Mark Scheme 4752 January 2007 Section A

1	$5 \frac{3}{2}$	1+1	- 1 if extra term	
	$\frac{1}{2} \times 6x^2$			2
2	-0.2	3	6	
	0.2		M1 for $5 = \frac{1}{1-r}$ and M1 dep for correct	
			constructive step	3
3	$\sqrt{8}$ or $2\sqrt{2}$ not $+\sqrt{8}$	3	M1 for use of $\sin^2 \theta + (1/3)^2 = 1$	
		Ū	and M1for sin $\theta = \sqrt{8/3}$ (ignore ±)	
			Diag.: hypot = 3, one side =1 M1	
				3
4	(i) C	1		
	(ii) B	1		2
	(III) 2	1		3
5	(i) −0.93, -0.930, -0.9297	2	M1 for grad = $(1 - \text{their } y_B)/(2 - 2.1)$	
	(iii) answer strictly between 1.91 and	B1	if M0, SC1 for 0.93	
	2 or 2 and 2.1			
				_
	(III) $y = -8/x^2$, gradient = -1	MIAI		5
6	At least one cycle from (0, 0)	G1		
	amplitude 1 and period 360[°]	Cidon		
	Indicated	Gruep		
	222.8 to 223 and 317 to 317.2 [°]	2	1 each, ignore extras	4
7	x < 0 and $x > 6$	3	B2 for one of these or for 0 and 6	
		U	identified or M1 for $x^2 - 6x > 0$ seen	3
			(M1 if y found correctly and sketch	
8	a + 6d = 6 correct	M1	urawn)	
	$10^{10}(2a+0d)$ correct a c			
	$\frac{30-1}{2}(2u+3u)$ correct o.e.	M1 M1f+	Two equations in a and d	
	elimination using their equations	A1		
	a = -6 and $a = 25th term = 2$	A1		5
9	$(y -) 2y^3 + 4y^2 - 1$	4		
3			M2 for (y =) $2x^3 + 4x^2 + c$ (M1 if one	
	accept $2x^{3} + 4x^{2} + c$ <u>and</u> c = - 1		error) and M1 for subst of (1, 5) dep on	
			their $y = +c$, integration attempt.	4
10	(i) 3 log _a x	2	M1 for 4 $\log_a x$ or $-\log_a x$; or $\log x^3$	
	(ii) $b = \frac{1000}{1000}$	2	M1 for 1000 or 10 ³ seen	4
	С	-		'

	-			• • • • • • • • • • • • • • • • • • •	-
11	i	Correct attempt at cos rule correct full method for C C = 141.1 bearing = [0]38.8 cao	M1 M1 A1 A1	any vertex, any letter or B4	4
	ii	$\frac{1}{2} \times 118 \times 82 \times sin$ their C or supp.	M1	or correct use of angle A or angle B	2
	iiiA	3030 to 3050 [m ²] sin ($\theta/2$) = ($\frac{1}{2} \times 189$)/130	A1 M1	or $\cos\theta = (130^2 + 130^2 - 189^2)/(2x130x130)$	2
		1.6276 → 1.63	A1	In all methods, the more accurate number to be seen.	
	iiiB	$0.5 \times 130^2 \times \sin 1.63$ $0.5 \times 130^2 \times 1.63$ their sector – their triangle AOB 5315 to 5340	M1 M1 M1 A1	condone their θ (8435) condone their θ in radians (13770) dep on sector > triangle	4
12	i ii	(2x - 3)(x - 4) x = 4 or 1.5 y' = 4x - 11	M1 A1A1 M1	or $(11 \pm \sqrt{(121 - 96))}/4$ if M0, then B1 for showing $y = 0$ when $x = 4$ and B2 for $x = 1.5$ condone one error	3
		= 5 when $x = 4$ c.a.o. grad of normal = -1 /their y' y[- 0]= <u>their</u> -0.2 (x - 4) y-intercept for <u>their</u> normal area = $\frac{1}{2} \times 4 \times 0.8$ c.a.o.	A1 M1f.t. M1 B1f.t. A1	or 0 = their (-0.2)x4 + c dep on normal attempt s.o.i. normal must be linear or integrating <u>their</u> f(x) from 0 to 4 M1	6
	iii	$\frac{2}{3}x^3 - \frac{11}{2}x^2 + 12x$ attempt difference between value at 4 and value at 1.5	M1 M1 A1	condone one error, ignore + c ft their (i), dep on integration attempt. c.a.o.	3
13	i	$[-]5\frac{5}{24}$ o.e. or $[-]5.2(083)$ log 10 V = log 10 k + log 10 10^{ax}	M1		
		$\log_{10} y = ax + \log_{10} k \text{ compared}$ to y = mx+c	M1		2
	ii	2.9(0), 3.08, 3.28, 3.48, 3.68 plots [tol 1 mm] ruled line of best fit drawn	T1 P1f.t L1f.t.	condone one error	3
	111	intercept = 2.5 approx gradient = 0.2 approx $y = \text{their } 300x \ 10^{x(\text{their } 0.2)}$ or $y = 10^{(\text{their } 2.5 + \text{their } 0.2x)}$	M1 M1 M1f.t.	or $y - 2.7 = m(x - 1)$	3
	iv	subst 75000 in any x/y eqn subst in a correct form of the relationship	M1 M1	B3 with evidence of valid working	3
	v	"Profits change" or any reason for this.	R1	too big, too soon	1

4752