Mark Scheme 4728 January 2006

·					
1	(i)	0.3g - T = 0.3a and	M1		For using Newton's second law (either
		T - 0.4g = 0.4a			particle) condone 0.3ga,0.4ga and
			A1		!(LHS)
					Both correct. SR Accept T -0.3 g =
					0.3a etc as correct only if consistent
		-0.1g = 0.7a	M1		with <i>a</i> shown as upwards for <i>P</i> on c's
		a = -1.4	A1	[4]	diagram
		See appendix for substituting			Eliminating T
		a = -1.4			AG
	(ii)	$\frac{1}{0} = 2.8t - \frac{1}{2} 1.4t^2$	M1		10
	(II)	0 = t(2.8 - 0.7t)	M1		
		Time taken is 4 s	A1	[3]	For using $s = ut + \frac{1}{2} at^2$ with $s = 0$
		OR		[3]	
		(0.3 + 0.4)a = (0.3 - 0.4)g	M2		Solving QE
		(0.3 + 0.4)a = (0.3 - 0.4)g	A1		From correct equation only
		a = 1.4		F 4 7	
		a = -1.4 0 = 2.8 + 1.4t	A1 M1	[4]	For using $(m_1 + m_2)a = (m_1 - m_2)g$
	(i)	0 = 2.8 + -1.4t	M1		No application of <i>SR</i> shown above
		t = 2.8/1.4	M1	[2]	AG
		Time taken is 4 s	A1	[3]	For using $v = u + at$ with $v = 0$
	(ii)				Solve for t, and double <u>or any other</u>
					complete method for return time
			-	·	1
2	(i)	$T\sin\alpha = 0.08 \text{ x } 1.25$	M1		Newton's second law condone cos,
		= 0.1	A1	[2]	and
	(ii)	$T\cos\alpha = 0.08g$	M1		0.08g for mass but not part of
			A1		force
			M1		Resolving forces vertically, condone
		$T^2 = 0.1^2 + 0.784^2$ or $\alpha =$	A1		sin
		7.3°	A1	[5]	May be implied by $T^2 = 0.1^2 + 0.784^2$
		T = 0.79			For eliminating α or T
					$\alpha = 7.3^{\circ}$ or better
					Accept anything rounding to 0.79
L					
3	(i)		M1		For using $a = dv/dt$
		a = 7.2 - 0.9t	A1		C .
			M1		For attempting to solve $a(t) = 0$
		T = 8	Al	[4]	r or
		See also special case in		L.1	
		appendix.			
	(ii)	$\frac{uppendix.}{v(T) = 28.8}$	B1		AG (From $7.2 \times 8 - 0.45 \times 8^2$)
	(11)	$\frac{V(1) - 20.0}{\text{See also special case in}}$			110 (110m 7.270 - 0.4370)
		<u>appendix.</u>		[1]	
	(;::)			[1]	
	(iii)		M1		For using $s = \int v dt$
		$s = 3.6t^2 - 0.15t^3$ (+ <i>C</i>)			· ·
		$5 - 5.0i 0.15i (\pm C)$	A1 DM1		For finding $s(T \text{ or } 31)$ or using limits
			DM1		
1		- 1526(:0)			(0) to T or (0) to 31 (dep on
		s = 153.6 (+C)	A1		integration)
			DIG	1	Condone $+C$
		s at constant speed = 662.4	B1ft		
		s at constant speed = 662.4 Displacement is 816 m	Alft	[6]	For using $(31 - \text{cv } T) \times 28.8$
				[6]	

Mark Scheme

4	(i)	$F = 12\cos 15^{\circ}$	M1		rizontally (condone
		Evistional common out is 11 CN	A 1 [2]	sin)	aa 15 ⁰
	(**)	Frictional component is 11.6 N $N + 12 \sin 15^\circ = 2 \circ$	A1 [2] M1		
	(ii)	$N + 12\sin 15^\circ = 2g$	IVI 1	cos)	rt 3 forces (accept
		Normal component is 16.5 N	A1 [2]	· · · · · · · · · · · · · · · · · · ·	
	(iii)	$11.591 = \mu 16.494$	M1		$v F = \mu c v N$
	(111)	Coefficient is 0.7(0)	Alft [2]		$\mu = 0.7027$
	(iv)	N = 2g	B1		σι, μ. οι, σ2,
	(1)	$F = 19.6 \times 0.7027$	M1		
		1 1910/101/02/111	M1	For using N	lewton's second law
		20 - 13.773 = 2a	A1ft	-	- cv Friction (e.g.
				from (i))	
		Acceleration is 3.11 ms ⁻²	A1 [5]		er 3.11 or 3.12 only
		MISREAD (omits "horizontal")	MR-1		B marks now ft.
					IR-1" <u>from initial B1</u>
		$N = 2g - 20\sin 15$	B1ft	<u>scheme).</u>	(not A1ft in main
		$F = 0.7027 \times 14.4$	M1	Equals 14.4	2
			M1	Equals 10.1	
		$20\cos 15 - 10.14 = 2a$	A1ft	-	lewton's second law
		Acceleration is 4.59 ms ⁻²	A1ft [4]		- cv Friction
				Accept 4.59	9, 4.6(0)
5	(*)		Croph with 5		'Wait' line
5	(i)		Graph with 5 straight line		segment may not
			segments and		be distinguishable
			with <i>v</i> single		from part of the <i>t</i>
		\uparrow	valued.	B1	axis. Attempt at all
		<i>v</i> (m/s)			lines segments
		Λ			fully straight.
			Line segment	D1	Mainly straight,
			for car stage	B1	ends on <i>t</i> -axis Horizontal below
			Line segment for walk	B1	<i>t</i> -axis. Ignore
			stage	DI	linking to axis.
			Line segment		Can be implied by
		t(s)	for wait stage		gap between walk
			_		and motor-cycle
				B1	stages
			2 line		Inverted V not U,
			segments for	D1	mainly straight.
			motor-cycle stage	B1 [5]	Condone vertex below <i>x</i> intercept.
	(ii)	d = 12/8	suge		Using gradient
				M1	represents accn
		Deceleration is 1.5 ms ⁻²		A1 [2]	$Or a = -1.5 ms^{-2}$
	(iii)				Using area
				M1	represents
		100/0 -		DI	displacement.
		$t_{\text{walk}} = 420/0.7$		B1	Accept 600
		$t_{\text{motorcycle}} = 42$ T = 8 + 600 + 250 + 42 = 900		B1 A1 [4]	Ignore method
1	1	1 = 0 + 000 + 230 + 42 = 300		··· [4]	

Mark Scheme

6	(i)	$T_{\rm A}\cos\alpha - T_{\rm B}\cos\beta = W$	M1		For resolving 3 forces vertically, condone <i>Wg</i> , sin
		$T_{\rm A} = T_{\rm B} \ (=T)$	B1		May be implied or shown in diagram
		$\cos \alpha > \cos \beta \rightarrow \alpha < \beta$	A1	[3]	AG
	(ii)(a)	$T\sin\alpha + T\sin\beta = 14$	M1		Resolve 3 forces horiz accept
					COS
		$\sin \alpha = 0.6$ and $\sin \beta = 0.8$	DM1		
		Tension is 10 N	A1	[3]	
	(ii)(b)	$10\cos\alpha - 10\cos\beta = W$	M1		Must use cv T, and W (not Wg)
		$\alpha = 36.9^{\circ}, \ \beta = 53.1^{\circ}$	DM1		Or $\cos \alpha = 0.8$ and $\cos \beta = 0.6$
					SR -1 for assuming $\alpha + \beta = 90^{\circ}$
		W = 2	A1 ft	[3]	ft for <i>T</i> /5 (accept 1.99)
		See appendix for solution based			_
		on resolving along RA and RB.			
	(iii)	R is below B	B1		Accept <i>R</i> more than 0.5 m
					below A
		Tension is 1 N	B1 ft	[2]	ft for W/2 accept W/2

7	(i)	Initial momentum			(or loss in A's momentum =
1	(1)	$= 0.15 \times 8 +$	B1		0.15×8
			DI		
		0.5×2	D 1		B1
		Final momentum $= 0.5v$	B1		and gain in B's momentum =
					0.5(v-2)
		$0.15 \times 8 + 0.5 \times 2 = 0.5v$			B1)
		$(\text{or } 0.15 \times 8 = 0.5 \times (v - 2))$	M1		For using the principle of
					conservation of momentum
		v = 4.4	A1	[4]	condone inclusion of g in all
		$(m)g\sin\alpha = (\pm)(m)a$	M1	[-]	terms
		$a = (\pm)4.9$	A1		SR Awarded even if g in all
		EITHER (see also part (ii))			terms
		$0 = 4.4^2 - 2 \times 4.9s$	M1		Condone cos
		s = 1.97 or 1.98 m	A1ft		
		OR			
		$v^2 = 4.4^2 - 2 \times 4.9 \times 2$	M1		For using $v^2 = u^2 + 2as$ with $v =$
		$v^2 = -0.24$	A1ft		0
			AIII		Accept $s < 2$ iff $s = 4.4^2 / ($
		OR (see also part (ii))			-
		t = 4.4/4.9 (=0.898) with either			2×4.9)
		$s = 4.4 \times 0.898 + 0.5 \times 4.9 \times$			2 2
		0.898^2 or $s = (4.4 + 0)/2 \times$	M1		For using $v^2 = u^2 + 2as$ with $s =$
		0.898	A1ft	[4]	2
		s = 1.97 or 1.98 m			Accept $v^2 < 0$
					-
					Both parts of method needed
					-
	(••)	2 1/40 2	N / 1		Accept <i>s</i> < 2
	(ii)	$2 = \frac{1}{2}4.9 t_{\rm A}^2$	M1		cv for acceleration
		$t_{\rm A} = 0.904$	A1		Accept 0.903= <time=<0.904< td=""></time=<0.904<>
		EITHER			
		$2 = (-4.4)t_{\rm B} + \frac{1}{2} 4.9 t_{\rm B}^2$	M1		Appropriate use of $s = ut + \frac{1}{2}$
		$t_{\rm B} = (4.4! \oplus (4.4^2))$	M1		at^2 Correct method for solving
		$+4 \times 2.45 \times 2))/4.9$	A1		QE
		$t_{\rm B} = 2.17$	A1		2.171
		$t_{\rm B} - 2.17$ $t_{\rm B} - t_{\rm A} = (2.17 - 0.9) = 1.27 \text{ s}$			
		$P_{\rm B} P_{\rm A} = (2.17 - 0.5) = 1.27 \text{ s}$	M1		
					Or using a to find t
		$t_{\rm up} = 4.4/4.9 (=0.898)$	M1		Or using s_{up} to find t_{up}
		$(2 + 1.98) = 0.5 \times 4.9 \times t_{\text{down}}^2$	A1		$s = ut + \frac{1}{2} at^2$ with cv s in part
		$t_{\rm down} = 1.27$	A1		(i)
		$t_{\rm B} - t_{\rm A} = (0.9 + 1.27 - 0.9) = 1.27 \text{s}$			Not the final answer
		OR			
		$0 = 4.4t - \frac{1}{2} 4.9t^2$	M1		
		(i.e. approx 1.8 s to return to			$s = ut + \frac{1}{2} at^2$ with $s = 0 = 1.796$
		start)	M1		
		$2 = 4.4t + 4.9t^2$	A1		
		t = 0.376	A1	[5]	
			Л	[5]	
		$t_{\rm B} t_{\rm A} = 1.796 + 0.376 - 0.9 =$			
		1.27s			