Mark Scheme 4721 January 2007

1	5 $2 + \sqrt{3}$	M1		Multiply top and bottom by
	$\frac{5}{2-\sqrt{3}}$ x $\frac{2+\sqrt{3}}{2+\sqrt{3}}$			$\pm (2 + \sqrt{3})$
				·
	$=\frac{5(2+\sqrt{3})}{4-3}$	A1		$(2+\sqrt{3})(2-\sqrt{3}) = 1$ (may be implied)
		AI		
	$=10+5\sqrt{3}$	A1	3	$10 + 5\sqrt{3}$
			3	
2(1)	1			
2(i)	1	B1	1	
	1 .			$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$
(ii)	$\frac{1}{2} \times 2^4$	M1		$2^{-1} = \frac{1}{2} \text{ or } 32^{\frac{1}{5}} = 2 \text{ or } 2^{5} = 32 \text{ soi}$
	2			_
		M1		$32^{\frac{4}{5}} = 2^4$ or 16 seen or implied
	= 8			•
	= 8	A1	3	8
			4	
2(:)	2 15 < 24	M1		Attempt to simplify expression by
3(i)	$3x - 15 \le 24$	1011		multiplying out brackets
	$3x \leq 39$			
	$x \le 13$	A1	2	<i>x</i> ≤ 13
		711	2	55
	or			
	$x-5 \le 8$ M1			Attempt to simplify expression by dividing
	$x \le 13$ A1			through by 3
	X = 13 AI			
(ii)	$5x^2 > 80$	M1		Attempt to rearrange inequality or equation
	$x^2 > 16$			to combine the constant terms
	x > 4	B1		x > 4
	or $x < -4$	A1	3	fully correct, not wrapped, not 'and'
		111	J	
				SD P1 for x > 4 x < 4
				SR B1 for $x \ge 4$, $x \le -4$
			5	
			-	

	1	1		
4	Let $y = x^{\frac{1}{3}}$ $y^2 + 3y - 10 = 0$	*M1		Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket
	(y-2)(y+5) = 0	DM	1	Correct attempt to solve quadratic
	y = 2, y = -5	A1	1	Both values correct
	$x = 2^3, x = (-5)^3$	DM1		Attempt cube
	x = 8, x = -125	A1 ft		Both answers correctly followed through
	N 0,N 125	Ain	. 3	
			5	SR B2 $x = 8$ from T & I
5 (i)		M1		Reflection in either axis
		A1	2	Correct reflection in x axis
(ii)	(1,3)	B1 B1	2	Correct x coordinate Correct y coordinate
				SR B1 for (3, 1)
(iii)	Translation 2 units in negative x direction	B1 B1	2	
			6	
6 (i)	$2(x^2 - 12x + 40)$	B1		a=2
	$= 2[(x-6)^2 - 36 + 40]$	B1		b=6
	$=2[(x-6)^2+4]$	M1		$80-2b^2$ or $40-b^2$ or $80-b^2$ or $40-2b^2$ (their b)
	$=2(x-6)^2+8$	A1	4	c = 8
(ii)	x = 6	B1 ft	1	
(iii)	y = 8	B1 ft	1	
			6	

_		T	1
7(i)	$\frac{dy}{dx} = 5$	B1 1	
(ii)	$y = 2x^{-2}$	B1	x^{-2} soi $-4x^{c}$ kx^{-3}
	$y = 2x^{-2}$ $\frac{dy}{dx} = -4x^{-3}$	B1	$-4x^c$
	dx	B1 3	kx^{-3}
(iii)	$y = 10x^2 - 14x + 5x - 7$	M1	Expand the brackets to give an expression
	$y = 10x^2 - 9x - 7$	A1	of form $ax^2 + bx + c$ $(a \ne 0, b \ne 0, c \ne 0)$ Completely correct (allow 2 x-terms)
	dy = 20x = 0	B1 ft	1 term correctly differentiated
	$\frac{dy}{dx} = 20x - 9$	B1 ft 4	Completely correct (2 terms)
		8	
8 (i)	$\frac{dy}{dx} = 9 - 6x - 3x^2$	*M1	Attempt to differentiate <i>y</i> or – <i>y</i> (at least one correct term)
	dx	A1	3 correct terms
	At stationary points, $9 - 6x - 3x^2 = 0$	M1	Use of $\frac{dy}{dx} = 0$ (for y or $-y$)
	3(3+x)(1-x) = 0 x = -3 or $x = 1$	DM1 A1	Correct method to solve 3 term quadratic $x = -3$, 1
	y = 0, 32	A1ft 6	y = 0, 32 (1 correct pair www A1 A0)
(ii)	$\frac{d^2y}{dx^2} = -6x - 6$	M1	Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly
			from $k \frac{dy}{dx}$, or other correct method
	When $x = -3, \frac{d^2 y}{dx^2} > 0$	A1	x = -3 minimum
	When $x = 1$, $\frac{d^2y}{dx^2} < 0$	A1 3	x = 1 maximum
(iii)	-3 < <i>x</i> < 1	M1	Uses the <i>x</i> values of both turning points in inequality/inequalities
		A1 2	Correct inequality or inequalities. Allow ≤
		11	

9 (i)	Gradient = 4	B1	Gradient of 4 soi
	y - 7 = 4(x - 2)	M1	Attempts equation of straight line through (2, 7) with any gradient
	y = 4x - 1	A1 3	(2, 7) with any gradient
(ii)	$ \begin{vmatrix} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ = \sqrt{(2 - 1)^2 + (7 - 2)^2} \end{vmatrix} $	M1	Use of correct formula for d or d^2 (3 values correctly substituted)
	$=\sqrt{3^2+9^2}$	A1	$\sqrt{3^2+9^2}$
	$= \sqrt{90}$ $= 3\sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of AB = 3	B1	
	Gradient of perpendicular line = $-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	Midpoint of AB = $\left(\frac{1}{2}, \frac{5}{2}\right)$	B1	
	$y - \frac{5}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	Attempts equation of straight line through their midpoint with any non-zero gradient
	x + 3y - 8 = 0	A1	$y - \frac{5}{2} = \frac{-1}{3} (x - \frac{1}{2})$
		A1 6	x + 3y - 8 = 0
		12	

		1		
10 (i)	Centre (-1, 2)	B1		Correct centre
	$(x+1)^2 - 1 + (y-2)^2 - 4 - 8 = 0$	M1		Attempt at completing the square
	$(x+1)^2 + (y-2)^2 = 13$			
	Radius √13	A1	3	Correct radius
				Alternative method:
				Centre $(-g, -f)$ is $(-1, 2)$ B1
				$g^2 + f^2 - c \qquad M1$
				Radius = $\sqrt{13}$ A1
				111
(ii)	$(2)^2 + (k-2)^2 = 13$	M1		Attempt to substitute $x = -3$ into circle
(11)	$(k-2)^2 = 9$	1,11		equation
	$k-2=\pm 3$	M1		Correct method to solve quadratic
	$k=2-\pm 3$ k=-1	A1	3	k = -1 (negative value chosen)
	K = -1			,
····				
(iii)	EITHER			
	y = 6 - x	M1		Attempt to solve equations simultaneously
	$(x+1)^2 + (6-x-2)^2 = 13$	M1		Substitute into their circle equation for x/y
	$(x+1)^2 + (4-x)^2 = 13$			or attempt to get an equation in 1 variable
	$x^2 + 2x + 1 + 16 - 8x + x^2 = 13$			only
	$2x^2 - 6x + 4 = 0$	A1		Obtain correct 3 term quadratic
	2(x-1)(x-2)=0	M1		Correct method to solve quadratic of form
				$ax^2 + bx + c = 0 (b \neq 0)$
	x=1,2	A1		Dath y values compat
	$\therefore y = 5, 4$	A1	6	Both x values correct
	, -5, -	7 1 1	J	J
				one correct pair of values www B1
				second correct pair of values B1
	OR			second correct pair or variets D1
	x = 6 - y			
	$(6 - y + 1)^2 + (y - 2)^2 = 13$			
	$(7-y)^2 + (y-2)^2 = 13$			
	$49 - 14y + y^2 + y^2 - 4y + 4 = 13$			
	$2y^2 - 18y + 40 = 0$			
	2(y-4)(y-5) = 0			SR
	y = 4, 5			SK .
	$\therefore x = 2$, 1			T & I M1 A1 One correct x (or y) value
				A1 Correct associated coordinate
				TIT CONTOUT ABBOONATE COORDINATE
			12	