Mark Scheme 4732 January 2007

Penalize over	r-rounding only once in paper, except qu 8(ii).		
1i	$\begin{bmatrix} 1 - \binom{3}{10} + \frac{1}{5} + \frac{2}{5} \end{bmatrix}$	M1 A1 2	or $(^{3}/_{10} + ^{1}/_{5} + ^{2}/_{5}) + p = 1$
ii	$\frac{3}{10}$ $\frac{3}{10} + 2 x^{1/5} + 3 x^{2/5}$ $\frac{19}{10}$ oe	M1 A1 2	$\div 4 \text{or6} \Rightarrow \text{M0A0}$
Total		4	
2i	. $x = 20; y = 11; x^2 = 96; y^2 = 31; xy$ =52)	B1	
	$S_{\rm ref} = 16$ or 3.2	B1	
	$S_{xy} = 6.8$ or 1.36 $S_{xy} = 8$ or 1.6	B1	
	$S_{xy} = 8$ or 1.6	M1	dep $-1 \le r \le 1$
	r = 8 or 1.6		ft their S's (S_{xx} & S_{yy} +ve) for M1 only
	$\sqrt{(16x6.8)}$ $\sqrt{(3.2x1.36)}$ = 0.767 (3 sfs)	A1 5	
ii	Small sample oe	B1f 1	
Total		6	
3i	120	B1 1	not just 5!
iia	3 x 4! or 72 (÷ 5!)	M1	
	³ / ₅ oe	A1 2	oe, eg $^{72}/_{120}$
b	Starts 1 or 21 (both)	M1	12,13,14,15, (≥2 of these incl 21, or allow 1 extra) can be implied by wking
	$\frac{1}{5} + \frac{1}{5} \times \frac{1}{4}$	M1	or $5x 3!$ or $4! + 3!$ ($\div 5!$)
	$= \frac{1}{4}$ oe	A1 3	complement: full equiv steps for Ms
Total		6	
4ia	W & Y oe	B1 1	
b		B1 1	
	X oe		
ii	Geo probs always decrease	B1 1	Geo not fixed no. of values
	or Geo has no upper limit to x or $x \neq 0$		diags have fixed no of trials
			not Geo has +ve skew
iii		B1	indep
	W	B1dep	allow Bin probs rise then fall
	Bin probs cannot fall then rise	2	
	or bimodal		
Total		5	
5i	$\frac{\frac{2685 - \frac{140 \times 106.8}{8}}{3500 - \frac{140^2}{8}} \text{ or } \frac{2685 - \frac{140^2}{8}}{3500 - \frac{140^2}{8}} \text{ or } \frac{2685 - \frac{140}{8}}{2500 - \frac{8}{2}}$	M1	Correct sub in any correct formula for b (incl. $(x - \overline{x})$ etc)
	$\frac{140^2}{3500 - \frac{140^2}{8}} \xrightarrow{8x17.5x13.35}_{2500} \xrightarrow{9x17.5^2}$		(1101. (x - x) etc)
	= ¹³⁶ / ₁₇₅ or 0.777 (3 sfs)	A1	
	$y - \frac{106.8}{8} = 0.777(x - \frac{140}{8})$ y=0.78x -0.25 or better or $y = \frac{136}{175}x - \frac{1}{4}$	M1 A1 4	or $a = {}^{106.8}/_8 - 0.777 x^{140}/_8$ ft b for M1 ≥ 2 sfs sufficient for coeffs
ii	$0.78 \times 12 - 0.25$	M1 T	M1: ft their equn
	= 9.1 (2 sfs)	Alf 2	A1: dep const term in equi
iiia	Reliable	B1	Just "reliable" for both: B1
b	Unreliable because extrapolating oe	B1 2	

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8(ii).

ļ	6i	$Geo(^{2}/_{3})$ stated $\binom{1}{3}^{3} x^{2}/_{3}$	M1 M1		or implied by $(^1/_3)^n x^2/_3$
		$=\frac{2}{81}$ or 0.0247 (3 sfs)	A1	3	

ii	$\left[\left(\frac{1}{3} \right)^{3} \right]$	M1		or $\frac{2}{3} + \frac{1}{3}x^{2}/_{3} + (\frac{1}{3})^{2}x^{2}/_{3}$: M2
	$1 - (1/3)^3$	M1		one term omitted or extra or wrong: M1 1 - $({}^{1}/{}_{3})^{4}$ or 1 - $({}^{2}/{}_{3}+{}^{1}/{}_{3}x^{2}/{}_{3}+({}^{1}/{}_{3})^{2}x^{2}/{}_{3}$):M1
	²⁶ / ₂₇ or 0.963 (3 sfs)	A1	3	
iii	1 / 2/3	M1 A1	 ດ	
Total	= 3/2 oe	8 AI	2	
7i	$^{2}/_{9}$ or $^{7}/_{9}$ oe seen	B1		
	$^{3}/_{9}$ or $^{6}/_{9}$ oe seen	B1		
	$^{1}/_{8}$ or $^{7}/_{8}$ oe seen	B1		
	Correct structure	B1		ie 8 correct branches only,
				ignore probs & values
	All correct	B1	5	including probs and values,
				but headings not req'd
ii	$3/_{10} \times 7/_9 + 7/_{10} \times 3/_9 + 7/_{10} \times 6/_9$	M2		or $\frac{3}{10}x^{7}/9 + \frac{7}{10}$ or $1 - \frac{3}{10}x^{2}/9$
	14			M1: one correct prod or any prod + $\frac{7}{10}$
	$\frac{\frac{14}{15} \text{ or } 0.933 \text{ oe}}{\frac{3}{10} x^{2}/_{9} x^{7}/_{8} + \frac{7}{10} x^{6}/_{9}}$	A1	3	or $\frac{3}{10} \times \frac{2}{9}$
iii	$3/_{10} \times 2/_{9} \times 1/_{8} + 1/_{10} \times 3/_{9}$	M2		M1: one correct prod
	$^{21}/_{40}$ or 0.525 oe	A1	3	cao
	No ft from diag except: with replacement:	(i) st	ructu	re: B1 (ii) $^{91}/_{100}$: B2 (iii) 0.553: B2
Total		11	l	
8i	Med = 2	B1		cao
	LQ = 1 or $UQ = 4$	M1		or if treat as cont data:
				read cf curve or interp at 25 & 75
	IQR = 3	A1	3	cao
ii	Assume last value = 7 (or eg 7.5 or 8 or 8.5)	B1		stated, & not contradicted in wking
	we attempted > 5 tamps	M1		eg 7-9 or 7,8, 9 Not just in wking allow "midpts" in xf or x^2f
	xf attempted ≥ 5 terms	1/11		anow initiplies in x_j or x_j
	2.6 or 3 sf ans that rounds to 2.6	A1		
	$x^2 f$ or $(x-m)^2 f \ge 5$ terms	M1		
	$\sqrt{(x^2 f / 100 - m^2)}$ or			
	$\sqrt{(x-m)^2 f}/100$ fully correct but ft m	M 1		
	1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7	A1		dep M3
			6	penalize > 3 sfs only once
iii	Median less affected by extremes or	B1	1	or median is an integer or mean not int.
	outliers etc (NOT anomalies)			or not affected by open-ended interval
				general comment acceptable
iv	Small change in var'n leads to lge change in IQR			
	UQ for W only just 4, hence IQR exaggerated	D 1	1	for Old Moat LQ only just 1 & UQ only just 3
	orig data shows variations are similar	B1	1	oe specific comment essential
V	OM % (or y) decr (as x incr) oe	B1	2	ranks reversed in OM or not rev in W
	Old Moat	B1	2	NIS
Total		13	5	

Mark Scheme

9i	$^{11}C_5 x (^{1}/_4)^6 x (^{3}/_4)^5$	M1	or $462 \ge (1/4)^6 \ge (3/4)^5$
	0.0268 (3 sfs)	A1 2	
ii	$q^{11} = 0.05$ or $(1-p)^{11} = 0.05$	M1	(any letter except p) ¹¹ = 0.05 oe
	$\sqrt[11]{0.05}$	M1	oe or invlog $(\frac{\log 0.05}{11})$
	q = 0.762 or 0.7616	A1	11
	p = 0.238 (3 sfs)	Alf 4	ft dep M2
iii	$11 \ge p \ge (1-p) = 1.76$ oe	M1	not $11pq = 1.76$
	$11p - 11p^2 = 1.76$ or $p - p^2 = 0.16$	A1	any correct equn after mult out
	$11p^2 - 11p + 1.76 = 0$ or $p^2 - p + 0.16 = 0$	A1	or equiv with $= 0$
	$(25p^2 - 25p + 4 = 0)$		
	(5p-1)(5p-4) = 0		or correct fact'n or subst'n for their quad
	or $p = \frac{11 - \sqrt{(11^2 - 4x11x1.76)}}{11 - \sqrt{(11^2 - 4x11x1.76)}}$	M1	equ'n eg $p = \frac{1 \pm \sqrt{(1-4x0.16)}}{1 + \sqrt{(1-4x0.16)}}$
	2 x 11		2
	p = 0.2 or 0.8	A1 5	
Total		11	
	Total 72 marks		