Q 1		mark		sub
	either 70 V obtained So $70 V=1400$ and $V=20$ or $V=20$	M1 A1 M1 A1 M1 A1 M1 A1	Attempt at area. If not trapezium method at least one part area correct. Accept equivalent. Or equivalent - need not be evaluated. Equate their 70 V to 1400 . Must have attempt at complete areas or equations. cao Attempt to find areas in terms of ratios (at least one correct) Correct total ratio - need not be evaluated. (Evidence may be 800 or 400 or 200 seen). Complete method. (Evidence may be 800/40 or 400/20 or 200/10 seen). cao [Award 3/4 for 20 seen WWW]	
				4

Q 2		mark		sub
	$(v=) 12-3 t^{2}$	M1	Differentiating	
	$v=0 \Rightarrow 12-3 t^{2}=0$	A1		
A1	Allow confusion of notation, including $x=$ Dep on $1^{\text {st }}$ M1. Equating to zero. Accept one answer only but no extra answers. FT so $t^{2}=4$ and $t= \pm 2$ if quadratic or higher degree. cao. Must have both and no extra answers.			
	$x= \pm 16$	A1		
				5

Q 3		mark		sub
(i)	$R=m g$ so 49 N	B1	Equating to weight. Accept $5 g$ (but not $m g$)	1
(ii)		B1 B1	All except F correct (arrows and labels) (Accept $m g, W$ etc and no angle). Accept cpts instead of 10 N . No extra forces. F clearly marked and labelled	2
(iii)	$\uparrow \quad R+10 \cos 40-49=0$ $\begin{aligned} & R=41.339 \ldots \text { so } 41.3 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .) \\ & F=10 \sin 40=6.4278 \ldots \text { so } 6.43 \mathrm{~N}(3 \mathrm{s.} \mathrm{f.}) \end{aligned}$	M1 B1 A1 B1	Resolve vertically. All forces present and 10N resolved Resolution correct and seen in an equation. (Accept $R= \pm 10 \cos 40$ as an equation) Allow -ve if consistent with the diagram.	4
				7

Q 4		mark		sub
(i)	$\downarrow \quad 20+16 \cos 60=28$	B1		1
(ii)	either $\rightarrow 16 \sin 60$ $\text { Mag } \sqrt{28^{2}+192}=31.2409 \ldots$ so 31.2 N (3 s.f.) or Cos rule $\begin{aligned} & \text { mag }^{2}=16^{2}+20^{2}-2 \times 16 \times 20 \times \cos 120 \\ & 31.2 \mathrm{~N}(3 \text { s. f.) } \end{aligned}$	M1 F1 M1 A1 A1	Any form. May be seen in (i). Accept any appropriate equivalent resolution. Use of Pythag with 2 distinct cpts (but not 16 and $\pm 20)$ Allow 34.788... only as FT Must be used with $20 \mathrm{~N}, 16 \mathrm{~N}$ and 60° or 120° Correct substitution	3
(iii)	Magnitude of accn is $15.620 \ldots \mathrm{~m} \mathrm{~s}^{-2}$ so $15.6 \mathrm{~m} \mathrm{~s}^{-2}$ (3 s. f.) angle with 20 N force is $\arctan \left(\frac{16 \sin 60}{28}\right)$ $\text { so } 26.3295 \ldots \text { so } 26.3^{\circ} \text { (3 s. f.) }$	B1 M1 A1	Award only for their $F \div 2$ Or equiv. May use force or acceleration. Allow use of sine or cosine rules. FT only $s \leftrightarrow c$ and sign errors. Accept reciprocal of the fraction. cao	3
				7
Q 5		mark		sub
(i)	sphere $19.6-T=2 a$ block $\quad T-14.8=4 a$	M1 A1 A1	N2L. All forces attempted in one equation. Allow sign errors. No extra forces. Don't condone $F=$ mga. Accept $2 g$ for 19.6	3
(ii)	Solving $T=18 \quad a=0.8$	M1 A1 F1	Attempt to solve. Award only if two equations present both containing a and T. Either variable eliminated. Either found cao Other value. Allow wrong equation(s) and wrong working for $1^{\text {st }}$ value [If combined equation used award: M1 as in (i) for the equation with mass of 6 kg ; A 1 for $a=0.8$; M1 as in (i) for equation in T and a for either sphere or block; A1 equation correct; F1 for T, FT their a; B1 Second equation in T and a.]	3
				6

Q 6		mark		sub
(i)	$\begin{aligned} & t=2.5 \Rightarrow \mathbf{v}=\binom{-5}{10}+2.5\binom{6}{-8}=\binom{10}{-10} \\ & \text { speed is } \sqrt{10^{2}+10^{2}}=14.14 \ldots \\ & \text { so } 14.1 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{~s} . \mathrm{f.} \text {) } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \\ & \text { F1 } \end{aligned}$	Need not be in vector form Accept diag and/or correct derivation of just $\pm 45^{\circ}$ FT their v	3
(ii)	$\mathbf{s}=2.5\binom{-5}{10}+\frac{1}{2} \times 2.5^{2} \times\binom{ 6}{-8}$ $\begin{aligned} & =\binom{6.25}{0} \\ & \text { so } 090^{\circ} \end{aligned}$	M1 A1 A1 A1	Consideration of \mathbf{s} (const accn or integration) Correct sub into uvast with \mathbf{u} and \mathbf{a}. (If integration used it must be correct but allow no arb constant) cao. CWO.	4
				7

Q 7		mark		sub
(i)	acceleration is $\frac{24}{12}$ so $2 \mathrm{~m} \mathrm{~s}^{-2}$	B1		1
(ii)	$\begin{aligned} & 24-15=12 a \\ & a=0.75 \mathrm{~m} \mathrm{~s}^{-2} \\ & 1^{\text {st }} \text { distance is } 0.5 \times 2 \times 16=16 \\ & 2^{\text {nd }} \text { distance is } 0.5 \times 0.75 \times 16=6 \end{aligned}$ $\text { Difference is } 10 \mathrm{~m}$	M1 A1 M1 A1 A1	Use of N2L. Both forces present. Must be $F=$ ma. No extra forces. Appropriate uvast applied at least once. Need not evaluate. Both found. May be implied. FT (i) cao	5
(iii)	$12 g \sin 5-15=12 a$ $\begin{aligned} & a=-0.39587 \ldots \\ & \text { so }-0.396 \mathrm{~m} \mathrm{~s}^{-2}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	M1 M1 A1 A1	Use of $F=$ ma, allow 15 N missing or weight not resolved. No extra forces. Allow use of $12 \sin 5$. Attempt at weight cpt. Allow $\sin \leftrightarrow \cos$. Accept seen on diagram. Accept the use of 12 instead of $12 g$. Weight cpt correct. Accept seen on diagram. Allow not used. Correct direction must be made clear	4
(iv)	time $0=1.5+a t \Rightarrow t=3.789 \ldots$ so 3.79 s (3 s. f.) distance $s=0.5 \times(1.5+0) \times 3.789 \ldots(\text { or } \ldots)$ giving $s=2.8418 \ldots$ so $2.84 \mathrm{~m}(3 \mathrm{~s} . \mathrm{f}$.)	M1 A1 M1 A1	Correct uvast . Use of 0, 1.5 and their a from (iii) or their s from (iv). Allow sign errors. Condone $u \leftrightarrow v$. Correct uvast. Use of 0, 1.5 and their a from (iii) or their t from (iv). Allow sign errors. Condone $u \leftrightarrow v$. [The first A1 awarded for t or s has FT their a if signs correct; the second awarded is cao]	4
(v)	accn is given by $\begin{aligned} & 0=1.5+3.5 a \Rightarrow a=-\frac{3}{7}=-0.42857 \ldots \\ & 12 g \sin 5-R=12 \times-0.42857 \ldots \\ & \text { so } R=15.39 \ldots \text { so } 15.4 \mathrm{~N} \text { (3 s. f.) } \end{aligned}$	M1 A1 M1 A1	Use of $0,1.5$ and 3.5 in correct u vast. Condone $u \leftrightarrow v$. Allow \pm N2L. Must use their new accn. Allow only sign errors. cao	4
				18

Q 8		mark		sub
(i)	Using $s=u t+0.5 a t^{2}$ with $u=10$ and a $=-10$	E1	Must be clear evidence of derivation of -5 . Accept one calculation and no statement about the other.	1
(ii)	either $s=0$ gives $10 t-5 t^{2}=0$ so $5 t(2-t)=0$ so $t=0$ or 2 . Clearly need $t=2$ or Time to highest point is given by $0=10-$ 10t Time of flight is 2×1 $=2 \mathrm{~s}$ horizontal range is 40 m as $40<70$, hits the ground	B1 M1 A1 M1 M1 A1 B1 E1	Factorising Award 3 marks for $t=2$ seen WWW Dep on $1^{\text {st }} \mathrm{M} 1$. Doubling their t. Properly obtained FT $20 \times$ their t Must be clear. FT their range.	5
(iii)	need $10 t-5 t^{2}=-15$ Solving $t^{2}-2 t-3=0$ so $(t-3)(t+1)=0$ and $t=3$ range is 60 m	M1 M1 A1 M1 A1	[May divide flight into two parts] Equate $s=-15$ or equivalent. Allow use of ± 15. Method leading to solution of a quadratic. Equivalent form will do. Obtaining $t=3$. Allow no reference to the other root. [Award SC3 if $t=3$ seen WWW] Range is $20 \times$ their t (provided $t>0$) cao. CWO.	5
(iv)	Using (ii) \& (iii), since $40+60>70$, paths cross (For $0<t \leq 2$) both have same vertical motion so B is always 15 m above A	E1 E1	Must be convincing. Accept sketches. Do not accept evaluation at one or more points alone. That B is always above A must be clear.	2
(v)	Need x components summing to 70 $20 \times 0.75+20 \times 2.75=15+55=70$ so true Need y components the same $\begin{aligned} & 10 \times 2.75-5 \times 2.75^{2}+15=4.6875 \\ & 10 \times 0.75-5 \times 0.75^{2}=4.6875 \end{aligned}$	M1 E1 M1 B1 E1	May be implied. Or correct derivation of 0.75 s or 2.75 s Attempt to use 0.75 and 2.75 in two vertical height equations (accept same one or wrong one) 0.75 and 2.75 each substituted in the appropriate equn Both values correct. [Using cartesian equation: B1, B1 each equation: M1 solving: A1 correct point of intersection: E1 Verify times]	5
				18

