Mark Scheme 4722 January 2007 4722

Mark Scheme

Jan 2007

1	15 + Hen	19d = 72 ce $d = 3$	M1 A1		Attempt to find d, from $a + (n-1)d$ or $a + nd$ Obtain $d = 3$
	$S_n =$	$\frac{100}{2} \{(2 \times 15) + (99 \times 3)\}$	M1	4	Use correct formula for sum of <i>n</i> terms Obtain 16350
	_	10550		-	000am 10550
				4	
2	(i)	$46 \times \frac{\pi}{180} = 0.802 / 0.803$	M1		Attempt to convert to radians using π and 180 (or 2π &
300)		A1	2	Obtain 0.802 / 0.803, or better
	(ii)	8 x 0.803 = 6.4 cm	B1	1	State 6.4, or better
radi	(iii) ans	$\frac{1}{2} \ge \frac{8^2}{2} \ge 0.803 = 25.6 / 25.7 \text{ cm}^2$	M1		Attempt area of sector using $\frac{1}{2}r^2\theta$ or $r^2\theta$, with θ in
			A1	2	Obtain 25.6 / 25.7, or better
				5	
3	(i)	$\int (4x-5)\mathrm{d}x = 2x^2 - 5x + c$	M1		Obtain at least one correct term
			A1	2	Obtain at least $2x^2 - 5x$
	(ii)	$y = 2x^2 - 5x + c$	B1√		State or imply $y =$ their integral from (i)
		$7 = 2 \times 3^2 - 5 \times 3 + c \Rightarrow c = 4$ So equation is $y = 2x^2 - 5x + 4$	MI A1	3	Use $(3,7)$ to evaluate c Correct final equation
				_	1
				5	
4	(i)	area = $\frac{1}{2} \times 5\sqrt{2} \times 8 \times \sin 60^{\circ}$	B1		State or imply that $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ or exact equiv
		$= \frac{1}{2} \times 5\sqrt{2} \times 8 \times \frac{\sqrt{3}}{2}$	M1		Use $\frac{1}{2}ac\sin B$
		$=10\sqrt{6}$	A1	3	Obtain $10\sqrt{6}$ only, from working in surds
	(ii)	$AC^{2} = (5\sqrt{2})^{2} + 8^{2} - 2 \times 5\sqrt{2} \times 8 \times \cos 60^{\circ}$	M1		Attempt to use the correct cosine formula
			A1	2	Correct unsimplified expression for AC^2
		AC = 7.58 cm		3	Obtain $AC = 7.58$, or better
				6	
5	(a)	(i) $\log_3 \frac{4x+7}{x}$	B1	1	Correct single logarithm, as final answer, from correct
		(2) $1_{0} = \frac{4x+7}{2}$			working only
		(ii) $\log_3 \frac{1}{x} = 2$ 4x+7 = 0	D1		
		$\frac{-1}{x} = 9$	M1		State of imply $2 = 10g_3 9$ Attempt to solve equation of form $f(x) = 8$ or 9
		x = 1.4	A1	3	Obtain $x = 1.4$, or exact equiv
		0			
	(b)	$\int_{3}^{5} \log_{10} x dx \approx \frac{1}{2} \times 3 \times (\log_{10} 3 + 2\log_{10} 6 + \log_{10} 9)$	B1		State, or imply, the 3 correct <i>y</i> -values only
		≈ 4.48	M1		Attempt to use correct trapezium rule
			A1 A1	4	Obtain correct unsimplified expression Obtain 4.48, or better
				_	
				8	

4722

6 (i) $(1+4x)^7 = 1+28x+336x^2+2240x^3$	B1 M1	Obtain $1 + 28x$ Attempt binomial expansion of at least 1 more term, with each term the product of binomial coeff and power of $4x$ Obtain $336x^2$
		A1 4	Obtain 2240 x^3
(i	i) $28a + 1008 = 1001$ Hence $a = -\frac{1}{4}$	$ \begin{array}{c} M1 \\ A1 \\ A1 & 3 \end{array} $	Multiply together two relevant pairs of terms Obtain $28a + 1008 = 1001$ Obtain $a = -\frac{1}{4}$
		7	
7 (i)	(a)	B1 B1 2	Correct shape of <i>k</i> cos <i>x</i> graph (90, 0), (270, 0) and (0, 2) stated or implied
	(b) $\cos x = 0.4$ $x = 66.4^{\circ}, 294^{\circ}$	$ \begin{array}{c} M1 \\ A1 \\ A1\sqrt{3} \end{array} $	Divide by 2, and attempt to solve for x Correct answer of $66.4^{\circ} / 1.16$ rads Second correct answer only, in degrees, following their x
(ii) $\tan x = 2$	M1	Use of $\tan x = \frac{\sin x}{\cos x}$ (or square and use $\sin^2 x + \cos^2 x \equiv 1$)
	$x = 63.4^{\circ}, -117^{\circ}$	$\begin{vmatrix} A1 \\ A1\sqrt{3} \end{vmatrix}$	Correct answer of 63.4° / 1.56 rads Second correct answer only, in degrees, following their <i>x</i>
		8	
8 (i) $-8 - 36 - 14 + 33 = -25$	M1 A1 2	Substitute $x = -2$, or attempt complete division by $(x + 2)$ Obtain -25 , as final answer
(i	i) $27 - 81 + 21 + 33 = 0$ A.G.	B1 1	Confirm $f(3) = 0$, or equiv using division
(ii	i) $x = 3$ $f(x) = (x - 3)(x^2 - 6x - 11)$	B1 M1 A1 A1	State $x = 3$ as a root at any point Attempt complete division by $(x - 3)$ or equiv Obtain $x^2 - 6x + k$ Obtain completely correct quotient
	$x = \frac{6 \pm \sqrt{36 + 44}}{2}$	M1	Attempt use of quadratic formula, or equiv, to find roots
	$= 3 \pm 2\sqrt{5}$ or $3 \pm \sqrt{20}$	A1 6	Obtain $3 \pm 2\sqrt{5}$ or $3 \pm \sqrt{20}$
		9	
9 (i) $u_5 = 1.5 \times 1.02^4$	M1	Use $1.5r^4$, or find u_2 , u_3 , u_4
	$= 1.624 \text{ tonnes } \mathbf{A.G.}$	A1 2	Obtain 1.624 or better
(i	i) $\frac{1.5(1.02^{N}-1)}{1.02-1} \le 39$	M1	Use correct formula for S_N
	$(1.02^{N} - 1) \le (39 \times 0.02 \div 1.5)$ $(1.02^{N} - 1) \le 0.52$	A1 M1	Correct unsimplified expressions for S_N Link S_N to 39 and attempt to rearrange
	$(1.02^{-1}) \le 0.52^{-1}$ Hence $1.02^{N} \le 1.52^{-1}$	A1 4	Obtain given inequality convincingly, with no sign errors
(ii	i) $\log 1.02^N \le \log 1.52$ $N \log 1.02 \le \log 1.52$	M1	Introduce logarithms on both sides and use $\log a^b = b \log a^b$
	$N \le 21.144$ N = 21 trips	M1 A1 4	Attempt to solve for N Obtain $N = 21$ only
		10	

10	(i)	$0 = 1 - \frac{3}{\sqrt{9}}$	B1	1	Verification of $(9, 0)$, with at least one step shown
	(ii)	$\int_{9}^{a} 1 - 3x^{-\frac{1}{2}} dx = \left[x - 6\sqrt{x}\right]_{9}^{a}$	M1		Attempt integration – increase in power for at least 1 term
			A1		For second term of form $kx^{\frac{1}{2}}$
			A1		For correct integral
		$= (a - 6\sqrt{a}) - (9 - 6\sqrt{9})$	M1		Attempt $F(a) - F(9)$
		$=a-6\sqrt{a}+9$	A1		Obtain $a - 6\sqrt{a} + 9$
		$a - 6\sqrt{a} + 9 = 4$	M1		Equate expression for area to 4
		$a - 6\sqrt{a} + 5 = 0$	M1		Attempt to solve 'disguised' quadratic
		$(\sqrt{a} - 1)(\sqrt{a} - 5) = 0$			
		$\sqrt{a} = 1, \sqrt{a} = 5$	A1		Obtain at least $\sqrt{a} = 5$
		a = 1, a = 25			
		but $a > 9$, so $a = 25$	A1	9	Obtain $a = 25$ only
				10	