Solutions: OCR Core Mathematics C1 January 2007
1
$\frac{5}{2-\sqrt{3}}=\frac{5}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}=\frac{10+5 \sqrt{3}}{4+2 \sqrt{3}-2 \sqrt{3}-3}=\frac{10+5 \sqrt{3}}{1}=10+5 \sqrt{3}$
2 (i) $\quad 6^{0}=1$
(ii) $\quad 2^{-1} \times 32^{4 / 5}$:

Write 32 as 2^{5}.
We then get: $2^{-1} \times\left(2^{5}\right)^{4 / 5}=2^{-1} \times 2^{4}=2^{3}=8$

3 (i) $\quad 3(x-5) \leq 24$
Expand out brackets: $3 x-15 \leq 24$
Add 15:
$3 x \leq 39$
Divide by 3: $\quad x \leq 13$
(ii) $5 x^{2}-2>78$

This is a simple quadratic inequality.
Rearrange to make RHS equal to 0: $5 x^{2}-80>0$
Divide through by 5 : $x^{2}-16>0$
Now consider the equivalent quadratic equation: $\quad x^{2}-16=0$
This can be factorised (difference of squares): $\quad(x+4)(x-4)=0$
So the solutions are:

$$
x=-4 \text { or } x=4
$$

To get the solutions for the inequality, consider the graph of $y=x^{2}-16$:
We see $x>4$ or $x<-4$.

4 The equation $x^{\frac{2}{3}}+3 x^{\frac{1}{3}}-10=0$ is a quadratic equation in disguise.
Use the substitution $y=x^{1 / 3}$. The equation becomes: $y^{2}+3 y-10=0$
This factorises: $\quad(y+5)(y-2)=0$
So the solutions are $y=-5$ or $y=2$.
To get the solutions for x, we use $x=y^{3}$: i.e. $x=(-5)^{3}=-125$ or $x=2^{3}=8$.
5 (i) Thq graph for $y=-\mathrm{f}(x)$ is obtained by reflecting in the x-axis.

(ii) The transformation which takes the graph to $y=3 \mathrm{f}(x)$ is a stretch scale factor 3 in the ydirection. So the coordinates of Q are $(1,3)$.
(iii) The transformation which maps the graph to $y=\mathrm{f}(x+2)$ is a translation 2 units to the left.

6 (i) $2 \mathrm{x}^{2}-24 \mathrm{x}+80=\mathrm{p}\left[(\mathrm{x}-\mathrm{q})^{2}+\mathrm{r}\right]=2\left[(\mathrm{x}-\mathrm{q})^{2}+\mathrm{r}\right]$

$$
-24 x=-4 x q \quad q=6
$$

$$
80=2 q^{2}+\mathrm{rr}=8
$$

Therefore, $2 \mathrm{x}^{2}-24 \mathrm{x}+80=2(\mathrm{x}-6)^{2}+8$
(ii) The equation of the line of symmetry is $x=6$. (This is taken from the bracket)
(iii) The equation of the tangent at the minimum point is $y=8$ (This is because the minimum point has coordinates $(6,8)$.

7 (i) If $y=5 x+3$, then $\frac{d y}{d x}=5$
(ii) If $y=\frac{2}{x^{2}}=2 x^{-2}$ (write as a negative power), then $\frac{d y}{d x}=-4 x^{-3}$.

Rule: Bring down the old power and subtract 1 from the power to get the new power.
(iii) First expand out the brackets: $y=10 x^{2}-9 x-7$

Then differentiate to get: $\frac{d y}{d x}=20 x-9$
8 (i) The steps to find the coordinates of the stationary points are:

1) Differentiate the curve to get $\frac{d y}{d x}$
2) Solve the equation $\frac{d y}{d x}=0$ to find the x coords of the $T \quad$ T.P

3) Find the y-coordinates using the equation of the curve.
Here, $\frac{d y}{d x}=9-6 x-3 x^{2}$.
Therefore we need to solve the equation $9-6 x-3 x^{2}=0$
To make this equation easier to solve we could first change the signs: $3 x^{2}+6 x-9=0$
And then we could divide through by 3: $\quad x^{2}+2 x-3=0$
This then factorises as: $\quad \square \quad(x+3)(x-1)=0$
So there are stationary points at $x=-3$ or $x=1$.
We can find the y-coordinates of these points using the formula for the equation of the curve: $y=27+9 x-3 x^{2}-x^{3}$
When $x=1, y=27+9-3-1=32$
When $x=-3, y=27-27-27+27=0$.
So the stationary points have coordinates $(-3,0)$ and $(1,32)$.
(ii) To decide whether the stationary points are maximum or minimum points we follow these steps:

1) Find the second derivative $\frac{d^{2} y}{d x^{2}}$ Calculate the value of the second derivative at each of the stationary points
2) If $\frac{d^{2} y}{d x^{2}}>0$, then it is a minimum point. If $\frac{d^{2} y}{d x^{2}}<0$, then it is a maximum point.

Here, $\frac{d^{2} y}{d x^{2}}=-6-6 x$.
When $x=1, \frac{d^{2} y}{d x^{2}}=-6-6(1)=-12<0$ so a maximum point.
When $x=-3, \frac{d^{2} y}{d x^{2}}=-6-6(-3)=12>0$ so a minimum point.
(iii) To decide where the curve is increasing, it is helpful to use the coordinates of the stationary points to help us to sketch the curve:

We see that it is increasing for $-3<x<1$.

9 (i) Parallel lines have the same gradient.
The line $y=4 x-5$ has gradient 4 .
So a parallel line also has gradient 4 .
The equation of a line with gradient m passing through the point (a, b) is

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

As our line must pass through the point $(2,7)$ its equation must be:

$$
y-7=4(x-2)
$$

i.e. $\quad y-7=4 x-8$ i.e. $\quad y=4 x-1$.
(ii)

You can calculate the distance between two points EITHER by sketching a diagram and using Pythagoras' theorem OR by using the following result:
The distance between the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

If we use this formula here, the distance between $\mathrm{A}(2,7)$ and $\mathrm{B}(-1,-2)$ is:

$$
\sqrt{(-1-2)^{2}+(-2-7)^{2}}=\sqrt{(-3)^{2}+(-9)^{2}}=\sqrt{90}
$$

\square This can be simplified to make $3 \sqrt{10}$
(iii) The gradient of AB is $\frac{-2-7}{-1-2}=\frac{-9}{-3}=3$

The midpoint of AB is $(0.5,2.5)$
The gradient of a perpendicular line is $\frac{-1}{3}$ (i.e. the negative reciprocal).
So the equation of a perpendicular line is: $y-\frac{5}{2}=-\frac{1}{3}\left(x-\frac{1}{2}\right)$.
Multiply by 6 :
i.e.

The equation therefore is

$$
6 y-15=-2\left(x-\frac{1}{2}\right)
$$

Or

$$
6 y-15=-2 x+1
$$

$$
\quad 2 x+6 y-16=0
$$

$x+3 y-8=0$.
10 The circle has equation $x^{2}+y^{2}+2 x-4 y-8=0$
(i) x coord centre $\mathrm{a}=\frac{1}{2} \operatorname{coefft} \mathrm{x}$ and change sign $=-1$
y coord centre $\mathrm{b}=\frac{1}{2}$ coefft y and change sign $=2$
$\mathrm{r}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{no} .^{2}=1+4--8=13$
The circle has centre $(-1,2)$ and radius $\sqrt{ } 13$.
(ii) Substitute the coordinates $(-3, k)$ into either equation of the circle.

The algebra is easier if we substitute into $(x+1)^{2}+(y-2)^{2}=13$.
We get:

$$
(-3+1)^{2}+(k-2)^{2}=13
$$

i.e.

$$
4+(k-2)^{2}=13
$$

i.e.
$(k-2)^{2}=9$

Square rooting both sides: $\quad k-2= \pm 3$
So the solutions are $k=5$ or $k=-1$.
As $k<0$, the only solution is $k=-1$.
(iii) The equation of the line is $x+y=6$ OR $y=6-x$.

If we substitute this into the equation of the circle $x^{2}+y^{2}+2 x-4 y-8=0$, we get:

$$
x^{2}+(6-x)^{2}+2 x-4(6-x)-8=0
$$

Expanding out the brackets gives:

$$
x^{2}+36-12 x+x^{2}+2 x-24+4 x-8=0
$$

Simplifying:

$$
2 x^{2}-6 x+4=0
$$

Divide by 2 :

$$
x^{2}-3 x+2=0
$$

This factorises as $(\mathrm{x}-1)(\mathrm{x}-2)=0$ so the solutions are $x=1, x=2$.
When $x=1, y=5$
When $x=2, y=4$
Therefore the coordinates of the points of intersection are $(1,5),(2,4)$.

