Mark Scheme 4723 January 2006

4723	Mark Scheme			January 2006	
1	Obtain integral of form $k \ln x$	M1		[any non-zero constant k; or equiv such as k ln3x]	
	Obtain 3 ln 8 – 3 ln 2	A1		[or exact equiv]	
	Attempt use of at least one relevant log property			[would be earned by initial $\ln x^3$]	
	Obtain $3 \ln 4$ or $\ln 8^3 - \ln 2^3$ and hence $\ln 64$	A1	4	[AG; with no errors]	
2	Attempt use of identity linking $\sec^2 \theta$,				
	$\tan^2 \theta$ and 1	M1		[to write eqn in terms of tan θ]	
	Obtain $\tan^2 \theta - 4 \tan \theta + 3 = 0$	A1		[or correct unsimplified equiv]	
	Attempt solution of quadratic eqn to find two va				
	of tan θ Obtain at least two correct answers	M1 A1		[any 3 term quadratic eqn in tan θ] [after correct solution of eqn]	
	Obtain all four of 45, 225, 71.6, 251.6	A1	5	[allow greater accuracy or angles	
				to nearest degree – and no other	
				answers between 0 and 360]	
3 (a)	Attempt use of product rule	M1		[involving +]	
	Obtain $2x(x+1)^{6}$	A1			
	Obtain + $6x^2(x+1)^5$	A1	3	[or equivs; ignore subsequent attempt at simplification]	
(b)	Attempt use of quotient rule	M1		[or, with adjustment, product rule; allow <i>u</i> / <i>v</i> confusion]	
	Obtain $\frac{(x^2 - 3)2x - (x^2 + 3)2x}{(x^2 - 3)^2}$	A1		[or equiv]	
	Obtain –3	A1	3	[from correct derivative only]	
4 (i)	State $y \le 2$	B 1	1	[or equiv; allow <; allow any letter or none]	
(ii)	Show correct process for composition of function Obtain 0 and hence 2	ons A1	2	M1 [numerical or algebraic] [and no other value]	
(iii)	State a range of values with 2 as one end-point	M1		[continuous set, not just integers]	
(111)	State $0 < k \le 2$	A1		[with correct $<$ and \leq now]	
5	Obtain integral of form $k(1-2x)^6$	M1		[any non-zero constant k]	
-	Obtain correct $-\frac{1}{12}(1-2x)^6$	A1		[or unsimplified equiv; allow $+ c$]	
	Use limits to obtain $\frac{1}{12}$	A1		[or exact (unsimplified) equiv]	
	Obtain integral of form $k e^{2x-1}$	M1		[or equiv; any non-zero constant <i>k</i>]	
	Obtain correct $\frac{1}{2}e^{2x-1} - x$	A1		[or equiv; allow $+ c$]	
	_	A1		-	
	Use limits to obtain $-\frac{1}{2}e^{-1}$ Show correct process for finding required area			[or exact (unsimplified) equiv]	
	Show correct process for finding required area	M1		[at any stage of solution; if process involves two definite integrals, second must be negative]	
	Obtain $\frac{1}{12} + \frac{1}{2}e^{-1}$	A1	8	[or exact equiv; $no + c$]	

6	(a)	Either:	State proportion $\frac{440}{275}$	B1	
			Attempt calculation involving proportion Obtain 704	M1 A1 3	[involving multn and X value]
		<u>Or</u> :	Use formula of form $275e^{kt}$ or $275a^{t}$	M1 J	[or equiv]
			Obtain $k = 0.047$ or $a = \sqrt[10]{1.6}$	A1	[or equiv]
			Obtain 704	A1 (3)) [allow ±0.5]
	(b)(i))Attemp	t correct process involving logarithm	M1	[or equiv including systematic trial and improvement attempt]
		Obtain	$\ln \frac{20}{80} = -0.02t$	A1	[or equiv]
		Obtain	69	A1 3	[or greater accuracy; scheme for T&I: M1A2]
	(ii)Differe	ntiate to obtain $k e^{-0.02t}$	M1	[any constant k different from 80]
		Obtain	$-1.6 e^{-0.02t}$ (or $1.6 e^{-0.02t}$)	A1	[or unsimplified equiv]
		Obtain	0.88	A1 3	[or greater accuracy; allow -0.88]
7	(i)	Sketch	curve showing (at least) translation in		
		<i>x</i> direc Show c	tion orrect sketch with one of	M1	[either positive or negative]
			π indicated	A1	
		and	with other one of 2 and 2 - indicated	11 2	

- ... and with other one of 2 and 3π indicated
- (ii) Draw straight line through *O* with positive gradient
- (iii) Attempt calculations using 1.8 and 1.9 Obtain correct values and indicate change of sign
- (iv) Obtain correct first iterate 1.79 or 1.78 Attempt correct process to produce at least 3 iterates Obtain 1.82

Attempt rearrangement of $3\cos^{-1}(x-1) = x$ or of $x = 1 + \cos(\frac{1}{3}x)$ Obtain required formula or equation respectively

A1 3

- **B1 1** [label and explanation not required]
- **M1** [allow here if degrees used]
- A1 2 [or equiv; x = 1.8: LHS = 1.93, diff = 0.13; x = 1.9: LHS = 1.35, diff = -0.55; radians needed now]
- **B1** [or greater accuracy]
- **M1**
- A1 [answer required to exactly 2 d.p.; $2 \rightarrow 1.7859 \rightarrow 1.8280 \rightarrow 1.8200;$ SR: answer 1.82 only - B2]
- **M1** [involving at least two steps]
- A1 5

8	(i)	Differentiate to obtain $kx(5-x^2)^{-1}$	M1		[any non-zero constant]
		Obtain correct $-2x(5-x^2)^{-1}$	A1		[or equiv]
		Obtain -4 for value of derivative Attempt equation of straight line through (2, 0) v numerical value of gradient obtained from			
		attempt at derivative	M1		[not for attempt at eqn of normal]
		Obtain $y = -4x + 8$	AI	5	[or equiv]
	(ii)	State or imply $h = \frac{1}{2}$	B 1		
		Attempt calculation involving attempts at <i>y</i> values	M1		[addition with each of coefficients 1, 2, 4 occurring at least once]
		Obtain $k(\ln 5 + 4\ln 4.75 + 2\ln 4 + 4\ln 2.75 + \ln 1)$	A1		[or equiv perhaps with decimals; any constant <i>k</i>]
		Obtain 2.44	A1	4	[allow ±0.01]
	(iii)	Attempt difference of two areas	M1		[allow if area of their triangle < area A]
		Obtain $8 - 2.44$ and hence 5.56	A1v	2	[following their tangent and area of <i>A</i> providing answer positive]

- 9 (i) State $\sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ Use at least one of $\sin 2\theta = 2 \sin \theta \cos \theta$ and $\cos 2\theta = 1 - 2 \sin^2 \theta$ Attempt complete process to express in terms of $\sin \theta$ Obtain $3 \sin \theta - 4 \sin^3 \theta$
 - (ii) State 3 Obtain expression involving $\sin 10\alpha$ Obtain 9
 - (iii) Recognise cosec 2β as $\frac{1}{\sin 2\beta}$ B1 Attempt to express equation in terms of sin 2β only M1 Attempt to find non-zero value of sin 2β M1 Obtain at least sin $2\beta = \sqrt{\frac{5}{12}}$ A1 Attempt correct process to find two values of β M1 Obtain 20.1, 69.9 A1

B1

B1

- M1 [using correct identities]
- A1 4 [AG; all correctly obtained]

B1

M1 [allow θ/α confusion]

- A1 3 [and no other value]
- **B1** [allow θ/β confusion]
- M1 [or equiv involving $\cos 2\beta$]
- M1 [or of $\cos 2\beta$]
- A1 [or equiv, exact or approx]
 - [1 [provided equation is $\sin 2\beta = k$; or equiv with $\cos 2\beta$]
- A1 6 [and no others between 0 and 90]