = x^2 - 5x + 15$                 | M1          |   | Attempt to eliminate <i>y</i>                                            |
|---|------|-------------------------------------|-------------|---|--------------------------------------------------------------------------|
|   |      | y = 5x - 10                         |             |   |                                                                          |
|   |      | $x^2 - 5x + 15 = 5x - 10$           |             |   | $x^2 - 10x + 25 = 0$ <b>AG</b>                                           |
|   |      | $x^2 - 10x + 25 = 0$                | A1          | 2 | Obtained with no wrong working seen                                      |
|   | (ii) | $b^2 - 4ac = 100 - 100$             | D 1         |   | $\int d^2 dx$                                                            |
|   |      | = 0                                 | B1          | I | 0 Do not allow $\sqrt{b^2 - 4ac}$                                        |
|   | (iii | Line is a tangent to the curve      | <b>B</b> 1√ | 1 | ε                                                                        |
|   | )    |                                     |             |   | N.B. Strict ft from their discriminant                                   |
|   | (iv) |                                     | M1          |   | Correct method to solve 3 term quadratic                                 |
|   |      | $\left(x-5\right)^2=0$              |             |   |                                                                          |
|   |      | x = 5 $y = 15$                      | A1          | _ | x = 5                                                                    |
|   |      |                                     | A1          | 3 | <i>y</i> = 15                                                            |
|   | (v)  | Gradient of tangent = 5             | B1          |   | Gradient of tangent = 5                                                  |
|   |      |                                     | B1√         |   |                                                                          |
|   |      | Gradient of normal = $-\frac{1}{5}$ | DIV         |   | Gradient of normal = $-\frac{1}{5}$                                      |
|   |      | $y-15 = -\frac{1}{5}(x-5)$          | M1          |   | Correct equation of straight line, any gradient, passing through (5, 15) |
|   |      | x + 5y = 80                         | A1          | 4 | x + 5y = 80                                                              |
|   |      |                                     |             |   |                                                                          |

## Mark Scheme

| 9 | (i)  | Length AC =                                                       | M1       |   | Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                                                                          |
|---|------|-------------------------------------------------------------------|----------|---|----------------------------------------------------------------------------------------------------------------------|
|   |      | $\sqrt{(8-5)^2+(2-1)^2}$                                          |          |   |                                                                                                                      |
|   |      | $=\sqrt{3^2+1^2}$                                                 |          |   |                                                                                                                      |
|   |      | $=\sqrt{10}$                                                      | A1       |   | $\sqrt{10}$ ( $\pm \sqrt{10}$ scores A0)                                                                             |
|   |      | Length AB = $\sqrt{(p-5)^2 + (7-1)^2}$<br>= $\sqrt{(p-5)^2 + 36}$ | A1       |   | $\sqrt{(p-5)^2+(7-1)^2}$                                                                                             |
|   |      | $\sqrt{(p-5)^2+36} = 2\sqrt{10}$                                  | M1       |   | AB = 2AC (with algebraic expression) used                                                                            |
|   |      | $p^{2}-10p+25+36 = 40$<br>$p^{2}-10p+21 = 0$<br>(p-7)(p-3) = 0    | M1       |   | Obtains 3 term quadratic = 0 suitable for<br>solving <u>or</u> $(p-5)^2 = 4$                                         |
|   |      | p = 7,3                                                           | A1<br>A1 | 7 | p = 7 $p = 3$                                                                                                        |
|   |      |                                                                   |          |   | SR <u>If no working seen</u> , and one correct<br>value found, award B2 in place of the final<br>4 marks in part (i) |
|   | (ii) | 7 = 3x - 14<br>x = 7                                              | M1<br>A1 |   | Correct method to find $x$<br>x = 7                                                                                  |
|   |      | (5, 1) (7, 7)                                                     | M1       |   | Use $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$                                                              |
|   |      | Mid-point (6, 4)                                                  | A1       | 4 | (6, 4) or correct midpoint for their AB                                                                              |
|   |      |                                                                   |          |   | Alternative method $y$ coordinate of midpoint = 4M1 A1sub 4 into equation of lineM1obtains $x = 6$ A1                |