4751 (C1) Introduction to Advanced Mathematics

Section A

1	$[v=][\pm]\sqrt{\frac{2E}{m}} \text{ www}$	3	M2 for $v^2 = \frac{2E}{m}$ or for $[v =] \left[\pm\right] \sqrt{\frac{E}{\frac{1}{2}m}}$ or M1 for a correct constructive first step and M1 for $v = \left[\pm\right] \sqrt{k}$ ft their $v^2 = k$; if M0 then SC1 for $\sqrt{E}/\frac{V_2}{m}$ or $\sqrt{2E/m}$	3
			etc	
2	$\frac{3x-4}{x+1} \text{ or } 3 - \frac{7}{x+1} \text{ www as final}$ answer	3	M1 for $(3x-4)(x-1)$ and M1 for $(x+1)(x-1)$	3
3	(i) 1	1		
	(ii) 1/64 www	3	M1 for dealing correctly with each of reciprocal, square root and cubing (allow 3 only for 1/64) eg M2 for 64 or −64 or 1/√4096 or ¼³ or M1 for 1/16³/2 or 4³ or −4³ or 4⁻³ etc	4
4	6x + 2(2x - 5) = 7	M1	for subst or multn of eqns so one pair of	
	10 <i>x</i> = 17	M1	coeffts equal (condone one error) simplification (condone one error) or appropriate addn/subtn to eliminate variable	
	<i>x</i> = 1.7 o.e. isw	A1	allow as separate or coordinates as	
	y = -1.6 o.e .isw	A1	requested graphical soln: M0	4
5	(i) -4/5 or -0.8 o.e.	2	M1 for 4/5 or 4/-5 or 0.8 or -4.8/6 or correct method using two points on the line (at least one correct) (may be graphical) or for -0.8x o.e.	
	(ii) (15, 0) or 15 found www	3	M1 for $y =$ their (i) $x + 12$ o.e. or $4x + 5y = k$ and (0, 12) subst and M1 for using $y = 0$ eg $-12 = -0.8x$ or ft their eqn	
			or M1 for given line goes through (0, 4.8) and (6, 0) and M1 for 6 × 12/4.8 graphical soln: allow M1 for correct required line drawn and M1 for answer within 2mm of (15, 0)	5

19

6	f(2) used	M1	or division by $x - 2$ as far as $x^2 + 2x$	
	$2^3 + 2k + 7 = 3$	M1	obtained correctly or remainder $3 = 2(4 + k) + 7$ o.e. 2nd	
		A1	M1 dep on first	
	k = -6			3
7	(i) 56	2	M1 for $\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ or more simplified	
	(ii) -7 or ft from -their (i)/8	2	M1 for 7 or ft their (i)/8 or for $56 \times (-1/2)^3$ o.e. or ft; condone x^3 in answer or in M1 expression; 0 in qn for just Pascal's triangle seen	4
8	(i) 5√3	2	M1 for $\sqrt{48} = 4\sqrt{3}$	
	(ii) common denominator = $(5 - \sqrt{2})(5 + \sqrt{2})$ = 23 numerator = 10	M1 A1 B1	allow M1A1 for $\frac{5-\sqrt{2}}{23} + \frac{5+\sqrt{2}}{23}$ allow 3 only for 10/23	5
9	(i) <i>n</i> = 2 <i>m</i>	M1	or any attempt at generalising; M0 for just trying numbers	
	$3n^2 + 6n = 12m^2 + 12m$ or $= 12m(m+1)$	M2	or M1 for $3n^2 + 6n = 3n(n + 2) = 3 \times$ even \times even and M1 for explaining that 4 is a factor of even \times even or M1 for 12 is a factor of $6n$ when n is even and M1 for 4 is a factor of n^2 so 12 is a factor of $3n^2$	
	(ii) showing false when n is odd e.g. $3n^2 + 6n = \text{odd} + \text{even} = \text{odd}$	B2	or $3n(n+2) = 3 \times \text{odd} \times \text{odd} = \text{odd}$ or counterexample showing not always true; M1 for false with partial explanation or incorrect calculation	5

17

Section B

10	i	correct graph with clear asymptote $x = 2$ (though need not be marked)	G2	G1 for one branch correct; condone (0, -1/2) not shown SC1 for both sections of graph shifted two to left		
		(0, - ½) shown	G1	allow seen calculated	3	
	ii	11/5 or 2.2 o.e. isw	2	M1 for correct first step	2	
	iii	$x = \frac{1}{x - 2}$	M1	or equivs with ys		
		x(x-2) = 1 o.e. $x^2 - 2x - 1 = 0$; ft their equiveqn	M1 M1 M1 A1	or $(x-1)^2 - 1 = 1$ o.e. or $(x-1) = \pm \sqrt{2}$ (condone one error)		
		attempt at quadratic formula 1 ±√2 cao position of points shown	B1	on their curve with $y = x$ (line drawn or $y = x$ indicated by both coords); condone intent of diagonal line with gradient approx 1through origin as $y = x$ if unlabelled	6	11
11	i	$(x-2.5)^2$ o.e. $-2.5^2 + 8$ $(x-2.5)^2 + 7/4$ o.e.	M1 M1 A1	for clear attempt at -2.5^2 allow M2A0 for $(x - 2.5) + 7/4$ o.e. with no $(x - 2.5)^2$ seen		
		min $y = 7/4$ o.e. [so above x axis] or commenting $(x - 2.5)^2 \ge 0$	B1	ft, dep on $(x - a)^2 + b$ with b positive; condone starting again, showing $b^2 - 4ac < 0$ or using calculus	4	
	ii	correct symmetrical quadratic shape	G1			
		8 marked as intercept on <i>y</i> axis tp (5/2, 7/4) o.e. or ft from (i)	G1 G1	or (0, 8) seen in table	3	
	iii	$x^2 - 5x - 6$ seen or used -1 and 6 obtained x < -1 and $x > 6$ isw or ft their solns	M1 M1 M1	or $(x - 2.5)^2$ [> or =] 12.25 or ft 14 - <i>b</i> also implies first M1 if M0, allow B1 for one of $x < -1$ and $x > 6$	3	
	iv	min = $(2.5, -8.25)$ or ft from (i) so yes, crosses	M1 A1	or M1 for other clear comment re translated 10 down and A1 for referring to min in (i) or graph in (ii); or M1 for correct method for solving $x^2 - 5x - 2 = 0$ or using $b^2 - 4ac$ with this and A1 for showing real solns eg $b^2 - 4ac = 33$; allow M1A0 for valid comment but error in -8.25 ft; allow M1 for showing y can be neg eg (0, -2) found and A1 for correct conclusion	2	12

40	T :	$(x-4)^2 - 16 + (y-2)^2 - 4 = 9$	MO	M1 for one completing covers of for	
12	1	$(x-4)^2 - 16 + (y-2)^2 - 4 = 9$ o.e.	M2 B1	M1 for one completing square or for $(x-4)^2$ or $(y-2)^2$ expanded correctly or starting with $(x-4)^2 + (y-2)^2 = r^2$: M1 for correct expn of at least one bracket and M1 for $9 + 20 = r^2$ o.e.	
		rad = √29		or using $x^2 - 2gx + y^2 - 2fy + c = 0$ M1 for using centre is (g, f) [must be quoted] and M1 for $f^2 = g^2 + f^2 - c$	3
	ii	$4^2 + 2^2$ o.e = 20 which is less than 29	M1 A1	allow 2 for showing circle crosses x axis at -1 and 9 or equiv for y (or showing one positive; one negative); 0 for graphical solutions (often using A and B from (iii) to draw circle)	2
	iii	showing midpt of AB = (4, 2) and showing AB = $2\sqrt{29}$ or showing AC or BC = $\sqrt{29}$ or that A or B lie on circle or showing both A and B lie on circle (or AC = BC = $\sqrt{29}$), and showing AB = $2\sqrt{29}$ or that C is midpt of AB or that C is on AB or that gradients of AB and AC are the same or equiv.	2 2 2 2	in each method, two things need to be established. Allow M1 for the concept of what should be shown and A1 for correct completion with method shown allow M1A0 for AB just shown as $\sqrt{116}$ not $2\sqrt{29}$ allow M1A0 for stating mid point of AB = (4,2) without working/method shown NB showing AB = $2\sqrt{29}$ and C lies on AB is not sufficient – earns 2 marks only	
		and showing both A and B are on circle or AC = BC = √29	2	if M0, allow SC2 for accurate graph of circle drawn with compasses and AB joined with ruled line through C.	4
	iv	grad AC or AB or BC = $-5/2$ o.e.	M1	may be seen in (iii) but only allow this M1 if they go on to use in this part	
		grad tgt = -1 /their grad AC tgt is $y - 7$ = their $m(x - 2)$ o.e.	M1 M1	allow for $m_1m_2=-1$ used eg $y = $ their $mx + c$ then $(2, 7)$ subst; M0 if grad AC used	
		y = 2/5 x + 31/5 o.e.	A1	condone $y = 2/5x + c$ and $c = 31/5$ o.e.	4

13