## Solutions: Core Mathematics 1 <br> January 2008

1

3

$$
\begin{align*}
\frac{4}{3-\sqrt{7}} & =\frac{4}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}  \tag{1}\\
& =\frac{12+4 \sqrt{7}}{9-3 \sqrt{7}+3 \sqrt{7}-7} \\
& =\frac{12+4 \sqrt{7}}{2}  \tag{1}\\
& =6+2 \sqrt{7} \tag{1}
\end{align*}
$$

2 (i) The equation of a circle centre ( 0,0 ) radius r is $x^{2}+y^{2}=r^{2} \quad$ (Learn this!)
1 So if the radius is 7 , the equation is $x^{2}+y^{2}=49$
(ii) The equation of the circle is $x^{2}+y^{2}-6 x-10 y-30=0$

2
Centre (a,b) $a=1 / 2$ coefft $x$, change sign $=3$
$b=1 / 2$ coefft $y$, change sign $=5$
$r^{2}=a^{2}+b^{2}-$ no. $=3^{2}+5^{2}--30=64$
$r=8$
3 The right hand side can be expanded out: note $\mathrm{a}=3$ in this case

$$
3(x+3)^{2}+c=3(x+3)(x+3)+c=3\left(x^{2}+6 x+9\right)+c
$$

(Remember that a bracket is squared by multiplying it by itself.)
So

$$
\begin{equation*}
3(x+3)^{2}+c=3 x^{2}+18 x+27+c \tag{2}
\end{equation*}
$$

Compare this with the left hand side:

$$
3 x^{2}+b x+10=3 x^{2}+18 x+27+c
$$

Comparing coefficients of x : $\mathrm{b}=18$
4 Comparing the constant terms: $10=27+\mathrm{c}$
i.e. $c=10-27=-17$.

So $\mathrm{a}=3, \mathrm{~b}=18$ and $\mathrm{c}=-17$.
4 (i) $\quad 10^{p}=0.1 \quad \Rightarrow \quad p=-1$
(Remember that a power of -1 means the reciprocal so $10^{-1}=\frac{1}{10}$ )
1
(ii) A power of $1 / 2$ means the square root.
$3 \quad$ So $\left(25 k^{2}\right)^{1 / 2}=\sqrt{25 k^{2}}=5 k$
So, we need to solve $\pm 5 \mathrm{k}=15$ i.e. $\mathrm{k}= \pm 3$.
(iii)

$$
\begin{equation*}
t^{-1 / 3}=\frac{1}{t^{1 / 3}}=\frac{1}{\sqrt[3]{t}} \tag{2}
\end{equation*}
$$

So we need to solve

$$
\begin{array}{ll} 
& \frac{1}{\sqrt[3]{t}}=\frac{1}{2}  \tag{1}\\
\text { i.e. } \quad \sqrt[3]{t}=2 \quad \Rightarrow \quad t=8
\end{array}
$$

5 (i)


The graph of $\mathrm{y}=\mathrm{x}^{3}+2$ is formed by translating the graph of $y=x^{3}$ by two units upwards.
(ii)


The graph of $y=2 \sqrt{x}$ is formed by stretching the graph of $y=\sqrt{x}$ in the direction of the $y$-axis by a scale factor of 2 .
(iii) The transformation that transforms $y=2 \sqrt{x}$ onto the curve $y=3 \sqrt{x}$ is a stretch parallel to

3 the $y$-axis scale factor 1.5.
6 (i) The solutions of the quadratic equation $a x^{2}+b x+c=0$ can be found using the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Here $\mathrm{a}=1, \mathrm{~b}=8$ and $\mathrm{c}=10$.
So $x=\frac{-8 \pm \sqrt{64-4 \times 1 \times 10}}{2}=\frac{-8 \pm \sqrt{24}}{2}$
But $\sqrt{24}=\sqrt{4 \times 6}=2 \sqrt{6}$
Therefore the solutions are $x=\frac{-8 \pm 2 \sqrt{6}}{2}=-4 \pm \sqrt{6}$
(ii) The curve cuts the $y$-axis at the point ( 0,10 ).
The curve is a $U$ graph and cuts the $x$-axis at $-4+\sqrt{6},-4-\sqrt{6}$ (both of which are negative values).

3

(iii) From the sketch, the solutions of the inequality are:

$$
x \geq-4+\sqrt{6} \text { or } x \leq-4-\sqrt{6}
$$

7 (i) To find the equation of the line, rearrange to the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ :

$$
x+2 y=4 \quad \text { i.e } 2 y=4-x \quad \text { i.e. } y=2-0.5 x .
$$

So the gradient is -0.5 .
(ii) A parallel line will have the same gradient, so the parallel line will have gradient -0.5 . The equation of a line with gradient $m$ which passes through the point $(a, b)$ is:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

So

$$
y-5=-0.5(x-6)
$$

Multiply by 2 :

$$
2 y-10=-x+6
$$

Rearrange to get:

$$
\begin{equation*}
x+2 y-16=0 \tag{3}
\end{equation*}
$$

(iii) Rearrange the equation $\mathrm{x}+2 \mathrm{y}=4$ to make y the subject: $\mathrm{y}=2-0.5 \mathrm{x}$.

Substitute this into the equation of the curve:

$$
2-0.5 x=x^{2}+x+1
$$

Multiply by 2 to remove the fraction:

$$
4-x=2 x^{2}+2 x+2
$$

Rearrange to make one side equal to 0 :

$$
\begin{equation*}
2 x^{2}+3 x-2=0 \tag{1}
\end{equation*}
$$

This equation can be solved by factorising:

$$
\begin{aligned}
& 2 x^{2}+4 x-1 x-2=0 \\
& 2 x(x+2)-1(x+2)=0 \\
& (x+2)(2 x-1)=0
\end{aligned}
$$

Therefore $\mathrm{x}=-2$ or $\mathrm{x}=0.5$.

$$
\begin{array}{lll} 
& \text { If } x=-2, \quad y=2-0.5(-2)=3 & (-2,3) \\
4 & \text { If } x=0.5, y=2-0.5(0.5)=1.75 & (0.5,1.75) \tag{1}
\end{array}
$$

8 (i) To find the coordinates of the stationary points, the steps are:

1) Differentiate the equation of the curve to get $\frac{d y}{d x}$
2) Find the $x$-coordinates of the stationary points by solving $\frac{d y}{d x}=0$;
3) Find the $y$-coordinates of each point using the equation of the curve.

Here $y=x^{3}+x^{2}-x+3$
Therefore:

$$
\begin{equation*}
\frac{d y}{d x}=3 x^{2}+2 x-1 \tag{1}
\end{equation*}
$$

To find the coordinates of the stationary points we solve $3 x^{2}+2 x-1=0$.
This can be solved by factorising:

$$
\begin{align*}
3 x^{2}+2 x-1 & =3 x^{2}+3 x-1 x-1 \\
& =3 \mathrm{x}(\mathrm{x}+1)-1(\mathrm{x}+1) \\
& =(3 \mathrm{x}-1)(\mathrm{x}+1) \tag{1}
\end{align*}
$$

So the solutions are $\mathrm{x}=1 / 3$ or $\mathrm{x}=-1$.

When $\mathrm{x}=\frac{1}{3}, \mathrm{y}=\left(\frac{1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{2}-\frac{1}{3}+3=\frac{1}{27}+\frac{1}{9}-\frac{1}{3}+3=2 \frac{22}{27}$
When $\mathrm{x}=-1, y=(-1)^{3}+(-1)^{2}-(-1)+3=4$
$6 \quad$ The coordinates of the stationary points are $(-1,4)$ and $\left(\frac{1}{3}, 2 \frac{22}{27}\right)$.
(ii) To decide whether the stationary points are maximums or minimums the steps are:

1) Find the second derivative $\frac{d^{2} y}{d x^{2}}$
2) Substitute each $x$ value into the second derivative
3) If $\frac{d^{2} y}{d x^{2}}>0$, then it is a minimum; If $\frac{d^{2} y}{d x^{2}}<0$, then it is a maximum.

3 Here, $\frac{d^{2} y}{d x^{2}}=6 x+2 \quad$ When $x=-1, \frac{d^{2} y}{d x^{2}}=6(-1)+2=-4<0$, i.e. a maximum point When $\mathrm{x}=1 / 3, \frac{d^{2} y}{d x^{2}}=6\left(\frac{1}{3}\right)+2=4>0$ i.e. a minimum point.
(iii) We can sketch the graph of $y=x^{3}+x^{2}-x+3$ :


This shows that the curve is decreasing if $-1<x<1 / 3$.

9 (i) The gradient of the line AB is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(LEARN THIS!)
So the gradient is $\mathrm{m}=\frac{1-(-2)}{3-(-5)}=\frac{3}{8}$
Using the formula $y-y_{1}=m\left(x-x_{1}\right)$ for the equation of a straight line, we get:

$$
\begin{equation*}
y-1=\frac{3}{8}(x-3) \tag{1}
\end{equation*}
$$

Multiply by 8 to remove the fraction:

$$
8 y-8=3 x-9
$$

Therefore: $-3 \mathrm{x}+8 \mathrm{y}+1=0$. or $3 \mathrm{x}-8 \mathrm{y}-1=0$
(ii) The coordinates of the midpoint of AB are: $\left(\frac{-5+3}{2}, \frac{-2+1}{2}\right)=\left(-1,-\frac{1}{2}\right)$
(iii) We can calculate the distance between two points using Pythagoras's theorem (if we draw a sketch of the diagram) OR we can use the following formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

3
So: $\quad d=\sqrt{(-3--5)^{2}+(4--2)^{2}}=\sqrt{2^{2}+6^{2}}=\sqrt{40}=2 \sqrt{10}$
(iv) Gradient of AC is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-(-2)}{-3-(-5)}=\frac{6}{2}=3$

1
Gradient of BC is $\frac{4-(1)}{-3-3}=\frac{3}{-6}=-\frac{1}{2}$
AC is not perpendicular to BC as the product of their gradients is not -1 .
(Note: Two lines are perpendicular if the product of their gradients is $-1, \mathrm{~m}_{1} \times \mathrm{m}_{2}=-1$ i.e. if the gradient of one line is the negative reciprocal of the gradient of the other).

10(i)

$$
f(x)=8 x^{3}+\frac{1}{x^{3}}=8 x^{3}+x^{-3} \quad \text { (Write as a negative power) }
$$

Therefore

$$
\begin{equation*}
f^{\prime}(x)=24 x^{2}+-3 x^{-4}=24 x^{2}-3 x^{-4} \tag{3}
\end{equation*}
$$

(drop the power down infront and make the power 1 less).
5

$$
\text { So } \quad f^{\prime}(x)=48 x+12 x^{-5}
$$

(ii) We have to solve:

$$
8 x^{3}+\frac{1}{x^{3}}=-9
$$

Multiply by $x^{3}$ :

$$
\begin{equation*}
8 x^{6}+1=-9 x^{3} \tag{1}
\end{equation*}
$$

So: $\quad 8 x^{6}+9 x^{3}+1=0$
This can be turned into a quadratic is we substitute $y=x^{3}$ :

$$
\begin{equation*}
8 y^{2}+9 y+1=0 \tag{1}
\end{equation*}
$$

This can be solved by factorising;

$$
\begin{equation*}
8 y^{2}+8 y+1 y+1=8 y(y+1)+1(y+1)=(8 y+1)(y+1) \tag{1}
\end{equation*}
$$

So the solutions are $y=-1$ or $y=-\frac{1}{8}$
So:

$$
\begin{equation*}
x=\sqrt[3]{y}=\sqrt[3]{-1}=-1 \quad \text { or } \quad x=\sqrt[3]{-\frac{1}{8}}=-\frac{1}{2} \tag{2}
\end{equation*}
$$

