Mark Scheme 4751 January 2007

Section	Α

	Section A			
1	<i>y</i> = 2 <i>x</i> + 4	3	M1 for $m = 2$ stated [M0 if go on to use $m = -\frac{1}{2}$] or M1 for $y = 2x + k$, $k \neq 7$ and M1indep for $y - 10 = m(x - 3)$ or (3, 10) subst in $y = mx + c$; allow 3 for $y = 2x$ + k and $k = 4$	3
2	neg quadratic curve intercept (0, 9) <u>through</u> (3, 0) and (-3, 0)	1 1 1	condone (0, 9) seen eg in table	3
3	$[a=]\frac{2c}{2-f}$ or $\frac{-2c}{f-2}$ as final answer	3	M1 for attempt to collect <i>a</i> s and <i>c</i> s on different sides and M1 ft for <i>a</i> (2 – <i>f</i>) or dividing by 2 – <i>f</i> ; allow M2 for $\frac{7c-5c}{2-f}$ etc	3
4	f(2) = 3 seen or used $2^{3} + 2k + 5 = 3$ o.e. k = -5	M1 M1 B1	allow M1 for divn by $(x - 2)$ with $x^2 + 2x + (k + 4)$ or $x^2 + 2x - 1$ obtained <u>alt:</u> M1 for $(x - 2)(x^2 + 2x - 1) + 3$ (may be seen in division) then M1dep (and B1) for $x^3 - 5x + 5$ <u>alt</u> divn of $x^3 + kx + 2$ by $x - 2$ with no rem.	3
5	375	3	allow $375x^4$; M1 for 5^2 or 25 used or seen with x^4 and M1 for 15 or $\frac{6 \times 5}{2}$ oe eg $\frac{6!}{4!2!}$ or 1 6 15 seen [⁶ C ₄ not sufft]	3
6	(i) 125 (ii) $\frac{9}{49}$ as final answer	2 2	M1 for $25^{\frac{1}{2}} = \sqrt{25}$ soi or for $\sqrt{25^{3}}$ M1 for $a^{-1} = \frac{1}{a}$ soi eg by 3/7 or 3/49	4
7	showing $a + b + c = 6$ o.e $bc = \frac{9^2 - 17}{16}$ =64/16 o.e. correctly obtained	1 M1 A1	simple equiv fraction eg 192/32 or 24/4 correct expansion of numerator; may be unsimplified 4 term expansion; M0 if get no further than $(\sqrt{17})^2$; M0 if no evidence before 64/16 o.e. may be implicit in use of factors in	
	completion showing $abc = 6$ o.e.	A1	completion	4

Mark Scheme

8	use <i>k</i> ² <	4ac soi of $b^2 - 4ac < 0$ 16 [may be implied by $k < 4$] k < 4 or $k > -4$ and $k < 4$ isw	M1 M1 A1 A1	de al co ea k	hay be implied by $k^2 < 16$ educt one mark in qn for \leq instead of $<$; llow equalities earlier if final inequalities prrect; condone <i>b</i> instead of <i>k</i> ; if M2 not arned, give SC2 for qn [or M1 SC1] for [=] 4 and - 4 as answer]	4
9	(ii) <u>(</u>	$2a^{5}b^{3}$ as final answer $\frac{(x+2)(x-2)}{(x-2)(x-3)}$ $\frac{2}{3}$ as final answer	2 M2 A1	M	for 2 'terms' correct in final answer I1 for each of numerator or denom. orrect or M1, M1 for correct factors een separately	5
10	seer diffe 4 <i>m</i> ²	ect expansion of both brackets n (may be unsimplified), or rence of squares used correctly obtained [±]2 <i>m</i> cao	M2 A1 A1	fo of co	It for one bracket expanded correctly; or M2, condone done together and lack f brackets round second expression if prrect when we insert the pair of rackets	4
	Sectio	n B		1		
11	iA	0.2 to 0.3 and 3.7 to 3.8	1-	+1	[tol. 1mm or 0.05 throughout qn]; if 0, allow M1 for drawing down lines at both values	2
	iB	$x + \frac{1}{x} = 4 - x$ their y = 4 - x drawn	M		condone one error allow M2 for plotting positive branch of y = 2x + 1/x [plots at (1,3) and (2,4.5) and above other graph] or for plot of y $= 2x^2 - 4x + 1$	
		0.2 to 0.35 and 1.65 to 1.8	B	2	1 each	4
	ii	(0, ±√3)	2		condone $y = \pm \sqrt{3}$ isw; 1 each or M1 for 1 + $y^2 = 4$ or $y^2 = 3$ o.e.	2
	iii	centre (1, 0) radius 2 touches at (1, 2) [which is distanc 2 from centre] all points on other branch > 2 from centre	e 1	+1	allow seen in (ii) allow ft for both these marks for centre at $(-1, 0)$, rad 2; allow 2 for good sketch or compass- drawn circle of rad 2 centre $(\pm 1, 0)$	4

12	i	(3, 6)	2	1 each coord	1
12	1	(3, 0)	2		
		grad AB = $(8 - 4)/(71)$ or 4/8 grad normal = -2 or ft perp bisector is	M1 M1	indep obtained for use of $m_1m_2 = -1$; condone stated/used as -2 with no working only if 4/8 seen	
		y - 6 = -2(x - 3) or ft their grad. of normal (not AB) and/or midpoint correct step towards completion	M1 A1	or M1 for showing grad given line = -2 and M1 for showing (3, 6) fits given line	6
	ii	Bisector crosses <i>y</i> axis at C (0, 12)	M1	may be implicit in their area calcn	
		seen or used AB crosses <i>y</i> axis at D (0, 4.5) seen or used	B2	M1 for 4 + their grad AB or for eqn AB is $y - 8 =$ their $\frac{1}{2}(x - 7)$ oe with	
		½ x (12 − their 4.5) x 3 (may be two triangles M1 each)	M2	coords of A or their M used or M1 for $[MC]^2 = 3^2 + 6^2$ or 45 or $[MD]^2 = 3^2 + 1.5^2$ or 11.25 oe and M1 for $\frac{1}{2}$ × their MC × MD; all ft their M	
		45/4 o.e. without surds, isw	A1	<u>MR</u> : AMC used not DMC: lose B2 for D but then allow ft M1 for MC ² or MA ² $[=4^{2} + 2^{2}]$ and M1 for $\frac{1}{2} \times MA \times MC$ and A1 for 15	
		A (-1, 4) 0 X		<u>MR</u> : inth used as D(0, 4) can score a max of M1, B0, M2 (eg M1 for their DM = $\sqrt{13}$), A0	
		alt allow integration used:		condone poor notation	
		$\int_0^3 (-2x + 12) \mathrm{d}x \ [= 27]$	M1	allow if seen, with correct line and	
		obtaining AB is $y - 8 =$ their $\frac{1}{2}(x -$	M1	limits seen/used as above	
		7) oe $[y = \frac{1}{2}x + 4.5]$	M1	ft from their AB	
		$\int_{0}^{3} (\frac{1}{2}x + 4.5) dx$	A1 M1		
		= 63/4 o.e. cao their area under CB - their area under AB	A1	allow only if at least some valid integration/area calculations for these	
		= 45/4 o.e. cao		trapezia seen if combined integration, so 63/4 not found separately, mark equivalently for Ms and allow A2 for final answer	6
13	i	x - 2 is factor soi attempt at divn by $x - 2$ as far as $x^3 - 2x^2$ seen in working	M1 M1	eg may be implied by divn or other factor (x^2 1) or (x^2 + 2x)	
		$x^{2} + 2x - 1$ obtained attempt at quad formula or comp square	A1 M1	or B3 www ft their quadratic	
		$-1\pm\sqrt{2}$ as final answer	A2	A1 for $\frac{-2\pm\sqrt{8}}{2}$ seen; or B3 www	6

4751

4	1751	Mark Scheme		January	January 2007		
	ii	$f(x-3) = (x-3)^3 - 5(x-3) + 2$ (x-3)(x ² - 6x + 9) or other constructive attempt at expanding (x-3) ³ eg 1 3 3 1 soi	B1 M1	or $(x-5)(x-2+\sqrt{2})(x-2-\sqrt{2})$ soi or ft from their (i) for attempt at multiplying out 2 brackets or valid attempt at multiplying all 3			
		x ³ - 9x ² + 27x - 27 - 5x + 15 [+2]	A1 B1	alt: A2 for correct full unsimplified expansion or A1 for correct 2 bracket expansion eg $(x - 5)(x^2 - 4x + 2)$	4		
	iii	5 $2\pm\sqrt{2}$ or ft	B1 B1	condone factors here, not roots if B0 in this part, allow SC1 for their roots in (i) – 3	2		