Mark Scheme 4722 January 2006

1	(i)	$a+19 d=10, \quad a+49 d=70$ Hence $30 d=60 \Rightarrow d=2$ $a+(19 \times 2)=10 \text { or } a+(49 \times 2)=70$ Hence $a=-28$	M1 A1 M1 A1	4	Attempt to find d from simultaneous equations involving $a+(n-1) d$ or equiv method Obtain $d=2$ Attempt to find a from $a+(n-1) d$ or equiv Obtain $a=-28$
	(ii)	$S=\frac{29}{2}(2 \times-28+(29-1) \times 2)=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2 6	For relevant use of $\frac{1}{2} n(2 a+(n-1) d)$ For showing the given result correctly AG
2	(i)	$\Delta=\frac{1}{2} \times 10 \times 7 \times \sin 80=34.5 \mathrm{~cm}^{2}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	2	For use of $\frac{1}{2} c a \sin B$ or complete equiv. For correct value 34.5
	(ii)	$b^{2}=10^{2}+7^{2}-2 \times 10 \times 7 \times \cos 80$ Hence length of $C A$ is 11.2 cm	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For attempted use of the correct cosine formula For correct value 11.2
	(iii)	$\sin C=\frac{10 \sin 80}{11.166 \ldots}=0.8819 \ldots$ Hence angle C is 61.9°	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For use of the sine rule to find C, or equivalent For correct value 61.9
3	(i)	$(1-2 x)^{12}=1-24 x+264 x^{2}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Obtain 1 and $-24 x \ldots$ Attempt x^{2} term, including attempt at binomial coeff. Obtain ... $264 x^{2}$
	(ii)	$(1 \times 264)+(3 \times-24)=192$	M1 A1 $\sqrt{ }$ A1	3 6	Attempt coefficient of x^{2} from two pairs of terms Obtain correct unsimplified expression Obtain 192
4	(i)	$\begin{aligned} \text { perimeter } & =(15 \times 1.8)+(20 \times 1.8)+5+5 \\ & =73 \mathrm{~cm} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$	3	Use $r \theta$ at least once Obtain at least one of 27 cm or 36 cm Obtain 73
	(ii)	$\begin{aligned} \text { area } & =\left(\frac{1}{2} \times 20^{2} \times 1.8\right)-\left(\frac{1}{2} \times 15^{2} \times 1.8\right) \\ & =157.5 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Attempt area of sector using $k r^{2} \theta$ Find difference between attempts at two sectors Obtain 157.5 / 158

5	(i)	$r=\frac{4.8}{5}=0.96 \Rightarrow S_{\infty}=\frac{5}{0.04}=125$	$\begin{aligned} & \text { B1* } \\ & \text { B1 } \\ & \text { dep* } \end{aligned}$	2	For correct value of r used For correct use of $\frac{a}{1-r}$ to show given answer AG
	(ii)	$\mathrm{S}_{n}=\frac{5\left(1-0.96^{n}\right)}{1-0.96}$ Hence $1-0.96^{n}>0.992 \Rightarrow 0.96^{n}<0.008$	B1 M1 A1 B1 M1		For correct, unsimplified, S_{n} For linking S_{n} to 124 (> or =) and multiplying through by 0.04 , or equiv. For showing the given result correctly, with correct inequality throughout AG For correct log statement seen or implied (ignore sign) For dividing both sides by $\log 0.96$
		$n \log 0.96<\log 0.008$ Hence $n>\frac{\log 0.008}{\log 0.96} \approx 118.3$ Least value of n is 119	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	6	For correct (integer) value 119
6	(a)	$\frac{2}{3} x^{\frac{3}{2}}+4 x+c$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	4	For $k x^{\frac{3}{2}}$ For correct first term $\frac{2}{3} x^{\frac{3}{2}}$, or equiv For correct second term $4 x$ For $+c$
	(b)(i)	$\begin{aligned} & \int_{1}^{a} 4 x^{-2} \mathrm{~d} x=\left[-4 x^{-1}\right]_{1}^{a} \\ & =4-\frac{4}{a} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Obtain integral of the form $k x^{-1}$ Use limits $x=a$ and $x=1$ Obtain $=4-\frac{4}{a}$, or equivalent
		4	B1V	1	State 4, or legitimate conclusion from their (b)(i)
7	$\begin{gathered} \text { (i)(a) } \\ \text { (b) } \end{gathered}$	$\begin{aligned} & \log _{10} x-\log _{10} y \\ & 1+2 \log _{10} x+\log _{10} y \end{aligned}$	B1 M1 A1 A1	1	For the correct answer Sum of three log terms involving 10, x^{2}, y For correct term $2 \log _{10} x$ For both correct terms 1 and $\log _{10} y$
	(ii)	$2 \log _{10} x-2 \log _{10} y=2+2 \log _{10} x+\log _{10} y$ Hence $3 \log _{10} y=-2$ So $y=10^{-\frac{2}{3}} \approx 0.215$	M1 A1 M1 A1	4	For relevant use of results from (i) For a correct, unsimplified, equation in $\log _{10} y$ only For correct use of $a=\log _{10} c \Leftrightarrow c=10^{a}$ For the correct value 0.215

\begin{tabular}{|c|c|c|c|c|c|}
\hline 8 \& (i) \& \begin{tabular}{l}
\[
-2+k+1+6=0 \Rightarrow k=-5
\] \\
OR \\
OR \\
EITHER: \((x+1)\left(2 x^{2}-7 x+6\right)\)
\[
=(x+1)(x-2)(2 x-3)
\] \\
OR: \(\quad f(2)=16-20-2+6=0\) \\
Hence (\(x-2\)) is a factor \\
Third factor is \((2 x-3)\) \\
Hence \(\mathrm{f}(x)=(x+1)(x-2)(2 x-3)\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B2 \\
B1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 6 \& \begin{tabular}{l}
For attempting \(\mathrm{f}(-1)\) \\
For equating \(f(-1)\) to 0 and deducing the correct value of \(k\) \\
AG \\
Match coefficients and attempt \(k\) \\
Show \(k=-5\) \\
Following division, state remainder is 0 , hence \((x+1)\) is a factor, hence \(k=-5\) \\
For correct leading term \(2 x^{2}\) \\
For attempt at complete division by \(\mathrm{f}(x)\) by \((x+1)\) or equiv. \\
For completely correct quadratic factor For all three factors correct \\
For further relevant use of the factor theorem \\
For correct identification of factor \((x-2)\) For any method for the remaining factor \\
For all three factors correct
\end{tabular} \\
\hline \& (ii) \& \[
\begin{aligned}
\int_{-1}^{2} \mathrm{f}(x) \mathrm{d} x \& =\left[\frac{1}{2} x^{4}-\frac{5}{3} x^{3}-\frac{1}{2} x^{2}+6 x\right]_{-1}^{2} \\
\& =\left(8-\frac{40}{3}-2+12\right)-\left(\frac{1}{2}+\frac{5}{3}-\frac{1}{2}-6\right) \\
\& =9
\end{aligned}
\] \& \begin{tabular}{l}
Biv \\
B1 \(\sqrt{ }\) \\
M1 \\
A1
\end{tabular} \& 4 \& \begin{tabular}{l}
For any two terms integrated correctly For all four terms integrated correctly \\
For evaluation of \(\mathrm{F}(2)-\mathrm{F}(-1)\) \\
For correct value 9
\end{tabular} \\
\hline \& (iii) \& \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 2

1
2 \& For sketch of positive cubic, with three distinct, non-zero, roots For correct explanation that some of the area is below the axis \\

\hline \multirow[t]{3}{*}{9} \& (i) \& \& | B1 |
| :--- |
| B1 |
| B1 | \& 3 \& | For correct sketch of one curve |
| :--- |
| For correct shape and location of second curve, on same diagram |
| For intercept 4 on y-axis | \\

\hline \& (ii) \& (See diagram above)

$$
\beta=180-\alpha
$$ \& \[

$$
\begin{aligned}
& \mathrm{B} 1 \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 3 \& | For correct identification of intersections in correct order |
| :--- |
| For attempt to use symmetry of the graphs For the correct (explicit) answer for β | \\

\hline \& (ii) \& | $\sin x=4 \cos ^{2} x=4\left(1-\sin ^{2} x\right)$ |
| :--- |
| Hence $4 \sin ^{2} x+\sin x-4=0$ $\sin x=\frac{-1 \pm \sqrt{65}}{8}$ |
| Hence $\beta-\alpha=118.02 \ldots-61.97 \ldots \approx 56^{\circ}$ | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 6-6 \& | For use of $\tan x=\frac{\sin x}{\cos x}$ |
| :--- |
| For use of $\cos ^{2} x=1-\sin ^{2} x$ |
| For showing the given equation correctly |
| For correct solution of quadratic |
| Attempt value for x from their solutions For the correct value 56 | \\

\hline
\end{tabular}

