OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS
4751
Introduction to Advanced Mathematics (C1)
Monday 16 JANUARY $2006 \quad$ Morning 1 hour 30 minutes

Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME

 1 hour 30 minutes
INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are not permitted to use a calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

Section A (36 marks)

$1 \quad n$ is a positive integer. Show that $n^{2}+n$ is always even.

2

Fig. 2
Fig. 2 shows graphs A and B.
(i) State the transformation which maps graph A onto graph B.
(ii) The equation of graph A is $y=\mathrm{f}(x)$.

Which one of the following is the equation of graph B ?
$y=\mathrm{f}(x)+2$
$y=\mathrm{f}(x)-2$
$y=\mathrm{f}(x+2)$
$y=\mathrm{f}(x-2)$
$y=2 \mathrm{f}(x)$
$y=\mathrm{f}(x+3)$
$y=\mathrm{f}(x-3) \quad y=3 \mathrm{f}(x)$

3 Find the binomial expansion of $(2+x)^{4}$, writing each term as simply as possible.

4 Solve the inequality $\frac{3(2 x+1)}{4}>-6$.

5 Make C the subject of the formula $P=\frac{C}{C+4}$.

6 When $x^{3}+3 x+k$ is divided by $x-1$, the remainder is 6 . Find the value of k.

Not to
scale

Fig. 7
The line AB has equation $y=4 x-5$ and passes through the point $\mathrm{B}(2,3)$, as shown in Fig. 7 . The line BC is perpendicular to AB and cuts the x-axis at C . Find the equation of the line BC and the x-coordinate of C .

8 (i) Simplify $5 \sqrt{8}+4 \sqrt{50}$. Express your answer in the form $a \sqrt{b}$, where a and b are integers and b is as small as possible.
(ii) Express $\frac{\sqrt{3}}{6-\sqrt{3}}$ in the form $p+q \sqrt{3}$, where p and q are rational.

9 (i) Find the range of values of k for which the equation $x^{2}+5 x+k=0$ has one or more real roots.
(ii) Solve the equation $4 x^{2}+20 x+25=0$.

Section B (36 marks)

10 A circle has equation $x^{2}+y^{2}=45$.
(i) State the centre and radius of this circle.
(ii) The circle intersects the line with equation $x+y=3$ at two points, A and B. Find algebraically the coordinates of A and B.

Show that the distance $A B$ is $\sqrt{162}$.

11 (i) Write $x^{2}-7 x+6$ in the form $(x-a)^{2}+b$.
(ii) State the coordinates of the minimum point on the graph of $y=x^{2}-7 x+6$.
(iii) Find the coordinates of the points where the graph of $y=x^{2}-7 x+6$ crosses the axes and sketch the graph.
(iv) Show that the graphs of $y=x^{2}-7 x+6$ and $y=x^{2}-3 x+4$ intersect only once. Find the x-coordinate of the point of intersection.

12 (i) Sketch the graph of $y=x(x-3)^{2}$.
(ii) Show that the equation $x(x-3)^{2}=2$ can be expressed as $x^{3}-6 x^{2}+9 x-2=0$.
(iii) Show that $x=2$ is one root of this equation and find the other two roots, expressing your answers in surd form.

Show the location of these roots on your sketch graph in part (i).

