Solutions: Core Mathematics 1 January 2008

1	$\frac{4}{3-\sqrt{7}} = \frac{4}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$ $12+4\sqrt{7}$	1
3	$= \frac{12 + 4\sqrt{7}}{9 - 3\sqrt{7} + 3\sqrt{7} - 7}$ $= \frac{12 + 4\sqrt{7}}{2}$	1
2 (i) 1 (ii)	$= 6 + 2\sqrt{7}$ The equation of a circle centre (0, 0) radius r is $x^2 + y^2 = r^2$ (Learn this!) So if the radius is 7, the equation is $x^2 + y^2 = 49$ The equation of the circle is $x^2 + y^2 - 6x - 10y - 30 = 0$	1 1
2	Centre (a,b) $a = \frac{1}{2} \operatorname{coefft} x$, change sign = 3 $r^2 = a^2 + b^2 - no. = 3^2 + 5^230 = 64$ r = 8 $b = \frac{1}{2} \operatorname{coefft} y$, change sign = 5	1 1
3	The right hand side can be expanded out: note $a = 3$ in this case $3(x + 3)^2 + c = 3(x + 3)(x + 3) + c = 3(x^2 + 6x + 9) + c$ (Remember that a bracket is squared by multiplying it by itself.) So $3(x + 3)^2 + c = 3x^2 + 18x + 27 + c$.	2
	Compare this with the left hand side: $3x^2 + bx + 10 = 3x^2 + 18x + 27 + c$	
	Comparing coefficients of x: $b = 18$	1
4	Comparing the constant terms: $10 = 27 + c$ i.e. $c = 10 - 27 = -17$. So $a = 3$, $b = 18$ and $c = -17$.	1
4 (i)	$10^p = 0.1 \qquad \Rightarrow \qquad p = -1$	1
1	(Remember that a power of -1 means the reciprocal so $10^{-1} = \frac{1}{10}$)	
(ii)	A power of $\frac{1}{2}$ means the square root.	
3 (iii)	So $(25k^2)^{1/2} = \sqrt{25k^2} = 5k$ So, we need to solve $\pm 5k = 15$ i.e. $k = \pm 3$. $t^{-1/3} = \frac{1}{t^{1/3}} = \frac{1}{\sqrt[3]{t}}$ So we need to solve	1 2
2	i.e. $\sqrt[3]{t} = 2$ \Rightarrow $t = 8$	1 1

The solutions of the quadratic equation $ax^2 + bx + c = 0$ can be found using the quadratic 6 (i) formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Here a = 1, b = 8 and c = 10.
So
$$x = \frac{-8 \pm \sqrt{64 - 4 \times 1 \times 10}}{2} = \frac{-8 \pm \sqrt{24}}{2}$$

But $\sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6}$

point (0, 10).

values).

The curve cuts the y-axis at the

The curve is a U graph and cuts

the x-axis at $-4 + \sqrt{6}$, $-4 - \sqrt{6}$ (both of which are negative

But
$$\sqrt{24} = \sqrt{4} \times 6 = 2\sqrt{6}$$

Therefore the solutions are $x = \frac{-8 \pm 2\sqrt{6}}{2} = -4 \pm \sqrt{6}$
The curve cuts the y-axis at the
point (0, 10).
The curve is a U graph and cuts
the x-axis at $-4 + \sqrt{6}$, $-4 - \sqrt{6}$
(both of which are negative
values).

 $-4 - \sqrt{6}$

3

3

(ii)

2

1

3

2

 $-4 + \sqrt{6}$

7 (i) To find the equation of the line, rearrange to the form y = mx + c:

x+2y = 4 i.e 2y = 4 - x i.e. y = 2 - 0.5x.

1

So the gradient is -0.5.

(ii) A parallel line will have the same gradient, so the parallel line will have gradient -0.5.The equation of a line with gradient m which passes through the point (a, b) is:

 $y - y_1 = m(x - x_1)$ So y - 5 = -0.5(x - 6)Multiply by 2: 2y - 10 = -x + 6Rearrange to get: x + 2y - 16 = 0

3

(iii) Rearrange the equation x + 2y = 4 to make y the subject: y = 2 - 0.5x.

Substitute this into the equation of the curve:

 $2-0.5x = x^{2} + x + 1$ Multiply by 2 to remove the fraction: $4-x = 2x^{2} + 2x + 2$ Rearrange to make one side equal to 0: $2x^{2} + 3x - 2 = 0.$

This equation can be solved by factorising:

 $2x^{2} + 4x - 1x - 2 = 0$ 2x(x+2) - 1(x+2) = 0(x+2)(2x-1) = 0

Therefore x = -2 or x = 0.5.

4 If x = -2, y = 2 - 0.5(-2) = 3 (-2, 3) If x = 0.5, y = 2 - 0.5(0.5) = 1.75 (0.5, 1.75)

8 (i) To find the coordinates of the stationary points, the steps are:

- 1) Differentiate the equation of the curve to get $\frac{dy}{dx}$
- 2) Find the x-coordinates of the stationary points by solving $\frac{dy}{dx}=0$;

3) Find the y-coordinates of each point using the equation of the curve. Here $y = x^3 + x^2 - x + 3$ Therefore:

Therefore:

 $\frac{dy}{dx} = 3x^2 + 2x - 1$

To find the coordinates of the stationary points we solve $3x^2 + 2x - 1 = 0$. This can be solved by factorising:

$$3x^{2} + 2x - 1 = 3x^{2} + 3x - 1x - 1$$

= 3x(x + 1) - 1(x + 1)
= (3x - 1)(x + 1) 1
So the solutions are x = ¹/₃ or x = -1. 2

1

3

1

1

1

1

1

When $x = \frac{1}{3}$, $y = (\frac{1}{3})^3 + (\frac{1}{3})^2 - \frac{1}{3} + 3 = \frac{1}{27} + \frac{1}{9} - \frac{1}{3} + 3 = 2\frac{22}{27}$ When x = -1, $y = (-1)^3 + (-1)^2 - (-1) + 3 = 4$

6 The coordinates of the stationary points are (-1, 4) and $\left(\frac{1}{3}, 2\frac{22}{27}\right)$.

(ii) To decide whether the stationary points are maximums or minimums the steps are:

- 1) Find the second derivative $\frac{d^2y}{dx^2}$
- 2) Substitute each x value into the second derivative
- 3) If $\frac{d^2y}{dx^2} > 0$, then it is a minimum; If $\frac{d^2y}{dx^2} < 0$, then it is a maximum.

3 Here,
$$\frac{d^2y}{dx^2} = 6x + 2$$
 When $x = -1$, $\frac{d^2y}{dx^2} = 6(-1) + 2 = -4 < 0$, i.e. a maximum point
When $x = 1/3$, $\frac{d^2y}{dx^2} = 6(\frac{1}{3}) + 2 = 4 > 0$ i.e. a minimum point.

(iii) We can sketch the graph of
$$y = x^3 + x^2 - x + 3$$
:
This shows that the curve is decreasing if $-1 < x < 1/3$.

9 (i) The gradient of the line AB is
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 (LEARN THIS!)
So the gradient is $m = \frac{1 - (-2)}{3 - (-5)} = \frac{3}{8}$
Using the formula $y - y_1 = m(x - x_1)$ for the equation of a straight line, we get:
 $y - 1 = \frac{3}{8}(x - 3)$
Multiply by 8 to remove the fraction:
 $8y - 8 = 3x - 9$
3 Therefore: $-3x + 8y + 1 = 0$. or $3x - 8y - 1 = 0$
(ii) The georedinates of the midmoint of AP, are: $\begin{pmatrix} -5 + 3 - 2 + 1 \\ -5 + 3 - 2 + 1 \end{pmatrix} = (-1 - \frac{1}{2})$

(ii) The coordinates of the midpoint of AB are:
$$\left(\frac{-5+3}{2}, \frac{-2+1}{2}\right) = (-1, -\frac{1}{2})$$

(iii) We can calculate the distance between two points using Pythagoras's theorem (if we draw a sketch of the diagram) OR we can use the following formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(-3 - -5)^2 + (4 - -2)^2} = \sqrt{2^2 + 6^2} = \sqrt{40} = 2\sqrt{10}$$

3

(iv) Gradient of AC is
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - (-2)}{-3 - (-5)} = \frac{6}{2} = 3$$

Gradient of BC is $\frac{4-(1)}{-3-3} = \frac{3}{-6} = -\frac{1}{2}$

AC is not perpendicular to BC as the product of their gradients is not -1.

2

3

1

(Note: Two lines are perpendicular if the product of their gradients is -1, $m_1 \times m_2 = -1$ i.e. if the gradient of one line is the negative reciprocal of the gradient of the other).

10(i)

4

3

So:

 $f(x) = 8x^{3} + \frac{1}{x^{3}} = 8x^{3} + x^{-3}$ (Write as a negative power) Therefore $f'(x) = 24x^{2} + -3x^{-4} = 24x^{2} - 3x^{-4}$

(drop the power down infront and make the power 1 less).

5 So
$$f''(x) = 48x + 12x^{-5}$$

(ii) We have to solve:

$$8x^{3} + \frac{1}{x^{3}} = -9$$

Multiply by x^{3} :
$$8x^{6} + 1 = -9x^{3}$$

So: $8x^6 + 9x^3 + 1 = 0$ 1

This can be turned into a quadratic is we substitute $y = x^3$: $8y^2 + 9y + 1 = 0$

1

This can be solved by factorising; $8y^2 + 8y + 1y + 1 = 8y(y+1) + 1(y+1) = (8y+1)(y+1)$ 1

So the solutions are y = -1 or $y = -\frac{1}{8}$

5

So:

$$x = \sqrt[3]{y} = \sqrt[3]{-1} = -1$$
 or $x = \sqrt[3]{-\frac{1}{8}} = -\frac{1}{2}$ 2