Mark Scheme 4722 January 2006

4722

Mark Scheme

1	(i)	a + 19d = 10, a + 49d = 70	M1		Attempt to find <i>d</i> from simultaneous
					equations involving $a + (n-1)d$ or
					equiv method
		Hence $30d = 60 \Rightarrow d = 2$	A1		Obtain $d = 2$
		a + (19 x 2) = 10 or $a + (49 x 2) = 70$	M1		Attempt to find a from $a + (n-1)d$
		Hence $a = -28$	Δ1	1	Obtain $a = -28$
	(ii)	$\frac{11}{20}$	M1		For relevant use of
	(11)	$S = \frac{29}{2} (2 \times -28 + (29 - 1) \times 2) = 0$			
		Z	Δ 1	2	$\frac{1}{2}n(2a+(n-1)d)$
			AI	2	E For showing the given result correctly
					AG
				6	
2	(i)	$\frac{1}{1}$ 10.7.10 21 5 20	M1		
		$\Delta = \frac{-1}{2} \times 10 \times 7 \times \sin 80 = 34.3 \text{ cm}$			For use of $\frac{-ca}{2}$ sin <i>B</i> or complete
			A1	2	equiv.
					For correct value 34.5
	(ii)	$b^2 = 10^2 + 7^2 - 2 \times 10 \times 7 \times \cos 80$	M1		For attempted use of the correct
		Hanaa langth of CA is 11.2 am	Λ 1	2	cosine formula
	(iii)	10 sin 80	M1	<u> </u>	For use of the sine rule to find C or
	(111)	$\sin C = \frac{10 \sin 80}{11 \cdot 166} = 0.8819$	1011		equivalent
		11.100	Λ 1	2	For correct value 61.0
		Hence angle C is 61.9	AI	4	For confect value 01.9
3	(i)	$(1 - 2)^{12}$ 1 24 264 2	B1	U	Obtain 1 and $-24r$
5	(1)	$(1-2x) = 1-24x+264x^2$	M1		Attempt x^2 term, including attempt at
					binomial coeff.
			A1	3	Obtain264 x^2
	(ii)	$(1 \times 264) + (3 \times -24) = 192$	M1		Attempt coefficient of x^2 from two
					pairs of terms
			AIV	2	Obtain correct unsimplified
			AI	3	Obtain 192
				6	600mm 172
4	(i)	perimeter = $(15 \times 1.8) + (20 \times 1.8) + 5 + 5$	M1		Use $r\theta$ at least once
	. ,		A1		Obtain at least one of 27cm or 36cm
		= / 3cm	A1	3	Obtain 73
	(ii)	area $-\left(\frac{1}{2} \times 20^2 \times 1.8\right) - \left(\frac{1}{2} \times 15^2 \times 1.8\right)$	M1		Attempt area of sector using $kr^2\theta$
		$a_{1,0} = \left(\frac{1}{2} \times \frac{10}{2} \times \frac{10}{2}\right)^{-1} \left(\frac{1}{2} \times \frac{10}{2} \times \frac{10}{2}\right)^{-1}$	MI		Find difference between attempts at
		=1575 cm ²	Α1	3	Obtain 157 5 / 158
		- 1 <i>5</i> / .50m	111	5	Journ 157.57 150
				0	

5	(i)	$r = \frac{4.8}{-0.96} = 5 = \frac{5}{-125}$	B1*		For correct value of <i>r</i> used
		$V = \frac{1}{5} = 0.00 \implies S_{\infty} = \frac{1}{0.04} = 125$	D1		For correct use of $\frac{a}{a}$ to show
			DI den*	2	1-r
			ucp	<i></i>	given answer AG
	(11)	$S = \frac{5(1-0.96^n)}{1-0.96^n}$	BI		For correct, unsimplified, S_n
		1 - 0.96			
		Hence $1 - 0.96^n > 0.992 \Longrightarrow 0.96^n < 0.008$	M1		For linking S_n to 124 (> or =) and
			A 1		multiplying through by 0.04, or
			AI		Equiv. For showing the given result
					correctly, with correct inequality
					throughout AG
		n log0.96 <log 0.008<="" td=""><td>B1</td><td></td><td>For correct log statement seen or</td></log>	B1		For correct log statement seen or
		1 0.000	MI		implied (ignore sign)
		Hence $n > \frac{\log 0.008}{1000} \approx 118.3$	MII		For dividing both sides by log 0.96
		log 0.96			
		Least value of <i>n</i> is 119	A1	6	For correct (integer) value 119
6	(2)	- 3	M/1	8	3
0	(a)	$\frac{2}{-x^2} + 4x + c$	IVI I		For $kx^{\frac{3}{2}}$
		3			$2^{\frac{3}{2}}$
			A1		For correct first term $\frac{-}{3}x^2$, or equiv
			B1		For correct second term $4x$
			B1	4	For +c
	(b)(i)	$\int_{a}^{a} 4r^{-2} dr - \left[-4r^{-1} \right]^{a}$	M1		Obtain integral of the form kx^{-1}
		$-4 - \frac{4}{2}$	M1		Use limits $x = a$ and $x = 1$
			A 1	2	Obtain = $4 - \frac{4}{2}$, or equivalent
			A1	3	a
	(ii)	4	B1√	1	State 4, or legitimate conclusion from $1 + (1)$
				0	their (b)(1)
7	(i)(a)	$\log_{10} x - \log_{10} y$	B1	0 1	For the correct answer
ĺ '	(b)	$1 + 2\log_{10}x + \log_{10}y$	M1	⊧. *	Sum of three log terms involving 10.
	(-)		A1		x ² , y
			A1	3	For correct term $2\log_{10}x$
					For both correct terms 1 and $log_{10}y$
	(11)	$2\log_{10}x - 2\log_{10}y = 2 + 2\log_{10}x + \log_{10}y$ Hence $3\log_{10}y = -2$			For relevant use of results from (i)
		$10000 500g_{10}y = -2$	ЛІ		in $\log_{10}y$ only
		$S_{0} = \frac{10^{-2}}{3} \approx 0.215$			For correct use of
		$50 y = 10^{-5} \approx 0.215$	M1		$a = \log c \Leftrightarrow c = 10^a$
			Λ1	1	$u = 10g_{10} c \iff c = 10$
			AI	4	For the correct value 0.215
				U	

8	(i)	$-2+k+1+6=0 \Longrightarrow k=-5$	M1		For attempting f(–1)
			A1		For equating $f(-1)$ to 0 and deducing the
					correct value of k AG
		OR	M1		Match coefficients and attempt k
			A1		Show $k = -5$
		OR	B2		Following division, state remainder is 0,
					hence $(x + 1)$ is a factor, hence $k = -5$
		EITHER: $(x+1)(2x^2-7x+6)$	B1		For correct leading term $2x^2$
			MI		For attempt at complete division by $f(x)$ by
			A 1		(x + 1) or equiv.
		(1)(2)(2)(2)			For all three factors correct
		=(x+1)(x-2)(2x-3)	AI		For an uncertactors correct
		OR: f(2) = 16 - 20 - 2 + 6 = 0	M1		For further relevant use of the factor
		Hence $(x - 2)$ is a factor			theorem
		Third factor is $(2x - 3)$	A1		For correct identification of factor $(x - 2)$
		Hence $f(x) = (x+1)(x-2)(2x-3)$	M1	_	For any method for the remaining factor
			Al	6	For all three factors correct
	(11)	$\begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	B1√		For any two terms integrated correctly
		$\int f(x) dx = \left \frac{-x^2}{2} - \frac{-x^2}{3} - \frac{-x^2}{2} + 6x \right $	ΒIΛ		For all four terms integrated correctly
			M1		For evaluation of $F(2) = F(-1)$
		$=\left(8-\frac{40}{2}-2+12\right)-\left(\frac{1}{2}+\frac{5}{2}-\frac{1}{2}-6\right)$	101 1		For evaluation of $\Gamma(2) = \Gamma(-1)$
		= 9	A1	4	For correct value 9
	(iii)	,			
			B1		For sketch of positive cubic, with three
					distinct, non-zero, roots
			B1	2	For correct explanation that some of the
					area is below the axis
				1	
				2	
9	(i)	ľ		-	
	(-)	4	B1		For correct sketch of one curve
		Ú Ú	B1		For correct shape and location of second
		e			curve, on same diagram
			B1	3	For intercept 4 on y-axis
	(ii)	(See diagram above)	B1		For correct identification of intersections –
	<-/	· · · · · · · · · · · · · · · · · · ·	-		in correct order
		$\beta = 180 - \alpha$	M1		For attempt to use symmetry of the graphs
			A1	3	For the correct (explicit) answer for β
	(iii)	$\sin x = 4\cos^2 x = 4(1-\sin^2 x)$	M1		$\sin x$
					For use of $\tan x = \frac{1}{\cos x}$
			M1		For use of $\cos^2 x - 1 \sin^2 x$
			Δ1		For showing the given equation correctly
		Hence $4\sin^2 x + \sin x - 4 = 0$	AI		For showing the given equation confectly
		$\sin r = \frac{-1 \pm \sqrt{65}}{1}$	D1		For compation of an inter
		$\sin x - \frac{1}{8}$	ВI		For correct solution of quadratic
		Hence $\beta - \alpha = 118.02 - 61.97 \approx 56^{\circ}$	M1		Attempt value for x from their solutions
		10.02 01.97~50	A1	6	For the correct value 56
				1	

4722	Mark Scheme	January 2006
	2	