Mark Scheme 4722 January 2007

$\begin{array}{ll} 1 & 15+19 d=72 \\ & \text { Hence } d=3 \\ & S_{n}=100 / 2\{(2 \times 15)+(99 \times 3)\} \\ & =16350 \end{array}$	M1 A1 M1 A1 4 4	Attempt to find d, from $a+(n-1) d$ or $a+n d$ Obtain $d=3$ Use correct formula for sum of n terms Obtain 16350
2 (i) $46 \times \frac{\pi}{180}=0.802 / 0.803$ 360) (ii) $8 \times 0.803=6.4 \mathrm{~cm}$ (iii) $1 / 2 \times 8^{2} \times 0.803=25.6 / 25.7 \mathrm{~cm}^{2}$ radians	M1 A1 2 B1 $\quad 1$ M1 A1 2	Attempt to convert to radians using π and 180 (or $2 \pi \&$ Obtain 0.802 / 0.803 , or better State 6.4, or better Attempt area of sector using $1 / 2 r^{2} \theta$ or $r^{2} \theta$, with θ in Obtain 25.6 / 25.7, or better
3 (i) $\int(4 x-5) \mathrm{d} x=2 x^{2}-5 x+c$ (ii) $\begin{aligned} & y=2 x^{2}-5 x+c \\ & 7=2 \times 3^{2}-5 \times 3+c \Rightarrow c=4 \end{aligned}$ So equation is $y=2 x^{2}-5 x+4$	M1 A1 2 B1 $\sqrt{ }$ M1 A1 3	Obtain at least one correct term Obtain at least $2 x^{2}-5 x$ State or imply $y=$ their integral from (i) Use $(3,7)$ to evaluate c Correct final equation
$4 \quad$ (i) $\begin{aligned} \text { area } & =\frac{1}{2} \times 5 \sqrt{2} \times 8 \times \sin 60^{\circ} \\ & =\frac{1}{2} \times 5 \sqrt{2} \times 8 \times \frac{\sqrt{3}}{2} \\ & =10 \sqrt{6} \end{aligned}$ (ii) $\begin{aligned} & A C^{2}=(5 \sqrt{2})^{2}+8^{2}-2 \times 5 \sqrt{2} \times 8 \times \cos 60^{\circ} \\ & A C=7.58 \mathrm{~cm} \end{aligned}$	B1 M1 A1 3 M1 A1 A1 3 6	State or imply that $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$ or exact equiv Use $\frac{1}{2} a c \sin B$ Obtain $10 \sqrt{6}$ only, from working in surds Attempt to use the correct cosine formula Correct unsimplified expression for $A C^{2}$ Obtain $A C=7.58$, or better
5 (a) (i) $\log _{3} \frac{4 x+7}{x}$ $\text { (ii) } \begin{aligned} & \log _{3} \frac{4 x+7}{x}=2 \\ & \\ & \frac{4 x+7}{x}=9 \\ & \\ & 4 x+7=9 x \\ & \\ & x=1.4 \end{aligned}$ $\text { (b) } \begin{aligned} \int_{3}^{9} \log _{10} x \mathrm{~d} x & \approx \frac{1}{2} \times 3 \times\left(\log _{10} 3+2 \log _{10} 6+\log _{10} 9\right) \\ & \approx 4.48 \end{aligned}$	B1 $\quad 1$ B1 M1 A1 3 B1 M1 A1 A1 4	Correct single logarithm, as final answer, from correct working only State or imply $2=\log _{3} 9$ Attempt to solve equation of form $\mathrm{f}(x)=8$ or 9 Obtain $x=1.4$, or exact equiv State, or imply, the 3 correct y-values only Attempt to use correct trapezium rule Obtain correct unsimplified expression Obtain 4.48, or better

6 (i) $(1+4 x)^{7}=1+28 x+336 x^{2}+2240 x^{3}$ (ii) $28 a+1008=1001$ Hence $a=-1 / 4$		Obtain $1+28 x$ Attempt binomial expansion of at least 1 more term, with each term the product of binomial coeff and power of $4 x$ Obtain $336 x^{2}$ Obtain 2240x ${ }^{3}$ Multiply together two relevant pairs of terms Obtain $28 a+1008=1001$ Obtain $a=-1 / 4$
$7 \quad$ (i) (a) (b) $\begin{aligned} & \cos x=0.4 \\ & x=66.4^{\circ}, 294^{\circ} \end{aligned}$ (ii) $\begin{aligned} & \tan x=2 \\ & x=63.4^{\circ},-117^{\circ} \end{aligned}$	$\begin{array}{lr} \text { B1 } & \\ \text { B1 } & \mathbf{2} \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } \sqrt{2} & \mathbf{3} \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } \sqrt{2} & \mathbf{3} \\ 8 & 8 \\ \hline \end{array}$	Correct shape of $k \cos x$ graph $(90,0),(270,0)$ and $(0,2)$ stated or implied Divide by 2 , and attempt to solve for x Correct answer of $66.4^{\circ} / 1.16$ rads Second correct answer only, in degrees, following their x Use of $\tan x=\frac{\sin x}{\cos x} \quad$ (or square and use $\sin ^{2} x+\cos ^{2} x \equiv 1$) Correct answer of $63.4^{\circ} / 1.56$ rads Second correct answer only, in degrees, following their x
8 (i) $-8-36-14+33=-25$ (ii) $27-81+21+33=0 \quad$ A.G. (iii) $\begin{aligned} & x=3 \\ & \mathrm{f}(x)=(x-3)\left(x^{2}-6 x-11\right) \\ & x=\frac{6 \pm \sqrt{36+44}}{2} \\ & \\ & =3 \pm 2 \sqrt{5} \text { or } 3 \pm \sqrt{ } 20 \end{aligned}$	M1 A1 2 B1 1 B1 M1 A1 A1 M1 A1 6	Substitute $x=-2$, or attempt complete division by $(x+2)$ Obtain - 25 , as final answer Confirm $f(3)=0$, or equiv using division State $x=3$ as a root at any point Attempt complete division by $(x-3)$ or equiv Obtain $x^{2}-6 x+k$ Obtain completely correct quotient Attempt use of quadratic formula, or equiv, to find roots Obtain $3 \pm 2 \sqrt{ } 5$ or $3 \pm \sqrt{20}$
9 (i) $\begin{aligned} u_{5} & =1.5 \times 1.02^{4} \\ & =1.624 \text { tonnes A.G. } \end{aligned}$ (ii) $\frac{1.5\left(1.02^{N}-1\right)}{1.02-1} \leq 39$ $\begin{aligned} & \left(1.02^{N}-1\right) \leq(39 \times 0.02 \div 1.5) \\ & \left(1.02^{N}-1\right) \leq 0.52 \\ & \text { Hence } 1.02^{N} \leq 1.52 \end{aligned}$ (iii) $\begin{aligned} & \log 1.02^{N} \leq \log 1.52 \\ & N \log .02 \leq \log 1.52 \\ & N \leq 21.144 . . \\ & N=21 \text { trips } \end{aligned}$	M1 A1 $\mathbf{2}$ M1 A1 M1 A1 4 M1 A1 M1 A1 4 	Use $1.5 r^{4}$, or find u_{2}, u_{3}, u_{4} Obtain 1.624 or better Use correct formula for S_{N} Correct unsimplified expressions for S_{N} Link S_{N} to 39 and attempt to rearrange Obtain given inequality convincingly, with no sign errors Introduce logarithms on both sides and use $\log a^{b}=b \log$ Obtain $N \log 1.02 \leq \log 1.52$ (ignore linking sign) Attempt to solve for N Obtain $N=21$ only

(i) $0=1-\frac{3}{\sqrt{9}}$
(ii) $\int_{9}^{a} 1-3 x^{-\frac{1}{2}} \mathrm{dx}=[x-6 \sqrt{x}]_{9}^{a}$
$=(a-6 \sqrt{a})-(9-6 \sqrt{9})$
$=a-6 \sqrt{a}+9$
$a-6 \sqrt{a}+9=4$
$a-6 \sqrt{a}+5=0$
$(\sqrt{a}-1)(\sqrt{a}-5)=0$
$\sqrt{a}=1, \sqrt{a}=5$
$a=1, a=25$
but $a>9$, so $a=25$

	1	Verification of (9, 0), with at least one step shown
M1		Attempt integration - increase in power for at least 1 term
A1		For second term of form $\mathrm{kx}^{1 / 2}$
A1		For correct integral
M1		Attempt F(a) - F 9)
A1		Obtain $a-6 \sqrt{a}+9$
M1		Equate expression for area to 4
M1		Attempt to solve 'disguised' quadratic
A1		Obtain at least $\sqrt{a}=5$
A1	9	Obtain $a=25$ only

