Mark Scheme 4736 January 2007

	(1)	10.4.0.0.5	3.51	Ti 1 11 11 11 11 11 11 11 11 11 11 11 11	1					
1	(i)	10 4 2 3 5	M1	First bundle starting with 10 4 2 and has at least						
		13 7 2 2	3.54	one more bag in it						
		4 5 8 5 3	M1	Second bundle correct						
		10 5 5 3	A1	All bundles correct	[3]					
	(ii)			A value missing from written out list may be						
		Decreasing order:		treated as a misread and lose the A mark only						
		13 10 10 8 7 5 5 5 5 5 4 4 3 3 3 2 2 2	M1	Sorting into decreasing order (may be implied						
				from first bundle starting with 13)						
		13 10 2		If each row sorted, award first M1 only						
		10 8 7	M1	Second and third bundles correct						
		5 5 5 5 5								
		4 4 3 3 3 2 2	A1	All bundles correct	[3]					
	(iii)	Each person has roughly the same number of bags	B1	Saying that (i) gives a more even/equal allocation						
		or the total weights are more evenly spread		Five bundles in either part \oplus B0	[1]					
		_ 3 1		Tive buildles in either part \(\phi\) Bo						
				Total =	7					
2	(i)	a = number of apple cakes	B1	Identifying variables as 'number of cakes'						
		b = number of banana cakes	B1	Indicating a as apple, b as banana and c as cherry.						
		c = number of cherry cakes			[2]					
	(ii)	$4 \times 30 = 3 \times 40 = 4 \times 30 = 120$	M1	Any reasonable attempt						
		$\frac{a}{30} + \frac{b}{40} + \frac{c}{30} = 30 \times 40 \times 30$								
		$4a + 3b + 4c \le 120 \text{ or } X = 4, Y = 3, Z = 4$								
			A1	4, 3 and 4	[2]					
	(iii)	$a+b+c \ge 30 \text{ (or } a+b+c=30)$	B1	Constraint from total number of cakes correct						
		$0 \le a \le 20, \ 0 \le b \le 25, \ 0 \le c \le 10$	M1	All three upper constraints correct						
		(no need to say 'all integer')	A1	All three lower constraints correct also	[3] [1]					
	(iv)	(iv) $4a + 3b + 2c$ B1 Any multiple of this expression								
	1		1	Total =	8					
3	(i) a	$9 \times 2 = 18$	B1	18	[1]					
	b	Since the graph is simple, the two nodes of order	B1	Explicitly using the fact that the graph is simple						
		5 are each connected to every other node and	B1	Deducing that each node has order at least 2						
		hence every node has order at least 2 (exactly 2)		or that all other nodes have order 2						
				A diagram on its own is not enough.	[2]					
	С	$3 \times 5 = 15$ and $18 - 15 = 3$	B1	Or, the nodes of order 5 contribute $5+4+3 = 12$						
		but the orders of the other nodes must sum to at		arcs						
		least $3\times3 = 9$ (must sum to more than 3)	B1	But there are only 9 arcs available	[2]					
	(ii)	•	M1	A simply connected graph with 6 nodes and 9						
	(-1)	or equivalent	1	arcs, with at least one odd node						
		or equivalent	A1	For such a graph with node orders 1, 3, 3, 3, 3, 5	[2]					
	(iii)	●	M1	A simply connected graph with 6 nodes and 9	[2]					
	(111)	or equivalent	1711	arcs, with at least one even node						
		or equivalent	A1	For such a graph with node orders 2, 2, 2, 4, 4, 4	[2]					
	Į.		111	Total =						
				1 Otal =	7					

(i)	1 4 5 3 2 7 6		FIRST THREE MARKS ARE FOR WORK ON	
	$\begin{bmatrix} A & B & C & D & E & F & G \end{bmatrix}$		THE TABLE ONLY	
	A 0 4 5 3 2 5 6	M1	(Starting by) choosing row E in column A	
	B 4 0 1 2 4 7 6			
	C 5 1 0 3 4 6 7			
	D 3 2 3 0 2 6 4	M1 dep	Choosing more than one entry from column A	
	E 2 4 4 2 0 6 6			
	F 5 7 6 6 6 0 10			
	G 6 6 7 4 6 10 0	A1	Correct entries chosen (or all transposed)	
	0 0 0 7 4 0 10 0			
	Order: A E D B C G F			
	201	B1	Correct order, listed or marked on arrows or table,	
	Minimum spanning tree:		or arcs listed AE ED DB BC DG AF	
		D1		
		B1	Tree (correct or follow through from table, provided solution forms a spanning tree)	
	E F G			
	T . 1 . 11 . 16 (. 1600)			
	Total weight: 16 (or 1600 m)			
	Total weight: 16 (or 1600 m)	R1	16 or 1600m (or follow through from table or	
	Total weight: 16 (or 1600 m)	B1	16 or 1600m (or follow through from table or diagram, provided solution forms a spanning tree)	[6
(ii)			diagram, provided solution forms a spanning tree)	[6 [1
(ii) (iii)	Travelling salesperson (problem)	B1	diagram, provided solution forms a spanning tree) Identifying TSP by name	[6 [1
(ii) (iii)			diagram, provided solution forms a spanning tree)	
	Travelling salesperson (problem) Two shortest arcs from <i>H</i> : 12 + 13 = 25	B1 B1	diagram, provided solution forms a spanning tree) Identifying TSP by name 12 + 13 or 25, or implied from final answer	
	Travelling salesperson (problem) Two shortest arcs from H : $12 + 13 = 25$ $25 + 16 = 41$ 4100 m	B1 B1	diagram, provided solution forms a spanning tree) Identifying TSP by name 12 + 13 or 25, or implied from final answer Adding their 25 to their 16 or for 41 (must be using two arcs from <i>H</i>) 4100 m or 4.1 km (correct and with units)	
	Travelling salesperson (problem) Two shortest arcs from H : $12 + 13 = 25$ $25 + 16 = 41$	B1 B1 M1	diagram, provided solution forms a spanning tree) Identifying TSP by name 12 + 13 or 25, or implied from final answer Adding their 25 to their 16 or for 41 (must be using two arcs from <i>H</i>)	[1
(iii)	Travelling salesperson (problem) Two shortest arcs from H : $12 + 13 = 25$ $25 + 16 = 41$ 4100 m	B1 B1 M1	diagram, provided solution forms a spanning tree) Identifying TSP by name 12 + 13 or 25, or implied from final answer Adding their 25 to their 16 or for 41 (must be using two arcs from <i>H</i>) 4100 m or 4.1 km (correct and with units)	[1
(iii)	Travelling salesperson (problem) Two shortest arcs from H : $12 + 13 = 25$ $25 + 16 = 41$ 4100 m	B1 B1 M1 A1 M1	diagram, provided solution forms a spanning tree) Identifying TSP by name 12 + 13 or 25, or implied from final answer Adding their 25 to their 16 or for 41 (must be using two arcs from <i>H</i>) 4100 m or 4.1 km (correct and with units) (<i>H</i>) <i>A E D B C</i>	[1

(i)					
(-)	B E I 9/8 7	M1	Correct temporary labels at <i>B</i> to <i>G</i> , no extras		
	4 7 7	M1	Correct temporary labels at H to J , no extras		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	All temporary labels correct		
	2 6 8 98	B1	Order of becoming permanent correct		
	3 3 5 5 7/6 6	D1	(follow through their permanent labels)		
	<u> </u>	B1	All permanent labels correct		
	Note: <i>H</i> may have only a temporary label if left until last				
	Route: A D G J K	B1	Correct route		
	Number of speed cameras on route: 8	B1	8 (cao)	[7	
(ii)	Odd nodes: A I J K	M1	Identifying or using A I J K		
	AI = 7 $AJ = 6$ $AK = 8JK = \frac{2}{9} IK = \frac{4}{10} IJ = \frac{6}{14}$	A1 A1	Weight of AI + weight of $JK = 9$ Weight of AJ + weight of $IK = 10$ (follow through weight of AI , AJ from (i) if necessary)		
	Repeat AI and $JK \Rightarrow AB BI$ and JK				
	Route (example): KJDABIKJGKHGFHEFCGDCABC EBIEK	M1 A1	A list of 28 nodes that starts and ends with <i>K</i> Such a list that includes each of <i>AB</i> , <i>BI</i> , <i>JK</i> (or		
	Number of speed cameras on route: 81	B1	reversed) twice 72 + weight of their least pairing	[(
(iii)	The only odd nodes are I and J so she only needs	B1	Identifying <i>I</i> and <i>J</i> or <i>IJ</i>	Ī	
	to repeat $IJ = 6$		(not just implied from 6 or 72+6 or 78)		
	72 + 6	M1	Correct calculation (may be implied from 78)	1	
	= 78	A1		[:	
			Total =	1	

(i) P	,	х	V	Z	s	t		B1	Correct use of two slack variable columns	
	1	-3	5	-4	0	0	0	B1	\pm (-3 5 -4) in objective row	
	0	1	2	-3	1	0	12			
(0	2	5	-8	0	1	40	B1	1 2 -3 12 and 2 5 -8 40 in constraint rows	[3]
(ii)				rows 2	and 3 o	f the z	column are	B1	Entries for potential pivots are not positive	[3]
		negative Pivot on 1 in x column						B1	Correct pivot choice (cao) (stated or entry ringed)	
						e entrie	s in obj. ro		Correct proof enoice (eao) (stated of entry finged)	
							so choose <i>x</i>		Follow through their table	
								B1	'Negative in top row for x' and a correct	
		$12 \div 1 = 12, 40 \div 2 = 20$ Least positive ratio is 12 so pivot on the 1					the 1		explanation of choice of row 'least ratio $12 \div 1$ '	[3]
(iii)									Follow through their tableau if possible	
P	,	X	V	Z	s	t		M1	Correct method evident	
	1	0	11	-13	3	0	36			
	0	1	2	-3	1	0	36 12	A1	Correct tableau (ft if reasonable and possible,	
	0	0	1	-2	-2	1	16		column representing RHS of equations must	
	-				s 3 1 -2				contain non-negative entries)	
		x = 12,						B1	Correct non-negative values for their tableau	[3]
(iv)		z can increase without limit and increasing z will increase P					easing z wi	ll B1	Discussing the effect of increasing z	
									Not just referring to pivoting in tableau	[1]
(v)		Initial tableau is unchanged except entry in z col				xcept e	ntry in z co			
		of obj. row becomes +40						B1	Describing change to obj. row of initial tableau	
		First iteration tableau is also unchanged except					ged except		or showing tableau that results	
	for this entry which becomes 31				B1	Identifying 31 instead of -13 (cao)				
		26						B1	No other changes	F 43
(*)		36	41		<u> </u>	2 5	. 7 . 50	B1	36 stated (cao)	[4]
(vi)		Adding the constraints gives $3x - 5y + 7z \le 52$ so $Q \le 52$					$+ /z \leq 52$	B1	52	[1]
(vii)		x-3z=	12 and	$\frac{1}{1} 2x + 1$	0z = 40	(A	ccept ≤)	M1	Eliminating <i>y</i> terms (may be implied)	
		• 10z -				•	· —	M1	Trying to solve simultaneous equations	
		$\Phi x = 1$	5 and	z = 1				A1	Correct values (may imply method marks)	[3]
								1	Total =	18