Mark Scheme 4724 January 2007

	1	Factorise numerator and denominator	M1		or Attempt long division
		Num = $(x+6)(x-4)$ or denom = $x(x-4)$	A1		Result = $1 + \frac{6x - 24}{r^2 - 4r}$
		Final answer = $\frac{x+6}{x}$ or $1+\frac{6}{x}$	A1	3	$=1+\frac{6}{x}$
	2	Use parts with $u = \ln x$, $dv = x$	M1		& give 1 st stage in form $f(x) + /- \int g(x)(dx)$
		Obtain $\frac{1}{2}x^2 \ln x - \int \frac{1}{x} \cdot \frac{1}{2}x^2 (dx)$	A1		or $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x(\mathrm{d}x)$
		$=\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$ (+c)	A1		
		Use limits correctly	M1		
		Exact answer $2 \ln 2 - \frac{3}{4}$	A1	5	AEF ISW
3		(i) Find $a - b$ or $b - a$ irrespective of label	M1		(expect $11i - 2j - 6k$ or $-11i + 2j + 6k$)
		Method for magnitude of any vector	M1	•	
		$\sqrt{161} \text{ or } 12.7(12.688578)$	A1	3	
		(ii) Using $(\overline{AO} \text{ or } \overline{OA})$ and $(\overline{AB} \text{ or } \overline{BA})$	B1		Do not class angle AOB as MR
		$\cos \theta = \frac{\text{scalar product of any two vectors}}{\text{product of their moduli}}$	M1		
		43 or better (42.967), 0.75 or better (0.7499218)A1	3	If 137 obtained, followed by 43, award A0 Common answer 114 probably → B0 M1 A0
					Common answer 114 probably —7 Bo Wi Ao
		Attack to a second decord dec	241		Lorenza de de
4		Attempt to connect dx and du For $du = 2 dx$ AEF correctly used	M1 A1		but not just $dx = du$ sight of $\frac{1}{2}$ (du) necessary
		•			_
		$\int u^8 + u^7 \left(\mathrm{d} u \right)$	A1		or $\int u^7 (u+1)(du)$
		Attempt new limits for u at any stage (expect 0,1)	M1		or re-substitute & use $(\frac{5}{2},3)$
		17 72	A1	5	AG WWW
		S.R. If M1 A0 A0 M1 A0, award S.R. B1 for answe	$r \frac{68}{72}, \frac{34}{36}$ or	17 18	ISW
5		(i) Show clear knowledge of binomial expansion	M1		-3x should appear but brackets can be
		1.	D.		missing; $-\frac{1}{3}$. $-\frac{4}{3}$ should appear, not $-\frac{1}{3}$. $\frac{2}{3}$
		$= 1 + x$ $+ 2x^2$	B1		Correct first 2 terms; not dep on M1
			A1	4	
		$+\frac{14}{3}x^3$	A1	4	N
		(ii) Attempt to substitute $x + x^3$ for x in (i)	M1		Not just in the $\frac{14}{3}x^3$ term
		Clear indication that $(x + x^3)^2$ has no term in x^3	A1		(2)
		17 3	√A1	3	f.t. $cf(x) + cf(x^3)$ in part (i)
6		(i) $2x+1 = / \equiv A(x-3) + B$	M1		
		A = 2 $B = 7$	A1 A/B 1	3	Cover-up rule acceptable for B1
		(ii) $\int \frac{1}{x-3} (dx) = \ln(x-3) \text{ or } \ln x-3 $	B1	3	Accept A or $\frac{1}{A}$ as a multiplier
		•			
		$\int \frac{1}{(x-3)^2} (\mathrm{d}x) = -\frac{1}{x-3}$	B1		Accept B or $\frac{1}{B}$ as a multiplier
		$6 + 2 \ln 7$ Follow-through $\frac{6}{7}B + A \ln 7$	√B2	4	

4724	Mark Scheme		January 2007
7 $\frac{d}{dx}(xy) = x\frac{dy}{dx} + y$		B1	7
$\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$		B1	
$4x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$		B1	
Put $\frac{dy}{dx} = 0$		*M1	
Obtain $4x + y = 0$ AE	F	A1	and no other (different) result
Attempt to solve simultane	eously with eqn of curve	dep*M1	
Obtain $x^2 = 1$ or $y^2 = 16$	5 from 4x + y = 0	A1	
(1,-4) and $(-1,4)$ and no	other solutions	A1 8	Accept $(\pm 1, \mp 4)$ but not $(\pm 1, \pm 4)$
8 (i) Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and $-\frac{1}{m}$	for grad of normal	M1	or change to cartesian.,diff & use $-\frac{1}{m}$
=-p	AG WWW	A1 2	Not $-t$.
(ii) Use correct formula to	find gradient of line	M1	
Obtain $\frac{2}{p+q}$	AG WWW	A1 2	Minimum of denom = $2(p-q)(p+q)$
(iii) State $-p = \frac{2}{p+q}$		M1	Or find eqn normal at P & subst $(2q^2,4q)$
Simplify to $p^2 + pq + 2 =$	= 0 AG WWW	A1 2	With sufficient evidence
(iv) $(8,8) \rightarrow t$ or p or $q =$	2 only	B1	No possibility of -2
Subst $p = 2$ in eqn (iii) to	find q_1	M1	Or eqn normal, solve simult with cartes/param
Subst $p = q_1$ in eqn (iii) t	o find q_2	M1	Ditto
$q_2 = \frac{11}{3} \rightarrow \left(\frac{242}{9}, \frac{44}{3}\right)$		A1 4	No follow-through; accept (26.9, 14.7)
9 (i) Separate variables as $\int s$	$ec^2 y dy = 2\int \cos^2 2x dx$	M1	seen or implied
$LHS = \tan y$		A1	
RHS; attempt to change to Correctly shown as $1 + \cos \theta$	_	M1 A1	
$\int \cos 4x dx = \frac{1}{4} \sin 4x$) TA	A1	
Completely correct equation	on (other than +c)	A1	$\tan y = x + \frac{1}{4}\sin 4x$
+c on either side	,	A1 7	$\frac{1}{1}$ not on both sides unless c_1 and c_2
(ii) Use boundary conditio	n	M1	provided a sensible outcome would ensue
c (on RHS) = 1		A1	or $c_2 - c_1 = 1$; not fortuitously obtained
Substitute $x = \frac{1}{6}\pi$ into the	ir eqn, produce $y = 1.05$	A1 3	or 4.19 or 7.33 etc. Radians only
10 (i) For (either point) $+ t$ (di		M1	" r =" not necessary for the M mark
$\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - (\mathbf{i})) \mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \text{ or } (\mathbf{i} + (\mathbf{i} - 2\mathbf{j}))$		A1 2 B1	but it is essential for the A mark Accept any parameter, including t
Eval scalar product of $\mathbf{i}+2\mathbf{j}-\mathbf{k}$ or $(\mathbf{i}+2\mathbf{j}-\mathbf{k})$		M1	Accept any parameter, including t
Show as $(1x1 \text{ or } 1)+(2x-2)$	or -4)+(-1x-3 or 3)	A1	This is just one example of numbers involved
= 0 and state perp		A1 4	
(iii) For at least two equations $t = -2$ or $s = 3$ (p	_	M1 A1	e.g. $5 + t = s$, $2 - 2t = 2s$, $-9 - 3t = -s$ Check if $t = 2,1$ or -1
Subst. into eqn AB or OT a	=	A1 3	
(iv) Indicate that $ \overline{OC} $ is t	•	M1	where <i>C</i> is their point of intersection
$\sqrt{54}$; f.t. $\sqrt{a^2 + b^2 + c^2}$			

In the above question, accept any vectorial notation

t and s may be interchanged, and values stated above need to be treated with caution.

In (iii), if the point of intersection is correct, it is more than likely that the whole part is correct – but check.